
ESCOLA POLITÉCNICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO
DOUTORADO EM CIÊNCIA DA COMPUTAÇÃO

EVERTON DE MATOS

EDGE-CENTRIC CONTEXT SHARING ARCHITECTURE FOR THE INTERNET OF THINGS:
CONTEXT INTEROPERABILITY AND CONTEXT-AWARE SECURITY

Porto Alegre

2020

PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
SCHOOL OF TECHNOLOGY

COMPUTER SCIENCE GRADUATE PROGRAM

EDGE-CENTRIC CONTEXT
SHARING ARCHITECTURE FOR

THE INTERNET OF THINGS:
CONTEXT INTEROPERABILITY

AND CONTEXT-AWARE
SECURITY

EVERTON DE MATOS

Dissertation submitted to the Pontifical
Catholic University of Rio Grande do Sul
in partial fulfillment of the requirements
for the degree of Ph. D. in Computer
Science.

Advisor: Prof. Fabiano Passuelo Hessel

Porto Alegre
2020

Everton de Matos

Edge-centric Context Sharing Architecture for the Internet of
Things: Context Interoperability and Context-aware Security

This Dissertation has been submitted in partial

fulfillment of the requirements for the degree of Doctor

of Computer Science, of the Graduate Program in

Computer Science, School of Technology of the

Pontifícia Universidade Católica do Rio Grande do Sul.

Sanctioned on March 26th, 2020

COMMITTEE MEMBERS:

Prof. Dr. Jó Ueyama (ICMC/USP)

Prof. Dr. Jorge Luis Victória Barbosa (PIPCA/Unisinos)

Profa. Dr. Sabrina dos Santos Marczak (PPGCC/PUCRS)

Prof. Dr. Fabiano Passuelo Hessel (PPGCC/PUCRS - Advisor)

Dedico este trabalho a meus pais.

“I reject your reality and substitute my own.”
(Adam Savage)

ACKNOWLEDGMENTS

Agradeço primeiramente aos meus pais, Alberto e Rosemari, e a minha namorada,
Luana, pelo apoio incondicional e compreensão durante minha pesquisa. Obrigado por
estarem ao meu lado durante todos os períodos importantes na minha vida.

Agradeço aos meus amigos, e colegas de doutorado, Ramão e Willian pelo com-
panherismo e parceria em todas as etapas do curso.

Agradeço ao meu orientador e amigo, Prof. Fabiano Hessel, pelo incentivo e con-
fiança no meu trabalho e pelos valorosos conselhos durante a caminhada do doutorado.

Agradeço aos meus colegas de projeto e amigos do GSE/PUCRS (Grupo de Sis-
temas Embarcados) pela ótima convivência durante os anos de projeto e pelas discussões
que engrandeceram meu trabalho de doutorado e as pesquisas acadêmicas feitas no labo-
ratório.

Agradeço à Fulbright Brasil pelo crucial apoio financeiro para a realização de meu
estágio de pesquisa ’sanduíche’ na University of Southern California. Tal período foi de
extrema valia tanto pessoal quanto acadêmicamente.

Thank you Prof. Dr. Bhaskar Krishnamachari, Dr. Gowri Ramachandran, and
all the Center for Cyber-Physical Systems and the Internet of Things team members at
the University of Southern California in Los Angeles for receiving me and giving me the
opportunity to work with you during my visiting period.

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento
de Pessoal Nivel Superior – Brasil (CAPES) – Código de Financiamento 001. Agradeço à
CAPES pelo apoio financeiro prestado durante a realização do doutorado que originou esta
Tese.

ARQUITETURA DE COMPARTILHAMENTO DE CONTEXTO BASEADA
EM EDGE PARA TNTERNET DAS COISAS: INTEROPERABILIDADE DE

CONTEXTO E SEGURANÇA ATRAVÉS DE CONTEXTO

RESUMO

A adoção da Internet das Coisas, Internet of Things (IoT) em ambientes inteligen-
tes exige avanços para lidar com a grande heterogeneidade das entidades IoT (ou seja,
sistemas, aplicativos e dispositivos). A informação de contexto é uma característica essen-
cial dessas entidades, que podem armazenar detalhes relevantes sobre seu ambiente e
eventos. No entanto, com a necessidade de integração de diferentes domínios (verticais)
da IoT para fornecer soluções relevantes aos usuários, o provimento de contexto de ma-
neira isolada não é suficiente. Os sistemas de contexto atuais fornecem as informações
de contexto apenas localmente em domínios específicos (ou seja, abordagens verticais) e
não compartilhadas com outras entidades distribuídas, o que é mandatório para se ter uma
abordagem de arquitetura de informação horizontal e descentralizada. Edge Computing, ou
computação de borda, surge como uma abordagem promissora para auxiliar a preencher a
lacuna de compartilhamento de contexto, minimizando a sobrecarga de informações e re-
duzindo a latência de rede. Além disso, a informação de contexto compartilhada é prevista
para ser utilizada na tomada de decisões seguras e também na preservação da privacidade
do usuário.

Embora algumas abordagens para o compartilhamento de contexto tenham sido
investigadas por pesquisadores, não há esforços em torno da definição de uma arquitetura
de compartilhamento de contexto centrada na borda para ambientes IoT que cumpra os
requisitos de compartilhamento de contexto e forneça recursos de segurança através das
informações de contexto. Nesse sentido, este trabalho define uma arquitetura de sistema
centrada na borda capaz de realizar o compartilhamento de contexto, que é baseado em
uma abordagem de edge-to-fog para minimizar a sobrecarga e a latência de rede. Também
é apresentada uma extensiva discussão sobre os requisitos para o compartilhamento de
contexto, além dos trabalhos relacionados na área. Além disso, a arquitetura proposta é
capaz de prover serviços de segurança através do contexto com as informações de contexto
compartilhadas, o que é considerado um desafio na área.

Palavras-Chave: Internet das Coisas, Context-Awareness, Compartilhamento de Contexto,
Edge Computing, Segurança baseada em Contexto.

EDGE-CENTRIC CONTEXT SHARING ARCHITECTURE FOR THE
INTERNET OF THINGS: CONTEXT INTEROPERABILITY AND

CONTEXT-AWARE SECURITY

ABSTRACT

The adoption of the Internet of Things (IoT) in smart environments demands ad-
vances to cope with the large heterogeneity of IoT entities (i.e., systems, applications, and
devices). Context information is an essential characteristic of these entities, which can store
relevant details about their environments and related events. However, with the integration
of different IoT vertical domains to provide more relevant solutions to users, providing iso-
lated context is no longer enough. Current context systems provide context information only
locally in specific domains (i.e., vertical approaches) and not shared with other distributed
entities, which is mandatory to have a horizontal and decentralized information architecture
approach. Edge computing emerges as promising approach to help filling the context shar-
ing gap by minimizing information overhead and reducing network latency. Also, the shared
context information is envisaged to be used for secure decisions and privacy-preserving.

Although some context sharing approaches have been investigated by researchers,
there are no efforts around the definition of an Edge-centric Context Sharing Architecture
for IoT environments that mitigates the context sharing requirements and provides context-
aware security feature. In this sense, this work defines an edge-based system architecture
able to make context sharing, which is based on an edge-to-fog approach to minimize net-
work overhead and latency. It also discuss the requirements for context sharing and the
related work in the area. Moreover, the proposed architecture is able to provide context-
aware security services with the shared context information, which is considered a gap in
the area.

Keywords: Internet of Things, Context-Awareness, Context Sharing, Edge Computing, Context-
aware Security.

LIST OF FIGURES

Figure 1.1 – Context Sharing Architecture usability in a Smart City application
scenario. 28

Figure 2.1 – Overview of different layers present in IoT environments. 35

Figure 2.2 – Example of a primary context, generated by a pacemaker device, of
a patient having a heart attack in JSON format. 36

Figure 2.3 – Example of a secondary context from a patient having a heart attack
in JSON format. 37

Figure 2.4 – Example of a FIWARE - Orion Context Broker context from a patient
having a heart attack in JSON format. 37

Figure 2.5 – The context sharing building blocks taxonomy. 40

Figure 2.6 – The context sharing building blocks and its interaction. 41

Figure 2.7 – Overview of Context-Aware Security in IoT environments. 45

Figure 2.8 – A taxonomy representation of Context-Aware Security in IoT. 48

Figure 4.1 – A layered Edge-Centric Context Sharing Architecture. 82

Figure 4.2 – Context Storage modules. 83

Figure 4.3 – Context Sharing System modules. 84

Figure 4.4 – Example of a Context Provider profile. 85

Figure 4.5 – Context Provider System modules. 86

Figure 4.6 – Overview of Context-Aware Security Manager. 89

Figure 4.7 – Edge-Centric Context Sharing Architecture instances when applied
to a Smart Healthcare scenario. 90

Figure 4.8 – Flowchart for a Smart Healthcare scenario. 91

Figure 5.1 – Reference Platform modules of the Context Sharing Architecture. . . . 93

Figure 5.2 – COMPaaS architecture overview. 94

Figure 5.3 – Example of a Drools rule. 96

Figure 5.4 – Context Sharing modules of the Context Sharing Architecture. 97

Figure 5.5 – Context Sharing Manager overview. 98

Figure 5.6 – Context information of an IoT Entity with domain specification in
JSON format. 100

Figure 5.7 – Context ontology overview. 102

Figure 5.8 – Context-aware security module of the Context Sharing Architecture. . 108

Figure 5.9 – Context-aware security rule. 109

Figure 6.1 – Three possible context sharing conditions. 114

Figure 6.2 – Execution time (ms) of Subset A varying context information size. . . . 115

Figure 6.3 – Execution time in different networks (ms). 116

Figure 6.4 – Execution time (ms) of the Semantic Processing varying context in-
formation size. 117

Figure 6.5 – Transportation domain upper-layer ontology and domain-specific cat-
egories. 119

Figure 6.6 – Execution time (ms) of the context-aware security provision varying
number of contexts and rules conditions. 123

LIST OF TABLES

Table 3.1 – Summary of Context Sharing Building Blocks. 54

Table 3.2 – Evaluation of Surveyed Works. 55

Table 3.3 – International Efforts Regarding Context Sharing. 66

Table 3.4 – Overview of Context-Aware Security Solutions by Application Area. . . 73

Table 3.5 – Overview of Context-Aware Security Solutions by Requirements. 78

Table 6.1 – Context Sharing Architecture Semantic Processing process results. . . 118

Table 6.2 – Main data extracted from context information, its synonyms and hy-
pernyms. 120

Table 6.3 – Expected classification domain for each main data extracted from con-
text information. 121

Table 6.4 – Context Sharing Architecture Classification score results. 121

Table 6.5 – Execution time (ms) of context-aware security provision. 123

Table 7.1 – Papers published during the PhD degree. 126

LIST OF ALGORITHMS

Algorithm 5.1 – Functions to gather the synonyms and hypernyms of a word. 100

Algorithm 5.2 – Function to check the similarity between words. 103

Algorithm 5.3 – Functions to insert and modify context information. 105

Algorithm 5.4 – Functions to query for context information. 106

Algorithm 5.5 – Function to subscribe for a context information. 107

Algorithm 5.6 – Variables implementation in context-aware security provision. . . . 111

Algorithm 5.7 – Actions implementation in context-aware security provision. 111

Algorithm 5.8 – Function responsible to run the rules. 112

LIST OF ACRONYMS

ABAC – Attribute-Based Access Control

ADSL – Asymmetric Digital Subscriber Line

API – Application Programming Interface

CARBAC – Context-Aware Role Based Access Control

CAS – Context-Aware Security

CEP – Complex Event Processing

COAP – Constrained Application Protocol

DAC – Discretionary Access Control

DTLS – Datagram Transport Layer Security

ECA – Event-Condition-Action

EMS – Emergency Medical Services

GDPR – General Data Protection Regulation

GPS – Global Positioning System

HIOT – Healthcare Internet of Things

HTTP – Hypertext Transfer Protocol

IIOT – Industrial Internet of Things

IOT – Internet of Things

IP – Internet Protocol

JSON – JavaScript Object Notation

LBS – Location-Based Service

LPWA – Low-Power Wide-Area

LTE – Long Term Evolution

M2M – Machine-to-Machine

MAC – Mandatory Access Control

NFC – Near Field Communication

NLTK – Natural Language Toolkit

OS – Operating System

OWL – Web Ontology Language

RAC – Rule-Based Access Control

RAM – Random-Access Memory

RBAC – Role-Based Access Control

REST – Representational State Transfer

RFID – Radio-frequency identification

SDN – Software-Defined Networking

SHS – Smart Home Systems

SOA – Service-Oriented Architecture

SOAP – Simple Object Access Protocol

SSN – Semantic Sensor Network ontology

TCP – Transmission Control Protocol

TLS – Transport Layer Security

TSDB – Time Series Databases

UDP – User Datagram Protocol

URL – Uniform Resource Locator

VPN – Virtual Private Network

W3C – Wide Web Consortium

WSN – Wireless Sensor Network

XML – Extensible Markup Language

CONTENTS

1 INTRODUCTION . 27

1.1 MOTIVATION . 28

1.2 HYPOTHESIS AND RESEARCH QUESTIONS . 29

1.3 OBJECTIVES . 29

1.4 CONTRIBUTION . 30

1.5 DOCUMENT STRUCTURE . 31

2 THEORETICAL BACKGROUND . 33

2.1 INTERNET OF THINGS AND EDGE COMPUTING . 33

2.2 CONTEXT-AWARENESS AND IOT . 35

2.3 CONTEXT SHARING . 38

2.4 SHARING BUILDING BLOCKS . 39

2.4.1 PROPERTIES . 40

2.4.2 ARCHITECTURAL COMPONENTS . 43

2.5 CONTEXT-AWARE SECURITY . 44

2.5.1 TAXONOMY OF CONTEXT-AWARE SECURITY IN IOT 47

2.5.2 KEY REQUIREMENTS OF CONTEXT-AWARE SECURITY IN IOT 51

3 RELATED WORK . 53

3.1 CONTEXT SHARING PLATFORMS . 53

3.1.1 CONTEXT SHARING MODELS . 55

3.1.2 CONTEXT SHARING MIDDLEWARE . 58

3.1.3 SUMMARY OF SHARING PLATFORMS . 62

3.1.4 INTERNATIONAL EFFORTS . 65

3.1.5 CHALLENGES AND FUTURE DIRECTIONS . 69

3.2 CONTEXT-AWARE SECURITY PROVISION . 72

3.2.1 CONTEXT-AWARE SECURITY APPLICATION AREAS 72

3.2.2 SUMMARY OF CONTEXT-AWARE SECURITY SOLUTIONS 77

4 ARCHITECTURAL APPROACH . 81

4.1 CONTEXT SHARING ARCHITECTURE . 81

4.1.1 CONTEXT STORAGE . 83

4.1.2 CONTEXT SHARING SYSTEM . 83

4.1.3 CONTEXT PROVIDER SYSTEM . 86

4.2 PROVIDING CONTEXT-AWARE SECURITY . 88

4.3 SMART CITY APPLICATION SCENARIO . 90

5 CONTEXT SHARING ARCHITECTURE IMPLEMENTATION 93

5.1 REFERENCE PLATFORM . 93

5.2 CONTEXT SHARING MANAGER . 96

5.2.1 SEMANTIC PROCESSING . 99

5.2.2 CLASSIFICATION . 101

5.2.3 REPOSITORY . 104

5.2.4 DISTRIBUTION . 106

5.3 CONTEXT-AWARE SECURITY IMPLEMENTATION . 107

6 EXPERIMENT RESULTS . 113

6.1 EXPERIMENT 1 - CONTEXT SHARING ARCHITECTURE PERFORMANCE . . 113

6.1.1 ENVIRONMENT SETUP . 114

6.1.2 EXPERIMENT RESULTS - CONTEXT INFORMATION PATH. 115

6.1.3 EXPERIMENT RESULTS - SEMANTIC PROCESSING PHASE 116

6.2 EXPERIMENT 2 - CONTEXT SHARING ARCHITECTURE ACCURACY 118

6.2.1 ENVIRONMENT SETUP . 119

6.2.2 EXPERIMENT RESULTS . 120

6.3 EXPERIMENT 3 - CONTEXT-AWARE SECURITY . 122

6.3.1 ENVIRONMENT SETUP . 122

6.3.2 EXPERIMENT RESULTS . 122

6.4 RESULTS DISCUSSION . 124

7 FINAL CONSIDERATIONS . 125

7.1 CONTRIBUTIONS . 125

7.2 PUBLICATIONS . 126

7.3 REVISITING THE HYPOTHESES AND RESEARCH QUESTIONS 127

7.4 CONCLUSION . 128

7.5 FUTURE WORK . 129

REFERENCES . 131

27

1. INTRODUCTION

The Internet of Things (IoT) has gained significant attention in academia as well
as in industry. By embedding mobile networking and information processing capability into
a wide array of gadgets and everyday items, the Internet of Things has been adding new
dimensions to the world of information and communication technology [10].

The Edge Computing paradigm enables moving this IoT computation from the high-
powered central Cloud to the edge of the network [131]. The benefits of Edge Computing
result from its proximity to data sources and end users. It has the potential to address
the following challenges: (i) low and predictable latency for end users and applications;
(ii) secure and privacy-preserving services and applications; (iii) long battery life and low
bandwidth cost; and (iv) scalability [122].

As miniaturization still continues and computing capacity still increases, edge sen-
sors (IoT devices) become more powerful. There is a common sense that the devices of
IoT environments generate a lot of data, and also that they are only useful if it is possible to
analyze, interpret and understand these data in a proper way. In this sense, context-aware
computing has played an important role in tackling this challenge in previous paradigms,
such as mobile and pervasive computing, which implies that it would continue to be suc-
cessful in the IoT as well [109].

Most of the systems or architectures for context management (context-aware plat-
forms) are designed to facilitate applications in separate domains. However, in the IoT, most
solutions are deployed in heterogeneous domains, which means different systems devel-
oped by various industries can be employed in the environment to connect different sensors
and devices, and thus collect, model, and also reason about the environment context, pro-
ducing context information. These information is defined as the data that characterizes the
entities of the environment (e.g., location, status, updates). Therefore, sharing context infor-
mation between different kinds of systems has become a mandatory requirement in the IoT
ecosystem [1] [109].

There is a need to define an architecture that goes beyond vertical solutions by inte-
grating all required technologies and components into a common, open and multi-application
platform [18]. Some technologies as ontologies, lexical analyze, and semantic processing
have been used for a similar processing that can also be used for such kind of processing as
well. Although some approaches for sharing the context have been investigated, there are
no efforts around the definition of an Edge-centric Context Sharing Architecture for IoT en-
vironments. Such definition demands the mitigation of requirements that are not addressed
in existing studies, such as large heterogeneity, scalability and real-time sharing. Also, the
use of shared context information for providing context-aware security decisions is not well
explored by researchers [109].

28

1.1 MOTIVATION

The context information can be achieved in many domains (i.e., verticals) of IoT
environments. In this sense, the context sharing processing occurs in different domains
as well. Figure 1.1 presents a motivation scenario that shows the vision of the proposed
Context Sharing Architecture in a smart city domain. Heterogeneity is always present in a
smart city, once it is a very complex scenario that contains entities of different domains, such
as transit, public services, users. There is a need for a Context Sharing Architecture to make
a common context communication.

Figure 1.1 – Context Sharing Architecture usability in a Smart City application scenario.

To make clear the organization of a context sharing platform, Figure 1.1 shows how
the context sharing feature can fit in an Internet of Things environment (e.g., smart cities).
It shows an example scenario in which the context information generated in one domain
(e.g., traffic) is shared with different domains (e.g., public services and citizens). The context
can be produced with data from different devices (e.g., monitoring camera, light pole) and
it should be understood by the destination domain and its devices (e.g., ambulances and
traffic lights). In Figure 1.1, the context sharing feature is provided by a context sharing
platform. Such platform represents a software system able to interconnect different domains
by sharing its context information.

By receiving context information of entities that are not strictly connected each
other, the phases 4, 5, and 6 (see Figure 1.1) are directly related to context sharing process.
The received context information can be used in a different kind of processing. For example,
the entities of phases 4, 5, and 6 can process the received context, create a new context,
and share it by the Context Sharing Architecture.

The use of context sharing enables computational entities such as agents and ser-
vices in pervasive computing environments to have a common set of concepts about context
while interacting with one another [143]. By reusing well-defined context of different domains,
it is possible to compose large-scale context information without starting from scratch [18].

29

Besides of sharing context information, such platform can be used to reduce the processing
effort of the entities, once they receive context information instead of reasoning about it.

The decentralization of such an approach by having multiple instances in different
application domains fits with the Edge Computing principle. The Context Sharing Architec-
ture can be present as a Fog Computing device in the smart traffic monitoring system, and
as an Edge Device in each light pole of those systems. The Edge Devices will generate
the context information, send it to the Fog, which will share with Fog instances in different
domains.

Moreover, the shared context information can be used to provide secure decisions,
called context-aware security. For example, information can have its privacy defined by
the context of each domain that will receive it, as an ambulance near to the location may
receive all the details of the patient. The received context information can be matched with a
historical one in decision-making methods to provide context-aware security decisions, such
as authentication, authorization, access control, and privacy-preserving.

1.2 HYPOTHESIS AND RESEARCH QUESTIONS

This dissertation seeks to investigate two hypotheses: (i) context sharing is well
suited to provide context interoperability among different systems of IoT environments; and
(ii) it is possible to provide security based on context to IoT entities through context sharing
feature.

Research Question: “Which requirements a system that produces context infor-
mation must have to be prepared to share its context information with other entities?”

Research Question: “How can the context information interoperability between
heterogeneous IoT platforms that produce different kinds of context be provided?”

Research Question: “What criteria will be taken into account to define which enti-
ties will receive the shared context information and which entity will perform this control?”

Research Question: “In which ways can shared context information be used for
context-based security provisioning and how it can be implemented?”

1.3 OBJECTIVES

The main goal of this research is to define an Edge-centric Context Sharing Archi-
tecture, thus providing context-aware security. The architecture must cover different points
related to managing the context information and also to share it. To achieve the research
goal, the following objectives were defined:

30

• Studying the existing studies for sharing information on Internet of Things environments
and their fitness to the Edge Computing paradigm;

• Definition of a data model to express and store the context information in an interopera-
ble way, and also some strategies, protocols, and communication languages to enable
this interoperability;

• Implementation of an architecture able to manage and process the context information
of different entities in an interoperable way to have a pool of abstractions for context
management systems that are sharing their information;

• Definition of an approach to transport and store the context information in an organized
and secure way;

• Development of an environment to run tests of the architecture, considering the pos-
sibility to use the shared context information to provide context-aware security to the
entities;

• Evaluation of the proposed system in scenarios which the context information can be
used to provide different categories of context-aware security;

• Documenting and reporting the study results, publishing them in scientific conferences
and journal articles, making publicly available all source code involved in this research.

1.4 CONTRIBUTION

The vision of 2020 and beyond also includes a great deal of growing use cases with
massive number of devices (e.g., sensors, actuators and cameras) with a wide range of char-
acteristics and demands. Smart services will become pervasive in urban areas, and usage
will also grow in suburban and rural areas. Among others, metering (e.g., gas, energy, and
water), city or building lights management, environment (e.g., pollution, temperature, humid-
ity, noise) monitoring, and vehicle traffic control represent prominent examples of services
in a smart city. The aggregation of all these services leads to very high density of devices
with very different characteristics expected to be combined in a common communication and
interworking framework [71].

An Edge-centric Context Sharing Architecture will be of great impact in such sce-
narios. The architecture fits in the definition of a common framework, by exchanging context
information of devices placed in different verticals (i.e., domains). Its feature on working at
Edge Computing layer makes possible that devices context be shared without the necessity
of a centralized server at a Cloud layer.

31

This research presents two main contributions: (i) the development of an Edge-
centric Context Sharing Architecture, able to provide context information interoperability, and
(ii) the provision of security based on context through the sharing architecture. To the best
of our knowledge, a context sharing architecture that works with highly heterogeneous IoT
environments was not defined yet. In this sense, the novelty will be reached at the scientific
research community. The specific contributions are:

• State-of-the-art of the projects working with context sharing feature;

• An interoperable model allowing sharing of context information between heteroge-
neous IoT entities;

• An architecture to perform context sharing in Internet of Things constrained environ-
ments, including heterogeneity and security challenges;

• An Edge-centric module able to manage and process context information in constrained
environments;

• A method to interpret shared context information in order to provide security and pri-
vacy for IoT entities in different ways.

1.5 DOCUMENT STRUCTURE

The remainder of this Dissertation is organized as follows. Chapter 2 presents
theoretical references that are used in this work, such as definitions of IoT, Edge Comput-
ing, and context-awareness. Chapter 3 presents the related work in sharing platforms, and
context-aware security. Chapter 4 presents the proposed work architectural view, showing
the developed modules overview. Chapter 5 presents the technical details of the devel-
oped Context Sharing Architecture. Chapter 6 presents the experimental results obtained
by testing the proposed approach. Finally, Chapter 7 presents the conclusions, and author’s
publications in the last years.

32

33

2. THEORETICAL BACKGROUND

2.1 INTERNET OF THINGS AND EDGE COMPUTING

The Internet of Things (IoT) is a computing paradigm that is rapidly gaining space
in scenarios of modern information and communication technologies. The idea of the IoT is
the pervasive presence of a variety of things or objects (e.g., RFID tags, sensors, actuators,
smart phones, smart devices, etc.) that are able to interact with each other and cooperate
with their neighbor elements and systems to reach common goals through unique address-
ing schemes and reliable communication media over the Internet [10].

Implementation of IoT environments is usually based on a standard architecture
consisting of several layers [13]: from the data acquisition layer to the application layer.
Next, the IoT layers functionality is presented [13]:

• Application layer: This layer is responsible for the delivery of various services to
different users/applications in IoT environments. The applications can be from different
industry verticals such as manufacturing, logistics, retail, environment, public safety,
healthcare, food and drug, etc.

• Middleware layer: This layer acts as an interface between the hardware layer and
the application layer. It is responsible for critical functions such as device manage-
ment and information management, and also takes care of issues like data filtering,
data aggregation, semantic analysis, access control and information discovery. There
are different Middleware platforms developed for the Internet of Things environments
[116]. It is common for the researchers to define its Middleware platform to meet
their project‘s needs. However, some projects, as FIWARE1, provides a curated open
source framework for such kind of needs. Moreover, FIWARE has an infrastructure of
different modules that can be used for a personalized Middleware service provision.

• Access gateway layer: The first stage of data handling happens at this layer. It takes
care of message routing, publishing and subscribing, and also performs cross-platform
communication if required.

• Device layer: This hardware layer consists of sensor networks, embedded systems,
RFID tags and readers or other IoT devices in different forms. These entities are the
primary data sources deployed in the field. Many of these hardware elements pro-
vide identification and information storage (e.g. RFID tags), information collection (e.g.
sensor networks), information processing (e.g. embedded edge processors), com-
munication, control and actuation. However, identification and information collection

1https://fiware-orion.readthedocs.io/en/master/

34

are the primary goals of these devices, leaving the processing activities for the upper
layers.

Device layer refers to the enabling technologies allowing computation to be per-
formed at the edge of the network, on downstream data on behalf of cloud services. The
constant increase in data volume elevates the complexity and costs of transporting, analyz-
ing, and storing data at the Cloud. To mitigate these shortcomings, Fog and Edge Computing
paradigms have been introduced [20][122].

IoT environments may have different processing layers, including Fog and Edge
computing layers. Fog and Edge Computing are firmly related concepts, but they are not the
same [133][22][108][107][94][99]. According to the OpenFog Reference Architecture [107],
Fog computing extends Cloud computing into an intermediate layer close to IoT devices and
enables data processing across domains, while Edge computing involves the control and
management of a standalone endpoint device individually within the Fog domain, typically
within a close proximity of the device [25][46][84]. It is prevalent in context-aware IoT envi-
ronments to produce the context information at the Edge layer and enrich them in the Fog
layer. It may happen because the Fog layer may access data from other nodes, making it
possible to fuse different information.

To avoid any possible misunderstanding about the concepts of Fog and Edge, the
definitions from the OpenFog project and Morabito et al. were adopted for the contextual-
ization of those concepts in this work [107][94]. Thus, it is possible to define three entities
for IoT environments: (i) edge devices, (ii) fog nodes, and (iii) cloud servers. Figure 2.1
illustrates these entities divided into layers. The edge devices make part of the Edge layer; It
is composed of different IoT devices. These devices usually have sensors attached to it re-
sponsible for sensing the environment and for data generation. The edge devices may also
have the responsibility of data pre-processing and sometimes local decision making. They
are characterized by having limited processing power and in some cases, limited energy
supply (i.e., battery). Some examples of edge devices are IoT platforms (e.g., Raspberry Pi,
Arduino), sensors, actuators, smartphones. The fog nodes make part of the Fog layer. They
have the main function of processing data that could not be processed at the Edge layer,
which may occur due to the limited resource capacity of the lower layer (i.e., Edge). Also,
fog nodes may store edge devices data. It is usual for the fog nodes to be placed physically
close to the edge devices (i.e., from the same room to the same city). Some examples of
fog nodes are small servers and personal computers. Even a powerful edge device some-
times may be considered a fog node (e.g., last generation smartphones/tablets connected
to an energy supply). In the Edge-Fog approach, the cloud servers, placed at the Cloud
layer, work as information storage. They usually do not process data, working as a larger
database. The cloud servers may store data (e.g., context information) from a few fog nodes
and several edge devices at the same time.

35

Figure 2.1 – Overview of different layers present in IoT environments.

2.2 CONTEXT-AWARENESS AND IOT

Context, sometimes referred as context information, is commonly represented se-
mantically [39]. It is used to define the status of an environmental entity (e.g., person, place,
application, or computing device), thus characterizing its situation [145][1]. Context infor-
mation is highly related to the information that is easily understandable by humans when
reading it [109].

Abowd et al. [1] have introduced a way to characterize the situation of the entities,
that is used until these days by most of context information management solutions [109].
It is based on the “Five Ws” approach, which uses five questions: Who, Where, When,
What, and Why. Those questions are made to build the context information. The question
“Who” can characterize the identity of the entity. By asking “Where” it is possible to discover
the location. The question “When” gives a notion of time. The “What” can characterize an
activity. Finally, by asking “Why,” it is possible to determine the motivation. In light of this,
the information is expected to have at least one of the “Five Ws” within it to be considered a
context.

Even with the well-known definitions of what is considered context information,
there is no standard format and representation for it [109][39][145]. Different researchers
have identified different ways to present context based on different approaches. Abowd et
al. [1] introduced one of the most popular ways to define the context (i.e., the “Five Ws”
approach). They defined two types of context: primary and secondary. The primary con-
text is identified as location, time, identity, and activity. Further, the secondary context can
be achieved by using the primary context [109]. For example, when considering that the
primary context is both the GPS (Global Positioning System) coordinates of a user’s device
(e.g., smartphone) and the time of the day, it is possible to achieve the secondary context

36

as being the events that may occur on that particular area, or the traffic status. Figure 2.2
shows an example of this representation of a primary context, representing the data from a
patient’s pacemaker connected to the patient’s smartphone. Figure 2.3 shows an example
of the secondary context, which is the enriched location information (e.g., city, zip code) that
can be used to send an alert to the Emergency Medical Services (EMS). It represents a
primary context enriched with a patient‘s phone information, thus creating a more complex
context.

Figure 2.2 – Example of a primary context, generated by a pacemaker device, of a patient
having a heart attack in JSON format.

The FIWARE introduced another example of a popular way of representing context
information, the Orion Context Broker2 project. It organizes the context information more
straightforwardly by just defining one type of context, that encompasses both primary and
secondary ones when compared with the Abowd et al. representation [1]. Figure 2.4 shows
an example of FIWARE - Orion Context Broker context representation.

Recently, Casadei et al. [27] stated that the context information is a fundamental
piece of the IoT environments. The authors classify the IoT environment in three main
classes of entities: IoT Entity, IoT Environment, and IoT Service. The IoT Entity is any
subject that either produces or consumes IoT Services. The IoT Environment is the physical
place where the IoT Entities are deployed. IoT Services are the cyber-physical services
provided by the IoT Entities. The context is stated as the dependencies between those three
classes of entities. It can express implicit or explicit information regarding them.

As shown in Figure 2.2, Figure 2.3, and Figure 2.4, the context information tends
to be presented in an easily understandable form for the final user, for example, in a JSON
(JavaScript Object Notation) or in an XML (Extensible Markup Language) format.

In this work, it is defined a formal way of representing context information, not
considering the metadata format, but the content that it should have. Let’s consider a set of
Entities E = {e1, e2, ..., en} and a set of Status Sn = {s1, s2, ..., sm}. An entity en represents
a person, place, application, or computing device, and has a set of Status Sn composed of
information that characterizes the entity en. A common way of characterizing an entity is
by using the “Five Ws” approach [1]. Thus, a status sm should be represented by at least
one of the “Five Ws” characterization about the entity en. Taking this into account, a context

2https://fiware-orion.readthedocs.io/en/master/

37

Figure 2.3 – Example of a secondary context from a patient having a heart attack in JSON
format.

information is defined as cinm, where n is an entity id and m an information id about an entity
en. A set of context information is denoted as C = {cinm1, cinm2, ..., cinmk}.

To provide context information, a system must follow some steps. Perera et al.
[109] defined Acquisition, Modelling, Reasoning, and Distribution as the steps for a system
to provide context information, naming as context life-cycle. The Acquisition refers to gather
the raw data from a sensor, database, or from the environment. The Modelling process
adjusts the data in a specific format to turn its input for the Reasoning step. There are
many different techniques for Modelling already surveyed in existing literature (e.g., key-
value pairs, ontology, markup scheme) [15][128]. The Reasoning process is the primary
step in the context life-cycle. It transforms the information into a context, denoted as cinm,
turning it understandable to the final users. The Reasoning, also called inferencing, may
use different data enrichment techniques (e.g., business rules, ontology, probabilistic, data
fusion, aggregation). Perera et al. also detail the main Reasoning techniques and show in
detail how each technique works. Distribution is a straightforward step [109]. It is responsible
for spreading the context information. Usually, it has the option to distribute context by direct
query or subscription.

Figure 2.4 – Example of a FIWARE - Orion Context Broker context from a patient having a
heart attack in JSON format.

A system can be considered context-aware when it uses the context obtained
through the context life-cycle to provide useful services/information to the user [1][90]. In

38

this way, it is indispensable to the IoT environments to have a context-aware system able to
reason about the environment to provide such kind of services/information. Thus, context-
awareness is considered a must-have feature to IoT systems [39].

The context information may vary depending on the producer. It can vary in for-
mat, size, representation. Most of the context-aware systems produce such kind of context
information and use it only locally for decision making or spread it directly to the final user.
However, there are some systems that could share context information with whom may be
interested. This process is called context sharing and is one of the main challenges of the
context-awareness area [109][1][18].

2.3 CONTEXT SHARING

Before going into context sharing details, it is important to separate its definition
from data interoperability, i.e., data sharing. Although having a similar concept of delivering
common understanding information for two different entities, both data interoperability and
context sharing differ in some aspects. There are some data interoperability platforms for
IoT already studied and developed by the scientific community, such as FIESTA-IOT [2],
and IoT-A [37]. Their main goal is to provide a way to make IoT device data interoperable
between different applications and users. However, context sharing platforms may work with
context, that can be considered a more complex information [109].

Context information sharing needs a more careful process than sharing regular
data. This data may be sensitive, making it essential to care about its security. For example,
if an attacker gets regular data from a communication channel, it can be tough to under-
stand the meaning of such data without the right context. Differently, the context information
represents a specific event, many times in a semantic manner. Thus, it is much more un-
derstandable for a possible attacker. Moreover, there are many different ways to provide
context information [109][39]. In light of this, it is very common that heterogeneous context
information providers act in different ways when generating context, varying in its format,
length, data type, representation. Thus, these variations should be considered when provid-
ing context sharing feature. Therefore, context sharing platforms tend to have an enormous
effort in providing context interoperability, many times by using different techniques (e.g.,
rules, ontology, decisions trees).

As IoT has many heterogeneous environments with different devices generating
context information, it is essential to share context information between entities. More than
helping in a common understanding of the context information, the context sharing feature
may also help in reducing the effort of the entities. The receiving entity can get the con-
text information without performing the reasoning process, which is considered the most
demanding hardware operation in context life cycle [109].

39

The context sharing feature can be performed embedded in an IoT entity or by a
third-party software. The software system that performs the context sharing feature can be
called architecture, platform, tool or mechanism.

For example, an event that can occur in a smart city generates context information
that is automatically shared by the context sharing platform to whom may be interested in it.
The sharing process includes heterogeneous entities. Thus, the received context information
can be used in different kinds of processing. The entities can process the received context,
create a new context, and share it back with the platform.

A context sharing platform may vary in its characteristics (i.e., features). For ex-
ample, it can have decentralized or centralized processing. Next section, explains in details
the different features (i.e., the building blocks) that a platform must have to share context
information.

2.4 SHARING BUILDING BLOCKS

It is well-known that IoT environments have complex application scenarios. A con-
text sharing platform must deal with these scenarios by implementing some specific func-
tions. These functions are also called building blocks. In this work, it is defined the context
sharing building blocks taking into account some past research in the context-awareness
and context sharing areas [109][103][74]. The following building blocks are used to compare
the different context sharing platforms: Modeling (M), Reasoning (R), Data Dissemination
(D), Privacy (P), Interoperability (I), Context Processing (CP), Infrastructure Configuration
and Management (ICM), Scalability and Real-time sharing (SRT), Availability (Av), Commu-
nication technologies (C), History (Hi), and Architectural model (Ar).

The building blocks can be categorized as: (i) Properties, and (ii) Architectural
Components. The Properties refer to the ones mainly related to the software side of the con-
text sharing platforms. The Architectural Components refers to the architectural decisions
when deploying a context sharing platform, mainly related to the hardware side (e.g., com-
munication technologies, storage space, processing layers). Figure 2.5 shows the building
blocks and its divisions in a taxonomy view. Moreover, as shown in Figure 2.5, some build-
ing blocks are strictly related to the context sharing characteristics, which means the ones
exclusively need in such processing. On the other hand, some building blocks are related
to regular IoT characteristics, which are common in IoT systems that do not necessarily
originate from the context sharing feature.

Figure 2.6 shows all the different building blocks and how they fit and interact to-
gether in an Internet of Things Environment. It is common sense that most of the building
blocks are a responsibility of the Context Source entity that will share the context informa-
tion. However, it opens new possibilities when some building blocks are implemented by the

40

Figure 2.5 – The context sharing building blocks taxonomy.

Context Destination, that will receive the context information. For example, if the Context
Destination has a Reasoning (R) function, it can produce new context information to perform
a new task.

The following paragraphs present the context sharing building blocks that a context
sharing platform must have. In this sense, this section defines these building blocks and the
enabling technologies for each one, while Table 3.2 (see Section 3) makes a comparison
with many systems architectures through the defined building blocks.

2.4.1 Properties

• Modeling (M): The modeling is the first step for context standardization. It is respon-
sible for converting the context into a predefined format. The modeling process helps
in a more straightforward interpretation of the context information. An efficient model-
ing process is essential for a context sharing platform. Researchers already surveyed
the most popular techniques for modeling context information [30][130][109]. These
surveys present the techniques and different ways of implementation for each one.
To choose for a specific modeling technique will depend on the deployed site char-
acteristics, once each technique may be suitable for a particular situation. A given
system may employ one or more modeling technique. The works are classified by
the following modeling techniques: key-value modeling (Key), markup schemes (Mrk),
text-based modeling (Tex), graphical modeling (Gra), object-oriented modeling (Oob),
logic-based modeling (Lob), and ontology-based modeling (Onb). The symbol (X) is
used to denote that the work employs the modeling feature, but it does not make clear
the specific technique.

• Reasoning (R): It is defined as the process to obtain high-level information from less
enriched data, or even raw data. The reasoning process uses the available context
to produce a more useful one. The outcome of the reasoning process could be se-

41

mantic information, being easily understood by final users. Moreover, the reasoning
also is defined as the inference process [16]. In the scope of context sharing, the rea-
soning is used to discover/infer the destination of the context information for sharing.
For example, this feature may be used to discover that a context of a patient having
a heart attack must be sent to the Emergency Medical Services (e.g., ambulances) of
the city. Moreover, the reasoning can be also performed by the entity that will receive
the context in order to do a new processing (e.g., decision making, inferencing). The
most popular reasoning techniques are surveyed in [109]. The works are classified
by the following reasoning techniques: supervised learning (Sul), unsupervised learn-
ing (Unl), reinforcement learning (Rel), rules (Rul), fuzzy logic (Fuz), ontology-based
(Onb), and probabilistic reasoning (Pro). The symbol (X) is used to denote that the
work employs the reasoning feature, but it does not make clear the specific technique.

• Data Dissemination (D): The context information is shared to who is interested in
it. Data dissemination is a fairly straightforward task. Each system has a policy to
disseminate the context information. There are only two ways of data dissemination:
static (Sta), and dynamic (Dyn). In the static approach, there is a predefined list to
whom the context must be sent depending on the specific situation. On the other
hand, the dynamic approach needs a specific reasoning function to define the exact
destination of the context information. For example, in the static approach, there will
be a predefined list of the city ambulances, while in the dynamic, a reasoning method
will find the nearest available ambulance. For both approaches, the dissemination may
occur by groups, roles, or individually.

Figure 2.6 – The context sharing building blocks and its interaction.

• Privacy (P): The context information includes private data in most situations such as
location, activities, and preferences. Thus, privacy is an important role. Different ap-
proaches can be used to ensure privacy, such as authorization, access control policies,
anonymization, cryptography [137]. Concerning privacy protection, it is necessary to
specify what information may be disclosed, providing means to trace and destroy the

42

information, if necessary. The symbol (X) is used to denote works that employ tech-
niques to ensure privacy.

• Interoperability (I): Differently from the most context systems that comprise only an
application-specific system (i.e., a vertical domain), shared systems tend to be more
heterogeneous. In the context sharing platforms, the interoperability needs to appear
in different ways, such as in the context production, format, and interpretation. The in-
teroperability requirement is related to the capability of the platform to manage context
information in different aspects, such as format, source, length, and representation.
Currently, there is no standard context notation format. Although there is a wide range
of applicable context information, it is very difficult to make a one size fits all context
format. The complete interoperability only will be possible by the combination of many
other factors, such as modeling, data dissemination, communication services, among
others. The works are categorized in two groups: full interoperability (FuI), and partial
interoperability (PaI). The full interoperability tries to address interoperability in different
ways (e.g., data format and communication technologies) and between heterogeneous
entities. Partial interoperability usually provides interoperability only in a predefined ap-
plication domain or between entities that may have similar characteristics to define the
context.

• Context Processing (CP): Considering the development of the IoT and with the in-
creasing number of devices being connected to the Internet, it will not be realistic for
those requesting context information to enter an IP (Internet Protocol) address to a
specific device. In this sense, the context sharing platform must have the smart capac-
ity to obtain, produce, and share context information from a highier-level request. This
feature is similar to the device discovery service already present in IoT environments
[85]. The works are classified by the following context processing techniques: search-
ing (S), filtering (F), and aggregation (A). The symbol (X) is used to denote that the
work employs the context processing feature, but it does not make clear the specific
technique.

• Infrastructure Configuration and Management (ICM): In an IoT environment, many
different devices can connect to the network. It is essential to the context sharing
platforms to provide ways for the new devices/applications to connect with the sharing
infrastructure. The infrastructure configuration and management feature must facilitate
the connection to the sharing platform to different kinds of devices and applications.
Besides, to allow the sharing of information, context sharing platforms must be respon-
sible for managing the connected ones in order to know a possible source and desti-
nation for context information. The symbol (X) is used to denote that the work employs
techniques to provide the infrastructure configuration and management feature.

43

• Scalability and Real-time Sharing (SRT): In IoT environments, with many requests
happening at the same time, enormous quantities of data/context information need
proper processing with acceptable execution time. Moreover, this also reverberates to
massive communication efforts. Taking into account this concept, the context sharing
process must minimize the processing and the communication overhead in the sharing
platforms. The symbol (X) is used to denote that scalability and real-time sharing
functionality is employed by the analyzed works in some perspective.

• Availability (Av): As the context information can be produced every time that the
IoT devices generate new data, the context sharing process may happen anytime in
such dynamic IoT environments. Context sharing platforms must be always available
for a possible sharing. In this sense, sharing platforms may run the sharing process
automatically (Aut), that is, the sharing should occur without the need for setting up the
system, and it will happen as soon as new context information is produced and defined
as shareable. On the other hand, the sharing process may need to be triggered (Tri),
that is, it will require some setup or modification in the system to start the sharing
process.

2.4.2 Architectural Components

• Communication Technologies (C): The context sharing platform is an entity of the
IoT environment. In this sense, it must be able to communicate with many other en-
tities. This communication may happen to gather specific data, or, in most cases, to
share the context information. This topic is not directly related to the context sharing
process, but the communication services feature refers to which network technolo-
gies the system supports, that is essential for the communication between the entities.
The systems may offer local communication (Loc) (e.g., Bluetooth, Wi-Fi, NFC), ex-
ternal communication (Ext) (e.g., 3G, 4G, LTE), or both (LE). Moreover, network layer
protocol aspects and messaging paradigms are also crucial for communication tech-
nologies in such systems. These kinds of communication technologies help to provide
interoperability by their different ways of implementation. Some examples are Web ser-
vices (e.g., REST, SOAP), socket and WebSockets. These kinds of technologies are
well-known device-agnostic standards for communication [101][47]. Thus, the work is
considered attending the network layer communication criteria (NeC) if it mentions the
use of such kinds of technologies.

• History (Hi): The shared context information may be stored in the context sharing
platforms. It can be useful for probabilistic reasoning or to access the last record of
some information. Also, the history can help in the real-time processing, when it is

44

updated in storage. Context information may be stored locally or in the cloud. The
symbol (X) is used to denote that the work employs techniques to provide the history
feature.

• Architectural Model (Ar): The approach for the architectural perspective of con-
text sharing platforms may vary depending on the application domain characteristics.
There is a wide range of applicable perspective of systems architecture. However,
considering the IoT environments, some architectures are more suitable than others.
There are three main architectures for sharing platforms appropriate for IoT environ-
ments: cloud-based (Clo), centralized-edge (Cen), and decentralized-edge (Dec). In
the cloud-based, the most processor demanding computation is executed in the cloud.
It has a significant dependency on the network. The centralized-edge brings the com-
putation near to the IoT devices, but still has a central point of computation, even to
store information. It works based on groups. Finally, in the decentralized-edge, the
computation is divided into devices. It may lack in some features, once the device may
be limited in some ways, like processing power and storage capability. On the other
hand, some systems do not follow a specific architectural perspective and can adapt
(Adp) itself depending on the environment.

2.5 CONTEXT-AWARE SECURITY

The context-aware technology brings completely new experience for the applica-
tions operators and to users. Traditionally, security requirements are assumed to be rel-
atively static since security decisions do not change with context, nor do they account for
changing conditions in the environment [3]. However, the use of context information to pro-
vide security decisions is key feature to mitigate some security problems. There are only a
few applications, which has security based on context [43][142].

The Context-Aware Security (CAS) is defined by Mostéfaoui and Brézillon [21][97]
as: “a set of information collected from the user’s environment and the application environ-
ment and that is relevant to the security infrastructure of both the user and the application.”
Also, CAS can be defined as a situation where a security solution considers a set of in-
formation (context) while making a specific security decision. For example, while detecting
an intrusion during communication, security mechanism may adapt to strong authentication
method [61].

The context unaware mechanisms can be inadequate for the Internet of Things
due to its dynamic and heterogeneous environment. The context information can be used
to reconfigure security mechanisms and adjust security parameters. The contextual infor-
mation can be integrated into various security mechanisms such as authentication, access
control, encryption, etc [61]. For example, access from City A can have different access

45

rights then access from City B. They can even sometimes omit authentication because their
context is trustworthy by itself (e.g., access from inner company network). Similar to users,
also application operators can profit from the context-based authentication. They might de-
fine more strict security rules for suspicious users behavior (e.g., Internet access to system
confidential resources at night). Using context allows system administrators for more fine-
grained security rules, which would be otherwise tangled with multiple rules and make them
unsustainable for maintenance [142].

Figure 2.7 – Overview of Context-Aware Security in IoT environments.

Figure 2.7 shows an example of a possible attack in an IoT environment and how
CAS deals with this issue [72]. Letter (A) shows a standard IoT application scenario, which
has devices generating data. Let’s consider that it may have an application deployed in this
scenario that reasons about the device data and do some decision making. For example,
WHEN the temperature is bigger than 27°C AND the user location is defined as “Home,”
THEN a specific window is open.

In Letter (B), the temperature device still generating the same data, but the user
location was changed. In this sense, when the user is at “Office,” the pre-defined rule no
longer works. The window will only be opened when the user location is “Home.” In this
sense, an attacker may SET the user location to “Home” in order to open the house window
(i.e., get access to a determined resource).

The CAS process takes care of the issue in Letter (C). Every time that a crucial
(i.e., security) decision has to be made by the application, it may check the information with
the Context-Aware Security Infrastructure. The CAS platform must have a repository with
the last context information sensed (i.e., near real-time). Also, it must contains the context
sensed in a determined situation, for example, every day at this time the user tends to be at
“Office,” so it is unusual to his location be “Home.” In this sense, in this specific example, the

46

window will be closed (or not opened), since this is an unusual activity and the last sensed
context informs that the user locations was “Office.”

While the notion of context awareness has been well researched in recent years
[1], currently there is a lack of security and privacy-preserving mechanisms that take into
account dynamic context conditions for the IoT [34][115]. To the implementation of CAS in
IoT environments four main areas can be considered: (i) authentication, (ii) authorization,
(iii) access control, and (iv) privacy-preserving. Next items present an overview of each area
[3][61][142].

• Authentication: Traditional authentication methods require much user interaction in
the form of manual log-ins, logouts, and file permissions. These manual interactions
violate the vision of non-intrusive ubiquitous computing. Traditional security mecha-
nisms are context-insensitive (i.e., they do not adapt their security policies to a chang-
ing context). Reliable authentication is an essential requirement for secure systems.
Today, passwords are the most common form of authentication. However, passwords
are also a major source of vulnerabilities, as they are often easy to guess, re-used,
forgotten, shared with others, and susceptible to social engineering [65][69][64]. More-
over, well-known technologies can be used for authentication, such as face recognition,
iris scanner, and biometric technology. Besides these technologies, the use of context
information strengthens the authentication process.

• Authorization and Access Control: Although different, these two areas are pre-
sented together since most approaches try to reach both. Many existing computer
networks comply with allow and deny based access control policies. Allow means
granting access when the user or device credential matches with pre-stored creden-
tials and deny means blocking access when the user or device credential do not match
with pre-stored credentials. This type of system can be considered static in nature
because it does not take into consideration other factors such as, contextual informa-
tion from the user or device environment while making allow and deny decisions. But
the IoT has a dynamic environment, where flexible security policies using contextual
information can potentially increase the effectiveness of security decisions.

Two of the oldest principles for securing application resources are Mandatory Access
Control (MAC) and Discretionary Access Control (DAC) [119]. Those two principles
does not define how the application security should be implemented, but rather define
core principles in authorization. In MAC there exists an authority that has the responsi-
bility to grant permissions to access all resources. On the contrary, in DAC, the permis-
sion can be granted by anyone with sufficient permission for the resource. However,
granting permissions to every user in the system is unpractical for larger amount of
users. There are many principles for Authorization and Access Control as role-based
access control (RBAC), rule-based access control (RAC), attribute-based access con-

47

trol (ABAC), and many others. Also, some authors merge one or more principles by
creating a new one (e.g., Context-Aware Role Based Access Control (CARBAC)) to fits
with its necessities [66].

• Privacy-Preserving: Since information reflecting users’ daily activities (e.g., travel
routes, buying habits), it is considered by many users as private it would be no surpris-
ing that one of the requirements to ubiquitous applications would be privacy preser-
vation [79]. Location-based service (LBS) provides a user with contents customized
by the context information, such as the user location and nearest restaurants/hotels/-
clinics, which are retrieved from a spatial database stored remotely in the LBS server.
LBS not only serves individual mobile users, but also plays an important role in public
safety, transportation, emergency response, and disaster management. With an in-
creasing number of mobile devices featuring built-in Global Positioning System (GPS)
technology, LBS has experienced rapid growth in the past few years. Despite the ben-
efits provided by LBS, users may not be willing to provide their current location to the
LBS server due to concerns on location privacy [110]. The objective of a privacy-
preserving LBS is to protect the privacy of a user’s location while maintaining a high
level of LBS accuracy. The context information can be used to determine when or not
to keep user information private.

2.5.1 Taxonomy of Context-aware Security in IoT

Taking into account widespread published research in the context-awareness area
[109][61], and considering particular features of heterogeneous IoT environments, such as
processing power, storage capacity, network conditions, and different users/applications,
we defined a taxonomy of context-aware security in IoT. The taxonomy presents the main
characteristics of context-aware security solutions alongside with the possible deployment
variations. It is depicted in Figure 2.8. The taxonomy is divided into three parts: (i) Context
Modeling (i.e., how to manage with context), (ii) Key Architectural Components (i.e., archi-
tectural characteristics), and (iii) Applicability (i.e., in which way the context-aware security
is provided). Next items discuss the taxonomy verticals.

• Context Source: Context-aware security solutions need context information to provide
security services. It can be acquired from different sources, such as local domain,
shared domain, and outside domain. The domain relates to the physical place where
the solution is deployed (e.g., healthcare, smart city, industry 4.0). In the local domain,
the context-aware security solution has access to context information only from its
domain. It is the most common way to get context information. Regarding the shared
domain, it refers to a context that can come from the same domain of the solution but in

48

Figure 2.8 – A taxonomy representation of Context-Aware Security in IoT.

another deployment site (e.g., two instances of the same healthcare solution). Finally,
the outside domain is the most challenging way to acquire context. It refers to a context
from a different domain of the deployed one. Most times, the context of a different
domain has distinct characteristics, such as size, length, formatting. It demands a
processing to achieve interoperability among context information of different domains.

• Context Production: The context can be produced in two different ways: on-site or
off-site. The on-site context production happens when the solution providing context-
aware security is also responsible for the whole process of producing the context infor-
mation, by acquiring the raw data from the IoT entities and turning them into context
information. The off-site process happens when a third-party software entity is re-
sponsible for the context production. Both Context Production types allow the Context
Source to be from local domain. However, Context Source from shared or outside
domain is only possible with the off-site Context Production.

• Context Types: The Context Type is defined by the characteristics of the source that
the context was acquired. The different Context Types of the context information are:
network, user, environmental, and device. A context-aware security solution can have
context information of one or more context types. It depends on how complex is the
deployment environment. A network Context Type gives information about the status
of the network, bandwidth situations, congestion, fault nodes. The user Context Type
is linked mainly to location, activities, paths, preferences. Environmental Context Type
represents information about the weather, crowding, time. Finally, the device Context
Type is linked to physical characteristics, such as temperature, battery life, possible
errors.

• Context Lifetime: Context can be a time-sensitive information depending on the de-
ployment environment. If context information becomes old, it can lose value, as IoT

49

environments tend to be highly dynamic and the data can change in a minimal amount
of time. The Context Lifetime can be classified in: soft ephemeral, hard ephemeral, and
timeless. The soft ephemeral context information is useful for a specific period, but it
is not crucial to be always updating that information. The hard ephemeral context in-
formation needs substantial updates, once it can vary in each interaction. On the other
hand, timeless context information represents the ones that do not need a frequent
update and may not change along time. The amount of time for a context become use-
less depends on the deployment environment and must be set by the context-aware
security solution.

• Reasoning Process: The Reasoning Process is responsible for transforming raw data
into context as well as to turn the context information into security services by the
context-aware security solutions. Many researchers have surveyed the different tech-
niques that can be used in this processing [109]. The most popular reasoning tech-
niques are rules, learning, probabilistic, fuzzy logic, and ontology. Rules are the most
widespread technique. It is simple to use and is one of the most lightweight options,
which should be considered for resource-constrained IoT environments. Rules are
based on IF-THEN-ELSE conditions. The learning techniques as Bayesian Networks
and Decision tree are also widespread techniques. However, they require a signifi-
cant amount of data for more accurate reasoning. Probabilistic reasoning also needs
an extensive data set to produce satisfactory results. However, it reasons numerical
values only using past acquired data/context. Fuzzy logic allows a more natural rep-
resentation of the environment, it is also simple to define and easy to extend. Even
so, it can be error-prone considering that it is manually defined. The use of ontologies
for the reasoning process in IoT environments is growing in the last years [109]. It
allows more complex reasoning and representations, thus providing more meaningful
results. However, the input data should be modeled in a compatible format (e.g., Web
Ontology Language (OWL), Resource Description Framework (RDF)) and it tends to
have low performance, by requiring more computational effort than usually found in
resource-constrained IoT environments.

• Architectural Paradigms: The context-aware security solutions can follow different ar-
chitectural paradigms depending on diverse requirements, such as resources availabil-
ity, storage space, network conditions, processing power. These architectural paradigms
can be categorized in cloud computing, edge computing, mobile edge computing, fog
computing, and hybrid approach. Cloud computing is the most centralized approach.
It focuses on performing the essential processing tasks at the cloud, and also use it
to store information if necessary. Oppositely, both edge computing and mobile edge
computing paradigms focus on processing the more critical tasks at the edge of the
network, directly on the data sources devices. These paradigms help in decrease net-
work latency and tend to be more scalable. The difference between edge and mobile

50

edge approaches is mobility since the mobile edge entities can change its location fre-
quently. An example of the mobile edge computing is bringing processing capabilities
to the edge of a cellular network [63]. The fog computing paradigm represents an ap-
proach between cloud and edge. It extends cloud computing into an intermediate layer
physically close to data sources devices [58]. Finally, some solutions integrate more
than one architectural paradigm described, being characterized as hybrid approaches.

• Storage: The context-aware security solutions may have different ways to deal with
the context information regarding storage. They can keep historical context, perform
a shared keeping, or discard historical context. The ones that keep historical context,
store internally all the context information used for the security services provisions.
The history can also be used alongside with the context-aware security reasoning for
probabilistic processing. They keep historical context locally, which turns the access
time to the historical context fast. However, it needs a wide storage space. A different
way of storage is the shared keeping. These solutions can also have access to previ-
ously used context information but in a shared way. The context is stored in another
instance, different from the one performing the context-aware security process. The
different entity can be a database in another domain, or a cloud storage service. It is
necessary to use the network to access the shared keeping context information. They
can benefit for possible reasoning using historical context, but one drawback is the
network delay to get the information. Finally, some solutions may only use the context
information during the execution time and discard historical context.

• Security Services: Context-aware security solutions can be used to provide different
Security Services in the security and privacy area, such as authentication, authoriza-
tion, access control, and privacy-preserving. The solutions use the Reasoning Process
to reason about the context and provide a Security Service. A solution can provide
one or more Security Services, it will depend on the deployment environment and the
Reasoning Process used. In most cases, it is based on the traditional security (e.g.,
Role-based Access Control (RBAC)), but it suffers some modifications to work accord-
ingly the context. An example of a Security Service is the Context-Aware Role Based
Access Control (CARBAC) scheme proposed by Hosseinzadeh et al. [66]. It controls
the access of the users to the system following their role, as the traditional RBAC, but
it also considers the current context information for granting access. In CARBAC the
access is granted depending on dynamic information, as location, time of the day, sta-
tus, and even the role of a user can change based on the context. The most significant
challenge to overcome for a Security Service be provided is to consider the context as
input. It only can be achieved by the use of the Reasoning Process to understand the
semantic context information.

51

• Application Domains: This subsection shows some examples of possible scenarios
that can take benefit of context-aware security solutions. A number of different appli-
cation domains can use context-aware security solutions. Some examples are smart
home, smart cities, health care, industry 4.0, video surveillance, and public services.
The major offering of context-aware security solutions in these scenarios is related to
the Security Services previously defined. In a smart city, the privacy-preserving can
be achieved when the people may share its personal context with a city infrastructure
only at a determined context (e.g., out of the home, crowding environments). Context-
based access control policies can be defined in an industry 4.0 environment to the
employees only access some rooms depending on the context. Health care, public
services, and video surveillance domains may contain secret and sensitive informa-
tion. Authentication and authorization context-based factors may be defined for those
scenarios to guarantee that who sees the information is only the persons with the right
context (e.g., location and time). Also, considering the dynamism of these scenarios,
the authentication policies may change depending on the context. For example, the
authentication method may be enforced depending on the user’s location.

2.5.2 Key Requirements of Context-aware Security in IoT

The taxonomy presented at the Section 2.5.1 showed the main characteristics of
context-aware security solutions in IoT and how their application may vary. Taking this into
account, the present section defines the mandatory features for a smooth provision of se-
curity services using context information [109][68]. There are different ways to fulfill the
requirements detailed below. It can vary depending on the deployment environment and on
its context.

Context acquisition: The acquisition comprises three characteristics of the de-
fined taxonomy (see Figure 2.8): Context Source, Context Production and Context Types.
It is crucial that the context-aware security solution maintain a source to acquire context.
Also, the context should be produced acquiring information from different types (e.g., net-
work, user, environmental, device). The acquisition process can be made in different ways,
such as web services, web sockets, publish/subscribe, observer pattern, among others. It is
important reiterating that the context-aware security solution should adapt to different ways
of acquiring context to fit in heterogeneous IoT environments. For example, some entities
may provide context information in different formats, or by different communication methods.
Thus, it is important to the context-aware security be aware of the different scenarios. Also,
the context-aware security solution should be able to acquire context from various sources
depending on the deployment environment. For example, a context-aware security solution

52

deployed in a smart city can acquire context from a traffic light by publish/subscribe and from
an ambulance by web service at the same time.

Context processing: This component can also be called reasoning, or security
services inference. It is strictly linked to the Reasoning Process, which examples can be
seen in Figure 2.8. The context processing is the main component in a context-aware secu-
rity solution. It is responsible for providing secure decisions using the context information as
an input. There is no definition of how many context information can be processed to pro-
vide a secure decision, it can vary depending on the reasoning technique and the application
domain. For example, some techniques may require more processing power while some ap-
plication domains may be more resource constrained. The context processing needs to
adapt itself depending on the IoT environment that it is inserted. Thus, the design of this
component should consider the resource restrictions imposed by the IoT environment in
order to have a smooth and functional context-aware security solution.

Interoperability: The great amount of different available IoT devices leads us to
have a great heterogeneity as well. Context information can vary in many ways, such as
format, data type, size, representation. Thus, context-aware security solutions for IoT should
be interoperable by ensuring that different context information is compatible to be used as
input for the security services provision. Also, there is no standard for context information
representation [109], which makes this requirement more crucial and also hard to implement.

Privacy: As most of IoT systems, context-aware security solutions also deal with
sensitive information. For example, if a context-aware security solution is placed at a hos-
pital, it will deal with sensitive health context of the patient (e.g., health status). Thus, it is
essential to keep all the context information protected from possible attacks trying to steel
or modify them. These attacks can happen when the context information is stored or even
when it is on the network. The communication channels must be protected with secure pro-
tocols to ensure data integrity and privacy. Also, authentication and access control methods
should be used to protect the stored information, as well as cryptography/anonymization.

Reliability: As the context-aware security solutions provide security and privacy
for IoT environments and can be used in many application domains, it is a requirement to
be reliable. Reliability is a critical requirement since the context-aware security solutions
may deal with sensitive data, such as healthcare and banking information. It is essential to
ensure the reliability to foster the users/applications usage and also to improve the security
level of the entire solution.

53

3. RELATED WORK

In this chapter, it is analyzed two types of related work. First, Section 3.1 presents
a comparison among context sharing platforms. The challenges and open issues are shown
in order to clarify the gap in the area. Second, Section 3.2 presents an overview of platforms
with context-aware security feature.

3.1 CONTEXT SHARING PLATFORMS

There are already available systems/platforms that support data processing, data
enrichment, and data sharing. Moreover, some systems/platforms perform the sharing of
more complex information than raw data, thus having the context sharing feature (see Sec-
tion 2.3). In this Section, it is presented the analysis of different works focused on sharing
their contexts in different ways. The analyzed works were selected by its capability to pro-
vide or facilitate the context sharing in some way. Moreover, the selection was based on the
works that could address an IoT environment application. Some works talk directly about
IoT, while others talk about pervasive/ubiquitous computing application scenarios.

The systems are analyzed based on the requirements presented previously (see
Section 2.4), which are essential to provide a Context Sharing Architecture. Table 3.1 sum-
marizes all the aforementioned sharing building blocks and its abbreviations, helping in un-
derstanding the Table 3.2, which presents all the analyzed works. The proposed work ap-
pears in Table 3.2 as “This work”. The architectural and implementation details of “This
work” can be found in Chapters 4 and 5.

To provide a fair comparison between the works, they were categorized and grouped
in two categories: (i) Model, and (ii) Middleware. The Models are lightweight approaches that
has the goal of facilitate and assist in the context information sharing process (e.g., ontolo-
gies, Bluetooth-based systems, models for formalizing context information). The Models
can act in classifying context information to model it, making easy the context interoperabil-
ity. Also, some Models may serve as a broker, in which context can be posted and queried.
Many times, Models may react to a determined event (e.g., generated context information)
or situation (e.g., proximity to an entity) triggering the sharing process. On the other hand, a
Middleware is a platform that provides diverse kinds of services, and has different methods
to manage data [137]. The Middleware matches with the definition of a PaaS (Platform as
a Service) [11], offering a platform that users can deploy different services, including the
context sharing functionality.

The Models can be considered a more straightforward category for context shar-
ing, offering only that feature or facilitating it in some way. The Middleware are more robust

54

Table 3.1 – Summary of Context Sharing Building Blocks.
Context Sharing

Building Blocks
Possibilities

Category Model (Mo), Middleware (Mid)
Modeling (M) Key-value modeling (Key), markup schemes (Mrk), text-based modeling

(Tex), graphical modeling (Gra), object-oriented modeling (Oob), logic-
based modeling (Lob), ontology-based modeling (Onb). (X) it is employed,
but no specific technique is detailed

Reasoning (R) Supervised learning (Sul), unsupervised learning (Unl), reinforcement learn-
ing (Rel), rules (Rul), fuzzy logic (Fuz), ontology-based (Onb), probabilistic
reasoning (Pro). (X) it is employed, but no specific technique is detailed

Data dissemination (D) Static (Sta), dynamic (Dyn)
Privacy (P) (X) it employs privacy techniques
Interoperability (I) Full interoperability (FuI), partial interoperability (PaI)
Context processing (CP) Searching (S), filtering (F), and aggregation (A). (X) it is employed, but no

specific technique is detailed
Infrastructure configuration
and management (ICM)

(X) it employs infrastructure configuration and management techniques

Scalability and real-time
sharing (SRT)

(X) it employs scalability and real-time sharing techniques

Availability (Av) Automatically (Aut), Triggered (Tri)
Communication technolo-
gies (C)

Local communication (Loc), external communication (Ext), local and exter-
nal (LE), network layer communication (NeC)

History (Hi) (X) it employs history techniques
Architectural model (Ar) Cloud-based (Clo), centralized-edge (Cen), decentralized-edge (Dec),

adapt (Adp)

platforms that usually provide context sharing as an option and different features (e.g., data
storage, device interconnection) as main goal. Both categories, Model and Middleware, are
suitable for deployment in IoT environments. Even though, by its characteristics, Models
are more suitable for lightweight environments and Middleware for those with more resource
(e.g., processing power, memory). However, it is a common characteristic of both Mod-
els and Middleware to provide a stream processing of data (i.e., context information). The
stream happens because the context is always changing (especially in IoT), and it is essen-
tial to share the different context when the events occur to keep the environment updated.
Some approaches may need a previous connection and others stream context automatically.
Moreover, some works also provide a batch processing.

Different works were selected to compare, differing in scale, from small-scale to
large-scale projects. Moreover, it this Section analysis both well established works as well as
new projects available in the past few years. The works are compared in different categories
(i.e. Model, and Middleware) which have different ways to provide context sharing. The
analyzed works are detailed in Section 3.1.1 and Section 3.1.2. Section 3.1.3 discusses
how the works provide context sharing. Moreover, it is discussed the International Efforts

55

in context sharing in Section 3.1.4. By covering the vast heterogeneity of context sharing
works, it is provided a large vision of the area.

Table 3.2 – Evaluation of Surveyed Works.
Sharing

Ref Year Category
Properties Architectural Components

Platforms (M) (R) (D) (P) (I) (CP) (ICM) (SRT) (Av) (C) (Hi) (Ar)

CONON [143] 2004 Mo Onb Rul, Onb Dyn — FuI X X — Aut — — Adp

ACC [117] 2004 Mo Oob, Lob Onb Sta X PaI X X — Tri — — Adp

DJess [26] 2005 Mo Tex Rul Sta X PaI — X X Tri Ext, NeC X Adp

CoSM [146] 2009 Mo Onb Onb Dyn — FuI — X — Aut — — Clo

M3 [60] 2014 Mo Onb Rul, Onb Dyn — PaI S X — Tri — — Adp

CS-Sharing [144] 2016 Mo Key Rul Dyn — PaI A X X Aut Loc, NeC X Dec

Bluewave [38] 2016 Mo Tex Rul Sta X PaI — X X Aut LE, NeC X Cen

PSW [118] 2017 Mo Onb Rul, Onb Dyn — FuI — X X Aut LE, NeC — Adp

LiO-IoT [114] 2018 Mo Onb Onb Dyn — FuI — X X Tri — — Adp

SCS [126] 2019 Mo — Rel Dyn — FuI — X X Aut NeC — Dec

SE-TSDB [147] 2019 Mo Onb Rul, Onb Dyn X FuI F,A X — Tri — X Adp

FRASCS [78] 2008 Mid Key, Mrk Rul Dyn — FuI A X — Aut — X Clo

SharedLife [77] 2009 Mid Onb Rul, Onb Dyn X FuI X X — Aut — X Adp

ConCon [87] 2014 Mid Key Onb Sta — PaI F X X Tri LE, NeC — Cen

Grapevine [31] 2015 Mid Key, Tex Pro Dyn — FuI F X X Aut — — Cen

HEAL [88] 2015 Mid Key Pro Dyn — PaI A X — Tri Ext, NeC X Clo

Magpie [83] 2015 Mid X X Dyn X FuI X X — Tri LE, NeC — Dec

OIoT [106] 2015 Mid X Rul Dyn — FuI A X — Aut LE, NeC — Adp

RCOS [45] 2016 Mid Onb Onb Dyn — FuI X X X Aut Ext, NeC X Cen

Chitchat [32] 2016 Mid Key, Tex Pro Dyn — FuI — X X Aut LE, NeC X Adp

C2IoT [52] 2017 Mid X X Dyn — FuI F,A X — Aut NeC X Clo

BigClue [70] 2018 Mid X Pro Dyn — FuI — X X Aut Ext, NeC X Cen

CoaaS [63] 2018 Mid X Rul, Pro Dyn X FuI A X X Tri NeC X Clo

SCENTS [82] 2019 Mid X Rul Dyn — FuI — X — Aut LE, NeC X Cen

This work — 2020 Mid Mrk, Onb Rul, Onb Dyn X FuI S,F,A X X Aut LE, NeC X Dec

In Table 3.2, the dash (—) symbol is used when the work does not provide the
specific feature, or it is not mentioned in the available publications. Next, the definitions of
analyzed platforms are presented.

3.1.1 Context Sharing Models

• CONON: It is an OWL (Web Ontology Language) ontology to model context information
in ubiquitous environments. Besides the modeling, as being an ontology, CONON
also facilitates the logic-based inferencing process [143]. CONON provides a flexible
architecture, once it has a general ontology for modeling broader context concepts and
also enables the coupling with other ontologies in a hierarchical manner. The coupled

56

ontologies could be from any specific domain. To CONON, the context information of
different domains shares common definitions and concepts. Thus, it uses a generic
ontology to model these general concepts, while domain-specific ontologies deal with
fine-grain context information.

• ACC: Agent Coordination Context (ACC) works to model the application environment
context and the interaction among agents and the environment in Multi-Agent Systems
(MASs) [117]. ACC provides tools to organize the access to the shared information
(i.e., context). It organizes the shared information into “spaces” and regulates the ac-
cess control in a role-based policy. Thus, ACC has two main functions: (i) it works to
model the application environment characteristics to enable context sharing, and con-
secutively (ii) by creating sharing “spaces” for interaction considering the environment
characteristics. In this sense, the ACC can be suitably understood as an infrastructural
abstraction.

• DJess: It is a Java package that works in a distributed way and provides an infras-
tructure for context sharing between entities using it [26]. Only middleware that was
implemented using Jess [55] for the inferencing/reasoning process can run DJess. Dif-
ferent nodes using DJess can communicate to have a common understanding of the
context. DJess creates an abstraction of a single view of the application environment
for the distributed systems running it. Thus, even if the systems were placed in different
sites, they will share context as if it were in the same local domain.

• CoSM: The Context Sharing Message Broker (CoSM) can model the context in a stan-
dard way to enable the context sharing process [146]. CoSM helps in facilitating the
common understanding of context between different applications even in dynamic envi-
ronments. Applications can agree in defining a context model to share context informa-
tion. CoSM’s context model intermediates the context sharing processing by providing
a common interface for a mutual understanding of different context information. The
applications communicate with CoSM to send context information, then CoSM man-
ages it and delivers the context to interested entities/applications based on the defined
context model. CoSM acts as a plug-in to the application, making it an independent
tool and not modifying the applications that use it.

• M3: The Machine-to-Machine Measurement (M3) is an approach that includes an on-
tology, a hub, and semantic domain rules, that can combine, and reason about IoT
devices data that follow the M2M (Machine-to-Machine) standard [60]. The authors
have proposed a semantic-based M2M architecture that is used as basis for M3 [59].
The M3 ontology main goal is to classify and unify the heterogeneous data sensed by
devices running at the M2M standard. It is an extension of the Semantic Sensor Net-
work ontology (SSN)1, thus making easy the reuse of common concepts as appears

1https://www.w3.org/TR/vocab-ssn/

57

on the M2M standard. The authors claim that the M3 ontology is able to describe more
than 30 sensor types (e.g., thermometer, accelerometer) from different domains (e.g.,
agriculture, health).

• CS-Sharing: It is a compressive sensing (CS) based scheme technique to provide
context sharing in a decentralized way for vehicular networks. CS techniques enable
the search for context information with basic queries [144]. The vehicles monitor the
road conditions to acquire context and then share it using CS-Sharing. The vehicles
store context locally. To avoid possible network overheads, CS-Sharing offers aggre-
gation operations in the stored vehicle context before the sharing process. Thus, each
vehicle can get context information about the road condition from a focused aggregated
message that is broadcast by vehicles.

• Bluewave: It is defined as a Bluetooth-based technique that makes possible nearby
mobile devices to share their context [38]. In Bluewave, the context information first
needs to be uploaded to a server for enabling the context sharing, characterizing it as
a centralized approach for storing but an edge in processing. For an accurate context
sharing process, it also needs to set a sharing URL for each device and broadcast it,
along with a temporary credential, to the devices in a 30 feet radius. Bluewave has two
main components: (i) client, and (ii) context broker. The client component is embedded
into mobile devices and has the functions of upload the context information to a server,
and discover new devices by proximity. The context broker component runs in a web
server and has the responsibilities to store context and to share it with the authorized
clients (i.e., nearby mobile devices).

• PSW: The Physical Semantic Web (PSW) is a framework that makes use of Semantic
Web technologies to knowledge discovery and sharing in IoT scenarios [118]. PSW
has four components: (i) machine-understandable standard languages, (ii) objects ex-
posing semantic annotations, (iii) knowledge discovery and sharing, and (iv) semantic
matchmaking. The machine-understandable standard languages main goal is to pro-
vide a common language for a uniform communication. It uses an ontology for this goal.
The objects exposing semantic annotations component is responsible for exposing
the context information for sharing, and also to update this information when needed.
The knowledge discovery and sharing components are responsible for discovering the
neighbor devices with corresponding semantic annotations as the request. Finally, the
semantic matchmaking component main goal is to make a rigorous semantic matching
to rank the resources with the request by relevance.

• LiO-IoT: The Light-weight Ontology (LiO-IoT) tackles a challenge in IoT ontologies
spectrum by considering sensors, actuators, and RFID as IoT concepts [114]. It uses
concepts from both SSN and IoT-Lite2 ontologies to help in the provision of semantic

2https://www.w3.org/Submission/2015/SUBM-iot-lite-20151126/

58

interoperability. The authors have evaluated the LiO-IoT ontology through experiments
to verify the round trip time of a query. They have compared LiO-IoT with both IoT-Lite
and SSN. The results have shown that it has a similar response time when compared
with IoT-Lite and a better performance when compared with SSN. However, it is valid
to mention that SSN is a massive ontology that covers different IoT sensors [33].

• SCS: The Smart Context Sharing (SCS) is an algorithm designed for facilitate context
sharing among Fog nodes [126]. It focuses on sharing context information of different
Fog nodes deployed on different IoT domains (e.g., smart agriculture, smart health,
smart traffic). It considers a scenario of connected Fog nodes, in which one of the
nodes may broadcast a message looking for a specific context. The Fog node with
the wanted context information will respond to the broadcast message. SCS also has
a load balancing algorithm that uses reinforcement learning techniques to predict the
suitable node to migrate context information when sharing.

• SE-TSDB: Semantic-Enhanced Time Series Databases (SE-TSDB) is a tool suite that
helps in the data management for IoT [147]. It can work either on the Cloud, Fog,
or Edge architectural approach. The authors have developed the DS-Ontology as the
main part of the SE-TSDB tool. The DS-Ontology works as a semantic model for the
specification of data streams from IoT devices. In light of this, the SE-TSDB is the DS-
Ontology applied to Time Series Databases (TSDB), as the traditional TSDBs process
data streams, but they do not offer sufficient semantic processing as needed in het-
erogeneous IoT environments. On SE-TSDB, the similarity matching, and reasoning
processing happens with the DS-Ontology alongside with pre-defined domain-specific
rules.

3.1.2 Context Sharing Middleware

• FRASCS: The Framework Supporting Context Sharing (FRASCS) [78] enables enti-
ties to store and/or receive context information. The entities communicate directly with
the FRASCS infrastructure. FRASCS has a Context Pool Manager (CPM) model re-
sponsible for receiving sensors connection and their raw data. It can deal with both
physical (e.g., physical devices, hardware) and virtual (e.g., events from a software
system) sensors. FRASCS also has the functionality of claim for context information
directly from the context-aware applications when an entity requires it.

• SharedLife: It is defined as a framework to share information (i.e., context) of the
users between different applications and/or other users [77]. SharedLife acquires the
context from various sources related to a user and stores it in a set of knowledge about
the specific user. SharedLife also allows the searching for context information about a

59

particular user, taking care of the privacy defined for each user/information. SharedLife
shares the data itself and also a meta-information regarding the data, such as infor-
mation about potential partners for future sharing. SharedLife works in an event-based
manner to describe the sharing interactions and the relationships between entities and
the environment. The events can be stored to serve as a possible recommendation for
future context sharing by the entities connected to SharedLife.

• ConCon: It is a middleware system that offers the context-aware feature in its archi-
tecture. ConCon [87] works based on the publish/subscribe pattern, enabling different
entities to subscribe for specific context information. The entities connected to ConCon
can act by producing and/or consuming the data (i.e., context). It can be embedded
in everyday devices, such as smartphones. ConCon defines structures of similarity
related to the context. Thus, the context information is matched semantically, avoiding
possible data duplication. ConCon has two policies to manage context information: (i)
time-sensitive, and (ii) quality measure. In the time-sensitive policy (i), the context to
be shared receives a prefixed lifetime. Thus, the old context may lose its relevance.
In the quality measure policy (ii), the context information is used to improve the quality
of entities interactions, one time that a high-quality provider produces more relevant
context (i.e., that is widely shared).

• Grapevine: It is a framework that works for context sharing in specific networks (i.e.,
connected peer devices) [31]. Grapevine is designed to work with pervasive devices.
It forms groups of devices to perform context sharing. The situation of the entities
(i.e., context) is the primary factor for the creation of the sharing groups. Grapevine
uses conditions that define whether the entity context sharing occurs and how widely
(i.e., for which groups) the context will be shared. Grapevine works to reduce the
communication overhead in the context sharing process. As it works with pervasive
devices that may have resource-constrained restrictions, a lightweight data structure
models the context information.

• HEAL: The Healthcare Event Aggregation Lab (HEAL) is a middleware platform fo-
cused in smart healthcare environments [88]. It works in a cloud-based approach
and allows different entities to connect to it by using REST web service and SPARQL
endpoints. The sensors can connect to HEAL to provide context information. On the
other side, smart healthcare applications will take benefit of the sensors data. HEAL
detects similarity between sensors data, thus providing a filtered data to the applica-
tions. The context sharing occurs when HEAL acts as providing interoperability differ-
ent platforms. It enables the provision of services based on context to heterogeneous
applications as third-party systems and developers tools.

• Magpie: It is an approach in which context sharing is provided by opportunistically con-
nections between entities [83]. Magpie works in pervasive computing environments,

60

sharing context information of mobile and heterogeneous devices. Magpie connects
devices through an opportunistic mobile network. It has policies to concern about the
privacy-preserving in devices connections. Magpie allows the entities connected to
it for sharing several types of context with different applications/users. The event of
sharing context can also generate a log for future trust agreement between the enti-
ties. Magpie provides tools to enable an “useful sharing”, that avoids the sharing of all
the context information produced by the entity, making that sharing process to occur
with only the useful context information. Both Magpie and the entities that send or
receive context information can define a context as useful.

• OIoT: Opportunistic IoT Platform (OIoT) is a software infrastructure which helps de-
velopers in providing data (i.e., context) sharing by the creation of opportunistic IoT
devices groups [106]. OIoT adopts a form of mobile ad hoc network concept defined
as Opportunistic Mobile Social Networks. It exploits the characteristics of human social
interactions (e.g., daily activities, mobility patterns, and interests) to route messages
and to share data. In such networks, the communication between mobile devices hap-
pens by dynamic (i.e., on-the-fly) social networks.

• RCOS: Real Time Context Sharing (RCOS) is a publish/subscribe system that pro-
vides context-awareness features [45]. RCOS provides subscribe services to the en-
tities connected to it. RCOS makes possible the creation of a subscription about a
specific context. Thus, RCOS notifies the subscribed entities when it has new infor-
mation posted. The devices can connect to RCOS through a REST interface to send
their context. RCOS has functions to enable a contextual semantic matching based on
the context information generated by the devices. One example of the semantic match
is to relate two contexts by proximity based on the GPS coordinates. RCOS also acts
like a plugin, being connected to preexisting publish/subscribe systems. Thus, the pre-
existing system can take benefit of the context-aware features and maintain a context
history.

• Chitchat: It is considered a pool of context information. Chitchat takes advantage
of the devices communication by the network and inferencing capabilities to provide
different views and access to the context information [32]. The entities (e.g., devices,
applications) can connect to Chitchat through an Application Programming Interface
(API) to specify its filters (i.e., when to receive context). Chitchat introduces probabilis-
tic data structures based on a Bloomier filter [29]. Chitchat introduces two Bloomier
filter based structures to further reduce a context information size and add the ability
to update the structure on-the-fly. The first one claims to reduce the size of the struc-
ture without impacting the false positive rate. The second one claims to guarantee a
zero false positive rate under certain conditions and adds the ability to update context
values in an already constructed context information.

61

• C2IoT: It is a cloud-based framework for providing context-aware services on Internet
of Things environments. The main application scenario of C2IoT are smart cities [52].
It provides a three layer infrastructure for such kind of context-aware services provision:
SaaS (Software as a Service), PaaS (Platform as a Service), and IaaS (Infrastructure
as a Service). The authors claim that with those three layers, it is possible to reach the
necessary flexibility and effectiveness that smart city scenarios require. Thus, dealing
with the common challenges of those environments, including context information inter-
operability. On C2IoT, each layer has a specific function: SaaS - Result Visualization,
PaaS - Data Management, and IaaS - Data Collection.

• BigClue: BigClue is a data processing platform that integrates existing frameworks
on its architecture with the primary goal of providing a cross-domain data layer for IoT
environments [70]. It has five main layers on its architecture: Processing, Messaging,
Storage, Service registry, and Visualization. For the implementation of those layers,
BigClue uses the following techniques: Apache Spark for the Processing layer, Apache
Kafka for Messaging, Apache Hbase for Storage, and HashiCorp Consul for Service
registry. They also use Hadoop Distributed File System for the underlying file system.
Finally, BigClue has RESTful exposed APIs for communication, thus helping on the
interoperability.

• CoaaS: Context-as-a-Service (CoaaS) is a platform able to exchange context infor-
mation in IoT environments [63]. It shares context information from different context
providers to context consumers. However, it does not have efforts in providing the
context in a semantically interoperable way. It has four main components: Security
and Communication Manager, Context Query Engine, Context Storage Management
System, and Context Reasoning Engine. The Security and Communication Manager
handles the incoming context and distributes it to the destination in a private way. The
Context Query Engine component is responsible to manage the queries for context.
The Context Storage Management System maintains a cache with past context in-
formation to provide a better response time. Finally, the Context Reasoning Engine
component infers new information (i.e., context) from raw data.

• SCENTS: Sensing Collaboratively in Everyday Networks (SCENTS) is a framework
that supports context sharing by proximity for heterogeneous IoT devices [82]. One of
the SCENTS’ motivation is the premise that nearby devices tend to have similar values
for context information, thus being interested in the nearby context by its geolocation.
On an architecture view, SCENTS framework sits between the hardware layer and the
application layer. It has two main components: Neighborhood Agent and the Collabo-
ration Agent. The main function of the Neighborhood Agent is to continuously detects
whenever a node (i.e., neighborhood device) is arriving or leaving the network. The

62

Collaboration Agent manages the queries looking for context, process it, and delivers
the right data (i.e., context information) to the applications.

3.1.3 Summary of Sharing Platforms

All the analyzed platforms have a common goal, which is to share context informa-
tion between entities. However, each platform has its own peculiarities. They may differ in
various aspects and even provide shared context information as well. Table 3.2 sums up
all the analyzed platforms and shows the differences between them regarding the context
sharing building blocks defined in Section 2.4. The next paragraphs show details of how the
analyzed platforms address the building blocks described previously. For each feature, the
description is focused on platforms that discuss it in detail in the literature.

As presented in Table 3.2, the ontology-based (Onb) appears as the most used
technique for the modeling (M) feature. It is considered a trend on the IoT to use ontologies.
It can increase the interoperability feature of the platform [109]. Both CONON and RCOS
use various ontologies for the semantically represent the context information. The use of
different ontologies makes easier the integration with other semantic applications, as well
with web applications. M3 and LiO-IoT extract some definitions from traditional ontologies,
as SSN, on its approaches, helping on the interoperability with already deployed devices/en-
tities. However, in some application scenarios, context systems may need a more com-
plex approach. In this sense, FRASCS stands out by combining two techniques. FRASCS
uses the key-value technique to model the information detected by the sensors (i.e., raw
data), which can be considered low-level context information. On the other hand, it uses
the markup scheme model (Mrk) technique to model the information from the context-aware
applications connected to it. The markup scheme model technique is used in this case as
it offers a more flexible structure than key-value pairs. Another technique used by many
platforms is the key-value modeling (Key). It is a technique of simple implementation and
gives a unique key for each context information. Key-value is also a lightweight approach for
context information modeling.

As in the modeling of context information, the ontologies appears as one of the
most important techniques for the reasoning (R) feature. The reasoning by ontologies (Onb)
is facilitated when the platform also models context by ontologies. One example of work
that uses ontologies for both modeling and reasoning is CoSM. It makes possible that the
reasoning agents can access the modeled context to understand the context of the environ-
ment. On the other hand, ontologies may be considered heavy for some application sce-
narios since IoT environments could be restricted in processing capabilities. In this sense,
SharedLife proposes a hybrid approach by using ontologies together with rules (Rul), which
is a lightweight technique. SharedLife allows the definition of rules for automatic sharing of

63

predefined context. It also uses ontologies to the creation of a unified user profile represen-
tation, making possible that different user profiles to being classified by similar character-
istics. DJess uses a Java-based rule engine in the reasoning process. It makes possible
the creation of declarative rules for reasoning in Java-based applications. Rules are the
most popular reasoning technique of the analyzed platforms because of their suitability for
resource-constrained environments. In some platforms, it may appear as Event-Condition-
Action (ECA) rules.

The data dissemination (D) process is fundamental for the delivery of context infor-
mation to whom needs it. The majority of the analyzed platforms makes the data dissem-
ination in a dynamic (Dyn) way. It is the most suitable way for sharing context information
since it enables sharing accordingly to the characteristics of the environment. For example,
an offline or not apt entity will not receive context. CS-Sharing, OIoT, and SCENTS use the
concept of Opportunistic Meeting to share context information. It defines that entities can
share context information when they are physically near each other, in a dynamic way.

Just a few of the analyzed platforms provide the Privacy (P) feature. Although
crucial in IoT environments, most of the platforms do not mention privacy efforts on their
architectures. However, ACC provides access control to environment resources while DJess
provides privacy-preserving options in the registering process of the entities connected to it.
Bluewave concerns about the privacy at the communication protocol level, which can reach
a certain level of confidentiality, and Magpie provides privacy-preserving options to devices
related to the provided context information so that the context sharing does not breach user
privacy. In SharedLife, the context information repository is separated into different levels
with access control. SE-TSDB makes use of the Time Series Databases (TSDB) that can
include policies to secure the stored information.

As can be seen in Table 3.2, most of the analyzed platforms with context sharing
feature address interoperability (I) in a full (FuI) way. It is an expected result, as providing
interoperability is crucial for a context sharing process involving different entities. CONON
and PSW are examples of platforms that use ontologies for a common understanding of a
set of concepts regarding context information by the entities interacting through them. The
use of ontologies is one of the most effective ways to reach full interoperability because it is
developed to work with different situations (i.e., inputs). ConCon uses the WordNet [92] tool,
that is very useful in achieving interoperability. WordNet is an extensive lexical database of
English. It groups a vast set of words, that include verbs, nouns, adjectives, and adverbs,
into logical synonyms. With the use of WordNet, it is possible to discover a correlation
between two (or more) different words. For instance, with the input of the words cold, icy,
and freezing, WordNet can infer that they may converge in the meaning of low temperature.
It is very useful in heterogeneous IoT environments, which have many devices with different
specifications. The partial (PaI) interoperability addressed by some platforms means that

64

the interoperability is present only on a specific set of entities or in a limited local way. They
fail to reach the desired interoperability for context sharing in IoT environments.

Context processing (CP) is addressed by most of the analyzed platforms. ACC exe-
cutes operations (e.g., modification) in sets of context information. CS-Sharing, HEAL, OIoT,
FRASCS, and CoaaS use aggregation (A) techniques. Also, one of CS-Sharing key issues
is to aggregate messages to reduce the network overhead and message size in resource-
constrained vehicle networks. The filtering (F) technique is addressed by Grapevine, and
ConCon. Grapevine filters information based on his contextual social properties (i.e., users,
their characteristics, preferences, and the correlation with the environment) and only display
the context information that matches with the filter. M3 is the only analyzed platform that pro-
vides the searching (S) feature. It uses Sindice3 as a search engine. SE-TSDB and C2IoT
stands out by providing both filtering and aggregation context processing features. C2IoT
provides those functions at the Data Collection layer, near to the devices.

Infrastructure configuration and management (ICM) is the most addressed feature
by the analyzed platforms. This is expected, once the platform must accept the connection
of entities to share context information. ACC proposes an approach in which an agent tries
to join in the organization and the request can be refused or accepted. Chitchat is focused
on providing the entry of devices to the device-to-device (D2D) network to share context.
CONON provides a model that a specific ontology can be registered to the main ontology.
Bluewave, CS-Sharing, and Grapevine use proximity to form temporary groups.

Scalability and real-time sharing (SRT) are not only linked to the performance of
platforms and the time taken to do tasks. This issue is also related to what platforms can
make to reduce the amount/size of context information exchanged by the network and pro-
vide more optimized communication. Chitchat fulfills this issue by creating a compressed
representation of context information to enable a lightweight context sharing. It takes into
account size and energy efficiency. DJess makes the inference process faster allowing bet-
ter performance regarding both throughput and response time. Grapevine focuses on to
be extended to real world scenarios where bandwidth and energy limit connectivity. It also
minimizes the transmission overhead. Bluewave uses a lightweight communication proto-
col. Both CS-Sharing and Bluewave use short-range communication protocols for context
sharing, avoiding network delay. BigClue adopts standards instead of customized solutions
to help in providing scalability.

Regarding availability (Av), most of the analyzed platforms enable context sharing
process automatically (Aut), which is the most suitable technique for a dynamic environ-
ment as IoT. FRASCS automatically acquires and delivers the devices/applications context
to the participant entities. In CS-Sharing, when entities meet each other, the context sharing
process happens automatically. This is the same vision adopted by the opportunistically
processing of OIoT and SCENTS.

3https://www.w3.org/2001/sw/wiki/Sindice

65

Communication technologies (C) implies on which network technology the sharing
platform supports. Some platforms do not present this information because in some cases,
the platform is embedded in an entity, thus not caring about the communication services.
However, most of the analyzed platforms have the capabilities of sharing context information
by local (Loc) and external (Ext) networks. All the analyzed platforms that detail the com-
munication technologies make use of the network layer communication (NeC). It helps on
the interoperability by providing a standard communication channel. Bluewave, and ConCon
have an architecture associated to smartphones, thus they are capable of sharing by 3G/4G,
WiFi, and Bluetooth.

The history (Hi) feature is essential to retrieve older context information. It also can
be used for probabilistic inference, as on Grapevine, HEAL, Chitchat, BigClue, and CoaaS.
Bluewave has a module named Context Repository to store all set of context information
alongside with Context Brokers. Both modules combined act as a database for context
information. They play the role of a trusted entity in which the devices can share context
information independently and without having relation to external objects. RCOS enables
a query request for all context information of an entity. HEAL has cloud-based storage for
context information, events, and valuable data to predict future interactions.

The context sharing process occurs regardless of a specific architectural model
(Ar). Most of analyzed platforms may adapt (Adp) itself according to the environment. In
this case, they do not follow a specific architecture and in most cases are embedded in
other entities. Some platforms, like Bluewave and RCOS, store data in a cloud-based server
and process context information at the edge of the network, thus being a centralized-edge
(Cen). On the other hand, some platforms, as CoSM and HEAL, are developed only in a
cloud-based (Clo) approach, in which all the processing occurs in the cloud. HEAL works
with low processing power devices, so the most resource demanding processing needs to
be made in the cloud. Finally, there are decentralized-edge (Dec) platforms, as Magpie and
CS-Sharing, that does not have a central point-of-control. By working with vehicle networks,
CS-Sharing distributes the processing by the decentralized nodes.

3.1.4 International Efforts

Interoperability in IoT environments is one of the focus of many research efforts
programs. These programs can be composed by different countries making a consortium
or even a large enterprise group looking for standardization. Some examples are EU FP74,
Horizon 20205, ETSI6, FIWARE7. These efforts may differ from the ones presented in Table

4https://ec.europa.eu/research/fp7/index_en.cfm
5https://ec.europa.eu/programmes/horizon2020/en/
6https://www.etsi.org/
7https://www.fiware.org/

66

3.2 in some aspects. The international efforts usually have a lot of different solutions and
outcomes, as they try to meet different IoT challenges. In this sense, it is difficult to compare
with platforms developed specifically for context sharing. Even so, as they also care about
data/context/semantics interoperability, it is interesting to look deeper into that solutions.
Table 3.3 shows an overview of the analyzed international efforts. Next paragraphs show
their aspects that address context sharing in some way.

Table 3.3 – International Efforts Regarding Context Sharing.
Name Category Application Area Main Goal

EU FP7 Organization Different technological areas To support the research in Europe. It has three main projects regarding semantic
interoperability: IoT-A, COIN, and IDIRA

IoT-A Project Internet of Things To provide data interoperability by the definition of a reference architecture
COIN Project Industry To provide semantic interoperability by the definition of web interfaces
IDIRA Project Crisis management To facilitate coordination of large-scale disaster situations by improved interoper-

ability
Horizon 2020 Organization Science and innovation To support the research in Europe. It has different project related to data interop-

erability
FIESTA-IoT Project Internet of Things To provide data interoperability across different Internet of Things domains
INTER-IoT Project Internet of Things To provide interoperability for Internet of Things environments by a multi-layered

approach
INTER-Health Project Smart Healthcare To share contextual information in a pub/sub manner on smart healthcare domain
Wise-IoT Project Internet of Things To provide interoperability concerning context information
SEMIoTICS Project Internet of Things To provide secure semantic interoperability
BIG IoT Project Internet of Things To provide a unified Web API for IoT platforms. It also provides a way for mone-

tizing shared data
symbIoTe Project Internet of Things To provide an abstract layer for IoT platforms through a Web API
FIWARE Organization Internet of Things To provide a development platform for Internet of Things
Orion Project Internet of Things To provide a context information broker
ETSI Organization Information and communica-

tions
To provide standards for Internet technologies and systems in communication,
which include mobile networks, radio, fixed, broadcast

ISG CIM Project Smart cities To share data/context between different spheres of a smart city
OMA Spec-
Works

Organization Internet of Things To act as a “specifications factory” for Internet of Things

LWM2M Project Sensor networks The management of low power devices for secure data transfer
IPSO Project Smart objects To foster the use of Internet Protocol (IP) by smart objects
OCF Organization Internet of Things To provide device interoperability
OneM2M Organization Internet of Things and M2M To provide technical specifications for an interoperable M2M service layer

The IoT-A (Internet of Thing Architecture)8 of the EU FP7 program tries to achieve
data interoperability by providing a data format developed for resource-constrained environ-
ments, being able to minimize the traffic and the number of interactions by the network. The
COIN [51] and IDIRA9, both from EU FP7, also try to achieve interoperability. COIN10 pro-
vides a semantic based interoperability web solution. It uses the ontology-based approach
for the semantic processing. COIN also maintains a knowledge-based system that holds
information of distinct entities (i.e., devices, resources). IDIRA provides information sharing
between various sources in crisis management scenarios. It uses ontologies to model con-
text and discovery the destination of the shared context information. Even that it works with
different sensors, it was developed for a specific crisis management domain.

8https://cordis.europa.eu/project/rcn/95713_en.html
9https://cordis.europa.eu/project/rcn/98968_en.html

10https://cordis.europa.eu/event/rcn/128988/en

67

One of the Horizon 2020 goals is making data interoperable allowing exchange and
re-use between researchers, institutions, organizations, countries, etc. FIESTA-IoT11 is an
example of a project from Horizon 2020 that primes for interoperability. FIESTA-IoT is an in-
frastructure to provide data interoperability among already deployed IoT systems, platforms,
and testbeds. It uses a common ontology to guarantee semantic conformity among different
providers. It also provides a standard API for communication giving access to the informa-
tion by the IoT systems connected to it. INTER-IoT and INTER-Health are also projects
that received funding from Horizon 2020. The INTER-IoT12 project goal is to provide in-
teroperability on heterogeneous IoT platforms. INTER-IoT encompasses other projects to
reach the interoperability in different layers: device level, networking level, middleware level,
application service level, data and semantics level, integrated IoT platform level, and at the
business level. On the data and semantics level, INTER-IoT developed the Generic Ontology
for IoT Platforms (GOIoTP13) to support the semantic matching in IoT scenarios, facilitating
the context sharing process. INTER-Health is a specific project under the INTER-IoT um-
brella that presents an application scenario with context sharing [54]. On INTER-Health,
messages and entities are described semantically using domain ontologies, facilitating the
interoperability. It also has a specific communication bus for sharing context information to
the subscribers.

Wise-IoT14, SEMIoTICS15, BIG IoT16, and symbIoTe17 are also projects from the
Horizon 2020. Wise-IoT proposes a Global IoT Services (GIoTS) layer with semantic inter-
operability ensuring reliability, and end-to-end security. It has a Morphing Mediation Gateway
(MMG) component, which translates different protocols and data representations, working
with different ontologies. SEMIoTICS is an in developing project that aims to provide a
pattern-driven solution for semantic interoperability in IoT environments. It claims to sup-
port cross-layer adaption for heterogeneous smart objects. BIG IoT proposes the BIG IoT
API, a Web API to be used by the IoT platforms, thus providing interoperability. Also, it
provides the BIG IoT Marketplace, making possible for the platforms to share and monetize
their data. The symbIoTe project, an abbreviation for symbiosis of smart objects across IoT
environments, provides an abstract layer for a unified view of different IoT platforms. It has
a standardized API for the interconnection of heterogeneous IoT solutions.

FIWARE provides a modular open source framework to foster the development
of IoT solutions. The FIWARE framework acts as a middleware in the IoT environments,
making possible the interconnection of devices and applications through different options of

11http://fiesta-iot.eu/
12https://inter-iot.eu/
13https://inter-iot.github.io/ontology/
14http://wise-iot.eu/en/home/
15https://www.semiotics-project.eu/
16http://big-iot.eu/
17https://www.symbiote-h2020.eu/

68

communication services. The Orion Context Broker18 is one of the FIWARE’s modules. It has
the primary goal of managing context information. Orion acts as a context broker, receiving
context from IoT environments and providing options to query or subscribe to a specific
context. It also provides mechanisms to query/subscribe to a context by geolocation, type,
and format. By acting as a pool of context, Orion may work for context interoperability.

European Telecommunications Standards Institute (ETSI) has established a spe-
cial interest group to develop context management systems standards [48]. The group is
called Industry Specification Group on Context Information Management (ISG CIM)19 and
focuses on smart city applications. The ISG CIM specifics a standard API to provide access
for a context management system that focuses on smart cities environments containing
heterogeneous data sources. They claim that their approach works for providing real-time
access to the context information [49]. The ETSI specification does not try to replace the
ways to exchange data between software platforms but offers standards to facilitate the co-
operation among different platforms.

Looking deeper into the standardization for IoT, some efforts are made having the
goal of standardizing the interactions with IoT devices. Some examples are projects and
organizations such as LWM2M20, IPSO21, OCF22, OneM2M23. They all make attempts to
come up with well-defined protocol stacks, data models and data representations, often
using REST as messaging paradigm. They come up with models that describe how to
model lights, buttons, inputs, outputs in IoT environments. By doing so, the meaning of data
can be easily understood, or additional context can be retrieved from the device itself. This
helps in achieve a better level of interoperability and facilitates further processing.

Lightweight M2M (LWM2M) is protocol created for remote managing lightweight
and low power devices on a variety of networks [112]. It has an architectural design based
on REST, and builds on the Constrained Application Protocol (CoAP) data transfer standard.
The Internet Protocol for Smart Objects (IPSO) Alliance focuses on popularizing and incen-
tive the use of Internet Protocol (IP) by smart entities (i.e., devices, systems). It also works
to the definition of a framework considering privacy-preserving issues. It makes part of the
OMA (Open Mobile Alliance) SpecWorks24 organization that has efforts on interoperability
for IoT. OMA SpecWorks also coordinate the LWM2M protocol.

The Open Connectivity Foundation (OCF) is a group whose solutions are to min-
imize communication effort between IoT devices. It provides a standard communication
platform and data models that allow the communication among devices regardless of their
characteristics, such as transport layer technology, application environment, operating sys-

18https://fiware-orion.readthedocs.io/en/master/
19https://portal.etsi.org/tb.aspx?tbid=854&SubTB=854
20https://www.omaspecworks.org/what-is-oma-specworks/iot/lightweight-m2m-lwm2m/
21https://www.omaspecworks.org/ipso-alliance/
22https://openconnectivity.org/
23http://www.onem2m.org/
24https://www.omaspecworks.org/

69

tem. The oneM2M is a well know global standards initiative for Machine-to-Machine (M2M)
communications that also considers IoT environments. It provides technical specifications
for requirements, architectures, APIs, security solutions and interoperability in IoT technolo-
gies. The oneM2M has the primary objective of providing technical specifications to achieve
the demand for an interoperable M2M service layer to be used by different systems and
devices.

The presented standardization efforts for IoT may help in reaching the context shar-
ing feature. However, even with the growing amount of different IoT devices generating
heterogeneous data, there is no standard for context information description [109][18][39].
Moreover, it is hard to impose a context format, one time that it may have different character-
istics and providers. Thus, it remains a necessity for the implementation of a context sharing
platform.

3.1.5 Challenges and Future Directions

In IoT, there is always a need for interoperability in different aspects. It is common
in IoT environments to have various entities such as software systems and physical com-
ponents from different producers. A platform to provide the horizontal integration of those
heterogeneous entities is essential for the proper function of IoT environments. The con-
text information plays a significant role in IoT. It is desired a platform able to provide context
information interoperability in such environments [18][109]. Despite some of the analyzed
works try to overcome the context interoperability issues providing the context sharing fea-
ture, there is no a platform that meets all the context sharing building blocks. Most of the
analyzed works focus on a specific application domain/scenario. Thus, they fail in address-
ing some essential features to provide the complete context interoperability for IoT.

The development and strengthening of the context sharing field in IoT will only
occur with the continuation of the ongoing research efforts. Thus, the next items present
the major challenges to be addressed in the context sharing for the consolidation of the
area.Also, future directions are giving, allowing readers to know which are the next steps in
developing context sharing platforms for the Internet of Things environments.

1) Interoperability: It remains a challenge to overcome in the context sharing field.
In a significant amount of works, context sharing occurs locally or within a small group of sim-
ilar entities. They try to care only about local sharing, not concerning the vast heterogeneity
present in IoT environments. In most cases, they fail to provide an inter-domain context inter-
operability. Even that ontology works for the standardization by mitigating the interoperability
challenge, and other technologies need to be employed in order to tackle such complex is-
sue. Web services can be used to hide context systems patterns in order to standardize the
communication channel used for context information transport. As RESTful technology is

70

commonly used by IoT middleware [102], it can also be used by context sharing platforms
as well. Also, WordNet [92] can be more explored to mitigate interoperability issues. Word-
Net is a lexical database and an open source tool that works with the English language. It
can correlate words and expressions semantically. By using WordNet, the context sharing
platforms can relate two different entities and their events (i.e., context) [93]. Another con-
cept that can be used to enhance interoperability in such scenarios is the Virtual Object. It
appears in the IoT as the digital/virtual representation of the service(s) of a cyber-physical
object. The Virtual Object can provide interoperability among heterogeneous objects by us-
ing semantic descriptions and context sharing techniques [104]. Moreover, Virtual Objects
are gaining momentum in the IoT scenarios as secure lightweight virtualization solutions are
being proposed [139][135].

2) Communication Technologies: The use of Low-Power Wide-Area (LPWA) net-
works must be considered in IoT environments and for context sharing as well. LPWA rep-
resents a set of technologies able to provide network communication for a considerable
distance with low energy consumption [125]. LPWA networks support (i) low power devices
such as the ones that can last for several years on battery, (ii) devices with low data through-
put requirements, and (iii) long range operation [132]. The use of LPWA networks by the
context sharing platforms, such as SigFox, LoRa, and NB-IoT, has potential to enable new
forms of communication, making possible the sharing of context information in most IoT
scenarios.

3) Fog and Edge Computing: Manashty et al. discuss how cloud-based context
sharing platforms lack in fulfill context sharing requirements [89]. In this sense, the adoption
of Fog and Edge computing paradigms towards the architectural perspective can help to
cover these requirements. Fog Computing paradigm brings the cloud applications physically
closer to the IoT devices. It works in a distributed way. Fog Computing leverages cloud
and edge resources along with its own infrastructure [36]. There is an urgency to minimize
network communication in IoT by optimizing the systems that exchange data, and also con-
text. The Fog and Edge computing paradigms can tackle this issue as well by improving the
scalability of the systems. The Edge Computing paradigm reduces the amount of data (i.e.,
context) exchanged by the entities. It is related to perform some processing tasks of the
systems at the final node of the communication layer (i.e., edge device), directly embedded
into the devices themselves minimizing the communication with cloud instances [123]. Con-
text sharing platforms can take advantage of both Fog and Edge computing paradigms to
decrease latency and network overhead. Moreover, the decentralization provided by these
paradigms helps in solving the heterogeneity problems of IoT environments in terms of sys-
tems and devices.

4) Hybrid Reasoning: The implementation of both Fog and Edge Computing
paradigms facilitate a hybrid reasoning feature. The use of different reasoning techniques,
accordingly to the environment, is a challenge for context sharing platforms. IoT environ-

71

ments tend to be heterogeneous by varying its characteristics (e.g., processing power, enti-
ties manufacturer). They can take benefit of a hybrid reasoning approach by adapting easier
for each situation [109][86]. Following the hybrid Fog and Edge approach, a lightweight
reasoning mechanism (e.g., rule-based system) can be embedded directly into IoT devices
(edge) with resource-constrained characteristics. On the other hand, fog devices have more
resource capabilities (e.g., processing power, unlimited energy) and can implement more
complex reasoning (e.g., machine learning, ontologies).

5) Security and Privacy: Considered a leading challenge towards the definition
of a context sharing platform. First, there is a need to protect contextualized information
exchanged between entities. In this case, the use of lightweight communication protocols
is seen as a viable choice [135]. Also, the context may include private information, such as
medical and location data. In this sense, there are some efforts in defining a security archi-
tecture for IoT systems [137]. Moreover, there is still a lot to be explored to provide security
at the hardware level, especially regarding the context-generating devices [95]. They are the
primary targets for attacks and must be protected from the low level of hardware to the high
level of software to ensure the integrity of the generated context.

6) Context-Aware Security: Besides the provision of privacy to the platform, con-
text information may also be used for context-aware security decisions [35][5]. Shared con-
text information is often used to improve the knowledge of the receiver, but context informa-
tion should be used as well in smart environments for authentication, authorization, access
control, and privacy-preserving services provision [72]. As analogy, let’s consider the sce-
nario of a door. A simple door will open with a key. A door using context-aware security func-
tionalities will adapt itself depending on the environment (i.e., context). For example, a door
may require different access control policies depending on the geographical place. While in
a specific country, the door will need a physical key for the access, in another country it may
require a secret password. Bringing this scenario to the IoT, it is possible to replace the anal-
ogy of a door by a computing device, or a system. Furthermore, the context information can
improve the communication channel security, by strengthening the network security, send-
ing reports to a manager, or making data anonymous when some event is detected (e.g.,
an intruder on the network). Context-aware security ensures decision to be made according
to the actual environmental context. Some efforts provide context-aware security services
to IoT application scenarios [4][42][148]. However, those solutions do not care in providing
the context-aware security feature considering the use of context information from hetero-
geneous application domains. The union of context sharing with context-aware security can
leverage new frontiers in the development of security solutions to IoT environments.

7) Context Economy: An emerging trend is the development of marketplaces for
IoT data. These marketplaces are community-driven software systems that allow device
owners to sell their sensor or the actuator data for a monetary benefit [105]. There are
some recent researches that present different kinds of IoT marketplaces [50][141][100][76].

72

However, most of these works only deal with raw IoT data. Even when the IoT marketplace
uses a kind of context [100], it only uses the information of one domain and does not use it to
provide new decisions. No IoT marketplace allows sellers and buyers to deal with high-level
information (i.e., context) from different domains. To be able to perform such function, the
IoT marketplace needs to add a layer of semantic interoperability, to deal with the shared
context information. More than commercializing the high-level information, such Context
Marketplace can avoid buyers’ entities to perform a reasoning process, that is considered
a performance demanding task. Moreover, such Context Marketplace has the potential to
leverage the development of the area.

3.2 CONTEXT-AWARE SECURITY PROVISION

The context-aware security concept has been in focus of the researchers since
the pervasive computing era [68][61]. They have introduced important definitions of the
area that are carried along the years. Due to the technological limitations of that time, the
context-aware security solutions were used to have a very specific applicability. However,
with the recent popularization of the IoT applications, the context-aware security topic be-
come more likely to be applied. Nowadays, many efforts are providing context-aware security
solutions in different ways considering the characteristics of IoT environments. Subsection
3.2.1 presents an overview of context-aware security solutions by the application area. Sub-
section 3.2.2 analyzes the context-aware security solutions by the requirements previously
presented in Subsection 2.5.2.

3.2.1 Context-Aware Security Application Areas

This Section analyzes context-aware security systems based on possible applica-
tion areas: (i) authentication, (ii) authorization, (iii) access control, and (iv) privacy-preserving.
Moreover, the scope of each work is presented and if it uses shared context information for
CAS (i.e., performs a kind of context sharing).

Table 3.4 presents the comparison of analyzed works. The proposed work appears
in Table 3.4 as “This work”. The architectural and implementation details of “This work” can
be found in Chapters 4 and 5. In Table 3.4, a dash (—) symbol is used across all columns
to denote that the feature is either missing or not mentioned in related publications that are
available. The symbol (X) is used to denote that the feature is employed by the analyzed
work in some perspective. For the use of shared context information issue, the analyzed
works can be categorized in two groups: full interoperability (FuI), and partial interoperability
(PaI). The ones of full interoperability comprise the solutions which use context information

73

of different sources, domains and/or formats to provide security decision. The partial inter-
operability ones use context information of local or similar groups. Next paragraphs present
the definitions of analyzed solutions.

Table 3.4 – Overview of Context-Aware Security Solutions by Application Area.

Solutions Ref Year Authentication Authorization
Access

Control
Privacy-Preserving Scope

Uses

Shared Contex

CASA [64] 2013 X — — — Mobile —
ConXsense [91] 2014 — X X X Mobile —
Mowafi et al. [98] 2014 — X X — Mobile —

SocIoTal [115] 2015 X X X X IoT PaI
Rachid et al. [113] 2015 — — — X IoT —
Gansel et al. [56] 2015 X — X — Automotive —
SVM-CASE [81] 2015 X — — — VANET PaI
CAS RBAC [142] 2016 — X X — User —
CARBAC [66] 2016 X X X X WSN PaI
ContexIoT [72] 2017 — X X — IoT —

CAPP [148] 2017 — — — X Smartphones —
CRBAC [6] 2018 X X X X Healthcare —

CSIP [5] 2018 X — X — Industrial IoT —
Aegis [124] 2019 — X X — Smart Home PaI

Gheisari et al. [57] 2019 — — — X Smart City PaI
This work — 2020 X X X X IoT FuI

• CASA: Context-Aware Scalable Authentication (CASA) [64] envisions using multiple
passive factors to modulate active factors to authenticate users. CASA embodies two
concepts. First, the digital sensors data combined with models of people and places
can yield multiple passive factors about users’ identities. Passive factors are those that
can be acquired without explicit interaction from the end-user (e.g., a user’s location or
time since last login). Second, CASA is based on the idea that this passive multi-factor
data can be used to modulate the strength of active authentication needed to achieve a
given level of security. CASA makes authentication easier or harder based on passive
factors rather than making it uniformly hard for all cases.

• ConXsense: It is a framework that provides context-aware access control decisions
by performing automatic classification of the context with regard to its security-relevant
properties [91]. The classification is based on machine learning models and user
feedback providing ground truth information for training these models. The framework
architecture is driven by context data observed with the sensors of the mobile devices.

• Mowafi et al.: The authors propose a context-aware adaptive security framework for
eliciting context information and adapting this information with security control mea-
sures [98]. The framework uses context information and dynamically adapts the se-
curity settings of mobile applications for different situations and user actions. Context

74

entails a variety of aspects (location, time, network, etc.) that are dynamically com-
bined together to create a certain enriched context. Context aspects are utilized to
adapt the security level required by each mobile application.

• SocIoTal: The authors present a framework developed under the foundations of the
EU FP7 SocIoTal project [115]. The Architecture Reference Model (ARM) is used as
a reference architecture in the development of the framework. It addresses security
and privacy concerns by instantiating and extending the security functional group of
ARM. The proposed framework has two main modules: Group Manager, and Context
Manager. The former being responsible for dealing with data sharing within a group of
devices. The latter is responsible for the context-aware security provision by a Complex
Event Processing (CEP) technique.

• Rachid et al.: The authors propose a context-aware architecture for privacy preserva-
tion in IoT [113]. It has three main layers: (i) Sensing layer, (ii) Network layer, and (iii)
Application layer. The first one (i) is responsible for device data acquisition, the second
one (ii) to transmit the sensed data, and the third one (iii) to offer the data as a service.
It has the possibility of offering an ontology as a service, that can be used for privacy
processing.

• Gansel et al.: The authors present a solution focused in automotive scenarios [56].
They propose an access control model that is inherently aware of the context of the
car and the applications. The context-aware access control allows for adapting access
permissions based on the context of the car or the applications without compromising
on safety. Their model grants permissions to exclusively access certain display areas
to applications depending on the current context.

• SVM-CASE: SVM-based Context-Aware Security Framework (SVM-CASE) [81] uses
the Support Vector Machine (SVM) learning technique to automatically determine the
boundary between the misbehaving nodes and well-behaved nodes in VANETs. SVM-
CASE uses the vehicles context information, such as velocity, temperature, and altitude
to detect malicious nodes in a network. It also uses the network context to provide se-
curity services. For example, if a node in a network is dropping packets, it can be
caused by a network context of a busy channel and will not be considered a misbehav-
ing node. In a context-unaware solution, it would be treated like a misbehaving node
without any further investigation on context. Thus, SVM-CASE works for context-aware
security authentication.

• Trnka et al.: The authors propose a solution that extends role based access control
(RBAC) with certain context awareness elements [142]. It is based on using security
levels, which are granted to user based on his context. Their solution enables different
contexts to have different security methods. For example, an entity with a specific role

75

can have different access rights in different cities, and the authentication process can
be even omitted depending on the context (e.g., access from internal company net-
work). Moreover, it can be used alongside a legacy system, in which security policies
need to be defined for granting access to users depending on its context (e.g., location,
status, time).

• CARBAC: The authors propose a Context-Aware Role Based Access Control (CAR-
BAC) scheme [66]. It controls the access of the users to the system in accordance to
their role in the system and the current context information. For example, a user may
have access restrictions in different locations and time of the day. CARBAC roles can
also change at run-time, depending on the context. Moreover, it can protect the privacy
of the data by defining business rules. CARBAC access control scheme is modeled
using ontological techniques and Web Ontology Language (OWL), and implemented
via CLIPS business rules tool. CARBAC can support context-aware security in authen-
tication, authorization and access control.

• ContexIoT: It is a context-based permission system for IoT platforms that provides
contextual integrity [72]. ContexIoT has the premise that each permission granted to
the user may happen under a specific context. It is a smartphone app developed using
the Samsung SmartThings platform that is able to analyze the context data flow to
provide context-aware security. ContexIoT analyzes the runtime context together with
a backend repository for inferring security decisions.

• CAPP: Zhang et al. [148] designed a context-aware privacy-preserving algorithm
(CAPP) for smartphones applications to decide in which way the context of a user can
be disseminated. The context is acquired through different sensors embedded in the
smartphones. CAPP uses the temporal correlation between contexts of the users for
security services provision. The main focus of CAPP is to provide privacy-preserving
security service, but the reasoning process of the algorithm can serve as a basis to
provide authentication and access control as well.

• CRBAC: The authors propose a new context-sensitive role-based access control (CR-
BAC) [6]. The proposed solution is inserted on a security and privacy architecture for
the Healthcare Internet of Things (HIoT) area. The proposed architecture is responsi-
ble for data acquisition, management, and secure communication. The CRBAC model
defines context conditions involving roles and attributes to describe policies that can be
applied in critical situations. The term “context condition” (CC) is used by the authors
as a key-value pair to achieve safety, security, and privacy of the CRBAC users.

• CSIP: Context-sensitive seamless identity provisioning (CSIP) is a mutual authentica-
tion framework for Industrial Internet of Things (IIoT) [5]. The authors defines the in-
habitants of IIoT scenarios as people, devices, services, systems, sensors, 5G smart-

76

phones, etc., in varying applications in daily life. CSIP builds an inhabitant profile by
using his activities’ history and usage patterns of the environment’s resources, based
on that, it can build disposable customized virtual inhabitant profile (DCVIP), then it
creates an identity proxy to perform the verification required during the interaction for
the authentication process.

• Aegis: It is a context-aware security framework to detect malicious activity in Smart
Home Systems (SHS) [124]. Aegis captures sensor-device data in smart home sce-
narios to understand the context of the user activity. With this data, it is possible to
detect malicious behavior and alter users about it. Aegis observes the changes in
device status based on user activities and builds a contextual model to differentiate
benign and malicious behavior. Moreover, the authors introduced an adaptive training
model to improve the malicious behavior detection mechanism.

• Gheisari et al.: The authors first equip IoT-based smart city with Software Defined
Networking paradigm (SDN). Then, they mount a privacy-preserving method on top of
it that manages flowing data packets of IoT devices data [57]. The SDN classifies all
connected IoT devices data based on the context. The authors claim that privacy is
preserved through the SDN function of splitting sensitive data and sending split parts
through a secure route and a VPN.

Although all the analyzed works provide solutions related to context-aware security,
they may differ in its architecture and how they provide security. Each work has its focus, one
time that ones have the objective to protect the whole infrastructure, there are systems with
a specific goal. By using context information to provide security, most of the systems were
deployed for dynamic situations, where the location and status are an important element.

The works [115], [81], [66], [124], and [57] use shared context information for the
security decisions. Aegis [124] has a Data Collector Module that creates an uniform context
format for all contexts present in its architecture. SocIoTal [115] also provides a common
format for the context. SVM-CASE [66] approach uses an ontology to facilitate the interop-
erability between shared context. Gheisari et al. [57] builds an SDN controller to connect
all devices through two OpenFlow switches, creating an interoperable communication. How-
ever, the source of this context information is from the same or similar entities of the systems
deployed many times in a near location. In this sense, they could not reach full interoperabil-
ity (FuI). To reach it, the system must use context information from heterogeneous sources
deployed in different locations or networks.

The majority of examples related to the context-aware security area are linked to
the Access Control feature. Most of the analyzed works reach this feature. Moreover, most of
the techniques for Access Control also provide Authorization feature. On the other hand, only
a few works focus on offer Privacy-Preserving. Although analyzed works provide context-
aware security features in their architecture, they do not care about the heterogeneity of the

77

IoT environments. A solution that considers this requirement and reaches a full interoper-
ability is needed to mitigate the challenges of the area.

3.2.2 Summary of Context-Aware Security Solutions

A comparative summary of recent context-aware solutions focused in IoT environ-
ments is presented in Table 3.5, a dash (—) symbol is used across all columns to denote that
the feature is either missing or not mentioned in related publications that are available. The
context-aware security requirements (See Subsection 2.5.2) are consider for the analysis.
For all the requirements, it is analyzed the characteristics implemented by the context-aware
security solution and not the specific technologies that it uses. For example, a solution can
address the Privacy requirement if it has a process in its architecture for hiding the user data
in some context. If a solution only uses a secure communication protocol (e.g., DTLS, TLS,
wolfSSL) for protecting data, it is not considered meeting the Privacy requirement.

Moreover than context-aware security, the context information also has been used
for anomaly detection even before the IoT era [28]. Some of the analyzed works act in
context-aware security field by the detection of anomalies [81][72][124]. Such approaches
use context both from users and the environment to detect abnormal network/system activity
based on the historic data and/or in an unusual behavior. The concept of anomaly detection
was successfully employed to the Service-Oriented Architectures (SOA), that are common
in IoT environments [149]. When properly implemented, anomaly detection can deliver sig-
nificant security improvements to IoT environments. However, it represents a subset of the
security provision possibilities achieved by the use of context-aware security solutions. In a
context-aware security solution, the anomaly detection can act as a trigger to the provision
of different Security Services.

The only two requirements performed by all the analyzed works were Context ac-
quisition and Context processing. It is expected for the solutions to do that, as the context-
aware security solutions should get the context from a source (i.e., Context acquisition) and
process it for taking the security decisions. This process also can be called inferencing
(i.e., Context processing). A considerable amount of analyzed works performs the Context
acquisition by getting context from user‘ mobile device [64][91][98][66][72][5]. Rachid et al.
[113] proposes a different approach by getting context trough a sensing layer from a wire-
less sensor network. Gheisari et al. [57] has defined a Software-Defined Networking (SDN)
for acquiring context. On the Context processing requirement, the use of rules is the most
popular technique [98][56][142][66][72][57]. Rules are simple to define, easy to use, and
lightweight, being popular in the context-aware field [109]. The usage of both ontologies
and machine learning techniques can be considered a trend in this field [64][91][113][66].
Moreover, such techniques can help in providing interoperability.

78

Table 3.5 – Overview of Context-Aware Security Solutions by Requirements.
Solutions Ref Year

Context

acquisition

Context

processing
Interoperability Privacy Reliability

CASA [64] 2013 Gets context from
the user’s mobile
device

Uses Naïve Bayes
classifier to combine
multiple factors, cal-
culating the authen-
tication

It can be used by dif-
ferent smartphones

— —

ConXsense [91] 2014 Gets context data
with the sensors of
mobile devices and
user feedback

Utilizes machine
learning to classify
contexts according
to their properties

It can be integrated
with the FlaskDroid
architecture [24] on
Android phones

It limits the adver-
sary to gather infor-
mation with high pri-
vacy exposure

It uses more than
one font for acquir-
ing the context

Mowafi et al. [98] 2014 Gets the context
from the smart-
phone sensors

Uses rules to make
the appropriate se-
curity decision

It can be integrated
with the mobile de-
vice OS

— —

SocIoTal [115] 2015 Gets context from
internal or external
device‘s sensors

Uses key-value
pairs and markups
for modeling and
Complex Event
Processing for
reasoning

Translates raw
context data into a
proprietary common
format

A repository of pri-
vacy rules is used to
define privacy pref-
erences of users

It has a component
that allows smart
objects to obtain
data from other
entities in a reliable
way

Rachid et al. [113] 2015 Gets context trough
a sensing layer from
a WSN

Uses an ontology-
based reasoning
technique

An ontology acts as
a common vocabu-
lary for the context
across the various
system components

Uses an ontology
that describes the
privacy of users

—

Gansel et al. [56] 2015 Gets context about
the status of the car,
the environment,
and user

Uses rules for a dy-
namical access con-
trol

— An application re-
quires a permission
restricted to certain
contexts

It uses a microker-
nel based hypervi-
sor

SVM-CASE [81] 2015 Gets context
from network and
nodes/devices

Uses the Support
Vector Machine
(SVM) algorithm to
classify nodes

Provides interop-
erability between
different automotive
nodes

— Verifies if a node be-
comes misbehaving
using context infor-
mation

CAS RBAC [142] 2016 Uses both real-time
and historical users
context (e.g., loca-
tion, time)

Uses rules to deter-
mine access control
levels

It is interoperable
with solutions using
Role-based Access
Control (RBAC)

— It has mechanisms
to validity check the
context information

CARBAC [66] 2016 Gets context from
users devices (e.g.,
smartphone)

Uses OWL and
CLIPS rules to
perform reasoning

By using ontologies,
it is able to deal with
generic data

Provides data pri-
vacy by security
rules

—

ContexIoT [72] 2017 Collects context
from the smart-
phone in installation
and runtime

Uses rules to com-
pare contexts in a
key-value pair

It uses the Samsung
SmartThings plat-
form to prototype
the solution

— It keeps a runtime
logging for the con-
text events

CAPP [148] 2017 It acts as a mid-
dleware for the
smartphone and
can get context
directly from smart-
phones sensors

It uses Markov
Chain for both
model and reason-
ing on context to
provide privacy

It can be used by dif-
ferent smartphones

It protects user‘s
privacy context
from untrusted
smartphone apps

It performs check
methods before re-
lease the context of
a user

CRBAC [6] 2018 Gets context from
previously con-
nected devices

Uses a rule-based
processing for ac-
cess control

— Replaces the orig-
inal data identities
with unique privacy
labels

It records the history
of every data ex-
change between the
entities

CSIP [5] 2018 Gets the context
from sensors/smart-
phones of medical
domain

Uses data mining
techniques to ex-
tract patterns for fu-
ture reasoning by
comparison

Synchronizes data
blocks with a cloud-
based side

Uses a secure
session-key for
access to private
data

Stores the pro-
cessed data for
learning purposes

Aegis [124] 2019 Collects the state
of smart home de-
vices and sensors
(active or inactive)
autonomously

A Markov Chain-
based machine
learning model
is used to detect
malicious activities

It has a data array
format for parsing
the collected context

It assigns an anony-
mous ID for each
user to ensure pri-
vacy

—

Gheisari et al. [57] 2019 It has a Software-
Defined Networking
(SDN) for getting the
device‘s data

It uses rules to de-
termine the sensitiv-
ity level of each data

Different devices
can participate a
defined SDN

It defines that sensi-
tive data not be dis-
closed unintention-
ally

It splits sensitive
data and sends
split parts through a
secure route

The Interoperability requirement can be linked with the capacity of the solutions to
use shared context information (see Table 3.4). Also, it is related to the solution effort in

79

dealing with different entities (e.g., data, devices). Some analyzed works provide interop-
erability only with the same kind of entities [64][91][81][72][148]. SocIoTal [115] and Aegis
[124] work in providing a common data format, making easy the interoperability after a pars-
ing processing. Rachid et al. [113] and CARBAC [66] perform a similar processing, using
an ontology to create a common vocabulary between the entities.

Privacy and Reliability are the less addressed requirements by the analyzed works.
It is import to keep context information private, as many times it relies on sensitive user
information [42][109]. For Privacy, most of the analyzed works perform a kind of process-
ing, either by rules or different condition manager, to set the privacy level of context data
[115][113][66]. CRBAC [6] perform an anonymization privacy processing by replacing some
elements of the context information for unique data, keeping it private. Aegis [124] does
not store user data from smart home devices which reduces the privacy risks and concerns
from prior solutions. There are different approaches employed by the analyzed works to en-
sure the Reliability requirement. Most works perform a redundancy processing to minimize
failures [91][72][5][57].

It is essential to research, study, and develop context-aware security solutions to-
wards the evolution and consolidation of the IoT. The analyzed solutions provide context-
aware security in different ways in their applications, but they still fail to cover all the key
requirements of context-aware security in IoT. The most common drawbacks of the context-
aware security solutions are related to data protection (i.e., context information). It is im-
portant to follow the new legal regulations such as the General Data Protection Regulation
(GDPR) [140] to ensure that privacy-sensitive data is not leaked. Also, mostly context-aware
security solutions do not care about the high heterogeneity of IoT environments by providing
a full interoperable mechanism for context information.

80

81

4. ARCHITECTURAL APPROACH

This chapter presents the architectural view of developed work. Section 4.1 presents
the Context Sharing Architecture modules. Section 4.2 presents the modules responsible
for the context-aware security provision. Section 4.3 presents an application scenario to the
architecture.

4.1 CONTEXT SHARING ARCHITECTURE

The importance of having a context sharing architecture is strongly related to the
need of users and applications to share information between different entities (e.g., devices,
places, users). Although the context sharing concept is used in the pervasive computing
area by some systems, the sharing mostly occurs locally with a small group of similar enti-
ties. To the best of our knowledge, a context sharing architecture that uses shared context
information for context-aware security provision and works with IoT environments was not
deployed yet. An Edge-centric Context Sharing Architecture could be used as a reference in
order to define a context sharing architecture to share contextualized information between
heterogeneous entities and/or environments. The architecture may provide an infrastruc-
ture that could be used by other systems to develop their sharing platforms following the
proposed architecture definition in full or in parts.

An Edge-centric Context Sharing Architecture takes benefit of fog and edge com-
puting approaches to minimize network communications, thus reducing failure points and
improving scalability. The definition of the architecture is illustrated in Figure 4.1. It is
composed of three main layers: Context Storage, Context Sharing, and Context Provider.
Context Storage is placed at the cloud level. It is responsible for storing historical context
information that may be used by the architecture itself or by accredited third-parties soft-
ware. Context Sharing System is placed at the fog level and is responsible for sharing the
context information with other entities or Context Sharing Systems instances, including dif-
ferent fogs. Context Provider Systems are placed at the edge layer, embedded or connected
directly to IoT devices, and are responsible for providing context information based on IoT
devices data. The users and applications communicate directly with the Fog Layer. They do
not have direct access to the Cloud storage infrastructure.

A real-world scenario can have multiple instances of Context Sharing and Context
Provider systems. In most cases, the number of Context Providers systems will be greater
than Context Sharing systems. For example, let’s consider the scenario of a smart city. It can
have one instance of the Context Sharing system responsible for the Emergency Medical

82

Figure 4.1 – A layered Edge-Centric Context Sharing Architecture.

Services (EMS) of the city and one instance of the Context Provider system deployed on
each ambulance of the city.

Both Context Sharing and Provider Systems exchange context information. This
context is acquired by the Context Provider Systems and shared with Context Sharing Sys-
tems. An example of a context can be seen at Figure 2.3. It contains all the information that
will be shared and can be also presented in XML format.

Besides the Fog and Edge layers of the Edge-centric Context Sharing Architecture,
it also has a Cloud layer (i.e., Context Storage) for store all the context information, context-
aware security information, and Context Sharing and Providers Systems information. The
Context Sharing Systems acts as a light Cloud with only information about the deployed
scope, one time that the Cloud has information about all the instances. Next, the Context
Sharing and Provider System modules are detailed. Also, an Application Scenario with the
communications by the systems is presented. Technological details can be found in Chapter
5.

83

4.1.1 Context Storage

The Context Storage is a layer placed at the Cloud level. Figure 4.2 details all the
layer modules. It has the main responsibility of store all the relevant context information of
the whole architecture. Next items details the modules of the layer.

• Cloud Repository: It is composed of a Repository Analyzer and two databases. The
Analyzer works for query and operations in the databases. The first database is related
to the context information. The second one is related to security decisions taken using
context. It is up to the Fog layer to decide which information can be stored locally and
which is stored at this level (i.e., cloud). The Repository Analyzer has the directives to
access the stored information.

• Context Systems Manager: It is responsible for maintaining information about the
Context Sharing Systems that have data stored at the Cloud Repository. Every time
that a new Context Sharing System store/gather information, it is created a log with its
ID, URL for communication, and possibly other details that characterize such entity.

• Communication Services: This module is essential for the communication between
cloud-to-fog. It has all the communication interfaces to guarantee the data exchange
in an interoperable way.

Figure 4.2 – Context Storage modules.

4.1.2 Context Sharing System

The Context Sharing System is a software system placed at the Fog layer. Figure
4.3 details the system modules. It has two main responsibilities: (i) coordinate the Context
Providers Systems of his domain, and (ii) receive context information and share it with whom
it may concern. Next items details the modules of the system.

84

Figure 4.3 – Context Sharing System modules.

• Security Manager: A Context Sharing System must ensure its protection against at-
tacks on data and communication channels [83]. Authentication, authorization, confi-
dentiality, and integrity must be used to protect the proposed architecture. Researchers
have proposed a security architecture for IoT middleware [115]. In this sense, that ar-
chitecture can be deployed in the Context Sharing System as well.

• Fog Repository: It is composed of a Repository Analyzer and two databases. The
Analyzer works for query and operations in the databases. The first database is related
to the context information. Every updated context information regarding an instance
(e.g., context provider) is stored in this database. The second one is related to every
security decision taken using context. Both databases are replicated in a Cloud (i.e.,
working like a log system), and only the newest information stays at the Fog level.
Fog Repository module also works for scalability. When an entity claims for context
information, it first verifies if the information is updated in the Context database. If yes,
there is no need to go for it through the Context Provider System (i.e., Edge Layer).

• Context Sharing Manager: It is responsible for the context information sharing pro-
cess. It has the functionality of interpreting the context information sent by the Context
Provider, reasoning over it to discover whom may be interested on in, and disseminat-
ing it to the destination by using the Fog Repository. The reasoning process happens
alongside with the Context Classification module, using its ontology. The Context
Classification output is the domain of the entities that may be interested in such con-
text. The Context Interpreter and Context Reasoner modules are responsible for the
interaction with the Context Classification. The Providers Instances database mod-
ule has the address of the context providers systems inserted on its domain. Those
address can be used to share context information. A large database with all the ad-
dress is deployed at a Cloud level. The database of the Fog level (i.e., Context Shar-
ing System) contains only the entities address of a defined location (e.g., city, state,
neighborhood), depending on the application scenario needs. The process of sending
context information to other entities is performed by the Context Distribution module.

Context Classification: This module works regarding interoperability. As differ-
ences in network connectivity should be hidden by the use of standardized web service

85

interfaces, the context interoperability can be hidden trough the use of OWL (Web On-
tology Language). An ontology can be used to analyze, interpret, and model context
information in most IoT environments. The Context Classification module holds an on-
tology developed for classifying the context according to its domain. Different already
developed ontologies can be merged with it, as there are a considerable amount of on-
tologies in the literature defining the characteristics of different IoT application domains
[109][39].

• Context Selection: It works with the Fog Repository. The main function of this module
is to select the context information requested by an entity (e.g., Context Provider Sys-
tem or another Context Sharing System). It takes place when an entity is not interested
in share context information but only to get it from the Fog.

• Communication Services: This module is essential for the communication between
cloud-to-fog, edge-to-fog, and fog-to-fog. It has all the communication interfaces to
guarantee the data exchange in an interoperable way. This module works alongside
the Context Sharing Manager for communication with other entities.

• Context Providers Manager: Context Providers must register to the Context Sharing
System by informing its characteristics and protocols. The registration happens when
the Context Providers system sends its profile to Context Systems following a pre-
defined pattern. The profile must have the basic characteristics of the provider. Figure
4.4 shows a simple example of a Context Provider profile representing an ambulance.
The profile follows standards of widespread sources, such as FIWARE1, and oneM2M2.

Figure 4.4 – Example of a Context Provider profile.

• Context Providers Reasoner: It works alongside with the Context Sharing Manager
for understanding who are interested in the shared context. It is possible to register the
range of each service that can receive or send context information. For example, the
EMS can be composed of 15 ambulances, and each one is responsible for a sector

1https://www.fiware.org/
2http://www.onem2m.org/

86

of the city. Moreover, the city may have four hospitals of different specialties (e.g.,
transplantation, emergency, radiology, etc.). Therefore, the city will be geographically
separated in sectors. In this sense, when an event occurs (e.g., home-care patient
needing medical assistance), the context sharing architecture automatically knows to
which services share the context information based on the environment conditions (i.e.,
patient severity and its location, ambulances location).

• Context Processing: The operations on context are essential for the flexibility of the
architecture. This module provides the operations of aggregation and filtering in the
context information. It works alongside the Context Sharing Manager, once the context
can suffer modifications before be shared with the destination.

4.1.3 Context Provider System

Besides a request by the user/application at the Fog layer for context information,
an automatic sharing action is started by the Context Provider System when new context in-
formation is generated. This system is essential for the architecture workflow. It enables the
decentralization, one time it is placed at the edge of the network. The Context Provider Sys-
tem can be deployed alongside or within an IoT data producer device (i.e., Context Sources,
see Figure 4.1). Figure 4.5 details the system modules. It has two main responsibilities: (i)
provide context-aware security decisions, and (ii) trigger the context sharing process. Next
items details the modules of the system.

Figure 4.5 – Context Provider System modules.

• Security Manager: As the Context Sharing System, the Context Provider system also
offers protection to the data (e.g., context information) and communication channels.
This system can employ lightweight protocols such as Datagram Transport Layer Se-
curity (DTLS).

• Context-Aware Security Manager: It is responsible for the context-aware security
decisions. It can acquire new context information to match with the most updated

87

one to reason over it and provides access control, authorization, authentication, or
privacy-preserving. It may contact the Fog instance for updated context information.
The reasoning process occurs with lightweight techniques taking into account the limi-
tations of edge computing environments. More details of this complex module can be
seen next in Section 4.2.

• Context Sharing Manager: Responsible for the context sharing process at the edge.
It has two main functions: (i) modeling the context information to share it with the Con-
text Sharing System infrastructure at the Fog level, and (ii) interpreting the received
shared context information through the Semantic Processing module for the context
sharing processing and/or to make a context security decision alongside the Context-
Aware Security Manager. It also has the address of the Context Sharing System in-
stance that the context information must be sent by the Sharing Instances module. A
Context Provider can share the context information to one or more Sharing Systems.

Semantic Processing: It is responsible to interpret context data, enabling context
sharing by explicitly defining contexts in a semantic manner. The Lexical Analyzer
splits the context data into parts and gathers all the words present in such context
information. It extracts the words and retrieves their synonyms and related terms.
With this information, it is possible to infer the domain of the context information by
comparing the words set with the possible IoT domains present in a pre-defined scope
(i.e., ontology). Only the extraction process occurs at the Edge layer, as it is a more
lightweight process than the comparison that happens at the Fog layer.

• Context Production: It is a subsystem that has the function of produce the context
information. The Context-Aware System (CONASYS) is a context production platform
that can be used as a Context Production in the Edge-centric Context Sharing Architec-
ture. Although the proposed architecture accepts any Context Production, CONASYS
can be used as an example since it was developed by the GSE/PUCRS [90][40].

• Communication Services: This module works only for the edge-to-fog communica-
tion. It has all the communication interfaces to guarantee the data exchange in an
interoperable way. It works alongside the Context-Aware Security Manager and Con-
text Sharing Manager for communication with other entities.

• Data Pre-processing: The architecture addresses scalability and real-time sharing in
two ways. First, data acquisition from Context Providers at the edge should be mini-
mized by reusing common data accessed by multiple applications through the Reposi-
tory Analyzer module at the Fog. Second, a data pre-processing method should avoid
data stream from the Context Providers. This module has methods to concatenate
multiple context information with near generation time to avoid various communication.
Moreover, it can be programmable to send context information only if it was different

88

from the last sharing. Also, most of the systems do not take advantage of the decen-
tralization approach provided by the edge computing paradigm that helps to mitigate
the scalability issues.

• Profile Creation: Responsible for creating the Context Provider profile to be registered
in the Context Sharing System. An example of profile can be seen at Figure 4.4.

• Event Trigger: One time that context information is produced, this module guarantee it
to be shared with the Context Sharing System automatically. Event Trigger acts along-
side with other two modules: (i) Context Production to receive the context information,
and (ii) Context Sharing Manager to start the sharing process.

4.2 PROVIDING CONTEXT-AWARE SECURITY

Context should be a first-class security component in order to drive the behavior
of IoT devices. This would allow smart objects to be enabled with context-aware security
solutions, in order to make security decisions adaptive to the context in which transactions
are performed. At the same time, context information should be managed by taking into
account security and privacy considerations. In particular, current IoT devices (e.g. smart-
phones) can obtain context information from other entities of their surrounding environment,
as well as to provide contextual data to other smart objects [115]. These communications
can be performed through lossy networks and constrained devices, which must be secured
by suitable security mechanisms and protocols.

Additionally, the IoT is composed of sensitive domains, such as healthcare, trans-
portation, home-care, etc. It is highly significant to protect the privacy and confidentiality of
personal data from unauthorized access while stored or transmitted. It is even more crucial
and difficult to administrate the information and physical security in ubiquitous environments
with numbers of participants continuously joining and leaving the space [66]. Moreover,
high-level context information can be reasoned and inferred by considering privacy con-
cerns. Thus, a smartphone could be configured to provide information about a person’s
location with less granularity (e.g. giving the name of the city where he is, but not the GPS
coordinates), or every long periods of time in order to avoid daily habits of that person could
be inferred by other entities [115].

The proposed solution for Context-Aware Security (CAS) can provide authentica-
tion, authorization, access control, and privacy-preserving to edge computing environments
(i.e., Context Providers) by using shared context information. Figure 4.6 shows an overview
of the proposed CAS solution, the Context-Aware Security Manager module. The core op-
eration to provide context-aware security is by using pre-defined security rules. These rules
are mostly defined for a specific domain that the system is deployed. The system basically

89

works as follows steps: (i) it receives the shared context information, (ii) matches the re-
ceived context with the historic one, (iii) infers security decisions by the rules. There are
some details of these steps that are defined in the next paragraphs. Next items present the
components of the Context-Aware Security Manager module.

Figure 4.6 – Overview of Context-Aware Security Manager.

• Event Handler: It is responsible for receiving the shared context (i.e., new event) infor-
mation and analyze it alongside with ConSec Instance and Context Security Reasoner
modules. The Context Analyzer manages the context information. It can interpret
the context information to extract any data (e.g., source domain, type of data, source
device) to help in the selection to which kind of rules the context information must be
submitted. After this process, the Output Action notifies the Context Security Reasoner
with the event (i.e., context information).

• Context Security Reasoner: This module is responsible for the reasoning process
of the Context-Aware Security Manager. The Security Operation classifies the context
with a type of operation (e.g., authorization, access control, etc.), then the reasoning
process starts to provide a security action (e.g., give access to an entity, change a
status, acts on a device). The Working Memory module fire the Lightweight Rules that
infer possible security decisions. These rules scheme is defined via business rules im-
plemented at the Edge layer. The rules can be pre-defined at the development phase or
inserted in the Security Rules database in the ConSec Instance module. The Context
Security Reasoner module acts alongside the Security Rules of the ConSec Instance
module by having a direct connection to it for the context-aware security provision.

• ConSec Instance: As reasoning process needs context information to match with the
rules, it uses this module to query for it. This module is composed of two databases:
(i) Context Information and (ii) Security Rules. The first one has a historical set of
the context of past events. The second one is composed of security directives (e.g.,
IF contextA AND contextB THEN giveAccess) that will be converted into rules by the
Context Security Reasoner module. The Security Rules module is composed of pre-
defined information defined at the architecture‘s implementation time. The rules may

90

vary depending on the application domain. The Repository Manager helps in access
the two databases and update it when needed.

• Context Acquisition: Context information has a short lifetime once the IoT is com-
posed of devices that eventually move or change status. The primary function of this
module is to get new context information when needed. It has the Context Produc-
tion Interfaces to make easy the connection with the subsystems that will produce
the context information. In this sense, it could perform a request, receive new con-
text information from the Context Production (see Figure 4.5), and update the Context
Information database of the ConSec Instance module. Moreover, it can get context
information from the Fog Repository module at the Fog layer (see Figure 4.3).

4.3 SMART CITY APPLICATION SCENARIO

A smart city is a complex IoT environment for having heterogeneous systems
placed at different domains. It encompasses many different application domains (e.g.,
healthcare, home-care, urban traffic, EMS) interacting with each other to provide efficient
services to the population.

This Section aims to provide a practical view on the application of the developed
modules aforementioned. Figure 4.7 shows the representation of an Edge-centric Context
Sharing Architecture application scenario. The main focus of this scenario is on sharing the
context of a home-care patient when some important events related to the health condition
occurs. Moreover, it also shows how the context information can be used for context-aware
security decisions.

Figure 4.7 – Edge-Centric Context Sharing Architecture instances when applied to a Smart
Healthcare scenario.

91

In this scenario, there are four deployed instances of the Context Sharing System:
(i) home-care and home-automation, (ii) EMS, (iii) hospital infrastructure, and (iv) urban traf-
fic infrastructure. Every instance is aware of the environment and knows with whom they
must share context information. For every instance of the Context Sharing System it will be
various instances of the Context Provider System. For example, the Context Sharing Sys-
tem instance of the home-care and home-automation will have one instance of the Context
Provider system connected on it for every device of the house (i.e., automatic door, moni-
toring camera, etc.). In the EMS Context Sharing System, every ambulance has a Context
Provider System.

Figure 4.8 presents a flowchart simulating how the architecture works when an
event occurs. The context information acquired by home-care sensors triggers the event of
a patient having a heart attack. Context Providers, placed at Edge Layer, send it to Context
Sharing System. Having this context information, the system cares in sharing it with whom
are interested in such context. The shared context information is formatted like the one
presented in Figure 2.3. The instances of the architecture (i.e., Fog and Edge layers) have
methods to decompose the context information in parts, thus extracting the necessary data
for matching with rules or ontologies to infer decisions.

Figure 4.8 – Flowchart for a Smart Healthcare scenario.

The Fog layers (i.e., Context Sharing System) (see Figure 4.1) instances of the
architecture are responsible for sharing context information with other fogs. This sharing
occurs three times in this application scenario: (i) the patient context is shared with EMS,
and hospital infrastructures, (ii) hospital context is shared with the EMS, and (iii) EMS context
is shared with home-automation and urban traffic infrastructure.

The received context information can be used in new processing. In this scenario,
the ambulance context is shared with the urban traffic infrastructure, thus the city adapts
itself by creating routes to drain the traffic with a “green wave” in traffic lights. Moreover,
context sharing is not only useful for live data provision, but also for other systems that might
lack the necessary historical context required to detect and predict unforeseen anomalies
successfully [89].

92

A home-automation infrastructure provides context-aware security decisions based
on the shared context information. It receives context information of the EMS system that
may contain an ambulance location and arrival time at the patient’s home for medical care.
The home-automation infrastructure may give access to the paramedics when they arrive by
unlocking the automatic door, one time that the patient could not be able to do that. This
process describes a possible context-aware access control function.

93

5. CONTEXT SHARING ARCHITECTURE IMPLEMENTATION

This chapter presents the technical view of developed work. Section 5.1 presents
the Reference Platform used to develop the Edge-centric Context Sharing Architecture.
Section 5.2 details the modules responsible for the context sharing process. Section 5.3
presents the used techniques for the context-aware security provision.

5.1 REFERENCE PLATFORM

Figure 5.1 presents the proposed context sharing architecture in a simplified view.
The highlighted (i.e., red with dashed borders) modules present in Figure 5.1 represents the
ones adapted and extracted from the Reference Platforms for the proposed Context Sharing
Architecture.

Figure 5.1 – Reference Platform modules of the Context Sharing Architecture.

Two main complementary Reference Platform were used: (i) COMPaaS, and (ii)
CONASYS. Both were developed by the GSE/PUCRS research group. The choice for COM-
PaaS and CONASYS was made by the easy access to the source code, architectures that

94

support services provision, and because CONASYS supports context-aware features. The
implementation of proposed architecture for context sharing use parts of the source code of
both COMPaaS and CONASYS.

COMPaaS (Cooperative Middleware Platform as a Service) is an IoT middleware
[8][7]. COMPaaS is a software system that provides to users a simple and well-defined in-
frastructure of middleware services to be used in IoT environments. Behind the services
provided by the middleware, there is a set of system layers that deal with the users and
applications requirements, for example, request and notification of data, discovery and man-
agement of physical devices, communication issues, and data management.

COMPaaS is based on a Service-Oriented Architecture (SOA). It is composed of
three main systems: Middleware API, Middleware Core, and Logical Device. Middleware API
is the system that has the methods to be used by applications that want to use COMPaaS
services. Middleware Core is the system responsible for abstracting the interactions between
applications and devices and also for hide all the complexity involved in these activities.
Logical Device is the system responsible for hiding all the complexity of physical devices
and abstracts the functionalities of these devices to the upper layer. Figure 5.2 presents
an overview of the middleware platform and highlights some technical details around the
integration between application, middleware and logical devices, as well as the main flow of
information.

Figure 5.2 – COMPaaS architecture overview.

The following modules presented at Figure 5.1 inherited COMPaaS features: Com-
munication Services, Security Manager, Data Pre-processing, Profile Creation, Event Trig-
ger. The Logical Device present in COMPaaS can be abstracted as an Edge Layer system.
It runs over any transport protocol (HTTP, TCP, UDP) and also allows independence of any
client-programming model (loosely-coupled distributed communication pattern) what is an
important requirement for the interoperability required by the IoT environments. It uses a
WebSocket channel (a data notification service provide by the Middleware Core) for asyn-

95

chronous responses (TCP-based protocol for notification of data). The WebSocket is used
not only to avoid the lack of performance of the HTTP (request-response style), but also to
allow that physical devices can notify without a synchronous request.

COMPaaS also provides a security data management by implementing a security
architecture for IoT environments [137]. Security for IoT middleware encompasses proce-
dures that include: embedding keys in system entities; establishing access control policies
together with authentication to allow access to networks; usage of security services to pro-
tect data against tampering and eavesdropping; and the development and selection of effi-
cient cryptographic methods. The Datagram Transport Layer Security (DTLS) protocol can
provide protection for the communication channel, while Constrained Application Protocol
(CoAP) can ensure a secure interoperation between entities or systems

COMPaaS encapsulates a “low-level API of the device (device driver)” in order to
define the devices “profile” for further connection with other entities. It also offers data pre-
processing functions to the devices, as data aggregation. COMPaaS systems architecture
is based on “Subscribe/Notify” and “Observer” communication pattern. Thus being able to
trigger events every time that new data is produced, such as a context information.

Although COMPaaS has many features in its architecture, it is not able to work
according to the context in which it is inserted. In light of this, CONASYS context-aware
functions were used by this work. The following modules presented at Figure 5.1 inherited
CONASYS features: Context Production, Context Selection.

The Context-Aware System (CONASYS) aims to provide to user/application a set
of services of contextualized information by a well-defined structure of features that under-
stands the environment in which the system is inserted and provides services based on this
environment, both on-line (i.e., through newest contextualized data) and off-line (i.e., through
historical contextualized data) [40]. These services are called information services because
they provide somehow with data/knowledge/information. The information services must be
used independent of the knowledge of the environment. In other words, a user can request
the information services without knowing exactly which things or devices will be used in the
process to collect/provide the information.

CONASYS interacts with the infrastructure provided by COMPaaS middleware, in-
cluding the devices connected to it, in order to have access to the IoT environment infras-
tructure (e.g, devices). Moreover, several instances of COMPaaS middleware may be con-
nected to CONASYS and each one is responsible for dealing with a specific domain (e.g.,
smart home, smart office, healthcare, and mobile). Each domain should have a specific set
of business rules that must be registered in the system.

CONASYS implements the “Observer” pattern, so beyond the query, the user can
also uses CONASYS by subscription. CONASYS receives the user request, by a specific
communication API (through SOAP web service), understands it and creates a cycle to

96

acquire the context information. As it have direct access to the devices connected to it (i.e.,
by COMPaaS), it is able to get device data and produce context.

CONASYS uses business rules to produce a context. It analyzes the environment
data to create a context information depending on the environmental situation. CONASYS
uses the Drools framework for the formulation of the rules. The rules are in an IF-THEN-
ELSE structure. In this sense, if any data reaches the conditions of the rule, the actions
of the rule are fired. This statement can produce the contextualization of the data in many
levels. An example of a rule can be seen in Figure 5.3. In this example the rule uses data
from three different devices and, if the data fits in the conditions of the rule, then a label is
inserted in the data indicating a new condition that did not appear before.

Figure 5.3 – Example of a Drools rule.

5.2 CONTEXT SHARING MANAGER

The highlighted (i.e., red with dashed borders) modules present in Figure 5.4 repre-
sent the ones implemented by this work with the explicit functionality of providing context in-
formation sharing. The following modules represent the core of the sharing process: Context
Sharing Manager (both Fog and Edge instances), Context Processing, Context Providers

97

Reasoner, and Context Providers Manager. The Context Storage layer and the Fog Repos-
itory module acts as important auxiliary functions to be detailed next under this Section, at
Subsection 5.2.3.

The Context Sharing Manager module is the most crucial piece in the context shar-
ing function. It interconnects with the other aforementioned modules responsible for the core
of the sharing process. In light of this, the next paragraphs details the Context Sharing Man-
ager functionalities and its relation with Context Processing, Context Providers Reasoner,
and Context Providers Manager modules.

The Context Sharing Manager (ConShar) was developed to provide the context
information sharing feature between different entities in IoT environments. The importance
of having context interoperability is strongly related to the need of users and applications
to share information between different sites (i.e., domains). There are two instances of
ConShar on the proposed solution: one at the Fog layer, and other at the Edge layer.

Figure 5.4 – Context Sharing modules of the Context Sharing Architecture.

The proposed ConShar takes benefit of Fog and Edge computing approaches to
minimize network communications, thus reducing failure points and improving scalability
[122][19]. Fog and Edge Computing are firmly related concepts, but they are not synonyms
[107][94]. According to the OpenFog Reference Architecture [107], Fog computing extends

98

Cloud computing into an intermediate layer close to IoT devices and enables data processing
across domains while Edge computing involves the control and management of a standalone
endpoint device individually within the Fog domain.

The ConShar modules overview is presented in Figure 5.5, in a hypothetical sce-
nario in which an IoT Entity of a specific domain shares context information with other IoT
Entities in different domains. It is possible to divide the ConShar and the environment that it
is inserted into two architectural layers: (i) Edge Layer, and (ii) Fog Layer. Next paragraphs
explain the duties of each layer.

The Edge Layer comprises the IoT Entities that may use ConShar to share con-
text information. Those entities can be considered either IoT physical devices (e.g., car,
smart pacemaker, smartwatch) or IoT software running in any hardware (e.g., IoT devices,
management system). Moreover, some ConShar modules may also make part of the Edge
Layer, those modules are placed embedded or directly connected to IoT devices, and are
responsible for the first round of context information processing and interpretation (i.e., Se-
mantic Processing) and also for the distribution of the shared context to the entities that may
have interest in receiving it (i.e., Distribution), at the end of the sharing processing.

Fog Layer comprises a heavier computational processing effort when compared
with the Edge Layer. It is responsible for the reasoning part of the context sharing process-
ing. First, it classifies, by the domain group, the interpreted context (i.e., Classification).
Second, it notifies a Context Broker with the classified context (i.e., Repository). Thus, turn-
ing possible that the distribution process occurs by a specific domain.

To provide the context sharing as a service, the ConShar acts as a black box by the
user (i.e., IoT Entity) side. The context information is shared between the domains, and the
users/applications only receive the final output (i.e., shared context information).

Figure 5.5 – Context Sharing Manager overview.

99

Let’s consider the following scenario example for a better understanding of Con-
Shar’s applicability and how Fog and Edge entities relate themselves. It is possible to divide
the IoT entities in two layers: Fog, and Edge. Each Fog entity is directly linked to some Edge
entities under its domain. One Fog entity can be responsible for a Emergency Medical Ser-
vices (EMS) and one Edge entity deployed on each ambulance of the city. One Fog entity
can be placed at the urban traffic infrastructure and be responsible for different devices of
this environment (e.g., traffic light, monitoring camera, public light) that are Edge entities.
In a home-care or home-automation environment, a Fog entity can manage the IoT devices
of the environment (e.g., smart door, smart light, smart-watch, health monitoring devices)
that are Edge entities. The hospital infrastructure can hold a Fog entity and diverse hospital
devices (e.g., multi-parameter patient monitor, hospital bed, patient information system) can
hold an Edge entity.

The network that constitutes the possible entities that are able to receive context
information is created as the Fog and Edge entities share context, making it entirely de-
centralized. More than present the modules overview, this Section presents in details the
context sharing process and its phases. This process is the core function of ConShar in
order to reach the semantic interoperability. Next, the four main steps to reach the context
sharing function are presented. Each step relates to a module presented in Figure 5.5.

5.2.1 Semantic Processing

The context sharing process starts on the Edge of the network, as it is responsible
for the context information production by being directly connected to the IoT devices. The
IoT Entity must send the context information to the ConShar module to trigger the context
sharing process. ConShar offers an API for performing such a step. It was developed in
Python programming language, so the IoT Entity can either import ConShar as a library or
use its Web Service interface. The web address for the communication must be previously
known by the IoT Entity.

It is a responsibility of ConShar to define what entity will receive the shared context
information. The IoT Entity sharing context information does not need to determine the desti-
nation. This process is called Reasoning, and it is the more important step in context sharing
[109][43]. In the proposed approach, the reasoning phase is divided into two modules: Se-
mantic Processing, on the Edge Layer, and Classification, on the Fog Layer. Following this
approach, it is possible to provide hybrid reasoning, with more substantial processing in the
Fog Layer and a lighter processing effort in the Edge Layer.

There are two ways for an IoT Entity to receive shared context information. In the
first way, the IoT Entity can share any context information, ConShar interprets its domain and
put that entity in the list of entities that may have interest in context information of the same

100

domain. In the second way, the IoT Entity can specify the domains that it wishes to receive
context and the domains that it does not wish to receive context information. The second
way depends on the IoT Entity to specify its domain, but it is a more accurate process. An
example of a context information containing the domains specification can be seen in JSON
format in Figure 5.6. The field domain presents the IoT Entity‘s domain that it wishes to
receive context information. The field not_domain informs the domains that such IoT Entity
does not wish to receive context information from.

Figure 5.6 – Context information of an IoT Entity with domain specification in JSON format.

1: from nltk.corpus import wordnet as wn
2:
3: function extract_syn(word)
4: syns wn.synsets(word)
5: synonyms []
6: for each syn in wn.synsets(syns[0].lemmas()[0].name() do
7: for each l in syn.lemmas() do
8: synonyms.append(l.name())
9: end for

10: end for
11: set(synonyms)
12: return synonyms
13: end function
14:
15: function extract_hyp(word)
16: syns wn.synsets(word)
17: return wn.synset(syns[0].name()).hypernyms()
18: end function

Algorithm 5.1 – Functions to gather the synonyms and hypernyms of a word.

The Semantic Processing is responsible for extracting the semantic values of the
properties presented in the context information (i.e., JSON file). It will ignore the properties
domain and not_domain, as they are used in a different processing to be detailed next, in

101

Subsection 5.2.3. Considering the Figure 5.6, the values extracted would be: Point, Ambu-
lance. This process was made with the JSON library for Python1.

From each one of the extracted values, the proposed approach gathers its syn-
onyms (i.e., words having the same meaning) and hypernyms (i.e., more abstract terms of
a word). The WordNet tool is used to discover the synonyms and hypernyms of a word.
WordNet is a large lexical database of English [111]. Nouns, verbs, adjectives and adverbs
are grouped into sets of cognitive synonyms. The Algorithm 5.1 shows the developed func-
tions using WordNet, Pyhton and the NLTK library [17]. Finally, it is created a list with all the
synonyms and hypernyms of the word and send it to the Classification module.

5.2.2 Classification

This step begins with the list with all the synonyms and hypernyms of a word ex-
tracted from the context information. ConShar performs the Classification process to asso-
ciate the shared context information with an IoT domain. The Classification makes possible
to infer with whom the context information must be shared.

A similarity method was used to compare the words extracted from the context
formation and its synonyms and hypernyms with different IoT domains. The IoT domains
are extracted from a context ontology defined in an author previous work [41]. The defined
ontology (see Figure 5.7) is composed of three main subclasses: (i) Context_Domain sub-
class defines which domain the context came from (e.g., health, urban traffic, industry); (ii)
Context_Format should be used to represents the context format (e.g., semantic, numeric);
and (iii) Context_Source subclass denotes who is the context information source (e.g., user,
network). The defined context ontology can also be composed or linked to another already
developed ontologies for specific domains. The number of third-party ontologies used varies
depending on how constrained is the environment in which ConShar is deployed. With a
more detailed domain ontology, more similarity checks are made with the context informa-
tion words. Technically, the developed ontology is called as an upper-level ontology and the
domain-specific as domain ontologies.

Different domain-specific ontologies can be manually inserted into the Context
Sharing Manager for a specific domain processing. It is necessary to inform during the
development phase the URL address for the ontology specification. The domain-specific
ontologies used in this work were mostly selected based on the lists available in the World
Wide Web Consortium (W3C)2. Some examples of well-known ontologies used in this work
for different domains are:

• Sanya et al. [120] ontology for Aerospace Context;
1https://docs.python.org/3/library/json.html
2https://www.w3.org/

102

Figure 5.7 – Context ontology overview.

• Global Agricultural Concept Space (GACS) [12] for Agriculture Context;

• U-healthcare [75] for Healthcare Context;

• GenCLOn [9] for Logistics Context;

• Km4City [14] for Smart City Context;

• Tao et al. [134] ontology for Smart Home Context;

• Houda et al. [67] ontology for Transportation Context;

103

• WeatherOntology [129] for Weather Context.

There are different methods for similarity check [23]. This work uses the Leacock-
Chodorow Similarity [80], that return a score denoting how similar two word senses are,
based on the shortest path that connects the senses on the WordNet classification words
tree. Leacock-Chodorow Similarity method is a robust and accurate method for similarity
check [23][127]. Algorithm 5.2 shows the function that makes the similarity check. It receives
two lists of words. The word_list represent the data about the context information. Each
word extracted from the context has its own word_list with its synonyms and hypernyms.
The first item of the list (i.e., index 0) is the original word from the context information. The
domain_list comprises the words extracted from the context ontology, through Owlready2
Python library3. The first item of the domain_list is the most generic definition of a domain
(e.g., healthcare), followed by more specific terms (e.g., ambulance, hospital, patient).

1: from nltk.corpus import wordnet as wn
2:
3: function check_similarity(word_list , domain_list)
4: score []
5: for each i in range(len(word_list) do
6: for each j in range(len(domain_list) do
7: if i == 0 and j == 0 then
8: score.append(word_list [i].lch_similarity(domain_list [j]))
9: else

10: score.append(word_list [i].lch_similarity(domain_list [j])*75/100)
11: end if
12: end for
13: end for
14: score.sort()
15: synonyms []
16: return score[-1]
17: end function

Algorithm 5.2 – Function to check the similarity between words.

The process to verify the similarity of a context information is made with different
domains, running the check_similarity function for each domain present on the context ontol-
ogy. Each run returns a score number. The bigger the score, the more similarity the context
has with the compared domain. It is considered 100% of the score in the first similarity
check, that comprises the actual word extracted from the context information and the most
generic definition of the domain (i.e., index 0,0 on if clause on Algorithm 5.2). For the other
similarity checks, it is considered only 75% of the score value, as it starts to compare the
synonyms and hypernyms with more specific domain words.

3https://pypi.org/project/Owlready2/

104

5.2.3 Repository

After verify the domain that has more relation with the context information, this
domain is added as a property to the context file (i.e., JSON, XML). With this classification
done, it starts the repository process, in which it makes use of the FIWARE Orion Context
Broker4 system. A Python project was developed to facilitate the usage of the FIWARE Orion
Context Broker. The source code was uploaded to GitHub5. It has functions for different
types of upload and queries for context information.

The FIWARE Orion Context Broker acts as a pool of context. It is possible to upload
the context information to its infrastructure, which can either be local or in a Cloud/Fog
instance. In the present project design, it is adopted the view of a repository that could
be accessed by any IoT system through the web. FIWARE Orion Context Broker makes it
possible to the IoT system to query for context, or even subscribe to context information,
receiving the updates related to that context. It also has options to manage the context
by any property. In the proposed approach, considering the steps presented previously, a
domain of interest for each context information is set. In light of this, it is possible to have
heterogeneous context information of different domain in the same FIWARE Orion Context
Broker infrastructure with a easy management policy controlled by FIWARE system.

Taking into account the scope of the proposed work, the implemented FIWARE
Orion Context Broker infrastructure has two levels: one at the Fog layer and the other at
the Cloud layer. The one at the Fog only stores context information about its domain. The
one at the Cloud layer (i.e., Context Storage) stores context information about the different
domains present in the hole system.

The FIWARE Orion Context Broker also provides some features when getting con-
text information from its repository, like filtering or aggregation (i.e., Context Processing mod-
ule). Moreover, as it maintains a record of each shared context information, it is possible
to manage and query for the entities that had produced context information (i.e., Context
Providers Reasoner, and Context Providers Manager modules).

It is possible to use FIWARE Orion Context Broker by downloading it package and
running locally (e.g., in the Fog device) or by using the Docker6 virtualization technology.
Implementation details. In the proposed approach it is possible to visualize both imple-
mentation, as the Context Storage layer at the Cloud is related to the Docker virtualization
approach. Next paragraphs shows the source code of FIWARE Orion Context Broker inte-
gration implementation used by this work.

4https://fiware-orion.readthedocs.io/en/master/
5https://github.com/evermatos/orion_integration
6https://www.docker.com/

105

The implemented methods make possible the insertion and search for context in-
formation. The Algorithm 5.3 shows the functions responsible for inserting the context infor-
mation (i.e., an entity) in the FIWARE Orion Context Broker instance. The address will vary
depending on the implementation instance (i.e., Fog or Cloud).

1: import requests
2:
3: function put_entity(entity)
4: url ’http://’+address+’:1026/v2/entities/’
5: response requests.post(url , json=entity)
6: if response.status_code == 201 then
7: return ’Entity inserted’
8: else
9: return ’Action failed’

10: end if
11: end function
12:
13: function update_specific_attribute(entity_id , entity_attribute, entity_context)
14: url ’http://’+address+’:1026/v2/entities/’+entity_id+’/attrs/’+entity_attribute+’/value’
15: response requests.put(url ,data=entity_context ,headers=’Content-Type’:’text/plain’)
16: if response.status_code == 204 then
17: return ’Context updated’
18: else
19: return ’Action failed’
20: end if
21: end function

Algorithm 5.3 – Functions to insert and modify context information.

The Algorithm 5.4 shows the query options to get context information from the
FIWARE Orion Context Broker infrastructure.

The FIWARE Orion Context Broker infrastructure also makes possible the subscrip-
tion for a specific context. Every time that such context is updated at FIWARE Orion Context
Broker infrastructure, it will be sent to the entities that have subscribed to it. It is necessary
a JSON script informing the details for the subscription, such as the conditions to receive an
update, the URL for notification, and the subscription expiration date. Algorithm 5.5 shows
the subscription options to get context information from the FIWARE Orion Context Broker
infrastructure.

Any time that the FIWARE Orion Context Broker infrastructure receives context
information, the Distribution module is triggered.

106

1: import requests
2:
3: function get_entities()
4: url ’http://’+address+’:1026/v2/entities?options=keyValues’
5: response requests.get(url)
6: if response.status_code == 200 then
7: return response.json()
8: else
9: return ’Query failed’

10: end if
11: end function
12:
13: list_of_filters [["type", "=Store"],
14: ["georel", "=near;maxDistance:1500"],
15: ["geometry", "=point"],
16: ["coords", "=52.5162,13.3777"]]
17:
18: function get_entities_filter(list_of_filters)
19: url ’http://’+address+’:1026/v2/entities?options=keyValues’
20: for each x in list_of_filters do
21: url_aux ’&’ + x [0] + x [1]
22: url url + url_aux
23: end for
24: response requests.get(url)
25: if response.status_code == 200 then
26: return response.json()
27: else
28: return ’Query failed’
29: end if
30: end function

Algorithm 5.4 – Functions to query for context information.

5.2.4 Distribution

The Distribution module has the main function of sending context information to the
destination entities through the network. As it is notified by the Repository module when a
new context information is available, it shares that context to the entities of context’s domain,
excluding the one that produced that context information.

It is a very straightforward task. Once each entity has its URI (Uniform Resource
Identifier) address, the ConShar can send the context information by this address in different
ways, as Web Service, socket, WebSocket. It uses the communication channels defined by
COMPaaS and CONASYS [8][41].

107

1: import requests, json
2: from sys import argv
3:
4: subscription_json """{
5: "description": "A subscription to get info about Room1",
6: "subject": {
7: "entities": [
8: {"id": """+’"’+argv[1]+’"’+""",
9: "type": """+’"’+argv[2]+’"’+"""}

10:],
11: "condition": {
12: "attrs": ["""+’"’+argv[3]+’"’+"""]
13: }
14: },
15: "notification": {
16: "http": {"url": """+’"’+argv[4]+’"’+"""},
17: "attrs": ["""+’"’+argv[3]+’"’+"""]
18: },
19: "expires": "2040-01-01T14:00:00.00Z",
20: "throttling": 5
21: }"""
22: detailed_subs json.loads(subscription_json)
23:
24: function new_subscription(detailed_subs)
25: url ’http://’+address+’:1026/v2/subscriptions’
26: response requests.post(url , json=detailed_subs)
27: if response.status_code == 201 then
28: return ’Subscription done. Subs ID: ’+response.headers[’Location’]
29: else
30: return ’Subscription failed’
31: end if
32: end function

Algorithm 5.5 – Function to subscribe for a context information.

5.3 CONTEXT-AWARE SECURITY IMPLEMENTATION

The highlighted (i.e., red with dashed borders) module present in Figure 5.8 rep-
resent the one implemented by this work with the explicit functionality of providing context-
aware security functionality to the Context Sharing Architecture using shared context infor-
mation.

It is necessary a context information to infer a security decision. The context infor-
mation can be acquired in two ways: (i) from the Fog Repository module at the Fog layer,
and (ii) from the Context Sources (i.e., IoT devices, data producers) directly from the Edge
layer. In most cases, the context information used for the security decisions came from the

108

Figure 5.8 – Context-aware security module of the Context Sharing Architecture.

Fog Repository, as it already passed by the Classification phase (see Section 5.2) and have
a domain related to it, improving the detail level of such context information.

The Context-Aware Security functionality is implemented by the Context-Aware Se-
curity Manager module, detailed in Section 4.2. This module has the main responsibility of
reason over context information to provide security decisions. It is a module deployed at the
Edge layer of the Context Sharing Architecture. Thus, it should have a lightweight processing
effort, one time that in most cases, the IoT entities at the Edge layer had less computational
power processing than the ones of the Fog layer.

This work uses business rules for the context-aware security provision. It is con-
sidered a lightweight technique, which is ideal for such kind of IoT environment [109]. Many
business rules libraries in the literature can be used for such type of processing. In this work,
the venmo/business-rules7 library for Pyhton was chosen to provide the reasoning functions
for a proper context-aware security provision. The venmo/business-rules is an open source
library with recently used in Internet of Things scenarios [73][44]. Moreover, the rules can
be defined using the JSON format, which is already used by the entire Context Sharing
Architecture for defining context information, making it entirely interoperable.

7https://github.com/venmo/business-rules

109

The implementation of context-aware security by rules allows the provision of secu-
rity decisions in different areas: (i) authentication, (ii) authorization, (iii) access control, and
(iv) privacy-preserving. The rules are IF-THEN-ELSE structures and make the provision of
security decisions flexible. It depends on the defined rules set the kind of security provision
that will be offered. For example, on the access control area, different methods can be pro-
vided, such as Role-based Access Control (RBAC), Attribute-based Access Control (ABAC),
and Rule-based Access Control (RAC). It depends on which field (i.e., data, category) will
be used for the rule analysis. For authentication and authorization, a set of rules can es-
tablish the level of access and/or operation that each unique entity will have [62]. Also, the
privacy-preserving rules will infer decisions by the relationship between context information
data, thus providing different levels of abstraction for the data. There are specific techniques
for each one of the four security provision areas aforementioned. However, rules can provide
a generic framework that can cover the four areas. Mainly, the action performed by the rule
(i.e., THEN) that infers which security service will be provided.

Figure 5.9 shows an example of a rule used by the venmo/business-rules library.
It is possible to define conditions and actions for the rules. The actions only are fired if a
context information meets all the conditions.

Figure 5.9 – Context-aware security rule.

The conditions uses compares a field from the context information with a data pre-
defined at the rule. The field appears on the rule as “name”. It is associated with a “value”
from the rule. Different “operators” can be used for this comparison. The venmo/business-
rules library offers the following possibilities for the operator:

• numeric - an integer, float, or python Decimal:

– equal_to

– greater_than

– less_than

– greater_than_or_equal_to

– less_than_or_equal_to

• string - a python bytestring or unicode string:

110

– equal_to

– starts_with

– ends_with

– contains

– matches_regex

– non_empty

• boolean - a True or False value:

– is_true

– is_false

• select - a set of values, where the threshold will be a single item:

– contains

– does_not_contain

• select_multiple - a set of values, where the threshold will be a set of items:

– contains_all

– is_contained_by

– shares_at_least_one_element_with

– shares_exactly_one_element_with

– shares_no_elements_with

The “actions” of a rule can trigger a pre-defined function in the source code or
simply modify a parameter in the context information, as shown in Figure 5.9.

The venmo/business-rules library uses the concept of variables to represent the
data that appears in the “name” field of a rule (see Figure 5.9). Variables represent values
the systems, usually the value of some particular object. The rules are created by setting
threshold conditions such that when a variable is computed that triggers the condition some
action is taken. It is possible to define all the available variables for a certain kind of object in
the source code, and then later dynamically set the conditions and thresholds for those. Al-
gorithm 5.6 shows an example of the variables representation related to the rules presented
in Figure 5.9.

The venmo/business-rules library uses the concept of actions to determine the
process available to be taken when a condition of a rule is triggered. Algorithm 5.7 shows
some actions examples related to the rule presented at Figure 5.9. The decorator of each
function will vary depending on the variable that an action modifies/access:

111

1: from business_rules.variables import BaseVariables, numeric_rule_variable,
string_rule_variable, select_rule_variable

2:
3: class ContextVariables(BaseVariables):
4: def __init__(self , context):
5: self.context context
6:
7: @numeric_rule_variable
8: def distance_from_home(self):
9: return self.context.distance_from_home

10:
11: @select_rule_variable()
12: def local(self):
13: return self.context.local
14:
15: @string_rule_variable()
16: def action(self):
17: return self.context.action

Algorithm 5.6 – Variables implementation in context-aware security provision.

• numeric: @numeric_rule_variable

• string: @string_rule_variable

• boolean: @boolean_rule_variable

• select: @select_rule_variable

• select_multiple: @select_multiple_rule_variable

1: from business_rules.actions import BaseActions, rule_action
2: from business_rules.fields import FIELD_TEXT
3:
4: class ContextActions(BaseActions):
5: def __init__(self , context):
6: self.context context
7:
8: @rule_action(params "status": FIELD_TEXT)
9: def change_status(self , status):

10: self.context.status status
11: self.context.save()

Algorithm 5.7 – Actions implementation in context-aware security provision.

Every time that a new context is received (i.e., from a sharing event), the whole
process of providing context-aware security is executed. This situation happens because

112

the Context Sharing Architecture does not know exactly which context information is coming
and if it has some security rules linked to it.

The Algorithm 5.8 shows the directives responsible for running the rules defined for
the environment. In the example presented in the Algorithm 5.8, three context information
were simulated with the properties defined by the variables aforementioned in Algorithm 5.6.
The rules of this environment (see Figure 5.9) determine that if the distance_from_home is
greater or equal to 5, the local is different from home, and the action contains the work open,
an alert is set to such context information. In this case, the Context2 receive an alert. This
example relates to the traditional context-aware security scenario presented in Section 2.5.

1: from business_rules import run_all
2:
3: contexts [
4: Context(name "Context1", status "ACTIVE", distance_from_home 4,
5: local "Home", action "Open"),
6: Context(name "Context2", status "ACTIVE", distance_from_home 5,
7: local "Office", action "Open"),
8: Context(name "Context3", status "ACTIVE", distance_from_home 10,
9: local "Work", action "None"),

10:]
11:
12: for each context in contexts do
13: run_all(rule_list rules,
14: defined_variables ContextVariables(context),
15: defined_actions ContextActions(context),
16: stop_on_first_trigger True)
17: end for

Algorithm 5.8 – Function responsible to run the rules.

113

6. EXPERIMENT RESULTS

This chapter presents the evaluation tests performed in proposed Context Sharing
Architecture implementation. The main goal of the tests is to evaluate the Context Sharing
Architecture in terms of performance and usability. The tests were divided in sections. Each
section represents a test scenario with different objectives and methodology.

6.1 EXPERIMENT 1 - CONTEXT SHARING ARCHITECTURE PERFORMANCE

A smart city is a complex IoT environment for encompasses many different applica-
tion verticals (e.g., healthcare, home-care, urban traffic, EMS) interacting with each other to
provide efficient services to the population. Let’s consider the scenario previously discussed
in Section 4.3 and seen in Figure 4.8 in which the focus is on sharing the context of a home-
care patient when some important events related to the health condition occurs. In this
scenario, there are four deployed instances of the Context Sharing System: (i) home-care
and home-automation, (ii) EMS, (iii) hospital infrastructure, and (iv) urban traffic infrastruc-
ture. For every instance of the Context Sharing System it will be various instances of the
Context Provider System. For example, the Context Sharing System instance of the home-
care and home-automation will have one instance of the Context Provider system connected
on it for each device of the house (i.e., automatic door, monitoring camera, etc.). In the EMS
Context Sharing System, every ambulance has a Context Provider System.

The context information acquired by home-care sensors triggers the event of a
patient having a heart attack. The Fog layers (i.e., Context Sharing System) instances of
the architecture are responsible for sharing context information with other fogs. This sharing
occurs three times in this application scenario: (i) the patient context is shared with EMS,
and hospital infrastructures, (ii) hospital context is shared with the EMS, and (iii) EMS context
is shared with home-automation and urban traffic infrastructure.

The received context information can be used in new processing. In this scenario,
the ambulance context is shared with the urban traffic infrastructure, thus the city can adapts
itself by creating routes to drain the traffic with a “green wave” in traffic lights. Finally, the
context information of the ambulance arriving at the patient’s home is used to open the door
to facilitate paramedics access.

114

6.1.1 Environment Setup

The main goal is to demonstrate the Context Sharing Architecture suitability in dif-
ferent networks, which is very common in IoT environments. In order to evaluate that, it was
measured the time taken for the context information from the source (i.e., Context Provider)
to the destiny (i.e., another Context Provider from other domain) passing through two Con-
text Sharing Systems (i.e., one for each Context Provider). In this sense, it has four entities
and three communications (i.e., Context Provider A!Context Sharing A!Context Sharing
B!Context Provider B). For the tests, it was considered three subsets of the previous IoT
scenario and each one has its peculiarities. Figure 6.1 shows the three subsets defined for
this evaluation and its peculiarities.

Figure 6.1 – Three possible context sharing conditions.

Subset A: The noise sensor of the patient house detects a suspect event and
shares its context with the home-care system (i.e., Context Provider to Context Sharing).
The context information is shared with the hospital infrastructure (i.e., Context Sharing to
Context Sharing). Finally, the context is shared with doctor computer (i.e., Context Sharing
to Context Provider). In this subset, all the communications are doing by ADSL infrastruc-
ture.

Subset B: The ambulance context (e.g., location) is shared with the EMS infras-
tructure. This context is shared with the home-automation infrastructure. Finally, the context
information is shared with the automatic door. In this subset, the first communication is doing
by LTE while the other two by ADSL.

Subset C: Ambulance context information is shared with the EMS infrastructure.
The context is shared with the urban traffic infrastructure of the city. Finally, the context is
shared with the traffic lights to produce a “green wave”. This subset has two communications
by LTE and only the EMS-to-urban traffic communication doing by ADSL.

115

A heterogeneous infrastructure was used to perform the tests. The Context Sharing
Systems were hosted by Dell All-in-one computers. Both were configured with Ubuntu 16.04
LTS (64-bit), Quad-Core 2.8 GHz and 8GB of RAM. When using LTE, the Context Providers
Systems were hosted by a cell phone configured with Android 7.0, Octa-Core: 2.1 GHz
Quad-Core and 1.5 GHz Quad-Core, 3GB of RAM. When using ADSL, the Context Providers
Systems were hosted by a Raspberry Pi 3 Model B configured with Raspbian, Quad Core
1.2 GHz and 1GB of RAM.

6.1.2 Experiment Results - Context Information Path

With the previously defined scenario in mind, we performed two tests. The first one
is related to the Subset A, in which the size of context information is variable. The second
one presents the comparison of the execution time of Subset A, Subset B, and Subset C for
different context information sizes.

In the first test, the time taken by the context information to go from one Context
Provider to another in a different domain was measured. Each context information is ap-
proximately the size of 250 bytes (see Figure 2.4 for a context information example). Taking
into account the Subset A, the architecture shares different amounts of context information
simultaneously. The simulation starts from 250 bytes (one context information) to 12500
bytes (fifty context information), running the test 30 times for each context information size.
Figure 6.2 shows the results (average of 30 executions) for the simulation of Subset A.

Figure 6.2 – Execution time (ms) of Subset A varying context information size.

In the second test, it is presented the comparison of how different networks deal
with different context information sizes. The communications of Subset A, Subset B, and
Subset C were simulated considering different context information size. The simulation be-
gins from 250 bytes (one context information) to 1250 bytes (five context information).

116

Figure 6.3 presents the average execution time (i.e., time taken of the whole com-
munication) considering 30 executions for each subset tested with different networks (in
milliseconds) and different context information sizes. It was observed that the time taken
by the architecture for share context information grows exponentially when LTE network is
used. This is expected since mobile networks, as LTE, usually has bigger latency and packet
loss.

Figure 6.3 – Execution time in different networks (ms).

The results obtained for execution time were acceptable, mainly because the time
taken for sharing context information between different domains was 192 ms (Subset C)
for the worst case, and the best results are smaller than 20 ms (observed in the full-ADSL
network - Subset A). Figure 6.2 shows that the Subset A has a high scalability once it vary
only a few milliseconds even in a non-realist scenario in which a context information 50-
times bigger than the exemplified one is shared (see Figure 2.3). In most cases, the context
information size is up to five times 250 bytes. Figure 6.3 shows that even for the worst
analyzed scenario (Subset C), the communication time for sharing context is 153 ms on
average. The LTE network has presented an average of 95 ms on standard deviation, which
was 28 times bigger than the ADSL.

The edge-centric approach helps in the positive result, once the context information
is produced in the edge of the network, avoiding the transportation of a large amount of
data. Even in the worst case, the communication time for the proposed architecture to share
context information over the Internet in less than 0,5 s for each of the 30 times execution.

6.1.3 Experiment Results - Semantic Processing Phase

The Semantic Processing is one of the most important process in the Context Shar-
ing Architecture. It represents one of the reasoning phases (see Section 5.2). The Subset

117

A was considered for this experiment in which a Context Provider can share a context in-
formation to the Context Sharing by ADSL network (e.g., home care device), that also uses
ADSL network to share the context information with the destination. Two different scenar-
ios were analyzed: (i) considering the network delay, and (ii) considering only the Semantic
Processing.

This experiment focuses on evaluating the suitability of the Context Sharing Archi-
tecture Semantic Processing phase (see Section 5.2) to IoT resource-constrained environ-
ments. This processing is related to the search for synonyms of a specific word through the
WordNet base. The number of synonyms may vary depending on the word.

The last available version of WordNet tool1 was used for the tests. The implemen-
tation was made with Java by the JWI WordNet library [53]. It was measured the time taken
for the extraction of the domain from a context information, the search for its domain syn-
onyms in the WordNet base, and the attribution of a destination to a context information. The
ontology classification time was excluded from the test because it may vary depending on
the deployed domain.

For the first scenario (i), we considered the Semantic Processing time plus the net-
work delay of a contex information going from one Context Provider to another in a different
domain. The size of each context information is 250 bytes (see Figure 2.4 for a context
information example). The simulation consists of the architecture sharing different amounts
of context information simultaneously. Thus, the Semantic Processing phase must perform
the same process simultaneously in an acceptable time frame being scalable to deal with
complex IoT environments. The simulation starts from 250 bytes (one context information)
to 12500 bytes (fifty context information). It was used context information from different do-
mains. Figure 6.4 shows the results (average of 30 executions for each context information
size).

Figure 6.4 – Execution time (ms) of the Semantic Processing varying context information
size.

1https://wordnet.princeton.edu/download/current-version

118

Figure 6.4 shows that the network delay takes longer time than the Semantic Pro-
cessing. Considering the results, network delay takes an average of 64.5% of the execution
time and the Semantic Processing only 35.5%. This result is considered satisfactory for
ADSL network communications, as it has a lower latency when compared to cellular net-
works. In other words, the Semantic Processing execution time will express less than 35.5%
of the total time in communications using cellular networks. The total time may increase
when using LTE networks, that are common in IoT environments, however the Semantic
Processing execution time will still be the same.

For the second scenario (ii), we considered the Context Sharing system effort in si-
multaneous Semantic Processing, without including the network delay. The simulation starts
from 12500 bytes (fifty context information) to 2500000 (ten thousand context information).
The context information used in this test is similar to the one used for the previous first sce-
nario, but on a larger scale (i.e., more quantity). Table 6.1 shows the results (average of 30
executions for each context information size).

Table 6.1 – Context Sharing Architecture Semantic Processing process results.
Feature/Context amount 50 500 1000 5000 10000
Context info. size (kb) 12.5 125 250 1250 2500
Execution time (ms) 26.2 73.1 115.9 416.9 809.4

Table 6.1 shows that Semantic Processing is suitable for Internet of Things envi-
ronments. In the worst tested scenario, even with ten thousand context information being
processed simultaneously, the entire processing takes less than one second (809.4 ms).
The results show that the Semantic Processing can be applied even at the Edge layer (Con-
text Provider). Moreover, the entire WordNet base has the size of 55.2 MB, which fits in most
traditional IoT devices like smartphones and Raspberry Pi 3 boards.

6.2 EXPERIMENT 2 - CONTEXT SHARING ARCHITECTURE ACCURACY

This Section evaluates the Classification phase of the Context Sharing Manager
(see Section 5.2). The goal is to test the Context Sharing Architecture regarding its accuracy
in classifying the context information according to the Internet of Things domains. Moreover,
the overall performance (i.e., time taken for execution) of the Classification phase also is
analyzed.

119

6.2.1 Environment Setup

The Classification phase uses the upper-layer ontology and the domain-specific
ontologies to classify the context information with a specific domain. The upper-layer ontol-
ogy is represented by the Context ontology developed by this work (see Figure 5.7). The
domain-specific ontology may vary depending on how constrained is the application sce-
nario. On the one hand, the upper-layer ontology sets the possible domains that the context
information can be classified. On the other hand, the domain-specific ontologies give more
options for the classification. For example, on the Transportation domain, the upper-layer
ontology presents the possible categories for classification: Bus, Ferry, Roadway, Station,
Train. In the same domain, the Houda et al. [67] ontology for transportation Context pro-
vides another specific categories for classification: Transport line, Stop point, Journey path,
Railway. Figure 6.5 shows the aforementioned Transportation domain example.

Figure 6.5 – Transportation domain upper-layer ontology and domain-specific categories.

For this experiment, we classified 10 (ten) context information from different do-
mains with the 8 (eight) possible domains presented in the developed Context ontology (see
Figure 5.7). The Leacock-Chodorow Similarity method was used to compare each context
information and its synonyms and hypernyms with each domain (i.e., categories from the
upper-layer ontology) and its variations (i.e., categories from the specific-domain ontology).
The Leacock-Chodorow Similarity method returns a score denoting how similar two word
senses are, based on the shortest path that connects the senses. This method uses the
WordNet library to correlate the compared words. In this experiment, 10 (ten) scores are
produced for each context information. The greater score represents the bigger similarity
with the context and the domain, inferring that such context should be of interest to such
domain. In some cases, more than one domain may receive the greater score, in this case
all the tied domains will be notified with the context information.

120

Table 6.2 – Main data extracted from context information, its synonyms and hypernyms.
Main data Synonyms Hypernyms

Ambulance — wagon, minivan
Pacemaker cardiac pacemaker cardiac muscle, heart muscle
Heart attack — heart failure, coronary failure

Rain rainfall precipitation, downfall, rain shower
Car auto, automobile, motorcar motor vehicle, automotive vehicle

Car accident — stroke, fortuity, chance event
Door room access entrance, entryway, entry
Fleet — collection, aggregation, accumulation
Route path, itinerary line, way
Traffic — aggregation, pedestrians, vehicles

As the Classification phase occurs at the Fog layer, only the Fog layer is used in
this experiment. It was hosted by a MacBook Pro configured with macOS 10.15.2, Six-Core
2.2 GHz and 16GB of RAM.

6.2.2 Experiment Results

For this experiment, we calculated the score of the Classification phase between
some examples of context information and the different domains present in IoT environ-
ments. It is considered as context information for this experiment only the main data from
each regular context information (i.e., JSON format). The main data refers to the seman-
tic information extracted from the original context information at the Semantic Processing
method, detailed in Section 5.2. All the synonyms and hypernyms of the main data were
used for the Classification process. Those information are gathered using the WordNet li-
brary. Table 6.2 shows the main data its synonyms and hypernyms used in this experiment,
a dash (—) symbol is used across all columns to denote that the WordNet consult returned
no terms.

Table 6.3 shows the expected classification results for each main data related with
the following domains: healthcare, agriculture, smart home, weather, logistics, aerospace,
smart city, and transportation. The (X) symbol represents the expected domains for each
main data. Taking into account that a context information can be of interest of more than
one domain. For each domain, the aforementioned domain-specific ontologies (see Section
5.2) were used to extract the categories to be compared with the terms shown in Table
6.2. Taking into account the example shown in Figure 6.5, the terms were compared with
the following categories: transportation, bus, ferry, roadway, station, train, transport line,
stop point, journey path, and railway. For example, for the main data Ambulance and its
synonyms and hypernyms, the Classification process runs the Leacock-Chodorow Similarity

121

Table 6.3 – Expected classification domain for each main data extracted from context infor-
mation.

Main Domains
data Healthcare Agriculture Smart Home Weather Logistics Aerospace Smart City Transportation

Ambulance X — — — — — — —
Pacemaker X — — — — — — —
Heart attack X — — — — — — —

Rain — X — X — — — —
Car — — — — — — — X

Car accident — — — — — — X X
Door — — X — — — — —
Fleet — — — — X — — —
Route — — — — — — X X
Traffic — — — — — — X X

Table 6.4 – Context Sharing Architecture Classification score results.
Main Domains
data Healthcare Agriculture Smart Home Weather Logistics Aerospace Smart City Transportation

Ambulance 0.998 0.641 0.864 0.804 0.693 0.693 0.864 1.335
Pacemaker 1.072 0.864 1.168 0.864 0.641 0.864 0.693 1.152
Heart attack 1.521 1.080 1.521 0.864 1.152 0.864 1.080 1.080

Rain 0.929 1.080 1.001 2.538 0.804 0.929 0.864 0.998
Car 0.748 0.748 1.268 0.864 0.747 0.748 0.929 1.440

Car accident 1.268 1.080 1.001 0.864 0.998 0.864 1.239 1.268
Door 0.864 0.864 1.688 0.929 0.804 1.001 1.001 1.558
Fleet 1.168 1.335 1.268 1.152 1.384 1.335 1.268 1.239
Route 0.929 0.998 1.558 1.239 1.072 1.072 1.558 1.688
Traffic 1.168 1.268 1.268 1.152 1.384 1.168 1.384 1.688

method 30 (thirty) times, as 3 (three) terms to be compared with 10 (ten) categories for the
Transportation domain. This process occurs for the other domains as well.

Table 6.4 shows the Classification scores obtained with this experiment. The ex-
pected domains of classification are highlighted in color in Table 6.4. The greater score for
each main data is presented in bold at Table 6.4, denoting that the developed Classification
method implies that such domain is the more related with the main data terms.

The Classification scores rely on a correct domain inferencing for most cases. The
accuracy of the method is of 80%. It classifies the domain wrongly in the Ambulance and
Pacemaker contexts. The correct classification would be the Healthcare domain for both
Ambulance and Pacemaker. It is important to highlight the difference between Car and
Car accident context classification. For the first one, only the Transportation domain was
notified, for the second, both Transportation and Healthcare domains received the context,
what highlights the accuracy of the proposed model.

122

6.3 EXPERIMENT 3 - CONTEXT-AWARE SECURITY

This Section evaluates the context-aware security provision of the Context Sharing
Architecture (see Section 5.3). The goal is to test the context-aware security implementation
regarding its performance in running pre-established rules and providing security decisions.

6.3.1 Environment Setup

The context-aware security provision uses the context information to infer security
decisions. It can get context information both directly from the device and from the Fog
Repository module, which contains the already classified context (see Section 5.2). It has a
set o rules that infer different security decisions (e.g., authentication, authorization, access
control, and privacy-preserving). The rules are structured in an IF-THEN-ELSE manner,
in which the THEN can provide different actions, related to the different security decisions
aforementioned.

Every context information received by the Edge layer will pass by this module to
verify if it has some security rule linked to it. In light of this, it is essential to the context-
aware security provision implementation to have a good performance, specially in Edge
layer devices, which have less computational processing power when compared with the
Fog and Cloud layers devices/systems.

This experiment evaluates the performance of the Edge layer device on performing
the context-aware security provision by running all the rules on its domain. The time taken by
the Edge layer device was measured for different situations, varying the number of contexts
to be analyzed and the number of rules conditions.

As the context-aware security provision occurs at the Edge layer, only the Edge
layer is used in this experiment. It was hosted by a Raspberry Pi 3 Model B configured with
Raspbian, Quad Core 1.2GHz CPU and 1GB RAM. The venmo/business-rules library for
Pyhton was used to provide the context-aware security provision.

6.3.2 Experiment Results

For this experiment, the number of contexts varies from only 1 (one) information to
10000 (ten thousand). For each number of context variations, it varied also the number of
rules conditions. Each rule condition represents one test to be made with the contexts to
verify if it has a security decision related to it. For example, the Figure 5.9 shows an example
with 3 (three) rules conditions. In this experiment, the rules conditions vary from 3 (three) to

123

300 (three hundred). Figure 6.6 shows the results (average of 30 executions for each one of
the variations).

Figure 6.6 – Execution time (ms) of the context-aware security provision varying number of
contexts and rules conditions.

Table 6.5 shows the detailed context-aware security provision execution time re-
sults. It shows that such processing is suitable for Internet of Things environments. In most
scenarios, even with ten thousand context information being processed simultaneously, the
entire processing takes less than one second (884 ms). However, in the most extreme tested
scenario, with ten thousand context information and three hundred rules conditions, the ex-
ecution time reaches the maximum number of almost 6 seconds (5835.9 ms). The results
show that the context-aware security provision can be applied at the Edge layer (Context
Provider) for most scenarios. However, it will perform better when applied to a specific do-
main scenario rather than to a generic scenario that could contain thousands of context
information.

Table 6.5 – Execution time (ms) of context-aware security provision.
Number of Number of rules conditions
Contexts 3 30 300

1 0.1 0.15 0.46
10 0.3 1.01 5.6

100 3 10.01 64
1000 35 87.2 620.1

10000 365.1 884 5835.9

124

6.4 RESULTS DISCUSSION

The results presented at this Chapter were taken aiming to investigate the behavior
of the proposed platform. We used different hardware pieces to perform the tests. Manly,
the Fog layer was hosted by a regular computer, and the Edge layer by development boards,
with less computational capabilities when compared with the Fog layer devices.

Our platform allows the deployment of its architectural modules in different IoT en-
tities, many times using different network technologies. For that, the tests evaluated its
performance regarding execution time for both the context sharing and context-aware secu-
rity provision. The network effort appeared as the most time-demanding task regarding the
whole process, which shows that the processing time for performing context sharing provi-
sion is suitable for such a scenario. The context-aware security processing execution time
scales up when a massive set of rules were fired simultaneously. However, we believe that
security improvement and its unique characteristic of using shared context information for
its provision surpasses the liens. Moreover, the accuracy of the context sharing feature was
also measured. The tests showed that for the majority of the cases, the context informa-
tion was classified correctly. Depending on the scenario, the percentage can grow, as it is
possible to add more complex ontologies to the classification.

An extensive discussion about the characteristics and architecture view of ap-
proaches similar to the one proposed in this work were presented in Chapter 3. That com-
parison was made both regarding Context Sharing and Context-Aware Security. On the
other hand, it is difficult to compare the results of the experiments of the proposed architec-
ture with already developed platforms because of its singularity. As none of the analyzed
similar work provides the Context-Aware Security feature using shared information, every
direct execution time comparison would become unfair.

125

7. FINAL CONSIDERATIONS

This Chapters presents the final considerations related to this work. First, the con-
tributions and publications related to the developed work are presented. Finally, the conclu-
sions and future work are presented.

7.1 CONTRIBUTIONS

Among the contributions presented in this work, it is possible to identify the main
contributions in the following items:

• The extensive review of the background technologies used for providing context shar-
ing feature in Internet of Things (Chapter 2). Published in [43] and [39].

• The definition of a taxonomy for the context-aware security provision encompassing its
possible application areas (Chapter 2). Published partially in [42].

• The extensive review of the state-of-the art in both context sharing and context-aware
security area. Showing both academic and industry works for each area (Chapter 3).
Published partially in [43] and [42].

• The definition and implementation of a context sharing architecture able to provide
context information interoperability for Internet of Things environments (Chapter 4 and
Chapter 5). Published in [41].

• The definition and implementation of a context-aware security provision method for
Internet of Things environments that uses shared context information. (Chapter 4 and
Chapter 5). Published partially in [42].

• The creation and usage of a reference platform for devices management and context-
aware services provisions (Chapter 5). Published in [8], [7], [90], and [40].

• The execution of tests to validate the developed contex sharing architecture and context-
aware security provision method (Chapter 6). Published partially in [41].

• This work was awarded with a Fulbright Doctoral Dissertation Award scholarship to
be developed partially in the United States. It was developed in collaboration with
the University of Southern California Viterbi School of Engineering’s Center for Cyber-
Physical Systems and the Internet of Things. This collaboration has strengthened the
relation between PUCRS and University of Southern California, Los Angeles. This
work contributed to research in context management systems for the I3 USC project.

126

• The publication of 12 (twelve) scientific papers and 1 (one) accepted for publication
during the Ph.D. as shows the Section 7.2. The publications are: 3 (three) international
journals, 3 (three) book chapters, and 6 (six) international conferences.

7.2 PUBLICATIONS

Table 7.1 summarizes the author’s previous works in chronological order (from the
newest to the oldest). The studies in [7] and in [121] give definitions and implementation of
middleware systems in IoT environments, showing how they manage devices, and provide
interoperability. The studies in [135], [136], [139], [138], and [96] explain how security can be
reached in the IoT. The studies [39] and in [40] explain details of the context-aware feature
of IoT systems and how it can be used in a system/architecture. The studies [41] and in [43]
relate to the context sharing provision. The study [42] relates to the context-aware security
provision.

Table 7.1 – Papers published during the PhD degree.
Ref. Work Title Venue and Publisher Year Impact

Factor

Accepted Edge Decentralized Security Architecture
for Industrial IoT Applications

IEEE World Forum on
Internet of Things (WF-IoT) 2020 —

[43] Context information sharing for the
Internet of Things: A survey Elsevier Computer Networks 2020 3.03

[96] Privacy and security of
Internet of Things devices

Real-Time Data Analytics for
Large Scale Sensor Data (Academic Press) 2020 —

[138] Evaluating the DTLS Protocol
from CoAP in Fog-to-Fog Communications

IEEE International Conference on &
Service-Oriented System Engineering (SOSE) 2019 —

[139]
Lightweight Security Architecture Based

on Embedded Virtualization and
Trust Mechanisms for IoT Edge Devices

IEEE Communications Magazine 2019 10.35

[42] Providing Context-Aware Security for
Environments Through Context Sharing Feature

IEEE International Conference On Trust,
Security And Privacy In Computing And

Communications (TrustCom)
2018 —

[41] Context Interoperability for IoT through an
Edge-centric Context Sharing Architecture

IEEE Symposium on Computers
and Communications (ISCC) 2018 —

[40] A Sensing-as-a-Service Context-Aware
System for Internet of Things Environments

IEEE Consumer Communications &
Networking Conference (CCNC) 2017 —

[136]
Evaluating the Use of TLS and DTLS
Protocols in IoT Middleware Systems

Applied to E-health

Consumer Communications &
Networking Conference (CCNC) 2017 —

[39] Context-Aware Systems: Technologies and Challenges
in Internet of Everything Environments

Beyond the Internet of Things:
Everything Interconnected (Springer

International Publishing)
2017 —

[135]
The Role of Lightweight Approaches

Towards the Standardization of a Security
Architecture for IoT Middleware Systems

IEEE Communications Magazine 2016 10.35

[7] Middleware Technology for IoT Systems:
Challenges and Perspectives Toward 5G

Internet of Things (IoT) in 5G
Mobile Technologies (Springer

International Publishing)
2016 —

[121] Arquitetura para Fog Computing em Sistemas
de Middleware para Internet das Coisas

Congresso da Sociedade
Brasileira de Computação (CSBC) 2016 —

127

7.3 REVISITING THE HYPOTHESES AND RESEARCH QUESTIONS

This Dissertation investigated two hypotheses: (i) context sharing is well suited to
provide context interoperability among different systems of IoT environments; and (ii) it is
possible to provide security based on context to IoT entities through context sharing feature.

For the first hypothesis (i), the definition of an architecture presented in Chapters 4
and 5 shown that the Semantic Processing and Context Classification by ontologies methods
are a suitable approach for providing context sharing feature. The evaluation presented in
Sections 6.1 and 6.2 shown that it is suitable for IoT environments both in performance and
accuracy.

For the second hypothesis (ii), by the developed architecture (see Chapters 4 and
5), it is possible to provide context information interoperability by the implementation of the
FIWARE Orion Context Broker. The context-aware security method can access this context
information pool and provide security actions with the shared context information.

In the Chapter 2, the Research Question “Which requirements a system that pro-
duces context information must have to be prepared to share its context information with
other entities?” was answered by the definition of the context sharing building blocks that a
platform must have for sharing context information.

In the Chapters 4 and 5, the Research Question “How can the context information
interoperability between heterogeneous IoT platforms that produce different kinds of context
be provided?” was answered by the definition and implementation of a Context Sharing Ar-
chitecture that provides reasoning methods able to analyze context information generically,
making it possible to be classified with a specific domain.

In the Chapter 5, the Research Question “What criteria will be taken into account
to define which entities will receive the shared context information and which entity will per-
form this control?” was answered by the presentation of implementation details in the FI-
WARE Orion Context Broker developed instance. The Fog and Cloud Repositories classifies
the context information by domains, that is the criteria to define which entities receive the
context information, also those modules perform this control.

In the Chapters 2 and 5, the Research Question “In which ways can shared
context information be used for context-based security provisioning and how it can be im-
plemented?” was answered by the definition of a taxonomy demonstrating the ways that
context-aware security can be provided (Chapter 2), and the implementation of a context-
aware security method that uses context information from the FIWARE Orion Context Broker
pool for providing security decisions (Chapter 5).

128

7.4 CONCLUSION

Context sharing applied to IoT environments has become mandatory. Although the
development of such approach is noteworthy, it is crucial to be careful with the way in which
it is applied. There are two critical challenges to overcome that are missing in the existing
systems. The first challenge is to deal with the large heterogeneity of IoT environments.
The use and optimization of ontologies and web services can be a first step towards the
mitigation of this issue. The second challenge is related to scalability and real-time sharing.
There is a need to optimize mechanisms in order to minimize the data/context traffic between
entities. The use of Edge Computing concept can be a way of reducing the extra information
exchanged.

Even that there are various sharing platforms deployed with different characteris-
tics, there are challenges to be overcome. In this work, it was presented essential building
blocks towards the development of a context sharing platform. It was also introduced var-
ious existing context information sharing platforms and discussed their features in detail.
Moreover, it was reviewed the challenges and open issues for such platforms, the potential
enhancements for them alongside with the definition of a Context Sharing Architecture that
encompasses all the building blocks and the discussed challenges.

It was presented recent trends and advancements in the context-aware security
area applied to IoT environments. It was defined a taxonomy of context-aware security, and
outlined the key requirements for the deployment of context-aware security solutions in IoT
environments. Also, existing solutions in the area were presented. Based on the conducted
study, it is possible to conclude that although the deployment of context-aware security in
IoT environments provides many benefits, it is essential to care about the IoT characteristics,
as the vast heterogeneity, for the consolidation of the context-aware security area. A next
step to the context-aware security solutions found in the literature would be to use context
information from different domains when providing security services. Most of the solutions
are developed thinking about only on a specific domain, whereas in IoT, it is very common
solutions integrating more than one domain (e.g., smart cities).

This work defined, implemented, and validated an Edge-based Context Sharing
Architecture for the Internet of Things Environments. The proposed architecture performs
hybrid reasoning for sharing context information. It uses two different techniques for such
processing: lexical analysis and ontologies. This hybrid approach appears as a viable solu-
tion for heterogeneous IoT environments, which may have heterogeneous devices with dif-
ferent processing power capabilities. Moreover, a context-aware security provision method
that uses shared context information from different domains was presented, standing out
for the traditional context-aware security solutions that mainly focus on only one application
domain.

129

When compared with the related work approaches (see Table 3.2 and Table 3.4),
the Context Sharing Architecture developed in this work stands out by the possibility of us-
ing shared context information to provide Context-Aware Security decisions. The proposed
architecture provides an interoperable way of sharing context information, regardless of the
domain that the IoT entity is inserted in. Also, it provides context-aware security services
with shared context information from different domains, which is considered a gap in the
area.

7.5 FUTURE WORK

As future work, it is possible to identify the following possibilities:

• The context-aware security is an incipient area with great possibility of development.
New ways of providing such security services should be researched and implemented.
The use of Machine Learning appears also as a trend in Computer Science area.
Studies of context-aware security services provided by Machine Learning techniques
were not developed yet and should be investigated.

• Different ways of protecting the context information should be investigated. The use of
blockchain technologies is already a trend in Computer Science solutions. Moreover,
lightweight blockchain approaches are starting to fit with the Internet of Things sce-
narios. It is important to research and develop solutions that combine both blockchain
technology and context information management.

• IoT data marketplaces have been developed for the Internet of Things environments.
In such marketplaces, the IoT data have a monetary value and can be commercialized
by peers. However, most of the IoT data marketplaces deals only with raw IoT device
data. The commercialization of context-aware data, which is a more enriched data
than raw device one, should be considered for such scenarios.

130

131

REFERENCES

[1] Abowd, G. D.; Dey, A. K.; Brown, P. J.; Davies, N.; Smith, M.; Steggles, P. “Towards
a Better Understanding of Context and Context-Awareness”. In: Proceedings of the
1st International Symposium on Handheld and Ubiquitous Computing, 1999, pp. 304–
307.

[2] Agarwal, R.; Fernandez, D. G.; Elsaleh, T.; Gyrard, A.; Lanza, J.; Sanchez, L.;
Georgantas, N.; Issarny, V. “Unified IoT ontology to enable interoperability and
federation of testbeds”. In: Proceedings of the 3rd IEEE World Forum on Internet
of Things, 2016, pp. 70–75.

[3] Al-Muhtadi, J.; Ranganathan, A.; Campbell, R.; Mickunas, M. D. “Cerberus: a
context-aware security scheme for smart spaces”. In: Proceedings of the 1st IEEE
International Conference on Pervasive Computing and Communications, 2003, pp.
489–496.

[4] Al-Turjman, F.; Alturjman, S. “Confidential smart-sensing framework in the IoT era”,
The Journal of Supercomputing, vol. 74–10, Oct 2018, pp. 5187–5198.

[5] Al-Turjman, F.; Alturjman, S. “Context-Sensitive Access in Industrial Internet of Things
(IIoT) Healthcare Applications”, IEEE Transactions on Industrial Informatics, vol. 14–6,
Jun 2018, pp. 2736–2744.

[6] Alagar, V.; Alsaig, A.; Ormandjiva, O.; Wan, K. “Context-Based Security and Privacy
for Healthcare IoT”. In: Proceedings of the 2nd IEEE International Conference on
Smart Internet of Things, 2018, pp. 122–128.

[7] Amaral, L. A.; Matos, E.; Tiburski, R. T.; Hessel, F.; Lunardi, W. T.; Marczak, S.
“Internet of Things (IoT) in 5G Mobile Technologies”. Cham: Springer International
Publishing, 2016, chap. Middleware Technology for IoT Systems: Challenges and
Perspectives Toward 5G, pp. 333–367.

[8] Amaral, L. A.; Tiburski, R. a. T.; de Matos, E.; Hessel, F. “Cooperative Middleware
Platform as a Service for Internet of Things Applications”. In: Proceedings of the 30th
Annual ACM Symposium on Applied Computing, 2015, pp. 488–493.

[9] Anand, N.; Yang, M.; van Duin, J.; Tavasszy, L. “Genclon: An ontology for city
logistics”, Expert Systems with Applications, vol. 39–15, Nov 2012, pp. 11944 –
11960.

[10] Atzori, L.; Iera, A.; Morabito, G. “The internet of things: A survey”, Computer Networks,
vol. 54–15, Oct 2010, pp. 2787–2805.

132

[11] Azeez, A.; Perera, S.; Gamage, D.; Linton, R.; Siriwardana, P.; Leelaratne, D.;
Weerawarana, S.; Fremantle, P. “Multi-tenant SOA Middleware for Cloud Computing”.
In: Proceedings of the 3rd IEEE International Conference on Cloud Computing, 2010,
pp. 458–465.

[12] Baker, T.; Whitehead, B.; Musker, R.; Keizer, J. “Global agricultural concept space:
lightweight semantics for pragmatic interoperability”, NPJ Science of Food, vol. 3–1,
Sep 2019, pp. 1–8.

[13] Bandyopadhyay, D.; Sen, J. “Internet of things: Applications and challenges in
technology and standardization”, Wireless Personal Communications, vol. 58–1,
Apr 2011, pp. 49–69.

[14] Bellini, P.; Benigni, M.; Billero, R.; Nesi, P.; Rauch, N. “Km4city ontology building vs
data harvesting and cleaning for smart-city services”, Journal of Visual Languages &
Computing, vol. 25–6, Dec 2014, pp. 827 – 839.

[15] Bettini, C.; Brdiczka, O.; Henricksen, K.; Indulska, J.; Nicklas, D.; Ranganathan, A.;
Riboni, D. “A survey of context modelling and reasoning techniques”, Pervasive and
Mobile Computing, vol. 6–2, Apr 2010, pp. 161–180.

[16] Bikakis, A.; Patkos, T.; Antoniou, G.; Plexousakis, D. “A survey of semantics-based
approaches for context reasoning in ambient intelligence”. In: Proceedings of the 1st
European Conference on Ambient Intelligence - Constructing Ambient Intelligence,
2008, pp. 14–23.

[17] Bird, S.; Klein, E.; Loper, E. “Natural Language Processing with Python: Analyzing
Text with the Natural Language Toolkit”. Beijing: O’Reilly, 2009, 504p.

[18] Boavida, F.; Kliem, A.; Renner, T.; Riekki, J.; Jouvray, C.; Jacovi, M.; Ivanov, S.;
Guadagni, F.; Gil, P.; Triviño, A. “People-Centric Internet of Things—Challenges,
Approach, and Enabling Technologies”. In: Intelligent Distributed Computing IX:
Proceedings of the 9th International Symposium on Intelligent Distributed Computing,
Novais, P.; Camacho, D.; Analide, C.; El Fallah Seghrouchni, A.; Badica, C. (Editors),
2016, pp. 463–474.

[19] Bonomi, F.; Milito, R.; Natarajan, P.; Zhu, J. “Fog Computing: A Platform for Internet
of Things and Analytics”. Cham: Springer International Publishing, 2014, chap. 7, pp.
169–186.

[20] Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S. “Fog computing and its role in the internet
of things”. In: Proceedings of the Workshop on Mobile Cloud Computing, 2012, pp.
13–16.

133

[21] Brezillon, P.; Mostefaoui, G. K. “Context-based security policies: a new modeling
approach”. In: Proceedings of the 2nd IEEE Annual Conference on Pervasive
Computing and Communications Workshops, 2004, pp. 154–158.

[22] Bruneo, D.; Distefano, S.; Longo, F.; Merlino, G.; Puliafito, A.; D’Amico, V.;
Sapienza, M.; Torrisi, G. “Stack4Things as a fog computing platform for Smart
City applications”. In: Proceedings of the 35th IEEE Conference on Computer
Communications Workshops, 2016, pp. 848–853.

[23] Budanitsky, A.; Hirst, G. “Evaluating wordnet-based measures of lexical semantic
relatedness”, Computational Linguistics, vol. 32–1, May 2006, pp. 13–47.

[24] Bugiel, S.; Heuser, S.; Sadeghi, A.-R. “Flexible and Fine-grained Mandatory Access
Control on Android for Diverse Security and Privacy Policies”. In: Proceedings of the
22nd USENIX Security Symposium, 2013, pp. 131–146.

[25] Byers, C. C. “Architectural Imperatives for Fog Computing: Use Cases, Requirements,
and Architectural Techniques for Fog-Enabled IoT Networks”, IEEE Communications
Magazine, vol. 55–8, Aug 2017, pp. 14–20.

[26] Cabitza, F.; Dal Seno, B. “DJess-A Knowledge-Sharing Middleware to Deploy
Distributed Inference Systems”, International Journal of Computer and Information
Engineering, vol. 1–4, Jan 2007, pp. 1023–1026.

[27] Casadei, R.; Fortino, G.; Pianini, D.; Russo, W.; Savaglio, C.; Viroli, M. “A development
approach for collective opportunistic Edge-of-Things services”, Information Sciences,
vol. 498, Sep 2019, pp. 154 – 169.

[28] Chandola, V.; Banerjee, A.; Kumar, V. “Anomaly detection: A survey”, ACM Computing
Surveys, vol. 41–3, Jul 2009.

[29] Chazelle, B.; Kilian, J.; Rubinfeld, R.; Tal, A. “The Bloomier Filter: An Efficient Data
Structure for Static Support Lookup Tables”. In: Proceedings of the 15th Annual ACM-
SIAM Symposium on Discrete Algorithms, 2004, pp. 30–39.

[30] Chen, G.; Kotz, D. “A Survey of Context-Aware Mobile Computing Research”,
Technical Report TR2000-381, Dartmouth College, Computer Science, Hanover,
2000, 16p.

[31] Cho, S.; Julien, C. “The Grapevine Context Processor: Application Support for Efficient
Context Sharing”. In: Proceedings of the 2nd ACM International Conference on Mobile
Software Engineering and Systems, 2015, pp. 68–71.

[32] Cho, S.; Julien, C. “Chitchat: Navigating tradeoffs in device-to-device context sharing”.
In: Proceedings of the 14th International Conference on Pervasive Computing and
Communications, 2016, pp. 1–10.

134

[33] Compton, M.; Barnaghi, P.; Bermudez, L.; GarcíA-Castro, R.; Corcho, O.; Cox, S.;
Graybeal, J.; Hauswirth, M.; Henson, C.; Herzog, A.; et al.. “The SSN ontology of the
W3C semantic sensor network incubator group”, Web semantics: science, services
and agents on the World Wide Web, vol. 17, Dec 2012, pp. 25–32.

[34] Covington, M. J.; Fogla, P.; Zhan, Z.; Ahamad, M. “A context-aware security
architecture for emerging applications”. In: Proceedings of the 18th Annual Computer
Security Applications Conference, 2002, pp. 249–258.

[35] Das, P. K.; Narayanan, S.; Sharma, N. K.; Joshi, A.; Joshi, K.; Finin, T. “Context-
Sensitive Policy Based Security in Internet of Things”. In: Proceedings of the 2nd
IEEE International Conference on Smart Computing, 2016, pp. 1–6.

[36] Dastjerdi, A. V.; Buyya, R. “Fog Computing: Helping the Internet of Things Realize Its
Potential”, Computer, vol. 49–8, Aug 2016, pp. 112–116.

[37] De, S.; Cassar, G.; Christophe, B.; Fredj, S. B.; Bauer, M.; Santos, N.; Jacobs,
T.; Zeybek, E.; de las Heras, R.; Martín, G.; et al.. “Concepts and solutions for
entity-based discovery of IoT resources and managing their dynamic associations”,
Technical Report IoT-A D4 3, EC FP7, 2012, 202p.

[38] de Freitas, A. A.; Nebeling, M.; Ranithangam, A. S. K. K.; Yang, J.; Dey, A. K.
“Bluewave: Enabling Opportunistic Context Sharing via Bluetooth Device Names”. In:
Proceedings of the 8th Symposium on Engineering Interactive Computing Systems,
2016, pp. 38–49.

[39] de Matos, E.; Amaral, L. A.; Hessel, F. “Context-Aware Systems: Technologies and
Challenges in Internet of Everything Environments”. Cham: Springer International
Publishing, 2017, chap. 1, pp. 1–25.

[40] de Matos, E.; Amaral, L. A.; Tiburski, R. T.; Schenfeld, M.; Hessel, F.; de Azevedo, D.
“A Sensing-as-a-Service Context-Aware system for internet of things environments”.
In: Proceedings of the 14th IEEE Annual Consumer Communications & Networking
Conference, 2017, pp. 725–728.

[41] de Matos, E.; Tiburski, R. T.; Amaral, L. A.; Hessel, F. “Context Interoperability for IoT
Through an Edge-Centric Context Sharing Architecture”. In: Proceedings of the 23th
IEEE Symposium on Computers and Communications, 2018, pp. 00667–00670.

[42] de Matos, E.; Tiburski, R. T.; Amaral, L. A.; Hessel, F. “Providing Context-Aware
Security for IoT Environments Through Context Sharing Feature”. In: Proceedings of
the 17th IEEE International Conference On Trust, Security And Privacy In Computing
And Communications, 2018, pp. 1711–1715.

135

[43] de Matos, E.; Tiburski, R. T.; Moratelli, C. R.; Filho, S. J.; Amaral, L. A.;
Ramachandran, G.; Krishnamachari, B.; Hessel, F. “Context information sharing for
the Internet of Things: A survey”, Computer Networks, vol. 166, Jan 2020, pp. 1–19.

[44] de Souza, R. S.; Lopes, J. L. B.; Geyer, C. F. R.; da Rosa Silveira João, L.; Cardozo,
A. A.; Yamin, A. C.; Gadotti, G. I.; Barbosa, J. L. V. “Continuous monitoring seed testing
equipaments using internet of things”, Computers and Electronics in Agriculture, vol.
158, Mar 2019, pp. 122 – 132.

[45] Dhallenne, J.; Jayaraman, P. P.; Zaslavsky, A. “RCOS: Real Time Context Sharing
Across a Fleet of Smart Mobile Devices”. Cham: Springer International Publishing,
2016, chap. 8, pp. 87–100.

[46] Dolui, K.; Datta, S. K. “Comparison of edge computing implementations: Fog
computing, cloudlet and mobile edge computing”. In: Proceedings of the Global
Internet of Things Summit, 2017, pp. 1–6.

[47] Doukas, C.; Capra, L.; Antonelli, F.; Jaupaj, E.; Tamilin, A.; Carreras, I. “Providing
generic support for IoT and M2M for mobile devices”. In: Proceedings of the 12th
IEEE RIVF International Conference on Computing Communication Technologies -
Research, Innovation, and Vision for Future, 2015, pp. 192–197.

[48] ETSI. “ETSI launches new group on Context Information Management for smart city
interoperability”. Source: http://goo.gl/PLAoHb, Sep 2019.

[49] ETSI. “ETSI ISG CIM group releases first specification for context exchange in smart
cities”. Source: http://goo.gl/QgTRdE, Sep 2019.

[50] European Commission - Horizon 2020. “AutoMat - Automotive Big Data Marketplace
for Innovative Cross-sectorial Vehicle Data Services”. Source: https://cordis.europa.
eu/project/rcn/194228_en.html, Sep 2018.

[51] Facca, F. M.; Komazec, S.; Guglielmina, C.; Gusmeroli, S. “COIN: Platform and
Services for SaaS in Enterprise Interoperability and Enterprise Collaboration”. In:
Proceedings of the 3rd IEEE International Conference on Semantic Computing, 2009,
pp. 543–550.

[52] Faieq, S.; Saidi, R.; Elghazi, H.; Rahmani, M. D. “C2iot: A framework for cloud-
based context-aware internet of things services for smart cities”, Procedia Computer
Science, vol. 110, Jul 2017, pp. 151 – 158.

[53] Finlayson, M. “Java libraries for accessing the princeton wordnet: Comparison and
evaluation”. In: Proceedings of the 7th Global Wordnet Conference, 2014, pp. 78–85.

136

[54] Fortino, G.; Savaglio, C.; Palau, C. E.; de Puga, J. S.; Ganzha, M.; Paprzycki,
M.; Montesinos, M.; Liotta, A.; Llop, M. “Towards Multi-layer Interoperability
of Heterogeneous IoT Platforms: The INTER-IoT Approach”. Cham: Springer
International Publishing, 2018, chap. 10, pp. 199–232.

[55] Friedman-Hill, E. “Jess, the Java expert system shell”. Source: https://www.osti.gov/
biblio/565603, Sep 2018.

[56] Gansel, S.; Schnitzer, S.; Gilbeau-Hammoud, A.; Friesen, V.; Dürr, F.; Rothermel,
K.; Maihöfer, C.; Krämer, U. “Context-Aware Access Control in Novel Automotive HMI
Systems”. Cham: Springer International Publishing, 2015, chap. 8, pp. 118–138.

[57] Gheisari, M.; Wang, G.; Khan, W. Z.; Fernández-Campusano, C. “A context-
aware privacy-preserving method for IoT-based smart city using Software Defined
Networking”, Computers & Security, vol. 87, Nov 2019, pp. 101470.

[58] Gupta et al., H. “iFogSim: A toolkit for modeling and simulation of resource
management techniques in the Internet of Things, Edge and Fog computing
environments”, Software: Practice and Experience, vol. 47–9, Jun 2017, pp. 1275–
1296.

[59] Gyrard, A. “A Machine-to-machine Architecture to Merge Semantic Sensor
Measurements”. In: Proceedings of the 22nd International Conference on World
Wide Web, 2013, pp. 371–376.

[60] Gyrard, A.; Bonnet, C.; Boudaoud, K. “Enrich machine-to-machine data with semantic
web technologies for cross-domain applications”. In: Proceedings of the 1st IEEE
World Forum on Internet of Things, 2014, pp. 559–564.

[61] Habib, K.; Leister, W. “Context-Aware Authentication for the Internet of Things”. In:
Proceedings of the 11th International Conference on Autonomic and Autonomous
Systems, 2015, pp. 6.

[62] Harif, S. “Rule-based operation and service provider authentication for a keyed
system”. US Patent App. 09/751,829, Source: https://patents.google.com/patent/
US20020133716A1/en, Sep 2018.

[63] Hassani, A.; Medvedev, A.; Haghighi, P. D.; Ling, S.; Indrawan-Santiago, M.;
Zaslavsky, A.; Jayaraman, P. P. “Context-as-a-Service Platform: Exchange and
Share Context in an IoT Ecosystem”. In: Proceedings of the 16th IEEE International
Conference on Pervasive Computing and Communications Workshops, 2018, pp.
385–390.

137

[64] Hayashi, E.; Das, S.; Amini, S.; Hong, J.; Oakley, I. “CASA: Context-aware Scalable
Authentication”. In: Proceedings of the 9th Symposium on Usable Privacy and
Security, 2013, pp. 3:1–3:10.

[65] Herley, C. “So Long, and No Thanks for the Externalities: The Rational Rejection
of Security Advice by Users”. In: Proceedings of the 12th New Security Paradigms
Workshop, 2009, pp. 133–144.

[66] Hosseinzadeh, S.; Virtanen, S.; Díaz-Rodríguez, N.; Lilius, J. “A Semantic Security
Framework and Context-aware Role-based Access Control Ontology for Smart
Spaces”. In: Proceedings of the 1st International Workshop on Semantic Big Data,
2016, pp. 8:1–8:6.

[67] Houda, M.; Khemaja, M.; Oliveira, K.; Abed, M. “A public transportation ontology to
support user travel planning”. In: Proceedings of the 4th International Conference on
Research Challenges in Information Science, 2010, pp. 127–136.

[68] Hu et al., J. “A Dynamic, Context-Aware Security Infrastructure for Distributed
Healthcare Applications”. In: Proceedings of the 1st Workshop on Pervasive Privacy
Security, Privacy, and Trust, 2004, pp. 1–8.

[69] Hulsebosch, R. J.; Salden, A. H.; Bargh, M. S.; Ebben, P. W. G.; Reitsma, J. “Context
Sensitive Access Control”. In: Proceedings of the 10th ACM Symposium on Access
Control Models and Technologies, 2005, pp. 111–119.

[70] Huru, D.; Leordeanu, C.; Apostol, E.; Cristea, V. “BigClue: Towards a generic
IoT cross-domain data processing platform”. In: Proceedings of the 14th IEEE
International Conference on Intelligent Computer Communication and Processing,
2018, pp. 427–434.

[71] Iwamura, M. “NGMN View on 5G Architecture”. In: Proceedings ot the 81st IEEE
Vehicular Technology Conference, 2015, pp. 1–5.

[72] Jia, Y. J.; Chen, Q. A.; Wang, S.; Rahmati, A.; Fernandes, E.; Mao, Z. M.; Prakash,
A.; Unviersity, S. J. “ContexIoT: Towards Providing Contextual Integrity to Appified
IoT Platforms”. In: Proceedings of the 21st Network and Distributed System Security
Symposium, 2017, pp. 1–15.

[73] João, L.; Machado, R.; Tabim, V.; Cardoso, A.; Lopes, J. L.; Pernas, A.; Yamin,
A. “Applying the internet of things in precision viticulture: An approach exploring
the exehda middleware”. In: Proceedings of the 44th Latin American Computer
Conference, 2018, pp. 680–687.

[74] Kansal, A.; Nath, S.; Liu, J.; Zhao, F. “SenseWeb: An Infrastructure for Shared
Sensing”, IEEE MultiMedia, vol. 14–4, Oct 2007, pp. 8–13.

138

[75] Kim, J.; Chung, K.-Y. “Ontology-based healthcare context information model to
implement ubiquitous environment”, Multimedia Tools and Applications, vol. 71–2,
Nov 2014, pp. 873–888.

[76] Krishnamachari, B.; Power, J.; Kim, S. H.; Shahabi, C. “I3: An IoT marketplace for
smart communities”. In: Proceedings of the 16th Annual International Conference on
Mobile Systems, Applications, and Services, 2018, pp. 498–499.

[77] Kroner, A.; Schneider, M.; Mori, J. “A Framework for Ubiquitous Content Sharing”,
IEEE Pervasive Computing, vol. 8–4, Oct 2009, pp. 58–65.

[78] Lai, T.; Li, W.; Liang, H.; Zhou, X. “FRASCS: A Framework Supporting Context
Sharing”. In: Proceedings of the 9th International Conference for Young Computer
Scientists, 2008, pp. 919–924.

[79] Langheinrich, M. “A Privacy Awareness System for Ubiquitous Computing
Environments”. Berlin: Springer Berlin Heidelberg, 2002, chap. 19, pp. 237–245.

[80] Leacock, C.; Miller, G. A.; Chodorow, M. “Using corpus statistics and wordnet relations
for sense identification”, Computational Linguistics, vol. 24–1, Mar 1998, pp. 147–165.

[81] Li, W.; Joshi, A.; Finin, T. “SVM-CASE: An SVM-Based Context Aware Security
Framework for Vehicular Ad-Hoc Networks”. In: Proceedings of the 82nd IEEE
Vehicular Technology Conference, 2015, pp. 1–5.

[82] Liu, C.; Hua, J.; Julien, C. “SCENTS: Collaborative Sensing in Proximity IoT
Networks”. In: Proceedings of the 17th IEEE International Conference on Pervasive
Computing and Communications Workshops, 2019, pp. 189–195.

[83] Liu, C.; Julien, C. “Pervasive context sharing in magpie: Adaptive trust-based privacy
protection”. In: Mobile Computing, Applications, and Services, 2015, pp. 122–139.

[84] Lu, L.; Xu, L.; Xu, B.; Li, G.; Cai, H. “Fog Computing Approach for Music Cognition
System Based on Machine Learning Algorithm”, IEEE Transactions on Computational
Social Systems, vol. 5–4, Dec 2018, pp. 1142–1151.

[85] Lunardi, W.; Matos, E.; Tiburski, R.; Amaral, L.; Marczak, S.; Hessel, F. “Context-
based Search Engine for Industrial IoT: Discovery, Search, Selection, and Usage of
Devices”. In: Proceedings of the 20th IEEE Conference on Emerging Technology &
Factory Automation, 2015, pp. 1–8.

[86] Maarala, A. I.; Su, X.; Riekki, J. “Semantic Reasoning for Context-Aware Internet of
Things Applications”, IEEE Internet of Things Journal, vol. 4–2, Apr 2017, pp. 461–
473.

139

[87] Madhukalya, M.; Kumar, M. “ConCon: Context-Aware Middleware for Content
Sharing in Dynamic Participating Environments”. In: Proceedings of the 15th IEEE
International Conference on Mobile Data Management, 2014, pp. 156–161.

[88] Manashty, A.; Light, J.; Yadav, U. “Healthcare event aggregation lab (HEAL), a
knowledge sharing platform for anomaly detection and prediction”. In: Proceedings
of the 17th International Conference on E-health Networking, Application Services,
2015, pp. 648–652.

[89] Manashty, A.; Thompson, J. L. “Cloud Platforms for IoE Healthcare Context
Awareness and Knowledge Sharing”. Cham: Springer International Publishing, 2017,
chap. 12, pp. 303–322.

[90] Matos, E.; Amaral, L.; Tiburski, R.; Lunardi, W.; Hessel, F.; Marczak, S. “Context-
aware system for information services provision in the Internet of Things”. In:
Proceedings of the 20th IEEE Conference on Emerging Technologies Factory
Automation, 2015, pp. 1–4.

[91] Miettinen, M.; Heuser, S.; Kronz, W.; Sadeghi, A.-R.; Asokan, N. “ConXsense:
Automated Context Classification for Context-aware Access Control”. In: Proceedings
of the 9th ACM Symposium on Information, Computer and Communications Security,
2014, pp. 293–304.

[92] Miller, G. A. “Wordnet: A lexical database for english”, Communications of the ACM,
vol. 38–11, Nov 1995, pp. 39–41.

[93] Mingozzi, E.; Tanganelli, G.; Vallati, C.; Martínez, B.; Mendia, I.; González-Rodríguez,
M. “Semantic-based context modeling for quality of service support in IoT platforms”.
In: Proceedings of the 17th IEEE International Symposium on A World of Wireless,
Mobile and Multimedia Networks, 2016, pp. 1–6.

[94] Morabito, R.; Petrolo, R.; Loscrí, V.; Mitton, N. “Enabling a lightweight Edge Gateway-
as-a-Service for the Internet of Things”. In: Proceedings of the 7th International
Conference on the Network of the Future, 2016, pp. 1–5.

[95] Moratelli, C.; Johann, S.; Neves, M.; Hessel, F. “Embedded Virtualization for
the Design of Secure IoT Applications”. In: Proceedings of the 27th International
Symposium on Rapid System Prototyping: Shortening the Path from Specification
to Prototype, 2016, pp. 2–6.

[96] Moratelli, C. R.; Tiburski, R. T.; de Matos, E.; Portal, G.; Johann, S. F.; Hessel, F.
“Privacy and security of Internet of Things devices”. In: Real-Time Data Analytics for
Large Scale Sensor Data, Das, H.; Dey, N.; Balas, V. E. (Editors), Academic Press,

140

2020, Advances in Ubiquitous Sensing Applications for Healthcare, vol. 6, chap. 9, pp.
183 – 214.

[97] Mostefaoui, G. K.; Brezillon, P. “Modeling context-based security policies with
contextual graphs”. In: Proceedings of the IEEE Annual Conference on Pervasive
Computing and Communications Workshops, 2004, pp. 28–32.

[98] Mowafi, Y.; Abou-Tair, D.; Aqarbeh, T.; Abilov, M.; Dmitriyev, V.; Gomez, J. M. “A
Context-aware Adaptive Security Framework for Mobile Applications”. In: Proceedings
of the 3rd International Conference on Context-Aware Systems and Applications,
2014, pp. 147–153.

[99] Munir, A.; Kansakar, P.; Khan, S. U. “IFCIoT: Integrated Fog Cloud IoT: A novel
architectural paradigm for the future Internet of Things”, IEEE Consumer Electronics
Magazine, vol. 6–3, Jul 2017, pp. 74–82.

[100] Nagorny, K.; Scholze, S.; Ruhl, M.; Colombo, A. W. “Semantical support for a CPS
data marketplace to prepare Big Data analytics in smart manufacturing environments”.
In: Proceedings of the 1st IEEE Industrial Cyber-Physical Systems, 2018, pp. 206–
211.

[101] Nezhad, H. R. M.; Benatallah, B.; Casati, F.; Toumani, F. “Web services interoperability
specifications”, Computer, vol. 39–5, May 2006, pp. 24–32.

[102] Ngu, A. H.; Gutierrez, M.; Metsis, V.; Nepal, S.; Sheng, Q. Z. “IoT Middleware: A
Survey on Issues and Enabling Technologies”, IEEE Internet of Things Journal, vol. 4–
1, Feb 2017, pp. 1–20.

[103] Nihei, K. “Context sharing platform”, NEC Journal of Advanced Technology, vol. 1–3,
Jul 2004, pp. 200–204.

[104] Nitti, M.; Pilloni, V.; Colistra, G.; Atzori, L. “The Virtual Object as a Major Element of
the Internet of Things: A Survey”, IEEE Communications Surveys Tutorials, vol. 18–2,
Secondquarter 2016, pp. 1228–1240.

[105] Niyato, D.; Lu, X.; Wang, P.; Kim, D. I.; Han, Z. “Economics of Internet of Things: an
information market approach”, IEEE Wireless Communications, vol. 23–4, Aug 2016,
pp. 136–145.

[106] Nuevo, D. A. L.; Valles, D. R.; Medina, E. M.; Pallares, R. M. “OIoT: A Platform to
Manage Opportunistic IoT Communities”. In: Proceedings of the 11th International
Conference on Intelligent Environments, 2015, pp. 104–111.

[107] OpenFog Consortium. “OpenFog Reference Architecture for Fog Computing”,
Technical Report OPFRA001.020817, OpenFog Consortium, 2017, 162p.

141

[108] Pahl, C.; Helmer, S.; Miori, L.; Sanin, J.; Lee, B. “A Container-Based Edge Cloud
PaaS Architecture Based on Raspberry Pi Clusters”. In: Proceedings of the 4th IEEE
International Conference on Future Internet of Things and Cloud Workshops, 2016,
pp. 117–124.

[109] Perera, C.; Zaslavsky, A.; Christen, P.; Georgakopoulos, D. “Context Aware Computing
for The Internet of Things: A Survey”, IEEE Communications Surveys Tutorials,
vol. 16–1, First Quarter 2014, pp. 414–454.

[110] Pingley, A.; Yu, W.; Zhang, N.; Fu, X.; Zhao, W. “A context-aware scheme for privacy-
preserving location-based services”, Computer Networks, vol. 56–11, Jul 2012, pp.
2551 – 2568.

[111] Princeton University. ““About WordNet.” WordNet. Princeton University.” Source: http:
//wordnet.princeton.edu, Nov 2019.

[112] Putera, C. A.; Lin, F. J. “Incorporating OMA Lightweight M2M protocol in IoT/M2M
standard architecture”. In: Proceedings of the 2nd IEEE World Forum on Internet of
Things, 2015, pp. 559–564.

[113] Rachid, S.; Challal, Y.; Nadjia, B. “Internet of things context-aware privacy
architecture”. In: Proceedings of the 12th IEEE/ACS International Conference of
Computer Systems and Applications, 2015, pp. 1–2.

[114] Rahman, H.; Hussain, M.; et al.. “LiO-IoT: A Light-weight Ontology to provide
Semantic Interoperability in Internet of Things”, International Journal of Computational
Intelligence & IoT, vol. 2–4, Mar 2019, pp. 571–575.

[115] Ramos, J. L. H.; Bernabe, J. B.; Skarmeta, A. F. “Managing Context Information for
Adaptive Security in IoT Environments”. In: Proceedings of the 29th IEEE International
Conference on Advanced Information Networking and Applications Workshops, 2015,
pp. 676–681.

[116] Razzaque, M. A.; Milojevic-Jevric, M.; Palade, A.; Clarke, S. “Middleware for internet
of things: A survey”, IEEE Internet of Things Journal, vol. 3–1, Feb 2016, pp. 70–95.

[117] Ricci, A.; Viroli, M.; Omicini, A. “Agent Coordination Context: From Theory to
Practice”. In: Proceedings of the 17th European Meeting on Cybernetics and Systems
Research, 2004, pp. 618–623.

[118] Ruta, M.; Scioscia, F.; Ieva, S.; Loseto, G.; Gramegna, F.; Pinto, A. “Knowledge
Discovery and Sharing in the IoT: The Physical Semantic Web Vision”. In:
Proceedings of the 32nd Symposium on Applied Computing, 2017, pp. 492–498.

142

[119] Sandhu, R. “Access control: The neglected frontier”. Berlin: Springer Berlin
Heidelberg, 1996, chap. 20, pp. 219–227.

[120] Sanya, I.; Shehab, E. “An ontology framework for developing platform-independent
knowledge-based engineering systems in the aerospace industry”, International
Journal of Production Research, vol. 52–20, May 2014, pp. 6192–6215.

[121] Schenfeld, M.; Amaral, L.; de Matos, E.; Hessel, F. “Arquitetura para fog computing
em sistemas de middleware para internet das coisas”. In: Proceedings of the 43rd
Seminário Integrado de Software e Hardware, 2016, pp. 199–209.

[122] Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. “Edge computing: Vision and challenges”,
IEEE Internet of Things Journal, vol. 3–5, Oct 2016, pp. 637–646.

[123] Shi, W.; Dustdar, S. “The Promise of Edge Computing”, Computer, vol. 49–5,
May 2016, pp. 78–81.

[124] Sikder, A. K.; Babun, L.; Aksu, H.; Uluagac, A. S. “Aegis: A Context-Aware Security
Framework for Smart Home Systems”. In: Proceedings of the 35th Annual Computer
Security Applications Conference, 2019, pp. 28–41.

[125] Sinha, R. S.; Wei, Y.; Hwang, S.-H. “A survey on LPWA technology: LoRa and NB-
IoT”, ICT Express, vol. 3–1, Mar 2017, pp. 14 – 21.

[126] Sinha Roy, D.; Behera, R. K.; Reddy, K. H. K.; Buyya, R. “A Context-Aware Fog
Enabled Scheme for Real-Time Cross-Vertical IoT Applications”, IEEE Internet of
Things Journal, vol. 6–2, Apr 2019, pp. 2400–2412.

[127] Slimani, T. “Description and evaluation of semantic similarity measures approaches”,
International Journal of Computer Applications, vol. 80–10, Oct 2013, pp. 25–33.

[128] Snidaro, L.; García, J.; Llinas, J. “Context-based Information Fusion: A survey and
discussion”, Information Fusion, vol. 25, Sep 2015, pp. 16 – 31.

[129] Staroch, P. “A weather ontology for predictive control in smart homes”. Master Thesis,
Vienna University of Technology, 2013, 183p.

[130] Strang, T.; Linnhoff-Popien, C. “A context modeling survey”. In: Proceedings of
the 1st International Workshop on Advanced Context Modelling, Reasoning And
Management at UbiComp, 2004, pp. 1–8.

[131] Su, X.; Li, P.; Li, Y.; Flores, H.; Riekki, J.; Prehofer, C. “Towards semantic reasoning
on the edge of iot systems”. In: Proceedings of the 6th International Conference on
the Internet of Things, 2016, pp. 171–172.

143

[132] Taneja, M. “LTE-LPWA networks for IoT applications”. In: Proceedings of the
7th International Conference on Information and Communication Technology
Convergence, 2016, pp. 396–399.

[133] Tang, B.; Chen, Z.; Hefferman, G.; Wei, T.; He, H.; Yang, Q. “A Hierarchical Distributed
Fog Computing Architecture for Big Data Analysis in Smart Cities”. In: Proceedings of
the 1st ASE BigData & SocialInformatics, 2015, pp. 28:1–28:6.

[134] Tao, M.; Zuo, J.; Liu, Z.; Castiglione, A.; Palmieri, F. “Multi-layer cloud architectural
model and ontology-based security service framework for iot-based smart homes”,
Future Generation Computer Systems, vol. 78, Jan 2018, pp. 1040 – 1051.

[135] Tiburski, R. T.; Amaral, L. A.; de Matos, E.; de Azevedo, D. F. G.; Hessel, F. “The Role
of Lightweight Approaches Towards the Standardization of a Security Architecture for
IoT Middleware Systems”, IEEE Communications Magazine, vol. 54–12, Dec 2016,
pp. 56–62.

[136] Tiburski, R. T.; Amaral, L. A.; de Matos, E.; Hessel, F.; de Azevedo, D. “Evaluating
the use of TLS and DTLS protocols in IoT middleware systems applied to e-health”.
In: Proceedings of the 14th IEEE Annual Consumer Communications & Networking
Conference, 2017, pp. 480–485.

[137] Tiburski, R. T.; Amaral, L. A.; Matos, E. D.; Hessel, F. “The importance of a
standard security architecture for SOA-based IoT middleware”, IEEE Communications
Magazine, vol. 53–12, Dec 2015, pp. 20–26.

[138] Tiburski, R. T.; de Matos, E.; Hessel, F. “Evaluating the DTLS Protocol from CoAP
in Fog-to-Fog Communications”. In: Proceedings of the 14th IEEE International
Conference on Service-Oriented System Engineering, 2019, pp. 90–905.

[139] Tiburski, R. T.; Moratelli, C. R.; Johann, S. F.; Neves, M. V.; d. Matos, E.; Amaral, L. A.;
Hessel, F. “Lightweight Security Architecture Based on Embedded Virtualization and
Trust Mechanisms for IoT Edge Devices”, IEEE Communications Magazine, vol. 57–2,
Feb 2019, pp. 67–73.

[140] Tikkinen-Piri, C.; Rohunen, A.; Markkula, J. “EU General Data Protection Regulation:
Changes and implications for personal data collecting companies”, Computer Law &
Security Review, vol. 34–1, Feb 2018, pp. 134 – 153.

[141] Travizano, M.; Minnoni, M.; Ajzenman, G.; Sarraute, C.;
Della Penna, N. “Wibson: A decentralized marketplace empowering
individuals to safely monetize their personal data”. Source:
https://wibson.org/wp-content/uploads/2019/04/Wibson-Technical-Paper-v1.1.pdf,
Nov 2019.

144

[142] Trnka, M.; Cerny, T. “On Security Level Usage in Context-aware Role-based Access
Control”. In: Proceedings of the 31st Annual ACM Symposium on Applied Computing,
2016, pp. 1192–1195.

[143] Wang, X. H.; Zhang, D. Q.; Gu, T.; Pung, H. K. “Ontology based context modeling
and reasoning using OWL”. In: Proceedings of the 2nd IEEE Annual Conference on
Pervasive Computing and Communications Workshops, 2004, pp. 18–22.

[144] Xie, K.; Luo, W.; Wang, X.; Xie, D.; Cao, J.; Wen, J.; Xie, G. “Decentralized
Context Sharing in Vehicular Delay Tolerant Networks with Compressive Sensing”. In:
Proceedings of the 36th International Conference on Distributed Computing Systems,
2016, pp. 169–178.

[145] Xu, L. D.; He, W.; Li, S. “Internet of Things in Industries: A Survey”, IEEE Transactions
on Industrial Informatics, vol. 10–4, Nov 2014, pp. 2233–2243.

[146] Yamamoto, J.; Nakagawa, H.; Nakayama, K.; Tahara, Y.; Ohsuga, A. “A Context
Sharing Message Broker Architecture to Enhance Interoperability in Changeable
Environments”. In: Proceedings of the 3rd International Conference on Mobile
Ubiquitous Computing, Systems, Services and Technologies, 2009, pp. 31–39.

[147] Zeng, W.; Zhang, S.; Yen, I.; Bastani, F. “Invited Paper: Semantic IoT Data Description
and Discovery in the IoT-Edge-Fog-Cloud Infrastructure”. In: Proceedings of the 14th
IEEE International Conference on Service-Oriented System Engineering, 2019, pp.
106–115.

[148] Zhang, L.; Li, Y.; Wang, L.; Lu, J.; Li, P.; Wang, X. “An Efficient Context-Aware Privacy
Preserving Approach for Smartphones”, Security and Communication Networks, vol.
2017, Apr 2017, pp. 1–11.

[149] Zoppi, T.; Ceccarelli, A.; Bondavalli, A. “Context-awareness to improve anomaly
detection in dynamic service oriented architectures”. In: Proceedings of the 35th
International Conference on Computer Safety, Reliability and Security, 2016, pp. 145–
158.

