
ESCOLA POLITÉCNICA
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

DOUTORADO EM CIÊNCIA DA COMPUTAÇÃO

CHARLES VARLEI NEU

DETECTING ENCRYPTED ATTACKS IN SOFTWARE-DEFINED NETWORKING

Porto Alegre
2019

PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
SCHOOL OF TECHNOLOGY

COMPUTER SCIENCE GRADUATE PROGRAM

DETECTING ENCRYPTED
ATTACKS IN

SOFTWARE-DEFINED
NETWORKING

CHARLES VARLEI NEU

Thesis submitted to the Pontifical Catholic
University of Rio Grande do Sul in partial
fulfillment of the requirements for the
degree of Ph. D. in Computer Science.

Advisor: Prof. Dr. Avelino Francisco Zorzo

Porto Alegre
2019

Charles Varlei Neu

DETECTING ENCRYPTED ATTACKS IN SOFTWARE-DEFINED

NETWORKING

This Thesis has been submitted in partial fulfillment

of the requirements for the degree of Doctor of

Computer Science, of the Graduate Program in

Computer Science, School of Technology of the

Pontifícia Universidade Católica do Rio Grande do

Sul.

Sanctioned on Jan 22, 2019.

COMMITTEE MEMBERS:

Prof. Dr. Lisandro Zambenedetti Granville (PPGC - UFRGS)

Prof. Dr. Raul Ceretta Nunes (PPGCC – UFSM)

Prof. Dr. Tiago Coelho Ferreto (PPGCC - PUCRS)

Prof. Dr. Avelino Francisco Zorzo (PPGCC/PUCRS - Advisor)

I would like to express my sincere gratitude to several people who have contributed
to the completion of this thesis. First, I thank my supervisor, Professor Avelino Zorzo, who
has significantly contributed to my research. His expertise in computer security and many
other subjects was fundamental to my learning, as well as the development of my research
work and thesis.

I am also very much indebted to members of our research group (CONSEG/PUCRS)
for the discussions we had while my PhD. Those discussions led me to work with the subject
I present in this thesis.

Thanks to Professor Ina Shiering for receiving me and supervising my research
during my stay at Ostfalia University (Germany). Thanks also to Professor Feng Hao for
receiving me and supervising my research at Newcastle University (England) and also for
helping me in being very practical with regard to my thesis. His observations while discussing
the subject and results of my thesis were very important for its completion.

My sincere thanks for the support and love shown by my family and friends.

Finally, many thanks to the financial support provided by Brazilian Research Agency
CAPES, German DAAD, Ostfalia University of Applied Sciences, Newcastle University SRS
Research Group and TOTVS.

This study was financed in part by the Coordenação de Aperfeiçoamento de Pes-
soal de Nivel Superior – Brasil (CAPES) – Finance Code 001.

DETECTING ENCRYPTED ATTACKS IN SOFTWARE-DEFINED
NETWORKING

ABSTRACT

Security is one of the major concerns for the computer network community due
to resource abuse and malicious flows intrusion. Nowadays, cryptography is being widely
used as a standard for securing data exchange on the Internet. However, attackers are
improving methods by using encryption over malicious packets or flows so that it may be
more difficult to being detected. Furthermore, those attacks are more effective on their
malicious purposes when cryptography is used. Usually, before a network or a system is
attacked, to perform a denial of service, for example, a port scan is performed to discover
vulnerabilities, such as open ports. Several studies have addressed Intrusion Detection
Systems (IDS) and Intrusion Prevention Systems (IPS) methods for detecting and preventing
attacks, based on flows or packet data analysis. However, typically those methods lead to
an increase in switching latency, due to the need to analyze flows or packets before routing
them. This may also increase network overhead when flows or packets are duplicated to be
parsed by an external IDS. On the one hand, an IDS/IPS may be a bottleneck on the network
and may not be useful, specially if traffic is encrypted. On the other hand, the new paradigm
called Software-Defined Networking (SDN) provides statistical information about the network
that may be used for detecting malicious activities. Hence, this work presents an approach
for detecting encrypted malicious activity in SDN, such as port scan, denial of service and
generic attacks, based on switch counters data. Thus, the developed methods are non-
intrusive and lightweight, with low network overhead and low memory and processing power
consumption. The results show that our methods are effective on detecting such attacks by
discovering anomalies on the network activities, even when flows or packets are encrypted.

Keywords: SDN, encrypted threats, security, IDS/IPS, encrypted traffic classification, DoS/DDoS,
port scan, encrypted attacks.

DETECTING ENCRYPTED ATTACKS IN SOFTWARE-DEFINED
NETWORKING

RESUMO

A segurança é uma das principais preocupações da comunidade de redes de com-
putadores devido ao aumento de fluxos maliciosos. Atualmente, a criptografia está sendo
amplamente usada como padrão para a troca de dados segura na Internet. No entanto, os
atacantes também estão utilizando a criptografia em seus ataques para dificultar a detecção
e tornar os ataques mais eficazes em seus propósitos maliciosos. Normalmente, antes de
atacar uma rede ou um sistema de computação, para executar um ataque de negação de
serviços, por exemplo, uma varredura de portas é executada para descobrir vulnerabilida-
des. Vários estudos abordaram os sistemas de detecção de intrusão (Intrusion Detection
Systems - IDS) e os sistemas de prevenção de intrusão (IPS - Intrusion Prevention Sys-
tem) para detecção e prevenção de ataques, com base na análise de dados de fluxos ou
pacotes. Entretanto, normalmente, esses métodos levam a um aumento na latência para
encaminhar os dados, devido à necessidade de analisar fluxos ou pacotes antes de roteá-
los. Isso também pode aumentar a sobrecarga de rede quando fluxos ou pacotes são du-
plicados para serem analisados por um IDS externo. Por um lado, um IDS/IPS pode ser um
gargalo na rede e pode não ser útil, especialmente se o tráfego for criptografado. Por outro
lado, o novo paradigma chamado SDN (Software-Defined Networking) provê informações
estatísticas sobre a rede que podem ser usadas para detectar atividades maliciosas. Assim,
este trabalho apresenta uma abordagem para detectar atividade maliciosa criptografada em
SDN, como varreduras de porta, negação de serviços e ataques genéricos, com base em
dados de contadores dos swithes. Os resultados mostram que nossos métodos são efica-
zes na detecção de tais ataques, descobrindo anomalias nas atividades da rede, mesmo
quando os fluxos ou pacotes são criptografados. Além disso, geram baixa sobrecarga de
rede e necessitam pouco consumo de memória e processamento.

Palavras-Chave: SDN, ataques criptografados, segurança, IDS/IPS, classificação de tra-
fego criptografado, DoS/DDoS, port scan .

LIST OF FIGURES

Figure 2.1 – Traditional network architecture vs SDN architecture 24

Figure 2.2 – OpenFlow switch pipeline . 26

Figure 2.3 – Flow table entries . 26

Figure 2.4 – Flow rule structure . 27

Figure 2.5 – Packet flow through an OpenFlow switch . 28

Figure 2.6 – Traditional switch vs P4-defined switch . 37

Figure 2.7 – DoS attacks . 42

Figure 3.1 – Systematic Mapping Process . 52

Figure 5.1 – Taxonomy for encrypted attacks detection . 77

Figure 5.2 – IPS operation flow . 79

Figure 5.3 – Approach for general encrypted attacks detection 88

Figure 6.1 – Experimental network topology to evaluate port scan 95

Figure 6.2 – Experimental network topology to evaluate DoS 99

Figure 6.3 – Packets per second generated in simulations 100

Figure 6.4 – Bytes per second generated in simulations . 101

Figure 6.5 – CPU usage . 107

Figure 6.6 – RAM usage . 108

LIST OF TABLES

Table 1.1 – Syntheses of the thesis . 21

Table 2.1 – OpenFlow counters (values measured in bits) 29

Table 2.2 – A basic POF flow instruction set . 33

Table 2.3 – A comparison of some of the main SDN Controllers 35

Table 2.4 – Categorization of attacks in SDN . 44

Table 2.5 – Classification input level . 48

Table 2.6 – Classification input level . 48

Table 2.7 – Classification output level . 49

Table 3.1 – Definition of the search string . 54

Table 3.2 – Found and selected studies by each search engine 56

Table 4.1 – Related works comparison . 69

Table 4.2 – Traffic classification methods . 70

Table 5.1 – STRIDE attack model applied to SDN . 74

Table 5.2 – Methods being proposed in this thesis . 80

Table 5.3 – Example of some flow table records . 90

Table 6.1 – Some flows information stored in the created database 97

Table 6.2 – Port scan test result with an empty blacklist . 97

Table 6.3 – Port scan test result when the blacklist contains entries 98

Table 6.4 – DoS detection in Simulation 1 with CUSUM on PS 103

Table 6.5 – DoS detection in Simulation 1 with CUSUM on BS 103

Table 6.6 – DoS detection in Simulation 1 with difference analysis on PS 104

Table 6.7 – DoS detection in Simulation 1 with difference analysis on BS 104

Table 6.8 – DoS detection in Simulation 2 with CUSUM on PS 105

Table 6.9 – DoS detection in Simulation 2 with CUSUM on BS 105

Table 6.10 – DoS detection in Simulation 2 with difference analysis on PS 106

Table 6.11 – DoS detection in Simulation 2 with difference analysis on BS 106

Table 6.12 – CPU and Memory overhead . 107

LIST OF ABBREVIATIONS

API - Application Programming Interfaces
ASIC - Application-Specific Integrated Circuit
BGP - Border Gateway Protocol
CA - Certificate Authority
CE - Control Elements
CSV - Comma-Separated Values
CUSUM - Cumulative Sum
DoS - Denial of Service
DDoS - Distributed Denial of Service
DFZ - Internet default-Free Zone
DIDS - Distributed Intrusion Detection System
DHCP - Dynamic Host Configuration Protocol
DNS - Domain Name Service
DPI - Deep Packet Inspection
EC - Exclusion Criteria
EID - Endpoint Identifies
FE - Forward Elements
ForCES - Forwarding and Control Element Separation
FOS - Fast Orthogonal Search
HIDS - Host Intrusion Detection System
IC - Inclusion Criteria
IDS - Intrusion Detection System
IETF - Internet Engineering Task Force
IoT - Internet of Things
IPS - Intrusion Prevention Systems
IP - Internet Protocol
IT - Information Technology
kNN - k-nearest neighbor
LFB - Logical Function Blocks
LISP - Locator/ID Separation Protocol
ML - Machine Learning

NBA - Network Behavior Analysis
NBAR - Network Based Application Recognition
NE - Network Element
NETCONF - Network Configuration Protocol
NIDS - Network Intrusion Detection System
NSM - Network Security Monitoring
OISF - Open Information Security Foundation
OpFlex - Open Policy Framework
POF-FIS - POF Flow Instruction Set
PCA - Principal Components Analysis
PL - Protocol Layer
POF - Protocol-Oblivious Forwarding
POF-FIB - POF Flow Instruction Blocks
POF-FIS - POF Flow Instruction Set
R2L - Remote to User
REST - Representational State Transfer
RL - Reinforcement Learning
RLOC - Routing Locators
RPC - Remote Procedure Calls
RQ - Research questions
RLOC - Routing Locators
SIEM - Security Information and Event Management
SNMP - Simple Network Management Protocol
SSL - Secure Sockets Layer
SNMP - Simple Network Management Protocol
SDN - Software-defined Networking
SMS - Systematic Mapping Study
STRIDE - Spoofing, Tampering, Repudiation, Information disclosure,

Denial of service, Elevation of privilege
TCP - Transport Control Protocol
TLS - Transport Layer Security
TML - Transport Mapping Layer
U2R - User to Root

CONTENTS

1 INTRODUCTION . 19

1.1 Problem definition and objectives . 20

1.2 Summary of contribution and hypothesis . 21

1.3 Thesis outline . 21

2 BACKGROUND . 23

2.1 Software-Defined Networking . 23

2.1.1 SDN protocols . 25

2.1.2 Controllers . 34

2.1.3 Packet processing in SDN . 36

2.2 Cryptography . 38

2.3 Attacks on SDN . 39

2.3.1 Port scan . 40

2.3.2 Denial of Service attacks . 41

2.3.3 Insider attacks . 42

2.3.4 Other SDN threats . 43

2.4 Intrusion detection systems . 44

2.4.1 IDS tools . 45

2.4.2 IDS data sets . 46

2.5 Encrypted traffic classification and analysis . 47

2.6 Chapter summary . 50

3 SYSTEMATIC MAPPING STUDY . 51

3.1 Defining scope . 51

3.2 Establishing research questions . 51

3.3 Inclusion and exclusion criteria . 52

3.4 Research strategy and search string . 53

3.5 Selection process . 55

3.6 Results . 55

3.7 Discussion . 57

3.8 Chapter summary . 58

4 RELATED WORK . 59

4.1 Port scan detection approaches . 59

4.2 DoS detection approaches . 60

4.3 Generic encrypted attacks detection . 61

4.4 SDN attacks identification . 62

4.5 Traffic classification . 63

4.6 Encrypted traffic classification . 64

4.7 Encrypted traffic analysis . 66

4.8 Discussion . 67

5 DETECTING ENCRYPTED ATTACKS IN SDN . 73

5.1 Attack model . 73

5.2 Encrypted attacks detection possibilities in SDN . 76

5.3 Our approaches for detecting encrypted attacks in SDN 78

5.3.1 Collection stage . 79

5.3.2 Detection stage . 80

5.3.3 Prevention stage . 89

5.4 Discussion . 91

6 CASE STUDY . 93

6.1 Experimental environment . 93

6.2 Experimental evaluation on detecting port scan . 94

6.2.1 Performing port scan . 94

6.2.2 Detecting and preventing port scan . 95

6.3 Experimental evaluation on detecting DoS . 98

6.3.1 Performing DoS . 98

6.3.2 Detecting and preventing DoS . 101

6.4 Network and hardware overhead . 106

6.5 General discussion . 108

6.6 Chapter summary . 111

7 CONCLUSION . 115

7.1 Limitations and future work . 117

7.2 Publications . 117

REFERENCES . 119

19

1. INTRODUCTION

Nowadays the increasing number of devices connected to the Internet, along with
the high number of transactions performed online, augment the challenge to keep devices
and transactions secure. Attackers are constantly evolving their methods, materializing dif-
ferent kinds of attempts to steal or damage data, damage computer environments or even
disrupt the normal system or network behavior. Zero-day Denial of Service (DoS) attacks
[NPSR16, MZR14], as well as Distributed Denial of Service (DDoS) [MZR14], become even
more common in high-speed networks due to constantly increasing number of new vulnera-
bilities. Such attacks are even more dangerous if encryption is used by the attackers, since
threats may bypass protection systems or consume more hardware resources, because it
may take longer to analyze encrypted packets or flows [SKS15] [Gar].

Usually, when attackers plan to invade a system or a network, so that they may be
able to launch a specific attack, they need some information about vulnerabilities that allow
the intrusion to happen. Therefore, typically, a scan attack [NTL+18][HPSR18] is used. Ac-
cording to CERT [CER18], a Brazilian center that monitors incident reports, scan attempts
represented more than 50% of all the reported incidents in 2017. Some protection mech-
anisms are typically used to improve security by providing prevention, detection and re-
sponse. Prevention is the process of trying to stop intruders from access system or network
resources. The detection process is related to discover if an attack has been performed,
i.e., when the intruder has succeeded or is trying to access the system or network. The
response process is used to fix the failure of the prevention and detection mechanisms, by
stopping and even preventing new similar attempts [BZ17].

In the literature, several studies address Intrusion Detection Systems (IDS) and In-
trusion Prevention Systems (IPS) methods for detecting malicious activities, like port scan
and DoS/DDoS, based on received flows or packet data analysis [YY15] [JGSG17] [MZR14]
[NZOM16]. However, those methods lead to an increase in switching latency due to the need
to analyze flows or packets before routing them, and the need for high processing power and
memory consumption on high speed networks. This may also increase network overhead
when flows or packets are duplicated to be parsed by an external IDS. In this context, an
IDS/IPS may be a bottleneck on the network and may not be useful on a system or network.
Moreover, those methods typically do not prevent new attack attempts, and, as they also fre-
quently present some false negative detection and do not provide protection after a port scan
is detected, an attacker may be able to perform an attack, like DoS/DDoS using encrypted
packets so that the attack may be more powerful and also harder to be detected by tradi-
tional IDS/IPS. Thus, it is necessary to develop new methods, or rather improve available
ones, specially to detect such threats in new network technologies, like Software-Defined

20

Networking (SDN)[OPE18b] [MVTG14] [GBC16], that brings new security challenges, but
also new opportunities and resources to develop new protection tools[NZOM16].

SDN has emerged as a new paradigm on computer networks, and security may be
improved since it offers new opportunities for developing IDS methods. SDN is managed
by a centralized entity, called controller, and can use protocols, like OpenFlow [OPE18b,
MVTG14], to provide features and resources that may be used by an IDS method. One such
feature is the switch counters data stored in a counters table [NZOM16]. Moreover, as the
controller has a global view on the network and may exchange information with other con-
trollers that manage other networks, a more sophisticated protection system can be imple-
mented, extending protection to the entire network as well as to other networks [NZOM16].

Therefore, this work presents an approach for detecting encrypted attacks on SDN
and also to protect the network against such attacks. This approach is based on the switch
counters data and intended specially to protect against port scan and DoS/DDoS, although
protection against other attacks can be provided by adapting our proposed methods. These
data are available to the controller and may be collected through specific messages on pre-
defined time intervals to perform detection and then to block threats, being non-intrusive and
lightweight. Furthermore, it does not overload the network and uses low processing power
and memory. Thus, whenever an attacker performs a scan on the network, our IPS will
detect it and then prevent new malicious attempts, like encrypted DoS/DDoS1 application
threats, improving security of SDN infrastructures. Moreover, we also have developed meth-
ods to identify encrypted DoS and show an approach for detecting generic attacks, even if
the flows are encrypted.

1.1 Problem definition and objectives

The main goal of this research is to propose an approach to identify malicious
encrypted traffic in Software-Defined Networking. To achieve this research objective, we
derived the following objectives:

• Deepening the background concerning SDN, SDN protocols and SDN controllers;

• Studying the main encrypted attacks in SDN;

• Studying current approaches for encrypted traffic management and malicious encrypted
traffic detection;

• To analyze available datasets for intrusion detection systems evaluation;

• Validating and evaluating the methods proposed through case studies;
1We use DoS for both DoS and DDoS throughout the remaining of this thesis.

21

• Documenting and reporting the study results, publishing them in scientific conferences
and journals and make the source-code and datasets available to the community.

1.2 Summary of contribution and hypothesis

The results of our Systematic Mapping Study (see Chapter 3) show that currently
Network IDS have some limitations and need to be improved. One such limitation is their
inability to analyze encrypted traffic. Moreover, only few works that address protection meth-
ods for SDN were found, and they do not mention encrypted attacks. Thus, in this thesis
we aim to address those limitations. Table 1.1 shows the thesis subject, research topic, the
hypotheses to be validated, the research questions that will be answered and the main goals
of this research.

Table 1.1 – Syntheses of the thesis
INPUT OUTPUT
SUBJECT Network Security
TOPIC Encrypted attacks detection in SDN

HYPOTHESIS
It is possible to provide a lightweight solution to detect attacks
in SDN with low hardware resource usage and without reducing network
performance even when the flows are encrypted.

RESEARCH
QUESTION

RQ1: What are the main attacks in SDN?
RQ2: Which limitations current IDS have on detecting attacks in SDN?
RQ3: How to protect SDN against malicious encrypted traffic?

MAIN GOAL Develop a way to protect SDN against malicious encrypted traffic without
overloading the network and with low resource usage.

To answer the research questions, to validate our hypothesis and to achieve our
main goal in this thesis, experimental scenarios are used. These scenarios are simulated
networks in specific tools that allow the deployment of SDN topology and the evaluation of
the protection methods that are being implemented. Public available IDS datasets are also
collected and analyzed to help in defining protection methods, as well as to be used for
analyzing normal and abnormal behaviors and encrypted packets.

1.3 Thesis outline

This thesis is structured as follows. Chapter 2 brings an overview of the background
that supports the main investigated topics. Initially, SDN, its protocols and controllers are
described. After, an overview of cryptography and some cryptography algorithms are pre-
sented. Next, we describe some of the main attacks against SDN and traditional networks

22

found in the literature. Later, we present definitions for IDS and IPS, their main operation
forms, methods and datasets that are available. Finally, we present an overview of encrypted
traffic management and the main approaches used to deal with encrypted traffic. Chapter
3 describes our Systematic Mapping Study related to network intrusion detection methods.
The used methodology and outcomes are discussed, and how our research problem was
defined. Chapter 4 presents an overview of the state of the art regarding encrypted attacks
detection and encrypted traffic management. We describe methods related to SDN, as well
as some methods intended to traditional network that may be adapted to SDN. Finally, we
discuss the described approaches and their limitations.

The contributions of this thesis are described in Chapters 5 and 6. Chapter 5
presents our approaches to detect encrypted attacks in SDN. First, we describe what data
are used to design our methods and how it is available and can be collected. Then, ap-
proaches for detecting generic anomalies in encrypted traffic is presented. After, we present
our methods to detect specific attacks in encrypted SDN flows, which are port scan and
DoS. Chapter 6 reports the results of our methods2 based on a case study performed in a
controlled environment. First, the used network topology and technologies are described.
Then, we show a case study on this emulated network under a port scan attack. Later, we
inject an encrypted DoS attack on the same environment and analyze how our system acts
as a protection mechanism. Finally, Chapter 7 concludes the thesis, revisiting the main the-
sis contributions, describes limitations, sketches ongoing research and indicate some future
directions.

2We use method and approach as synonyms throughout this thesis.

23

2. BACKGROUND

This chapter introduces the main topics related to the approach proposed in this
thesis, i.e., SDN, protocols, cryptography, IDS/IPS. It also explains the main attacks in SDN
and also traditional networks found in the literature. Finally, network traffic (encrypted and
not encrypted) classification methods are presented.

2.1 Software-Defined Networking

Computer networks became an essential part of modern live, being a core compo-
nent, for example, in business, industry, health systems, security, education and entertain-
ment. Advents like Internet of Things (IoT) are connecting every kind of electronic devices
and control systems, increasing network requirements even more. This increasing number
of devices that are communicating through networks, like the Internet, require new network
models that are more flexible in configuration, implementations, management and more
hardware independent. During the last decades, the network infrastructure and protocols
evolution was restrained by some factors, such as vendor-specific technologies, compatibil-
ity with legacy technologies, and so forth. That network ossification is a significant barrier to
innovation, and disruptive approaches are demanded to offer alternatives to this stagnation.
Thus, traditional networks technologies are not sufficient to supply current communication
needs. Thus, the SDN concept arises as an opportunity to break the status quo, through
the separation of control logic from the underlying network devices. In traditional networks
the data plane, control plane and some applications are embedded in network devices. This
arrangement is separated in SDN, where the control plane and applications are logically
centralized [NTL+18] [KREV+15] [Shu13].

According to the Open Networking Foundation [Ope18a], the SDN architecture
(Figure 2.1) can be split into three functional layers: Application, Control and Infrastructure:

• Application plane (Application layer): is responsible for providing end-user networking
management, analytic and business applications that consume the SDN communica-
tion and network services, such as load balancing and firewall.

• Control plane (Control layer): is composed by a set of controllers that provide control
functionality, receiving instructions or data from the Application plane and relaying them
to the Data plane. It also extracts information from the Data plane (such as statistics
and events) and communicates that back to the Application plane.

• Data plane (Infrastructure layer): is composed by networking devices that control the
forwarding and switching for the network, including physical and virtual switches. Both

24

Application and Control planes communicate through a Northbound interface. Like-
wise, Control and Data planes communicate through a Southbound interface.

Figure 2.1 shows a comparison between traditional network architecture and SDN architec-
ture.

Figure 2.1 – Traditional network architecture vs SDN architecture

To provide and to optimize communication between the Control layer and the other
layers and to allow the SDN controller to be able to communicate with other controllers,
the SDN architecture is also separated into three main communication mechanisms: North-
bound, Eastbound/Westbound and Southbound [GBC16] [Ope] [Fou11]. Each kind of inter-
face enables different communication:

• Northbound interfaces: provide communication between the Application layer and the
controller. It also allows the connection with automated stacks used for Cloud manage-
ment, such as OpenStack [Ope18c] [KXF18] and CloudStack [Clo]. Currently, the Rep-
resentational State Transfer (REST) protocol [MZR14] is the most used in the North-
bound interface, being implemented by the main available SDN controllers [SEKC16].

• Eastbound/Westbound interfaces: provide communication for managing a distributed
SDN architecture, with several controllers sharing management data.

• Southbound Interfaces: Also known as control/data plane interface [HHB14], provides
Application Programming Interfaces (API) that are used for network control. The SDN
controller uses them to create and change forwarding rules in the Data plane devices,
like switches and routers. The Southbound interface is performed by some proto-
cols, such as NETCONF [GBC16], SNMP [Pre], OVSDB [IET13], I2RS [IET16], Border

25

Gateway Protocol (BGP) [CLLL16], LISP [RNME+15], XMPP [NS14], Control Element
Separation (ForCES) [HSDK15], OpFlex [SDYL+], and OpenFlow [MAB+08].

2.1.1 SDN protocols

Several protocols are available for communication in SDN. This section describes
some of the most used protocols for Southbound communication in SDN [GBC16]. Open-
Flow is currently a standard in SDN controllers and switches communication and is widely
used in the related SDN works (see Chapter 4). Therefore, OpenFlow will also be used in
the most experiments in this Thesis. However, other protocols are emerging as promising
alternatives and will also be described in this Section.

OpenFlow protocol

The OpenFlow protocol is intended to enable communication between an SDN
Controller and switches. It is an extensible protocol that provides mechanisms that can be
used to define additional protocol elements by network developers and managers, such as
new match fields, specific actions and port properties, to improve new network technologies,
collect network information, identify network issues and to define network behaviors. Open-
Flow also allows switch and controller vendors to work independently to create interoperable
SDN devices. The first version of OpenFlow (version 1.1) was released in February 2011
and the project is currently maintained and developed by the Open Networking Foundation
[Fou11]. OpenFlow enables a controller to make routing decisions periodically or in an ad
hoc manner, as well as translating them into rules and actions, by using a switch flow table.
Packets that are unmatched by the switch can be forwarded to the controller, which can then
decide to modify existing switch flow table rules or to define new forwarding rules [Fou11].
Currently, the OpenFlow protocol is a de-facto open SDN Southbound messaging standard
protocol that supports three message type modes, in which each one contains multiple sub-
types [Fou14] [Ope][Foub] [Fouc]:

• Controller-to-switch messages: used to manage or inspect the state of the switch
and they are initiated by the controller. It may or may not require a response from
the switch. The main messages are for features request/response, configuration re-
quest/set, modify-state, multi-part (used for collecting statistics from switches flow ta-
ble) and barrier request/reply.

• Asynchronous messages: used to update the controller of network events and changes
to the switch state, they are initiated by the switch to inform packet arrival, switch state
change, or errors. The four main messages are packet-in, flow-removed, port-status
and error.

26

• Symmetric messages: are initialized by the switch as well as by the controller and are
sent without a previous request. The main messages are Hello and Echo request/reply.

OpenFlow works based on three basic components: an OpenFlow-enabled switch,
a communication channel and a controller. This switch uses a flow table pipeline to forward
a sequence of packets, as shown in Figure 2.2. When a packet arrives on the switch (Packet
in), it tries to match the packet with rules in the flow table to perform some action, like forward
the packet or even drop it.

Figure 2.2 – OpenFlow switch pipeline

An OpenFlow switch is composed of flow tables that are responsible for maintain-
ing information about flows. Each flow entry contains match fields, counters and a set of
instructions that can be used to match arriving packets information [Fou14] [Foua]. A flow
table consists of flow entries, as shown in Figure 2.3. Each flow entry’s field data are used
to perform specific tasks, such as [Foua]:

• Match fields: which are used to match packets, based on the ingress port and packet
headers. Metadata specified by a previous table can also be used.

• Priority: used for matching precedence of the flow entry.

• Counters: which are updated when packets are matched and provide statistical data
that can be used for network management and activity analysis.

• Instructions: used to set or change actions or pipeline processing.

• Timeouts: which are time thresholds to consider flows as expired by the switch.

• Cookie: which consists of opaque data value chosen by the controller and it is used by
the controller to filter flow statistics, flow modification and flow deletion.

Match fields Priority Counters Instructions Time out Coockie

Figure 2.3 – Flow table entries

27

A flow can be dropped and actions can be taken during the whole pipeline. In order
to keep the flow table updated, flow entries can be removed via a request message from the
controller, by the switch flow expiry mechanism or by using the switch eviction mechanism
[Foua] [Fou11]. Figure 2.4 shows a flow rule structure.

Rule

Packet + byte counters

In port VLAN
ID

Ethernet

Source Destiny Type

IP

Source Destiny Protocol

TCP

Source
port

Destiny
port

Action Statistics

1 Forward packet to ports
2 Encapsulate and forward to Controller
3 Drop packet
4 Sent to normal processing pipeline

Figure 2.4 – Flow rule structure

When a packet comes in, the OpenFlow switch performs some functions, such as
table lookup in the first flow table. This process can be extended to perform table lookups
in other flow tables according to network requirements and configuration. Therefore, packet
match fields are extracted from the packets, based on different header fields, such as Ether-
net source address or IP destination address. In addition, matches can also be performed
against the ingress port and metadata fields. Figure 2.5 1 shows a packet flow matching
process through an OpenFlow switch.

The OpenFlow switch specification supports a set of counters, like transmitted and
received packets, flow duration, received and transmitted drops and errors, collisions and
flow count [Ope18a, NZOM16]. Counters are maintained per table, per flow, per port and
per queue. Those counters can be collected periodically by a specific job in the controller
by using OFPT_STATS_REQUEST and OFPT_STATS_REPLY messages (OpenFlow v1.0,
v1.1, v1.2 and v1.3) or OFPT_MULTIPART_REQUEST and OFPT_MULTIPART_REPLY (
OpenFlow v.14 and v1.5) messages. Table 2.1 presents some of the counters available in
the flow table, being "O" Optional and "R" Required counters [Ope18a].

1We use the standard symbols provided by draw.io to draw our flowcharts throughout this thesis

28

Match in
table n?

Table
 miss flow
entry
exists?

Goto
Table n?

NoNo

No

Yes

Yes

Yes

 Update counters
 Execute instructions

Update action set
Update packet/match set fields
Update metadata

EndDrop packet

Execute
action set

Packet in
Start at table

0

Figure 2.5 – Packet flow through an OpenFlow switch

Network Configuration Protocol

The Network Configuration Protocol (NETCONF) [PTL15] is a network manage-
ment protocol that was developed by the NETCONF working group and published in 2006
as RFC 4741 [Grob] and later revised in June 2011 and published as RFC 6241 [IET11]. It
was developed to fulfill lacks on previous protocol (for example, Simple Network Manage-
ment Protocol (SNMP)) on providing operators, as they were originally designed for device
configuration and network monitoring only. Since the use of heterogeneous devices, which
can also be provided by different vendors, in the same network became very common in
networks, its management can be even more difficult for the operators. Yet Another Next

29

Table 2.1 – OpenFlow counters (values measured in bits)
SOURCE COUNTERS

Per Flow Table
Reference count (R - 32)
Packet lookups (O - 64)
Packet matches (O - 64)

Per Flow Entry

Received packets (O - 64)
Received bytes (O - 64)
Duration in seconds (R - 32)
Duration in nanoseconds (O - 32)

Per Port

Received/Transmitted packets (R - 64)
Received/Transmitted bytes (O - 64)
Receive/Transmitted drops(O - 64)
Receive/Transmitted errors (O - 64)
Receive frame Alignment errors (O - 64)
Receive overrun errors (O - 64)
Receive CRC errors (O - 64)
Collisions (O - 64)
Duration in seconds (R - 32)
Duration in nanoseconds (O - 32)

Per Queue

Transmitted packets (R - 64);
Transmitted bytes (O - 64)
Transmitted overrun errors (O - 64)
Duration in seconds (R - 32)
Duration in nanoseconds (O - 32)

Per Group

Reference count of flow entries (O - 32)
Packet count (O - 64)
Byte count (O - 64)
Duration in seconds (R - 32)
Duration in nanoseconds (O - 32)

Per Group Bucket Packet count (O - 64)
Byte count (O - 64)

Per Meter

Flow count (O - 32)
Input packet count (O - 64)
Input byte counter (O - 64)
Duration in seconds (R - 32)
Duration in nanoseconds (O - 32)

Per Meter Band In band packet count (O - 64)
In band byte count (O - 64)

Generation (YANG) is a modeling language designed for NETCONF that provides an object-
oriented approach and a human-readable format that helps on describing the data model
that is used in the NETCONF protocol [SAS+17].

Operators can use NETCONF, for example, to get and to set device configuration
data. Those data are encoded by using eXtensible Markup Language (XML) and transmit-
ted via Remote Procedure Calls (RPC). NETCONF configuration data are stored in three
different data stores [PTL15]:

30

• Running: contains the settings currently in use by the network device.

• Candidate: this data store is an optional device functionality that stores a set of config-
uration data that the controller can use to update the Running store data, thus changing
the devices operation.

• Startup: contains the configuration data used on device starting operation.

The communication between controller and network devices is made using the
client-server paradigm, with the controller acting as client and the network device acting
as server. As NETCONF does not provide a standard mechanism for device configuration,
each vendor can implement it in a different way. Therefore, it must be implemented on the
controller to provide interoperability among different devices on the network. However, NET-
CONF provides a set of standard messages to exchange configuration data between the
controller and devices, such as get-config and edit-config. These messages can be used,
for example, to request device configuration data stored in the Running store [PTL15].

Locator/ID Separation Protocol

Locator/ID Separation Protocol (LISP) was originally designed to solve the scalabil-
ity issues of the Internet default-free zone (DFZ) routing tables by pushing traffic engineering
practices to the identifiers space. It splits current IP addresses overlapping semantics of
identity and location into two separate namespaces: endpoint identifiers (EID) that are used
to identify hosts, and routing locators (RLOC) that are used to route packets. Although the
EID and RLOC can be defined as desired, for example MAC addresses, the official docu-
mentation suggests the usage of identifiers that are syntactically identical to current IPv4
and IPv6 addresses [RNME+15].

LISP can be used to decouple Data and Control planes, to provide network pro-
grammability and to centralize control through a mapping system and several components.
Thus, any existing IP network can incorporate common SDN resources by upgrading some
routers to the LISP tunnel routers and connecting them to a mapping system. Moreover,
as LISP can be implemented incrementally, it allows the implementation of hybrid networks,
i.e., to combine SDN and traditional networks. Thus, any existing IP network can incorpo-
rate common SDN resources simply upgrading some routers to the LISP tunnel routers and
connecting them to a mapping system. Besides, in contrast to the common SDN protocols
designed to operate primarily in a single domain, LISP allows SDN policies to be applied
in all domains if required. LISP elements also support the deployment of a programmable
SDN in a transit network, such as the Internet, which is a more complex task to perform by
using traditional SDN protocols [RNME+15].

31

Forwarding and Control Element Separation

Forwarding and Control Element Separation (ForCES) [HSDK15] is composed by
a framework and a protocol that aim to standardize the communication between Control
plane, which has Control Elements (CE), and Data plane, which has Forward Elements
(FE). Therefore, ForCES defines an entity called Network Element (NE), which is composed
by one or more CEs and one or more FEs that communicate by the ForCES protocol. The
distribution of NEs can be within a single device (local) or distributed in several devices.
Thus, ForCES provides a more flexible network management approach than traditional ones,
without changing the current architecture of the network. Therefore, an external controller
that is logically centralized is not required.

The Control and Data planes are separated, but can be kept in the same NE. FEs
and CEs can be developed in hardware or implemented virtually, and each virtual FE is cre-
ated using several Logical Function Blocks (LFB), which are interconnected components.
Each LFB implements a specific function, being able to receive, transmit or modify pack-
ages. The LFB are structured by a XML description of all information that can be exchanged
between the FEs and the CEs, so that an administrator can dynamically change and control
packet processing rules and policies.

Two layers are provided for the communication between FEs and CEs: Transport
Mapping Layer (TML) and Protocol Layer (PL). The TML uses protocols like SCTP, IP, TCP,
UDP, ATM and Ethernet and provides the communication channel. The PL controls the
messages being exchanged in the communication, and uses three communication channels
between the FE and CE with different priorities (high, medium and low). These priorities
are used to define the message set to be transmitted on each communication channel. The
FoRCES protocol messages have a common header where basically message type, Source
ID and Destination ID of the communicating elements are defined followed by the message
body. ForCES provides several types of messages, which are:

• Association messages: Setup, Setup Response, Teardown.

• Configuration messages: Config, Config Response.

• Query messages: Query, Query response.

• Event Notification.

• Packet Redirect.

• Heartbeat.

32

Open policy framework

The Open Policy Framework (OpFlex) [IET] is another interface proposal, similar
to ForCES. It is a policy-driven system that was designed to control a large set of physical
and virtual devices and aims to improve scalability by distributing the complexity of network
management back to the forwarding devices. This control protocol provides bidirectional
communication of policy, events, statistics and faults, by using XML, JSON and RPC over
TCP, for example.

The OpFlex architecture provides a distributed control system based on a declara-
tive policy information model and offers a standardized, open source mechanism for trans-
ferring abstract policies between a controller and devices. This architecture is composed
by:

• Policy repository: which is a logically centralized entity that defines the system policies.

• Policy element: which is a logical abstraction for a physical or virtual device that imple-
ments and applies the policies. These elements are used for requesting parts of the
policy when new devices are connected, disconnected or changed state.

• Endpoint Registry: which stores the current operation status of each device that is
connected to the network (endpoints). It receives data about each endpoint from the
policy element and can store it locally or in a distributed way.

• Observer: this component is used to collect statistics, failures and events of each policy
element through specific messages:

– Identity: which is the first message between a policy repository and a policy ele-
ment.

– Policy Resolution: returns a set of policies from a policy repository to a policy
element.

– Policy Update: used by the policy repository to send information about changes
in policies to a policy element.

– Policy Trigger: used by a policy element for policies resolution.

– Endpoint Declaration: used by the policy elements to update the endpoint registry
about new endpoints attached to the network.

– Endpoint Request: used to retrieve a set of identifies, such as the MAC address,
from endpoints. This message is sent from policy elements to an endpoint registry.

– Endpoint Policy Update: this message is used by the endpoint registry to inform
changes in the endpoint policies.

– State Report: this kind of messages is used by the policy elements to the observer
with data about failures, other events and statistics.

33

Protocol-Oblivious Forwarding

Protocol-Oblivious Forwarding (POF) is an enhancement to OpenFlow-based SDN
forwarding architecture [YWS+14] [LHA+18] that aims to improve the SDN programmability.
POF enables the development of new protocols and forwarding services that the SDN Data
plane can support without modifying network elements. A POF-enabled SDN network archi-
tecture is very similar to an OpenFlow-enabled architecture, composed of a Control plane
that has a centralized controller and manages the switches in the forwarding plane based on
flow tables. However, POF enables a more generic packet field description scheme for flow
matching and processing.

Yu et al. [YWS+14] proposed a basic POF Flow Instruction Set (POF-FIS) that
can be used to parse, edit and forward packets as designed and required by the controller.
POF-FIS is in fact an enhancement of the instructions and actions defined in OpenFlow l.x
[Foub]. Table 2.2 shows a basic POF Flow Instruction Set (POF-FIS), proposed by Yu et al.
[YWS+14].

Table 2.2 – A basic POF flow instruction set
CATEGORY INSTRUCTIONS

Editing

SET_FIELD, ADD_FIELD, DEL_FIELD, ALG, CALCULATE_CHECKSUM,
SET_FIELD_UPDATE_CHECKSUM, INC_FIELD, DEC_FIELD,
AND_FIELD, OR_FIELD. SRL_FIELD, SLL_FIELD, XOR_FIELD,
NOR_FIELD, NOT_FIELD

Forwarding GOTO_TABLE, COUNTER, OUTPUT, GROUP,
MOVE_PACKET_OFFSET, SET_PACKET_OFFSET

Entry SET_TABLE_ENTRY, ADD_TABLE_ENTRY, DEL_TABLE_ENTRY
Jump BRANCH, COMPARE, JUMP
Flow SET_FLOW_METADATA, GET_FLOW_METADATA, ORDER_ENFORCE

Each group of instructions is used to perform some specific task [YWS+14]:

• Editing: these instructions are used to edit packet data, which is very useful in the
forwarding process, as protocol rules usually need to edit the packet data, for example,
by writing, storing, copying and calculating. The most useful editing instructions are
ADD_FIELD and DELETE_FIELD (to insert or delete fields into or from the packet) and
SET_FIELD (sets packet data fields to any value, such as MAC address in Ethernet
headers).

• Forwarding: this set of instructions is used for packet forwarding. The entire forwarding
process for one packet in the network element can be composed by multiple processes
that can be separated into different flow tables according to the functionality. Thus, the
GOTO_TABLE instruction could be used to send the packet data from the previous
flow table to the next flow table, for example. The COUNTER instruction can be used

34

to count the number of packets that have already been handled, as well as count the
total length in byte unit, which is useful for storing and collecting flow statistics.

• Entry: These instructions allow the network elements to operate the flow entry by itself.
For example, the SET_TABLE_ENTRY instruction can be used to set the parameter
and the match information of flow entries. ADD_ TABLE_ENTRY and DEL_TABLE_ENTRY
are useful to delete or insert new flow entries into a flow table.

• JUMP and FLOW: JUMP instructions are used to change the packet data processing
procedure and FLOW instructions can be used to perform some operations on the
global status of the data flow.

POF-FIS was developed with the aim to provide flexible protocol rules implementa-
tion and to enable programmers and users to deploy services on a more easy way. POF-FIS
is independent of target platform, Northbound interface, and the high-level programming
language (programmers can use, for example, P4, C and Java to implement the forwarding
process [YWS+14]. POF handles network flows by flow instructions based on POF Flow
Instruction Blocks (POF-FIB), which are deployed by the controller through the POF South-
bound interface. POF controllers can be handled by Command-Line Interfaces, Graphical
User Interface and high-level programming language. SDN users can organize the POF-
FIS to POF-FIBs using the Northbound interfaces, and then download the POF-FIBs to the
network elements to design the forwarding application [YWS+14] [LHA+18].

2.1.2 Controllers

In SDN, intelligence, control and management is logically centralized in a single
entity called controller. The controller is a core component in SDN that is responsible for
making network decisions, such as add or remove entries in the switches flow table. It also
enables a physical abstraction, which simplifies the application development and services
that are related to network flow management. Thus, the SDN controller serves as a sort
of network operating system and acts as a network management software that centralizes
the management and control tasks, including, for example, security tools like IDS/IPS. This
centralization offers several advantages, such as [KREV+15]:

• Optimizes changing network policies through high-level programming languages and
software components. This simplifies the process and also improves accuracy, being
less error prone.

• A control program can automatically react to spurious changes in network state, keep-
ing high-level policies intact.

35

• The centralization of control logic in a controller with global knowledge of the state of
the network, simplifies the development of more sophisticated functions, services and
network applications.

• Allows to react automatically to any forged change on the network state, such as an
attack, keeping the high-level policy straightforward.

• Optimizes network security, by centralizing protection mechanisms that allows a quick
update of detection and protection rules that can be extended automatically to the
whole network, as well as to other networks through a East/Westbound communication
with other controllers.

In order to build a new SDN network, it is possible to use an existent controller or
even customize one. There are several controllers found in the literature. Khondoker et al.
[KZMB14] and Salman et al. [SEKC16] present a comparison of some of the main avail-
able controllers, such as: Pox [McC18], RYU [RYU18], Floodlight [Pro18] and OpenDaylight
[OPE18b].

Table 2.3 – A comparison of some of the main SDN Controllers
POX RYU FLOODLIGHT OPENDAYLIGHT

Interfaces SB
(OpenFlow)

SB (OpenFlow) +
SB Management
(OVSDB JSON)

SB (OpenFlow)
NB(Java REST)

SB (OpenFlow
Others SB
Protocols)
NB (REST
Java RPC)

Virtualization Mininet Open
vSwitch

Mininet Open
vSwitch

Mininet Open
vSwitch

Mininet Open
vSwitch

GUI Yes Yes (Initial Phase) Web UI
(Using REST) REST

REST API No Yes (For SB
Interface Only) Yes Yes

Productivity Medium Medium Medium Medium
Open Source Yes Yes Yes Yes
Documentation Poor Medium Good Medium

Language
Support Phyton

Phyton-Specific +
Message Passing
Reference

Java + Any
language
that uses REST

Java

Modularity Medium Medium High High
Platform
Support

Linux, Mac OS
and Windows

Most Supported
on Linux

Linux, Mac,
Windows Linux

TLS Support Yes Yes Yes Yes
OpenFlow
Support OF v1.0 OF v1.0 v2.0 v3,0

Nicira Extensions
OF v1.0
and above

OF v1.0
and above

OpenStack
Networking
(Quantum)

NO Strong Medium Medium

36

2.1.3 Packet processing in SDN

By using a specific protocol in SDN, such as OpenFlow, and a specific switch,
like OpenvSwitch, some features are provided and packet/flows process is defined. How-
ever, customization in those processes is usually not possible. For example, different flow
counters (statistics) are defined, but the implementation of new ones, if required, is not en-
abled. However, new technologies are emerging to overcome this limitation. Programming
Protocol-Independent Packet Processors, or P4 [P418], is a high-level language that allows
to program the Data plane of network devices, i.e., to program protocol-independent packet
processors [BDG+14]. Thus, using P4, it is possible to define how packets are processed
by the Data plane of a programmable forwarding element such as a hardware or software
switch, network interface card, router or network appliance. P4 is designed to specify only
the Data plane functionality of the target and works together with SDN control protocols, like
OpenFlow. P4 programs may also be designed to partially define the interface by which the
Control plane and the Data plane communicate. However, the Control plane functionality of
the target cannot be described using P4.

SDN protocols, like OpenFlow, explicitly specifies protocol headers on which it op-
erates. However, this set has grown in a short time frame, increasing complexity of the
specification as well as still not being flexible to add new headers. P4 aims to solve this
inflexibility by providing:

• Reconfigurability in the field: allowing to change the way switches process packets
once they are deployed.

• Protocol independence: switches should not be tied to any specific network protocol.

• Target independence: programmers can describe packet processing functionality in-
dependently of the underlying hardware specification.

Furthermore, in a traditional switch Data plane, functionality is defined by the manu-
facturer. In contrast, the Control plane manages the Data plane by handling entries in tables,
like routing tables. It also allows configuring specialized objects, like meters, and processing
control packets or asynchronous events, such as link state changes or learning notifications,
as shown in Figure 2.6.

In a nutshell, a P4 switch differs from a traditional switch in two basic concepts:

• Data plane functionality is defined by a P4 program. The Data plane is configured at
initialization time to implement the functionality described by the P4 program and has
no built-in knowledge of existing network protocols.

• Control plane communicates with the Data plane by using the same channels as in a
fixed-function device. However, the set of tables and other objects in the Data plane

37

P4-defined Switch

Data Plane

Control Plane

- Table
mgmt

- Controltraffic
- Packets

Data Plane

Control Plane

- P4
Table
mgmt

- P4 program

Traditional switch

Figure 2.6 – Traditional switch vs P4-defined switch

are defined by a P4 program. The P4 compiler generates the API that the Control
plane uses to communicate with the Data plane.

The main core abstractions that P4 can provide are:

• Header types: describe each header format within a packet, such as fields and sizes.

• Parsers: describe the sequences of headers within received packets, how to identify
them and the headers and fields to extract from packets.

• Tables: describe the association of user-defined keys with actions. Allows to gener-
alize traditional switch tables, enabling the programmer to implement routing tables,
flow lookup tables, access-control lists, and other user-defined table types, even with
complex multi-variable decisions.

• Actions: describe how packet header fields and metadata are manipulated.

• Match-action units: construct lookup keys from packet fields or computed metadata,
perform table lookup using the constructed key, choose and execute actions.

• Control flow: describes packet-processing on a target, including the data-dependent
sequence of match-action unit invocations. It also can perform deparsing (packet re-
assembly) using a control flow.

38

• External objects: these are architecture-specific constructs that can be manipulated by
P4 programs through APIs.

• User-defined metadata: these are basically user-defined data structures associated
with a packet.

• Intrinsic metadata: metadata provided by the architecture associated with each packet,
such as port number where a packet has been received in.

P4 was designed to be protocol independent, and enables programmers to express
a set of protocols and other Data plane behaviors according to the requirements. Thus, some
inflexibility present on SDN Southbound protocols may be solved by using P4, such as, add
new flow counters to compute switch flow statistics that can be requested by the controller.
This can be useful, for example, for developing new IDS methods or even improve them.

2.2 Cryptography

This section describes some basic concepts on cryptography, which are the most
used encryption protocols and why cryptography is used for securing data on communication
through networks, specially on the Internet.

Cryptography is the science of writing secret code. The messages to be encrypted,
called plaintext, are transformed by a function that is parameterized using a key. The result
of this encryption process is the ciphertext, which will be the transmitted data. An intruder
may be able to hear and to accurately copy the complete ciphertext, but as the intruder does
not know the decryption key, data will still be protected [FS03] [KR16] [VMC08] [NZOM16].

According to Kumar et al. [KR16] and Ferguson et al. [FS03], a lot of encryption
techniques are used on communications to provide security. Encryption algorithms can be
categorized in two main groups:

• Symmetrical Encryption: only one secret key is used both to cipher and decipher mes-
sages. Thus, sender and receiver should know the secret key. Some examples of
symmetric encryption are Blowfish, AES, RC4, DES, RC5, and RC6. AES implementa-
tions, such as AES-128, AES-192, and AES-256, are the most widely used symmetric
algorithms nowadays.

• Asymmetrical Encryption: also known as public key cryptography, uses two different
keys to encrypt a plaintext. The first is a public key, which is public available to anyone
that wants to send a message. The second one is a private key, which is kept secret
and only the owner knows it. This private key is used to decipher a message. Thus,
a message that was encrypted by using a public key can only be deciphered using

39

a private key, and a message encrypted using a private key can be deciphered us-
ing a public key. Asymmetrical algorithms include EIGamal, RSA, DSA, Elliptic curve
techniques and PKCS.

Asymmetric encryption is typically used in day-to-day communication channels.
Encryption aims to ensure that four information security principles will be respected:

• Privacy: only the authorized recipient can read the message content, i.e, to understand
a message the decipher key is required.

• Authentication: the recipient must be able to identify the sender and verify that it was
him who sent the message. It proves their identities.

• Integrity: the recipient must be able to determine that the message has not been mod-
ified or altered from its original form during the transmission.

• Non-repudiation: ensure that the sender cannot deny the authorship of the message
and the message was received by the specified person.

Homomorphic encryption [BsC+16] is a promising way of providing security to the
data in which operations can be done on encrypted data itself, i.e., encrypted data can
be evaluated without decryption. Such schemes could help improving data confidentiality
and integrity, and could be adopted in several real applications, such as in public clouds,
financial, medical and genome data. However, researchers are still working to improve such
schemes due to its noise growth and complexity [BsC+16] [RV17].

2.3 Attacks on SDN

SDN is a new paradigm on computer networks, nonetheless it also contains old
problems and challenges that are present on other network technologies, specially related
to security. An attack can be defined as a set of actions that attempt to consume computer
system resources or to steal (or damage) any kind of data, regardless of whether successful
or not. A common attack that can lead to system crashes is DoS [MZR14]. An intrusion
attack can be defined as a set of actions that attempt to commit resources of a computer
system or numerous attempts to exploit any kind of information, regardless of whether suc-
cessful or not [BZ17]. A typical attacks classification could be as follows [BZ17] [PAGT07].
This classification is usually applied to traditional networks, but could also be extended to
SDN.

• Denial of service (DoS): an attacker overloads some computing resources so that it
can not handle legitimate requests.

40

• Remote to user (R2L): when attackers remotely try to gain access as an local machine
user, by sending packets to that machine over a network and exploiting vulnerabilities.

• User to root (U2R): an attacker is able to access the system with a normal user account
and then exploits system vulnerabilities to gain root access to control the system.

• Probing: an attacker scans networks, devices or applications to gather information and
discover vulnerabilities.

These attacks aim to corrupt the privacy, non-repudiation, integrity and authenticity
[Vac17] (see Section 2.2). An intruder can explore a lot of weaknesses on security systems,
protocols, applications or settings, by using specific techniques and tools. Moreover, it can
be performed based on social engineering [SCM09], where an attacker exploits a user who
can grant access to the resource (a password or other information that compromises the
security of the network and allows access to it), tricking them in order to reach the attacker
goals [Vac17].

When using intrusion techniques, attackers exploit vulnerabilities in the implemen-
tation of systems, services, protocols, and others. There are also the problems generated by
users and administrators, such as miss configuration and improper maintenance of the sys-
tems, inefficient passwords and outdated systems. Intrusion attacks are usually intended
to steal or damage data [Vac17]. Some examples of attacks that may be performed on
SDN are Port Scanning [AHR+10], FYN exploitation [GJW+14] and DoS [MZR14, AAG+15]
attacks. Section 5.1 discuss what attacks can perform against SDN.

2.3.1 Port scan

Port scan or port scanning2 is a very popular attack in SDN, mainly due to its
characteristic of gathering the victim information. Typically, it is used to discovery some
information about a target machine or system to perform another attack, i.e., a port scan
typically precedes another attack, which may be used to achieve a malicious goal [HPSR18].

Port scanning consists of sending several types of packets in order to know more
about a target host or network. Through the answers obtained from analyzing these packets,
the attacker is able to gather information that may help in future attacks. Some types of
information that can be discovered include (not only): the activity of the servers, information
regarding software used in the system, information about the firewall or network topology
[NTL+18].

Due to their nature, scans can easily create a large number of different streams.
According to Speroto et al.[SSS+10], there are three categories of scanning:

2We use port scan and port scanning as synonyms throughout this thesis

41

• Horizontal scan: when a source host scans a specific port on different target hosts.

• Vertical scan: when a source host scans several distinct ports of the same target host.

• Mixed scan: when there is a combination of vertical and horizontal scans.

Port scan attacks are typically performed by using specific tools, such as nmap
[Lyo18]. Publicly available lists of potential targets, such as those provided on PasteBin3 or
gathered by services like Shodan4 and registro.br5 could also be used.

2.3.2 Denial of Service attacks

A common attack that can lead to system crashes is a DoS attack [MZR14], which
can also be distributed (DDoS) using several different connections and machines [WCCL18].
This kind of attack aims to overload the target network, system or hardware on a way that
it denies legitimate requests. Attackers can also use encryption on DoS attacks to bypass
protection mechanisms and even to empower the attack. There are some different methods
to do a DoS attack, such as Apache2, Back, Land, Mailbomb, SYN Flood, Ping of death,
Process table, Smurf and Teardrop [PAGT07]. To perform a SYN flood attack, for example,
a malicious user uses the action of opening a connection using the TCP protocol, in which
a connection is opened just after finishing a three-way handshake. This handshake consists
basically in the client sending a SYN package to the server; this package is used to notify the
server that the client wishes to begin a connection; when the server receives this package,
it answers to the client through a SYN-ACK package, meaning that the server received the
connection request and it is waiting a confirmation from the client to establish the connection;
the connection is fully initialized when the client receives the SYN-ACK from the server and
answers to the server through an ACK. At this point the TCP connection is opened and both
sides can exchange information [DDZX16] [MZR14].

A malicious user, when performing a SYN flood attack, sends SYN packages to
the server, from several different computers, creating multiple requisitions. Once the server
receives the SYN requests, it responses with a SYN-ACK and waits for the clients ACK.
This waiting time is defined by the TCP protocol, and when the time out is reached, the
connection is dropped. Once the malicious user knows that the server will wait some time
before dropping the connections, this user will ask the server several new connections, and
once the server answers with a SYN-ACK package, the attacker will drop this package and
will ask for new connections. Hence, the server will be overloaded waiting to finish the

3pastebin.com
4https://www.shodan.io
5https://registro.br

42

connections, and the malicious user will consume the server resources, leading it to a DoS
[YZ08]. Denial of service attacks are based on three main approaches [NPSR16]:

• Volumetric attacks: these are the most used attacks and are based on flooding a target
with heavy traffic to exhaust its network bandwidth. The magnitude of this kind of
attacks is measured in bytes per second.

• State exhaustion/protocol exploitation: these methods are used to exhaust the re-
sources of devices by exploiting network protocols, in order to turn the network or
operating system unavailable. Its magnitude is measured in packets per second.

• Application layer attack: this kind of method exploits the application layer protocols in
order to crash the application or underlying a server. The magnitude of such attacks is
measured in requests per second.

Figure 2.7 shows a short classification of the most common DoS attacks [NPSR16].

DoS/DDoS Attacks

Volumetric Attack

Protocol Exploitation

or

State Exhaustion

Application Layer

- Smurf

- Fraggle

- NTP Amplification

- DNS Amplification

- TCP State Exhaustion

- Ping of Death

- Push + ACK

- HTTP Flood

- SMTP Attack

- UDP Flood

- ICMP Flood

Amplification Flooding

Figure 2.7 – DoS attacks

2.3.3 Insider attacks

Intrusion attacks can be classified according to their nature, motivated by insider
and outsider threats6 [WL06]. On one hand, outsider threats are generally outside the cor-
poration (rivals, enemies or criminals) and they have limited opportunity to carry out their
attacks. Outside attackers can only gain access by exploiting gaps or weaknesses in protec-
tion systems. On the other hand, insider threats have privileged access that enables them

6We use attacks and threats as synonyms throughout this thesis

43

to cause serious consequences, compared to outsiders. Normally, the access that enables
insider attackers to cause so much damage is also essential to enable them to do their pur-
pose. Moreover, the detection of such kind of malicious activity becomes even more difficult
if encryption is used.

Usually, insider threats can be classified by unintentional threats and malicious
threats. Unintentional threats are insiders who accidentally expose the organization data
or the whole organization Information Technology (IT) infrastructure. Malicious threats are
insiders who promote IT sabotage, theft of intellectual property or fraud [CMT12]. Malicious
insiders can be involved in different activities, such as unauthorized extraction, data exfiltra-
tion, tampering with data or resources of an organization, destruction or deletion of critical
data and assets, eavesdropping and packet sniffing with will intend and impersonation of
other users via social engineering [SD16].

The internal attacks may not be result of a single problem, but of a set of small
failures or vulnerabilities. Failures in safety procedures may allow users to find bugs that
allow access to materials and tasks that they would not have authorization to. Incomplete
or outdated documentation and poor access and permissions control can also contribute
to insider attacks [Vac17]. Furthermore, network architectures and current systems are
becoming more complex, making them even more vulnerable to this kind of attack, since
they are more difficult to manage and therefore it is easier for the manager to “forget” to set
some important security features in the network or system. One of the main motivations of
inside attackers, is the sale of sensitive data, for example, in banking or e-commerce, for
illicit enrichment [SD16] [WL06].

2.3.4 Other SDN threats

There are other attacks to an SDN infrastructure that could compromise an entire
system. Among the different attacks, which in some way can compromise integrity, on one
hand we can include: Data Modification/Forging, Traffic Hijacking, ARP Poisoning, LLDP
Spoofing and Lack of TLS Adoption. On the other hand, attacks such as, Controller Hijacking
and TCAM Exhaustion are focused on compromising the application availability [NPSR16].
A complete comparison on these attacks is shown in Table 2.4 [NPSR16].

Therefore, new network communication technologies must take care of security
issues. An unsecured network channel can bring a lot of financial and operational disasters
for a company. Privacy, integrity and authenticity are some of the most important concepts
to preserve in a network environment. The efforts to improve network security are growing
over the last years [KRV13]. IDS are examples of those systems that can help to protect
computer networks and systems [NTL+18].

44

Table 2.4 – Categorization of attacks in SDN

Attack Affected security
feature

Affects
data

plane

Affects
control
plane

Affects
southbound

interface
Data modification/forging Integrity Yes Yes Yes
Traffic hijacking Integrity Yes No Yes
Controller hijacking Availability Yes Yes Yes
Denial of Service Availability Yes Yes Yes
Lack of TLS adaptation Confidentiality, integrity Yes Yes Yes
ARP poisoning Integrity Yes No No
LLDP spoofing Integrity Yes No No
Side channel attack Confidentiality Yes Yes No
TCAM exhaustion Availability Yes No No

2.4 Intrusion detection systems

One way to protect the network from attacks is to monitor traffic for malicious ac-
tivities or policy violations. In order to monitor, identify, register and inform administrators of
these systems and/or computer networks when some kind of malicious or suspicious activ-
ity occurs, Intrusion Detection Systems (IDS) [MdAN+11] are used. Those systems aim to
identify attack attempts and typically report alerts to an administrator and generate logs that
may be stored locally or centrally using, for example, a security information and event man-
agement (SIEM) [DRK+15] solution, which centralizes security logs from different protection
tools, like Firewall, IDS and Antivirus.

Several IDS proposals have been developed in the past [MdAN+11] [PAGT07] [MZR14]
[FNO+16] [EGdSSGSF16] [SSS+10]. These proposals can be classified according to sev-
eral characteristics, such as type of analyzed data (logs) or packet data, type of connection
(online or offline), or by the type of processing (centralized or distributed). However, the best-
known classification models are signature-based and anomaly-based IDS [KID17]. Several
detection methods for each model are found in the literature, and may be used individually
or even combined to improve detection and protection [FNO+16].

• A signature-based or misuse-based IDS performs detection by comparing arriving
packet data with packets stored in a database data. Those systems perform packet
analysis by checking the payload, looking for a set of characters that identifies the
attack. This character set is referred as the attack signature. However, packet inspec-
tion is difficult and even impossible to perform on networks with large bandwidth, e.g.
several gigabits per second [GZL06] or on encrypted packets.

• An anomaly-based IDS, in turn, compares incoming data with a “normality model” that
describes the normal behavior of the network. Significant changes on the behaviour of

45

flows, when compared with this model, are considered anomalies. For example, any
application performing an attempt to unauthorized access to a system resource or a
not expected traffic increase from a specific source or to a specific target. Examples of
models to represent the network behavior can use neural networks, statistical analysis
techniques, or probability theory. The main advantage of this type of detection is that it
also detects attacks from previously unknown flows [OML10]. However, there may be
instances where flows may be different from the expected normality but not necessarily
malicious, resulting in false positive alarms.

An IDS can be classified according to the scope of its operation [NZOM16] [ONMZ16]:

• Host Intrusion Detection System (HIDS): in this mode, the IDS is responsible for mon-
itoring the activity of a device, i.e., seeks to identify attacks or suspicious events that
compromise the security of this device, only analyzing the information transmitted over
the network intended for this device.

• Network Intrusion Detection System (NIDS): In this scope, the IDS is responsible for
analyzing activities involving all devices in the network. It analyzes the content trans-
mitted on the network and attempts to identify malicious activities.

• Distributed Intrusion Detection System (DIDS): an IDS may also work in a distributed
way. In this scope, several IDS instances run in the network to improve detection and
performance.

In order to perform packet monitoring, the most appropriate solution is to use an
IDS, which performs passive packets monitoring on the network. However, this type of
analysis does not allow actions to be taken to prevent such attacks, as it only performs
detection and generates alerts and logs. However, some studies [NTL+18] have improved
IDS to act as a reactive solution that allows protection, i.e. to act as an Intrusion Prevention
System (IPS).

2.4.1 IDS tools

Different IDS tools are used in other research, according to the literature [FNO+16]
[Roe99] [dSJAF+15] [NZOM16]. Those tools can be used for identifying threats, as well as
reacting to them. The most popular tools found in the literature, used specially for research
purposes, are Snort, Suricata and Bro. Those tools can also be used for validating methods
being developed by researchers, as they allow to customize rules and create new ones.
Those rules can be enabled or disabled as required.

46

• SNORT: the most popular IDS tool found in the literature is SNORT [Com18]. It is able
to perform real-time traffic analysis and packet logging on IP networks. It performs
detection based on protocol analysis, content searching/matching and can also be
used to detect a variety of attacks and probes, such as buffer overflows, stealth port
scans, DoS attacks, SMB probes and OS fingerprinting attempts, for example. Snort
has a database with detection rules grouped according to each type of attack. Those
rules can be activated according to the protection needs and can also be adapted
and new rules can be written and inserted in the rules database. It is an open-source
system and may be configured to work as a HIDS, NIDS and DDIS, as well as reacting
on malicious activity detection, working as an IPS [Com18] [FNO+16].

• Suricata: The Suricata IDS [Sur10] is a free and open-source NIDS. The project and
code is owned and supported by the Open Information Security Foundation (OISF),
whose goal is focused on security, usability and efficiency. Its engine can perform
real time intrusion detection, inline intrusion prevention, network security monitoring
(NSM) and offline files processing. Suricata provides powerful and extensive rules and
signature language for network traffic analysis, and has powerful Lua scripting support
for complex threats detection [Sur10]. It uses standard input and output formats like
YAML and JSON integrated with tools like existing SIEMs [DRK+15] and others.

• Bro: The Bro IDS project [Pax98] [Bro] has been developed by Vern Paxson, who
currently still leads the project in cooperation with researchers and developers at the
International Computer Science Institute in Berkeley and the National Center for Su-
percomputing Applications in Urbana-Champaign. It is an open-source system and
provides a comprehensive platform for more general network traffic analysis. Its user
community includes universities, research labs, supercomputing centers, and open-
science communities [Bro].

2.4.2 IDS data sets

Several data sets are available for evaluating attacks patterns and to validate detec-
tion methods. Some of the most used data sets in the literature are described next. Those
data sets were captured or generated over a realistic network configuration and provide la-
beled data. However, to the best of our knowledge, there is no IDS data set for SDN in the
literature.

• ISCX 2012: The Canadian Institute for Cybersecurity at the University of New Brunswick
[UNBb] has build several IDS data sets that are available for research purposes. One
such data set is the UNB ISCX IDS 2012 Intrusion Detection Data set [SSTG12]
[UNBc]. Real traces are analyzed to create profiles for agents that generate real traffic

47

for HTTP, SMTP, SSH, IMAP, POP3, and FTP. Labeled network traces, with full packet
payloads in pcap format are also included. This data set was generated by seven days
of network activity (normal and malicious), grouped in files that have follow activities:
a) Normal Activity only; b) Infiltrating the network from inside and Normal Activity; c)
HTTP DoS and Normal Activity; d) DDoS using an IRC Botnet; e)Brute Force SSH and
Normal Activity.

• CICIDS2017: The CICIDS2017 [SLG18] data set was also developed by the Canadian
Institute for Cybersecurity in the University of New Brunswick [UNBb] and contains be-
nign and the most up-to-date common attacks, which resembles the true real-world
data.The CICIDS2017 data set is composed of labeled network flows, with full packet
payloads in pcap format, the corresponding profiles and the labeled flows and Comma-
Separated Values (CSV) files for machine and deep learning purposes. Victim and
attacker networks information are also available. Some results of the network traf-
fic analysis using CICFlowMeter [UNBa] with labeled flows based on the time stamp,
source and destination IPs, source and destination ports, protocols and attack (CSV
files) are included and available. CICFlowMeter is a tool [UNBa] to provide flow anal-
ysis on network traffic, and generates CVS files with features as need, being specially
useful for machine learning and data mining methods.

• KDD Cup 99: The KDD Cup99 [DAR] is an IDS data set based on DARPA/MIT Lin-
coln Lab original data sets [MMIoT] and represents the activities at USA Air Force
LAN, including normal traffic and malicious activities that were injected. It has 4GB of
compressed TCPDUMP data of seven weeks network traffic, representing five million
connection records with 100 bytes each. In this data set, DoS, U2R, R2L and Probing
attacks [BZ17] were injected. It is an old data set, however, it is still usefully for detec-
tion methods evaluation. A list of features and attacks is provided, as well as labeled
and unlabeled data.

2.5 Encrypted traffic classification and analysis

Nowadays, different applications generate several traffic types with different service
and management requirements in modern networks. Thus, traffic classification plays a key
role in network management for identifying the data type, communication protocol, detecting
malware and to improve quality of service on traffic prioritization or restriction. Several net-
work traffic classification methods are available in the literature, which are usually based on
the knowledge of packet structure or communication patterns [VD15].

Initially, methods are distinguished according to classification input, classification
technique and classification output. The classification input is related to traffic characteris-

48

tics, such as hosts, packets and flows. Table 2.5 shows the main characteristics that can be
used as classification input.

Table 2.5 – Classification input level
CLASSIFICATION INPUT

Traffic payload Use of application data

Traffic properties

Host community
Host
Flow
Packet

Graph metrics (diameter, connection degree)
Number of connections, opened ports
Flow size, flow duration
Packet sizes, inter-arrival times

Hybrid and miscellaneous Combination of inputs, external knowledge

The classification technique defines the method used for classification, such as
payload inspection (using, for example, Deep Packet Inspection (DPI)), machine learning
and statistical-based methods. Table 2.6 shows the main techniques used for traffic classifi-
cation [VD15].

Table 2.6 – Classification input level
CLASSIFICATION TECHNIQUE

Payload inspection DPI, examination of first N bytes

Graphical
techniques

Graphlets
Motifs
Social networks

Relationship between features (ports, addresses)
Patterns of communication
Graph of communication

Statistical
method

Basic statistical
Heuristics
Profiles

Probability density functions of, e.g. packet sizes
Port-based classification
Host profiling, usage of packet sizes and direction

Machine learning
algorithm

Supervised

Non-supervised
Semi-supervised
Reinforcement learning

Hidden Markov models, naive Bayes, k-nearest
neighbour, support vector machine
Clustering of unlabeled traffic, k-nearest neighbour
Clustering of mixed traffic, k-nearest neighbour
__

Hybrid and miscellaneous Combination of methods, external knowledge

The classification output identifies how traffic objects, such as packets and flows,
can be mapped to traffic classes, like application types or protocols. These classes may
have different granularity according to the ISO/OSI reference model, being, for example,
application protocols such as HTTP or even be more fine grained to identify the application
that generates the data, such as a Facebook chat. Table 2.7 shows some output traffic
objects and classes that classification methods can generate [VD15].

Accurate traffic classification methods that can identify the encrypted traffic type,
such as communication protocol, are a core part in analyzing network encrypted traffic. For
example, to identity TLS packets, methods based on the knowledge of the packet structure,
especially the unencrypted packet parts such as content type, version and length can be
used. Moreover, it can also be identified by analyzing its behaviour, such as the knowledge

49

Table 2.7 – Classification output level
CLASSIFICATION OUTPUT

Traffic objects
Host community
Host
Flow
Packets

Host community is assigned a class, e.g. community of HTTP serves
Host is assigned a class
Flow is assigned a class
Packet is assigned a class

Traffic classes
Traffic cluster
Application type
Application protocol
Application software
Fine grained
Anomaly

Bulk or small transactions
Game, browsing, chat
HTTP, HTTPS, FTP
Client software such as Mail client, FTP client or web browser
Skype voice call, Google search, Facebook chat
Port scan, brute-force attack

Hybrid and miscellaneous Combination of outputs or classes, external knowledge

of a number and approximate size of packets sent during the unencrypted initialization phase
[VD15]. Several tools that can be used for network traffic classification and also to distinguish
specific network applications are available. Typically, payload inspection techniques are
used on the traffic payload classification input to map flows to application protocols by those
tools. Examples of classification tools are:

• PACE [CEBBR14]: is a commercial classification library written in C that is able to
classify several protocols and applications, such as BitTorrent or Skype traffic. It uses
pattern matching augmented by heuristics, behavioural and statistical analyses.

• Cisco Network Based Application Recognition (NBAR) [CEBBR14]: it is also a com-
mercial tool that is primarily used on Cisco routers to provide quality of service and
security on the network. This tool is able to recognize stateful protocols, non-TCP and
non-UDP protocols.

• nDPI [CEBBR14]: this is an open-source classifier derived from PACE. It analyses
at most eight packets from each connection for classifying traffic, but each packet is
examined individually. nDPI has only an SSL decoder that extracts the host name from
the server certificate for encrypted traffic identification. Thus, nDPI is able to identify
specific network applications using these names.

• Libprotoident [AN12] [CEBBR14]: this is an open-source C library that inspects only
the first four bytes of a packet payload for each direction, being faster than others, but
also a less accurate method for traffic classification. A combined approach of pattern
matching, payload size, port numbers and IP matching is used in the classification
process [lCFCG18].

50

2.6 Chapter summary

This chapter introduced the key concepts associated with SDN, SDN security and
threats, IDS/IPS methods and datasets, cryptography and encrypted traffic management.
Initially, the SDN paradigm is described. We showed that the SDN architecture is composed
by three main layers, which are the Application layer, Control plane (also know as Con-
trol layer) and the Data Plane (also known as Infrastructure layer). Three communication
interfaces are also provided in SDN, being a Northbound, which provides communication
between the controller and its applications, Eastbound/Westbound, which provides commu-
nication among other controllers, and Southbound interfaces, which provide communication
between the controller and the Data plane (e.g. SDN switches). This chapter also described
the main SDN protocols, being OpenFlow the most used nowadays. Then a discussion
about the SDN controller and a short comparison of some controllers is presented. A brief
description about cryptography is made in Section 2.2. Next, several attacks are described
on a generic form, being included attacking methods found against traditional networks. This
is useful to understand attacking methods and what impact they have, which is important to
analyze security in SDN and also to design protection methods. The described attacks
could also be made using encrypted data, improving their malicious purpose because the
encryption and decryption process increases the processing power consumption, degrade
performance, limiting capacity and introducing latency in the network. Moreover, such data
could bypass protection systems, as such systems typically can not analyze encrypted data.

51

3. SYSTEMATIC MAPPING STUDY

Researchers across the world have been working to improve IDS. On one hand, a
lot of methods and systems have been proposed, described, implemented and tested. On
the other hand, limitations, vulnerabilities and new issues still remain. Hence, it is necessary
to improve our expertise and skills related to network security, specially NIDS, before we
further explore solutions in this area. Therefore, a Systematic Mapping Study (SMS) was
executed on network intrusion detection methods. This allowed us to identify the state of the
art and challenges related to NIDS, their vulnerabilities and security mechanisms. Based on
that, this thesis scope was defined.

The method used by the SMS was based in processes used by similar studies
conducted in Computer and Network Security (e.g. Bertoglio et al. [BZ17] and Software En-
gineering (e.g. Peterson et al. [PR06]). Thus, a set of related papers available at ACM Digital
Library1, IEEEXplore2, Compendex3 and Scopus4 databases were analyzed and classified.
Those papers were selected through a search string obtained by specific research questions
established to this work. Figure 3.1 shows the main steps of our SMS.

3.1 Defining scope

The main goal of this SMS is to map the state of art on NIDS based on the published
research that is available in the main digital libraries. This process is helpful to identify which
are the main attacks, map the main methods used for network intrusion detection, their
limitations and open issues. It can be considered as a first step as the research for this
thesis has started.

3.2 Establishing research questions

Research questions (RQ) can be used as a guide to help researchers to define
research scopes. In this SMS, a core goal was to made a research about how network
protection systems act against malicious attempts and know how researchers are improving
them. Those questions can also be used to define a search string that can be used on the
search engines to retrieve related papers in a systematic way. Thus, the definition of the
research questions plays a core role in this work, and follow questions were established:

1https://dl.acm.org
2https://ieeexplore.ieee.org
3https://www.elsevier.com/solutions/engineering-village/content/compendex
4https://www.scopus.com

52

PROCESS STEPS OUTCOMES

Scope Review

Classification
Scheme

All Papers

Relevant
Papers

Systematic
Map

Definition of research
Questions

Search
Conduction

Screening of
Papers

Data Extraction and
Mapping Process

Keywording using
Abstracts

Start SMS
on NIDS

End SMS

Figure 3.1 – Systematic Mapping Process

• RQ1: Is NIDS a current relevant topic for research?

• RQ2: What techniques and methods have been proposed to improve NIDS?

• RQ3: What are the main NIDS tools?

• RQ4: What are the main limitations of NIDS?

3.3 Inclusion and exclusion criteria

The definition of the Inclusion Criteria (IC) and Exclusion Criteria (EC) are used
to select only works that are in the research scope, being useful to include all the works

53

publicized and also to reduce the number of papers that are out of scope returned by the
search engines through the search string. Thus, if a paper is classified in only one IC, it
will be included as a primary study. However, if a paper is associated to any EC, it will be
excluded. In this SMS the following IC and EC were defined:

• IC1: The primary study must propose an approach, technique, methodology, method
or tool for network intrusion detection.

• IC2: The primary study must address the use of NIDS approach, technique, method-
ology, method or tool to support one or more NIDS tasks.

• IC3: The primary study must propose a solution to prevent or to detect a specific
network intrusion method (attack);

• EC1: The primary study is not published from 1999 to 2015;

• EC2: The primary study is written in a different language than English.

• EC3: Studies that do not contain some type of evaluation, such as case study, experi-
ment, or proof of correctness. This evaluation must contain some kind of analysis that
shows the achieved results.

• EC4: Studies that present some NIDS approach, technique, methodology, method,
tool or framework, but do not provide sufficient information about its implementation or
evaluation;

• EC5: Studies that present some NIDS intended to hardware, like FPGA;

• EC6: Papers that are not completely available online;

3.4 Research strategy and search string

The key words of the research questions where extracted and used together with
the logical operators “AND” and “OR” to define a search string. This string was applied on
the chosen search database engines to retrieve the papers related to our research. It is
important to note that this string must be adapted according to the search engine.

This search string was applied only in engines that (1) have a web-based search
engine; (2) have a search mechanism that allows the usage of keywords; and, (3) con-
tain computer science papers. Our selection includes the ACM Digital Library, IEEEXplore,
Compendex and SCOPUS.

Logical operators were used to define the search string in order to apply the defined
terms for search the papers. “OR” operators were used to establish the relationship between

54

synonyms and similar terms, and “AND” operators were used to connect population, inter-
vention and outcome terms. The entire terms and their acronyms were used. Besides,
structured questions were used to compose the search string. This question structure is
show in Table 3.1.

• Population: published research papers on NIDS.

• Intervention: methods to identify network intrusion.

• Outcome: the expected results are the approaches in which network intrusion methods
are applied to from 1999 to 2015.

Table 3.1 – Definition of the search string
STRUCTURE TERMS SYNONYMS

POPULATION

Network security
Intrusion detection
Network Intrusion~
Network-based intrusion

IDS, NIDS, IPS, NIPS,HIDS

OUTCOMES Approach Method, Technique, Methodology, Detection,
Identification, Prevention

To extract the relevant data from the selected papers, we produced a form that
would help to the documentation and to organize the studies to this work. The following data
was extracted for each study:

• Database: ACM Digital LLibrary, Compendex, IEEExplore and SCOPUS.

• Source: full reference conference, book, journal name

• Title

• Abstract

• Authors

• Year

• Publication Type: Book Chapter, Conference, Journal, Symposium, Workshop, or Other

• Document Type: Article, Collection, Proceeding, Periodical, Technical Report, or The-
sis.

After executing the search string in the aforementioned search engines, a table was con-
structed with those information about the papers. Some databases provide a tool to export
the results from the search query to a comma-separated values (CVS) file. This tool was

55

very helpful to form the table with the papers list. Other databases do not have this tool, and
in this case it is necessary an extra effort to develop one or to construct the list manually.

The next step taken was the applying of the insertion and exclusion criteria over
the retrieved studies. To fit these studies in the proposed criteria, information like publication
year, paper title and abstract were read and analyzed. Additionally, similar or redundant
studies were discarded by selecting only the most recent ones. The output of this process
is the set of primary studies that are going to be addressed by this work. To further broaden
the range of material used by this work, relevant studies referenced by the primary studies
were also verified and, when appropriate, selected to be used in the systematic mapping as
well. The same criteria was applied over these referenced studies.

3.5 Selection process

As a structured work, this systematic mapping has been followed some steps. Our
selection process is divided in six steps:

• Step 1. Search databases: initially, strings were generated by means of the selected
keywords and synonyms. Initial selection: an initial selection was carried out based on
the defined IC and EC.

• Step 2. Eliminate redundancies: there were some redundancies since some stud-
ies were returned by different search engines. In this step, those redundancies were
eliminated and recorded.

• Step 3. Intermediate selection: the title and the abstract (reading the introduction and
conclusion when necessary) were read for each study returned by the search engines.

• Step 4. Final selection: In this step, all studies were completely read, and the same
criteria as in the intermediate step were applied.

• Step 5. Quality assessment: Based on the quality criteria, we evaluated the quality of
studies that were read in the final selection step. The quality criteria were evaluated by
two researchers, individually.

3.6 Results

This section describes the main results of this SMS. The search string was used
for querying four search engines (IEEExplore, SCOPUS, Compendex and ACM Library).
Together, the four engines returned a total of 1024 publications (including duplicates). After

56

inclusion and exclusion criteria were applied, 238 studies were selected to be read com-
pletely. To apply the criteria and select appropriate publications, the paper’s title and the
abstract were read and analyzed. Table 3.2 shows the number of publications retrieved and
selected according to each search engine.

Table 3.2 – Found and selected studies by each search engine
SEARCH ENGINE PAPERS RETRIEVED PAPERS SELECTED
IEEEXplore 825 179
ACM Digital Library 215 61
Scopus 18 9
Compendex 27 12

By reading the entire papers selected, it was observed that some of them are in-
tended to embedded systems, such as FPGA or SCADA networks. Others were written in
other languages than English, Portuguese or German. Some studies also have publicized
only the abstract. All those papers were excluded from the selection, resulting on 177 papers
that meet to the scope defined to this work (only high level software-based NIDS).

After the selected papers were read, the research questions could be answered,
as follow:

RQ 1: Is NIDS a current relevant topic for research? A key question to define a
research topic, is analyze if it remains a current research topic. A good approach to identify
it, is analyzing the number of works that were published on the last years. In this SMS,
we grouped the selected papers according to the publication year and could observe an
increasing number of works being developed in the last seventeen years.

RQ 2: What techniques and methods have been proposed to improve NIDS? To
answer this question, selected papers were also grouped according to their purpose, being:

• Framework: a NIDS framework is proposed/described.

• Survey: authors present a discussion off current NIDS.

• New method design, implementation and evaluation with results.

• New method proposal, being only a theoretical description. Evaluation of existing meth-
ods. IDS datasets evaluation or proposal or description.

• Approach/Framework for NIDS simulation and evaluation.

Methods based on artificial intelligence and machine learning are widely used to
develop new detection methods based in anomaly-detection. Hybrid approaches, applying
misuse and anomalies are also used in several works. Patterns are also used to define
a standard traffic model for the network, considering their systems and users, being pre-
sented methods that are able to detect deviations from this standard to identify attacks.

57

Another interesting technique is the use of multivariate analysis, such as Principal Compo-
nents Analyses (PCA). These works are intended to protect specif networks, being Wireless,
Smart grids, cognitive radio, virtualization, mobile networks, cloud, sensors, SDN, traditional
corporate IP networks, real time monitoring and web server.

RQ 3: What are the main NIDS tools? Several selected papers describe a variety
of NIDS methods and algorithms. Some of them, can be used by itself as a NIDS, however,
others should be integrated as a complement or as a rule (s) on a NIDS. The most standard
tools found in the studies were Snort, Bro and Suricata.

RQ 4: What are the main limitations of NIDS? The encrypted data analysis remains
as a limitation of the current NIDS, as only a few works that present an approach or method
to analyze such traffic were found. Another limitation found, is the inability of the methods
to analyze all the packets in high-speed networks due to time requirements. The high num-
ber of false positive alerts present in several works also is still a limitation for adopting such
methods in real networks. Thus, overhead, performance and high false positive alarms are
core issues to be solved in NIDS. For methods based on misuse, it may be a lag between
the time that a new attack is discovered and a new signature is created and applied to the
NIDS. Moreover, some attacks are geared for specific versions of software that are usually
outdated. By updating the signatures in order to consider current versions off this software,
signatures intended to the old versions may be changed or replaced by new ones. Thus,
outdated signature databases can turn the NIDS vulnerable if those softwares are not up-
dated to current versions. Noise on the network channel can also limit the IDS effectiveness.
This noise can consist of bad packets generated by software bugs and corrupt DNS data, for
example, can induce the IDS to generate a significantly high false-alarm rate, the so called,
false positive. Sometimes the number of real attacks is far below the number of false-alarms,
and therefore this real attacks are often missed and ignored. Finally, it is also important to
mention evasion techniques used by intruders to bypass the IDS, such as pattern change
evasion, address spoofing, avoiding defaults, fragmentation and coordinated low-bandwidth
attacks.

3.7 Discussion

The results show that the research community is making massive efforts to solve
problems related to NIDS. However, intruders and attackers are improving their methods and
challenges are still remaining with open issues. The most core challenges found are:

• Currently, NIDS are not able to analyze all packets and flows in high-speed networks,
when accuracy and performance are required. Usually, the methods developed for
NIDS found in the literature when used in real environments are a kind of bottleneck

58

on the network and therefore are not appropriate to be used, due to the overhead that
they inject to the network or system, high false positive rate and performance impact.

• The usage of cryptography is increasing nowadays and represents another big chal-
lenge for current NIDS, as they are usually not able to analyze such traffic. New net-
work technologies, such as SDN, are arising as a new paradigm, and could be used to
help on improving communication. However, security must be considered to allow the
usage of such technologies in real environments. Thus, SDN offers a lot of research
opportunities related to security.

3.8 Chapter summary

This chapter described the SMS performed for this thesis. The SMS output shows
that intrusion detection methods development remains a relevant topic nowadays, as an
increasing number of works was found. It also shows that the main limitation of current
IDS, found in the literature, is their inability to analyze encrypted data packets or encrypted
flows, and only a few works that address IDS for SDN were found. SDN may be adopted
on several applications, such as IoT (Internet of Things) [BAP+16] and Industry 4.0 [Fouf]
devices. Therefore, it is important to improve security in SDN, specially when encryption
is used, as the amount of encrypted traffic is increasing in the Internet and also in internal
networks due to aplications security needs.

59

4. RELATED WORK

In this chapter, we briefly describe some essential concepts that underlie our re-
search. The purpose of this chapter is to provide an overview of the state-of-the-art re-
garding methods for detecting attacks that can be performed using encrypted data and also
methods for traffic (encrypted and not encrypted) classification. To the best of our knowl-
edge, there is little work describing encrypted traffic analysis, classification and encrypted
malicious traffic detection, specially for SDN. Therefore, works intended to traditional IP net-
works are also included, as those approaches may be helpful for our research and as there
are only a few works that are focusing in SDN.

4.1 Port scan detection approaches

As a first step to perform a specific attack, usually a port scan is performed. By
lunching a port scan, attackers can discover some information, such as open ports and
applications that are running, about a target network or system that can be used on a specific
attack, such as a denial of service.

• The evaluation of different behaviors in an SDN environment is becoming a promising
approach to identify attacks. Ali et al. [AHR+10], for example, proposed an algorithm
based on packet content analysis to improve the anomaly detection and, thus, to avoid
an attack to an SDN infrastructure. Their proposal consists of a Progressive Security-
Aware Packet Sampling (PSAS) algorithm that enables an online inline anomaly de-
tector to achieve higher accuracy by sampling larger volumes of malicious traffic than
random sampling, without increasing the detection cost. The dataset to evaluate the
algorithm used traffic from a port scan and DoS attacks. For each analyzed packet,
a score that represents if the packet is malicious or not is given. That score is reana-
lyzed in each switch that the packet traverses. The packet is then considered malicious
depending on the score it achieves each time it is analyzed.

• Lagraa and François [LF17] proposed a solution to detect and to discover patterns of
port scans. In order to analyze a large amount of data, they proposed a model to
convert TCP packets into a graph containing packet information and their relations.
This information is grouped by the data receiving port. Although the results presented
are promising, performance and hardware requirements were not discussed.

• Considering overhead to an SDN controller, Zhang et al. [ZGYW16] proposed a solu-
tion to mitigate port scans in SDN networks using a technique called Port Hoping. Their
approach consists of dynamically mapping ports to unused ports. Consequently, it can

60

confuse potential attackers and increase the attack cost. Although measured over-
head was low (increase of 2.1%-4.9% on CPU usage), this approach did not stopped
attacks. Consequently, attackers could be able to continue the attacks using other
ports.

4.2 DoS detection approaches

Denial of service attacks are still evolving. Therefore, several researchers are ad-
dressing methods to detect and prevent such attacks in traditional networks and also in
SDN.

• Boite et al. [BNR+17] also proposed an IPS solution to detect DoS on SDN infras-
tructures. Their approach consists of an anomaly-detection IPS that uses an entropy-
based algorithm. To reduce overhead in the detection and prevention, their algorithm
relies on three main stages required to handle the security management function: mon-
itoring, detection and mitigation. Once a violation is detected in the monitoring stage,
new flow rules are installed into the switch with a high priority, hence new suspicious
packets will be discarded immediately. However, performance costs to implement their
solution in an SDN controller were not discussed.

• Jazi et al. [JGSG17] present a detection method of Http-based application layer DoS
on web servers. This approach is based on nonparametric Cumulative Sum (CUSUM)
algorithm. They goal is to analyze the impact of sampling techniques on detection
of application layer DoS attack, as in production environments detection is commonly
performed on a sampled subset of network traffic. Real traffic traces of application
level DoS attacks were used to validate the effectiveness of this approach. The results
also show that the most of sampling techniques developed specifically for intrusion
detection domain introduce distortion in the traffic that could impact detection.

• Osanaiye et al. propose a change-Point cloud DoS detection method using packet
inter-arrival time. Their approach is based on a change-point monitoring algorithm that
detects DoS flooding attacks against cloud services by examining the packet inter-
arrival time. This method uses both Flow-Based Classifier and the CUSUM algorithm
to detect cloud DoS flooding attacks, based on the packet inter-arrival time rate. They
argue that most DoS attacks are automated and thus usually have similar patterns that
can be distinguished from normal traffic patterns, and can therefore be tracked using a
CUSUM algorithm. Trace-driven simulation and empirical evaluation to detect changes
within traffic flows that have both normal and attack packets were conduced to validate
the proposed solution. Moreover, flooding attacks from CAIDA DoS benchmark dataset
and normal traffic trace from Auckland-VIII were used to validate the approach. Results

61

are indicating that optimal performance was achieved by CUSUM during 100 and 150
packet counts for normal flow to detect an equal amount of attack packets [OCD16].

• A One-Class NIDS for SDN-Based SCADA Systems is proposed by Silva et al. [EGdSSGSF16].
The authors discuss the usage of SDN in the deployment of next generation SCADA
systems and present a NIDS for SDN-based SCADA systems. In order to build this
NIDS, SDN is used to extract network information and is for monitoring the communi-
cation between power grid components. Statistics are collected from network devices
periodically, which are then processed by One-Class Classification algorithms. A DoS
attack was simulated and an accuracy of 98% was achieved in the results. Thus, the
authors argue that their approach can be effectively used to detect cyber-attacks tar-
geted against SCADA systems.

4.3 Generic encrypted attacks detection

Encrypted threats detection is a current topic that researchers are working on. Fol-
low, some research that aims to detect malware in encrypted traffic are presented.

• An approach to identify the most appropriate features and machine learning algorithms
that should be used on encrypted malware traffic classification is presented by Ander-
son et al. [AM17]. The authors conclude, based on experimental evaluations, that
the random forest is the most effective algorithm in such task. their analysis is based
on millions of TLS encrypted sessions collected over 12 months from a commercial
malware sandbox and two geographically distinct, large enterprise networks.

• Anderson et al. [APM17] present a research intended for detecting hidden malware in
TLS traffic. The authors discuss that TLS introduces a complex set of observable data
features that allow inferences about the client and the server. Based on experimen-
tal evaluations, they show that these features can be used to detect and understand
malware communication and behavior without data decryption, preserving the privacy
of the benign uses of encryption. A detailed study of TLS usage by malware and
enterprise applications is also presented. The authors provide a general analysis on
millions of TLS encrypted flows, and a targeted study on 18 malware families com-
posed of thousands of unique malware samples and tens-of-thousands of malicious
TLS flows. Finally, the research show that the performance of a malware classifier can
be correlated with a malware family’s use of TLS, i.e., malware families that actively
evolve their use of cryptography can be more difficult to classify, and the malware’s
usage of TLS is distinct in an enterprise setting. These differences can be used in
rules and machine learning classifiers to develop protection methods.

62

4.4 SDN attacks identification

As a new paradigm in computer networks, SDN also have several vulnerabilities
that may be used by attackers for malicious purposes. In the literature, some research are
addressing such vulnerabilities and are proposing protection methods. Although the major-
ity of those methods do not address encrypted attacks, their approaches are important to
understand existent protection and to evaluate and extend them in order to increase security
in SDN against malicious encrypted traffic.

• A Predicting network attack patterns in SDN using machine learning approach is pre-
sented by Nanda et al. [NZD+16]. In this work, the authors proposed machine learning
algorithm to predict the vulnerable host in SDN that may probably be attacked. C4.5,
Bayesian Network, Decision Table and Naive-Bayes learning algorithms are used to
predict the host that will be attacked based on the historical data. Based on results,
they argue that the use of machine learning algorithms to accurately predicting the
potential vulnerable host can help in defining new security rules for SDN controller so
that the attacks do not materialize. Experimental results show an accuracy of 91.68%
by using Bayesian Network, indicating that from the total 278,598 attacks generated
on the experiments, Bayesian network was able to accurately predict 254,834 attacks
[NZD+16].

• As DoS attack against controllers is one of the key security threats of SDN, a detection
method for a novel DoS attack against SDN controllers by vast new low-traffic flows is
presented by Dong et al. [DDZX16]. They proposed method is designed to detect the
DoS attack and to further locate the compromised interfaces the malicious attackers
have connected to. Initially, the flow events associated with an interface are classified,
then Sequential Probability Ratio Test is used to make decisions, which has bounded
false negative and false positive error rates. The DARPA Intrusion Detection Data
Sets are used to evaluate effectiveness and performance of the proposed methods. A
discussion is made and a comparison of the methods being proposed to three other
detection methods is presented, based on the percentage, count, and entropy of the
flows, respectively, showing that the developed methods are more effective in terms of
promptness, versatility and accuracy [DDZX16].

• Seeber et al. [SSR15] present towards an SDN-enabled IDS environment, an ap-
proach for redirecting suspicious traffic taking advantage of properties of OpenFlow in
SDN. The proposed approach uses the OpenFlow switch flow table rules set as a light
IDS that maintains a history of recurring events including involved IP addresses as well
as information from external sources, like public available black-lists, white-lists, geolo-
cation data and their severities. They method performs correlation of IP-to-Iocation

63

mappings to support the suspiciousness value of an event and additional consumer
triggered event lists. This value is computed based on the Common Vulnerability Scor-
ing System, including how unlikely a vulnerability is exploited and the source of an
attack based on the IP address. Thus, suspicious traffic is redirected to various IDS for
further inspection. The proposed method is able to drop bogus traffic and forward DoS
suspicious traffic to a specific DoS detection system. In addition, this system maintains
an attack history directly in the steering entity enhanced by existing up-to-date black-
lists and in a geolocation database. Results are presented as a Proof of Concept in a
laboratory environment, where real traffic traces were used [SSR15].

• Paladi [Pal15] describes Towards Secure SDN Policy Management, reviewing the
state-of-the-art for network policy verification for SDN deployments, identify existing
challenges and outline a secure framework for network policy management in SDN
deployments, aiming to contribute towards creating secure and trusted cloud deploy-
ments. The need for a comprehensive approach towards SDN policy management
is outlined, including generation, verification and enforcement of network policies. An
overview of the existing solutions is present and a set of challenges that are still found
in SDN are discussed.

• Giotis et al. [GAA+14] demonstrated that OpenFlow statistics collection and process-
ing may overload the control plane. Thus, they proposed an architecture responsible
for handling separately the data collection process from data flow monitoring. The
main attacks that were evaluated are DoS and Worm propagation. Port scan was also
considered, since it is usually performed prior to an attack. The attacks are detected
through system entropy change analysis. Their proposal consists of two algorithm
modules implemented on the NOX controller [SFF+13], one that is responsible to iden-
tify the anomaly and another to execute a mitigation task. However, their proposal does
not discuss whether their analysis may be applied to ciphered packets or not.

4.5 Traffic classification

Traffic classification methods are fundamental in network management. It is impor-
tant to identify the traffic in order to better define quality of service rules, predict future traffic
matrices and demands and also to detect anomalies in traffic behavior. Several methods
intended to traffic classification were found, however, only a few are addressing SDN flows.
Follow we briefly describe those methods.

• An identification and selection of flow features for accurate traffic classification in SDN
is presented by Silva et al. [dSMB+15]. An architecture to collect, extend and select
flow features that can be used for traffic classification in OpenFlow-based networks

64

is described to provide an extensive set of flow features that can be analyzed and
refined and to be capable of finding the optimal subset of features to classify different
types of traffic flows. Features are grouped as Statistical features, Scalar features and
Complex features. Evaluations are made in three different scenarios: DoS, FTP and
video Streaming. Their results show that when the optimal subset of features is used
in a PCA, the classification accuracy is 97.33% in a DoS scenario, 94% in FTP and
88.67 in a video streaming scenario.

• A tool support for the evaluation of anomaly traffic classification for network resilience
is presented by Silva et al. [dSJAF+15]. The authors discuss that traffic classifica-
tion can help in malicious traffic detection, as well as for handling the traffic accord-
ing to its class. Two algorithms for anomaly traffic classification based on machine
learning were implemented and analyzed to provide a toolset for the simulation and
analysis of anomaly traffic classification algorithms. This is helpful to identify the best
algorithms, configuration parameters and network policies, when different types of at-
tacks and anomalies are simulated. This toolset also supports the analysis and com-
parison of classification techniques. In this work, the authors have extend the PRe-
SET [dSJAF+15] toolset to be used for the investigation, comparison and analysis of
anomaly traffic classification algorithms based on machine learning. Evaluations were
made in a scenario that has DoS attacks.

• ATLANTIC is a another framework for Anomaly Traffic Detection, Classification, and
Mitigation in SDN developed by Silva et al. [dSJAFG16]. The authors discuss that
SDN provides propitious environments for anomaly classification schemes and show
that ATLANTIC can be used for categorizing traffic anomalies and using the information
collected to handle traffic profiles as required, such as blocking malicious flows. The
proposed framework uses information theory to calculate deviations in the entropy of
flow tables and then uses machine learning algorithms to classify traffic flows. Port
scan and DoS attacks were simulated to validate the proposed framework.

4.6 Encrypted traffic classification

As an increasing number of applications are using encryption on data communica-
tion, encrypted traffic classification becomes also a core task in current networks manage-
ment, improving traffic visibility, specially to better apply quality of service rules and also to
detect anomalies. In this section, some works related to such methods are presented.

• A novel algorithm for encrypted traffic classification based on sliding windows flow’s
first N packets is described by Liu et al. [LCCY17]. This method is intended for en-
crypted traffic classification, specially SSH and P2P traffic, based on sliding windows

65

and only considers first N packets of each flow classification algorithm. Thus, they
could reduce the flow characteristics feature dimension, as well as the number of pack-
ets in each traffic flow. The classification algorithm presented, called WFNP, selects
flow statistics feature. After, they use C4.5 classification method to classify the en-
crypted traffic. Experimental results, based on a dataset that was generated by the
authors, show that under a reduced dimension of encrypted traffic flow characteristics
and also a reduced number of each flow data packets, average classification accuracy
is around 95%.

• McGaughey et al. [MSSK18] presented a work with a systematic approach of fea-
ture selection for encrypted network traffic classification. This approach is based on
a statistical analysis technique and uses the fast orthogonal search (FOS) algorithm
to select a subset of features that allows to distinguish it from a large set of features
derived from the data. After, a k-nearest neighbor (kNN) classifier is then applied to
classify the network traffic using the features selected by FOS. The FOS algorithm se-
lected a subset of 12 features from a set of 2,839 original ones. They conclude that
the kNN classifier using these 12 features is more effective and accurate, presenting
106 fewer errors and reducing the computation time for classification in 81%, in com-
parision to experiments that uses a kNN on an arbitrary 44-feature set. The data used
for training step for developing this method was generated and collected on a typical
university network over a 24 hour period, and the testing data was captured from the
same network over a 24 hour period three days later. From these raw captures, en-
crypted traffic generated only by Dropbox [Dro18] traffic and was extracted by filtering
only traffic originating from or terminating on port 443.

• Research such as Dehghani et al. [DMKK10] discuss that recent applications are using
unpredictable port numbers, which turns port-based traffic classification methods not
effective. Thus, they proposed an approach based on Naive Bayes algorithm that uses
payload content and statistical flow information for real-time network traffic classifica-
tion. The authors argue that this method is suitable for traffic classification in real-time
networks due the usage of only a little part of flow statistics that is enough for traffic
classification. They used the MAWI dataset to validate the method and results were
present on classifying HTTP, SMTP, FTP, SSH, POP3 and DNS packets with more than
80% of accuracy.

• Zhang et al. [ZKF+17] discuss that the increasing usage of encryption protocols in
the Internet, such as Secure Sockets Layer and Transport Layer Security encryption
protocols, traditional internet traffic classification approaches based on port, IP and
packet content are not effective to identify the traffic flows. They proposed an ap-
proach to classify encrypted network traffic based on Metric Learning algorithms to
learn the adaptive distance metric for the multiple features that can be extracted from

66

the traffic. An artificial dataset was constructed for the training process and for vali-
dating the method based on tests that were performed. They also present results of
several state-of-the-art algorithms, such as Naive Bayesian classifier, Logistic Regres-
sion, Decision Tree and Random Forest to show that their method successfully learned
the adaptive distance metric of the features, and, therefore, it can take better use of
the characteristics of the features for classification.

• Auld et al. [AMG07] present a traffic classifier that is high accurate on application types
without any source or destination host-address or port information. This method uses
a Bayesian trained neural network. Training data with categories derived from packet
content and features were derived from packet streams that have one or more packet
headers to perform the training process, as well as the validation through result anal-
ysis. Thus, this method can provide classification without access the packets content,
being able to classify traffic by using only commonly available information. Traffic was
classified as BULK, DATABASE, INTERACTIVE, MAIL, SERVICES, WWW, P2P, AT-
TACK, GAMES and MULTIMEDIA in a dataset that was generated by the authors both
for the training and testing process.

4.7 Encrypted traffic analysis

As we discussed in previous sections, networks security becomes ever more im-
portant nowadays. As the usage of encryption is increasing, it is important to adopt methods
that enable traffic inspection and analysis even when the data are encrypted. This section
describes some methods that are being developed in this field.

• Ehsan et al. [MFH18] proposed a semi-supervised method based on graph theory
for classifying both encrypted and plain network traffics using statistical features. This
approach is based on means of concepts of graph theory, minimum spanning trees
and C4.5 decision trees for classifying traffic like SSH. This method utilizes clustering
algorithms and label propagation techniques. Initially, network flows are clustered and
labeled based on statistical features using graph theory and minimum spanning tree
algorithm. Next, some pivot data instances are selected for the expert to vote for their
classes, and the identified class labels will be used for similar data instances with no
labels. Finally, the decision tree algorithm is used to construct the classification model.
The experimental results show that the method was accurate on classifying different
network flows with suitable performance. Different datasets were used for evaluating
the method, with are NLANR(AMP) [MFH18], MAWI [Groa], DARPA99 [MMIoT] and
Moore [MFH18].

67

• A survey of methods for encrypted traffic classification and analysis is presented by
Velan et al. [VD15]. The authors present existing approaches for classification and
analysis of encrypted traffic, describing the main encryption protocols. Payload-based
methods, which use knowledge of a packets’ structure, and feature-based methods,
which use characteristics specific to the protocol flow, are described. They also show
that data extracted from the initiation of an encrypted connection and the protocol
structure can be used for traffic classification and analysis. Some discussion about
advantages of classification methods described in the survey is also made, such as
the method’s ability to identify the encrypted application protocol and the encryption
protocol. A comparison of the surveyed feature-based classification methods, as well
as they weaknesses and strengths, is also presented.

• Cisco [Cisc] is a big networks devices and technology vendor. Recently, the company
publicized a white paper about encrypted traffic analysis that describes their strat-
egy to manage encrypted traffic and detect malware in such traffic. Some products,
such as Stealthwatch [Cisc] have been put on the market. Cisco’s encrypted traffic
management and encrypted malware detection approach is based on the extraction
of metadata from packets and flows that are used in different classification methods
that use, for example, new encrypted traffic data elements in enhanced NetFlow by
applying machine learning and statistical modeling. Machine learning algorithms are
used to pinpoint malicious patterns in the encrypted traffic to detect threats and im-
prove incident response. Different data are used for such analysis, such as Sequence
of Packet Lengths and Times, byte distribution, Initial Data Packet, TLS records, TLS
record lengths, TLS record times, TLS record types, TLS handshake types, TLS cipher
suites, TLS extensions, TLS extension lengths, TLS extension types, TLS extension
version, TLS key length, TLS key session ID and TLS random. As a part of their
strategy, those data are also used to define a baseline, i.e., to model a “normal” be-
havior for hosts and users. Then, the encrypted threats detection methods are based
on correlating traffic with global threat behaviors, identifying infected hosts, command
and control communication and suspicious traffic. It is important to note that these
methods are intended to cisco devices. Thus, the company also developed Cisco’s
unique Application-Specific Integrated Circuit (ASIC) architecture, which is used to ex-
tract these data elements without overloading the network and not affecting the net-
work’s performance [Cisa][Cisb][Cisc].

4.8 Discussion

This chapter presented several works that are related to our approach. First, differ-
ent approach for detecting port scan attacks are described. The methods found are useful

68

for detecting port scan, however, they can not stop or prevent such attacks and also do not
consider encrypted flows. After, generic Dos detection methods are described. Although
those approaches are not intended to SDN and also not to encrypted attacks, these strate-
gies are useful to our research, as they could be adapted and used as a partial detection
step. Then, works that are identifying generic malware in encrypted traffic are presented.
Next, methods for detecting different attacks in SDN are discussed, which are relevant to
better understand how other research are addressing protection in SDN, what limitations
they have and also what datasets they are using (usually own generated data).

Table 4.1 summarizes similar research that is intended to detect attacks. In the
first column, the research is identified. Then, the contribution, i.e., the research goal is
summarized in column "CONTRIBUTION", being DoS, Port scan, worms, insider detection
and/or prevention methods, prediction of hosts that may be attacked in the future and also
an overview of current security solutions. The column "E" identifies if the research mention
encrypted attacks. The column "DATA" shows that typically own generate datasets are used
in SDN research. Follow, the main technique used in the research is presented and the
environment that it is intended to is show in column "ENV.". Most of the research is intended
to SDN, as this thesis is also focusing in such networks. However, some approaches are
intended to traditional networks (TN) and webservices, due to they goal being similar to our
research. In the last column (Y) the year of publication is presented.

Finally, several traffic classification methods are discussed. Such approaches are
important in network management to provide more visibility about the network traffic, which
is helpful to design protection methods that can identify malicious data and anomalies. The
last subsection presents some works that are intended to encrypted traffic analysis, which is
a topic that is very close related to our research, as the proposed methods can be extended
for detecting encrypted attacks.

Table 4.2 summarizes research that discuss and present traffic classification meth-
ods. In the first column, the research is identified. Its contribution is summarized in column
"CONTRIBUTION", being presented methods that aim to classify traffic in encrypted and
non-encrypted only, methods that can identify specific data on encrypted packets, such as
SSH, P2P, SMTP, DNS, FTP and orthers. Other works are presenting methods that identify
malicious traffic over encrypted data, and there were also found research that intend to map
the most useful features for encrypted traffic classification. The column "ET" identifies if the
research is intended: a)N: to classify network traffic on non-encrypted data; b)C: to classify
encrypted traffic and c) CA: to classify and analyze encrypted traffic, identifying anoma-
lies, protocols and attack patterns. The column "DATA" shows that typically own generate
datasets are used in such research. Follow, the main used techniques in the research are
presented and the environment that it is intended to is show in column "ENV.". In the last
column (Y) the year of publication is presented.

69

Table 4.1 – Related works comparison
RESEAR. CONTRIBUTION E DATA TECHNIQUE ENV. Y

[AHR+10] Port Scan IDS N Own Algorithm based
on scores SDN 2010

[LF17] Port scan IDS N Own/
Darknet Graph analytics TN 2017

[AM17] Encrypted malware Y Own Approach based
on ML TN 2017

[APM17] TLS malware Y Own Analysis of
TLS malware TN 2018

[ZGYW16] Port scan IDS N Own Port hopping SDN 2016
[BNR+17] DoS IPS N Own Entropy SDN 2017

[DDZX16] DDoS IDS N DARPA Seq. Probability
Ratio Test SDN 2016

[JGSG17] DoS IDS N Real/
Traffic CUSUM Web/

Serves 2017

[OCD16] DoS IDS N CAIDA change-point using
inter-arrival time Cloud 2016

[NZD+16] Predict hosts that
may be attacked N LongTail Machine learning SDN 2016

[SSR15] DDoS IDS N Own
OpenFlow features
to correlate
previous incidents

SDN 2015

[Pal15] Overview of
current solutions N - Network policies

management
Cloud/
SDN 2015

[GAA+14] DoS,port scan,
worms N Own/

CAIDA Entropy SDN 2016

Although some of the works in Table 4.1 are intended to SDN, they do not consider
encrypted attacks. In this thesis, those works were analyzed to better understand attack de-
tection methods and to adapt them or even develop new ones that can be used for detecting
encrypted attacks in SDN, as encryption is being used increasingly. Moreover, most of the
traffic classification research presented in Table 4.2 is intended to traditional networks, and
some of them do not consider encrypted data. However, those approaches can be adapted
and are useful to define encrypted traffic classification methods for SDN. Thus, all the works
presented in this Section are important and related to this Thesis, although the most closely
related ones are those described in Section 4.7.

70

Table 4.2 – Traffic classification methods
RESEAR. CONTRIBUTION ET DATA TECHNIQUE ENV. Y

[dSMB+15]
OpenFlow features
selection to classify
DoS,FTP,video

N own PCA,DFT SDN 2015

[dSJAF+15]
Anomaly traffic
classification (DDoS,
worms and others)

N own Machine learning
SDN
TN

2015

[dSJAFG16]

ATLANTIC: Anomaly
traffic detection,
classification and
mitigation

N own
information theory,
machine learning,
entropy.

SDN 2016

[LCCY17]
New method for
SSH and P2P traffic
classification.

C own
Algorithm
based on first N
packets and C.45

TN 2017

[MSSK18]
Features selection
for encrypted traffic
classification

C own
k-nearest neighbor
and Fast
Orthogonal Search

TN 2018

[DMKK10]

HTTP, SMTP,FTP,
SSH,POP3 and
DNS identification
on encrypted traffic

C MAWI
Naive bayes on
payload content
and flow statistics

TN 2010

[ZKF+17]
Classification
method

C own
Metric learning
algorithm

TN 2017

[AMG07]

Method to classify
Bulk,database,P2P,
www,interactive,mail,
services,attacks,
games and
multimedia traffic on
encrypted packets

C own
Bayesian neural
networks

TN 2007

[MFH18]
classify SSH using
statistical features

CA

NLANR,
MAWI,
Moore,
DARPA

Graph theory,
C.45, minimum
spanning tree

TN 2018

[VD15]
Survey of available
methods

CA - - 2015

[Cisc]
Encrypted
malware detection

CA own
Machine learning
and statistics

Cisco
/TN

2018

71

The usage of cryptography is growing specially in enterprise network traffic, creat-
ing new challenges to security leaders on protecting networks and systems against enemies
that can hide malicious activities in encrypted traffic. Gartner 1 discuss that in 2019 80 % of
the Internet traffic will be encrypted and half of campaigns will use cryptography to conceal
malware delivery, data exfiltration and command and control activity [Cisc]. Thus, encrypted
traffic analysis is a core topic that must be investigated, as it is a key step on identifying
anomalies in such traffic, to provide more security visibility by performing real-time analysis
correlated with user and device information to analyze threats behavior in encrypted traf-
fic and contextual threat intelligence. Big network devices and systems vendors, such as
Cisco 2 are currently working on devices and systems that can analyze encrypted traffic for
detecting hidden malware in such data [Cisc, AM17, Cisa, Cisb].

1Gartner (gartner.com) is a global research and advisory company that provides insights, advice and tools
in IT security and others.

2Cisco (www.cisco.com) is a big network device and systems vendor.

72

73

5. DETECTING ENCRYPTED ATTACKS IN SDN

Several attacks can affect SDN architectures (see Section 2.3). Thus, this chapter
presents our protection methods for detecting encrypted DoS, port scan and generic attacks.
Several SDN components could be compromised. For example, the SDN controller and its
interactions with other SDN components (e.g. switch) could be affected by an adversary
through different attacks. Therefore, we first describe a generic attack modeling method to
better define and understand what attacks can be performed in SDN.

5.1 Attack model

In order to implement a protection system, it is important to define an attack model
to better understand how a target could be compromised. Thus, in this thesis we are using
the STRIDE (Spoofing, Tampering, Repudiation, Information disclosure, Denial of service,
Elevation of privilege) model [SWJ15], which is also applied in other research related to
SDN security [Foud] [DKMB15] and is suitable for our approach. STRIDE is also adopted in
traditional network security research [XTS+12] [CCAC11] [Tü17].

The STRIDE model considers the following attacks:

• Spoofing (S): when an attacker impersonates another legitimate user or program.

• Tampering (T): an attacker modifies application resources, such as in memory data.

• Repudiation (R): when users, legitimate or not, denies their actions.

• Information disclosure (I): the information/data are exposed and available to unautho-
rized person or system.

• Denial of service (D): an attacker overloads a system resource or a network in order to
turn it unavailable.

• Elevation of privilege (E): a malicious user get privileged access to resources that
should be protected and restricted.

Each type of attack may affect specific parts of a network and/or system, i.e., may
have different goals that can, for example, impact some basic security components like au-
thentication, integrity, confidentiality, availability and non-repudiation, as discussed in Sec-
tion 2.3. Typically, those attacks are intended to specific targets in SDN, such as the con-
troller, a network element (NE) or an application that is running on the controller. Table 5.1
shows how different attack types can affect SDN, according to the STRIDE model [SWJ15]

74

[Foue]. The affected properties (authentication, integrity, non-repudiation, confidentiality,
availability and authorization) are described in Chapter 2.

Table 5.1 – STRIDE attack model applied to SDN
ATTACK TYPE AFFECTS SDN TARGET
Spoofing Authentication NE, Controller, Applications
Tampering Integrity NE, Controller, Applications
Repudiation Non-repudiation Controller
Information disclosure Confidentiality NE, Controller, Applications
Denial of service (DoS) Availability NE, Controller, Applications
Elevation of privileges Authorization NE, Controller

Although several attack types can affect SDN, in this research we focus on informa-
tion disclosure, which affects the system confidentiality, and DoS attacks, which affect the
system availability. Both attack types can be launched against an SDN network element, a
controller or even applications.

Information disclosure attacks against SDN typically precede another attack. This
can be made by different methods in SDN, depending on the target:

• Information disclosure on network elements. To perform information disclosure on
SDN network elements, e.g. a switch, an attacker could discover the switch storage
capacity by filling its flow table. Moreover, a port scan attack could also be used to
discover what ports the switch has and some information about its configuration and
vendor. Finally, statistical information could be collected by an attacker on the switch to
discover its capacity and traffic behavior. With this information, other types of attacks
could be lunched, such as a DoS, by flooding a low-capacity switch with a large number
of new bogus flows or send a large amount of data to ports that have weak forwarding
capability.

• Information disclosure on a controller. An adversary can get some important infor-
mation about an SDN controller, such as opened ports, services and applications that
are running and operation system versions by performing, for example, a port scan
attack. Typically, such attack is used to retrieve this information that allows to lunch
another attack, such as a DoS. Another risk of information disclosure in SDN related
to the exposure of cryptography keys used for privacy or authentication. Usually, the
controller holds keys that can verify switches identity. In SDN, those keys should not
be transferred through the network via messages. Braadland [Bra17] proposes a Key
Management scheme for Data Plane Encryption in SDN as an extension to the south-
bound communication protocol to address such vulnerability.

• Information disclosure on applications. To perform information disclosure on SDN
applications, an attacker could observe the message exchange between the controller

75

and applications to get important information, such as the application IP address. Thus,
to protect SDN applications from information disclosure, the communication between
the application and the controller should use encrypted messages.

behavior analysis

The main DoS attacks that can affect SDN networks are based on attacking a
network element (e.g. switch and servers), the controller or even applications running on
the controller. This can be done in several ways, also by using encryption to empower the
attack:

• DoS on network elements. In SDN, connected devices can be attacked on a similar
way that in traditional networks, i.e., by overloading hardware resources. Therefore,
protection systems should be used to monitor core devices, like servers. Another core
network element in SDN is the switch, which is a hardware that usually has limited
resources (e.g. storage capacity). Therefore, it can only store a limited number of
records in its flow table and an attacker could overload the switch’s memory on a way
that the flow table becomes full. Thus, the switch would not be able to add new en-
tries and would reply error messages to the controller as well as to drop legitimate
packets. The controller has to handle every useless new flow for flow entry creation,
which increases hardware resource consumption and can decrease the controller re-
sponsiveness to legitimate flow requests. For example, an attacker could perform a
DoS attack by changing the flow table entries on a way that multiple data flows from
different ingress ports are forwarded out from the same egress port, exceeding its ca-
pabilities. Another way to perform an encrypted DoS on an SDN switch, is to send a
large number of bogus messages/packets in a short time frame through the encrypted
channel between switch and controller, as the processing of such messages increases
the processing power consumption due to encryption and decryption processes.

• DoS on the controller. Attackers can compromise an SDN switch or application in
order to gather information about the controller, such as open ports and running ap-
plications. This could be done, for example, by performing a port scan attack. With
this information, attackers could overload the controller by exchanging a large number
of concurrent messages with the controller on the discovered ports and applications,
also performing a DoS attack. Usually, in centralized SDN networks, one controller
manages a large number of switches and applications and an attacker may be able
to overload this controller by sending massive useless packets. This process can be
empowered when encrypted data are sent through the encrypted channel between the
switch and controller, as the encryption and decryption processes increase the pro-
cessing power consumption. Whenever a packet arrives on a switch and a table miss
occurs (no flow entry that matches it is found) it is forwarded to the controller, which

76

starts a new flow creation process. Thus, an attacker could also be able to compro-
mise SDN switches to forward a large number of missed packets (flow table miss),
overloading the controller and performing a DoS attack. Another way to perform a
DoS against an SDN controller is to compromise running applications that continually
request hardware resources to the controller, such as CPU and memory, overloading
these resources.

• DoS on applications. Usually, applications that are installed in the control plane and
provide some service to SDN users and devices could also be overloaded by an at-
tacker on a way that those applications became unable to process legitimate requests
as required. Similar methods that are found for traditional networks [OCD16] [JGSG17]
[YY15] could be used to overload SDN applications.

5.2 Encrypted attacks detection possibilities in SDN

Usually, an SDN signature-based IDS (see Section 2.4) typically cannot analyze
encrypted packets, because they need to analyze the payload data that is encrypted. How-
ever, anomaly-based IDS (see Section 2.4) may be applied, using three main approaches:
protocol-based, modification-based or statistical-based [KGR14], that could be used not only
in SDN, but also in traditional networks. Figure 5.1 shows a possible taxonomy for methods
that can be used for detecting encrypted attacks. These methods are grouped according to
the basic approach:

• Protocol-based analysis. This approach, also know as stateful protocol analysis,
searches deviations from the packets in each state of the protocol. Universal profiles
that specify how a given protocol may or may not be used in data transfer are ana-
lyzed. They are based on the protocol specification of software and hardware vendors,
and also official protocols standard. However, since this type of approach only analy-
ses whether the protocol is being applied in a proper way, it is not possible to detect
attacks that are being performed at the application layer, which are the most widely
used. Therefore, a combined approach that first identifies the protocol, such as the
application protocol, and then analyzes whether it has a normal behavior or not. This
analyzes could take into consideration the protocol specification, for example, packets
length, inter-arrival time, bytes per packet and packets per second.

• Modification-based analysis. This approach to detect encrypted attacks consists on
two basic ideas:

– Changing the encryption protocol and infrastructure to detect attacks in encrypted
data on the network. Basically, the key (password) to cipher and to decipher the

77

Figure 5.1 – Taxonomy for encrypted attacks detection

data are distributed to the IDS. With this secret, the IDS can decipher the package
payload and analyze it. However, this technique can turn the network vulnerable
and the privacy principle may be broken. Therefore, such methods should only
be used for private networks, such as a private communication between different
branches of a company. In addition, it may consume a lot of processing power,
which may turn this method slow and even to make it impossible to apply in real
environments with large data traffic.

– Certificate pinning is another strategy that can be used for encrypted traffic man-
agement, to prevent malicious encrypted attempts. Usually, in the handshake
process, to establish an SSL/TLS connection a client can authenticate the server
by validating the server certificate. This validation process is based on the con-
firmation that the server certificate was issued by a known and trusted Certificate
Authority (CA). Thus, client devices or applications are previously configured to

78

recognize a trusted server certificate and drop flows/packets if a trusted CA can-
not be identified.

• Statistical-based analysis. It is also possible to develop encrypted attack detection
methods using statistical analysis. Such analysis is based on:

– Observable parameters (metadata) of encrypted data traffic, such as flow infor-
mation (e.g. the number of transmitted or received packets per second, bytes per
second, inter-arrival time and packets with errors).

– Network Behavior Analysis (NBA) [Koc09] methods to identify anomalies in re-
lation to a normal behavior established previously, using, for example, machine
learning algorithms. Some information, like source and destination IP address
and ports, the header fields and payload size can be used as input for such meth-
ods.

Statistical-based analysis for detecting encrypted attacks can be performed by using
methods based on statistical machine learning to identify anomalies in the network traf-
fic. Machine learning algorithms can be non-supervised, supervised, semi-supervised
and Reinforcement Learning (RL) [VD15]. Statistical methods usually are based on
traffic profiles, heuristics and basic statistical data. Those methods can be used to
retrieve information about packets, flows, communicating hosts, networks and also the
location of those hosts (e.g. country) to define rules for traffic management. Then,
detection methods can be used to:

– detect specific attack patterns;

– establish a normal traffic behavior or resource usage;

– detect anomalies in the traffic behavior or resource usage;

– traffic classification, which can be used to identify the packet protocol (e.g. trans-
port layer protocol, network protocol and even the application protocol). Fine-
grained methods can also be developed to identify more details about the traffic,
such as the application software or type.

5.3 Our approaches for detecting encrypted attacks in SDN

This section describes a lightweight anomaly-based IPS that uses the switch coun-
ters to detect and prevent port scan and DoS attacks to an SDN infrastructure, even if the
flows/packets are encrypted. Although several attacks could compromise an SDN network,
in this work we focus on DoS and port scan, since they are the most common attacks. We
also present an approach for detecting generic attacks in encrypted traffic that could be
applied against an application in SDN.

79

On SDN, the controller has a global view of the network and may block malicious
flows closer to their source. In the developed proposal, the controller manages and stores
the rules that define packet forwarding on the network in addition to collecting counters data
from SDN switches, as can be seen in Figure 5.2.

Controller requests
per flow counters

to connected switches

Switches
reply with per flow

counters

Controller stores
counters on local

database

Detection Module
find anomalies in
the stored data

Prevention stage
defines new rules

for the flow

Controller updates
switches' flow tables with

the defined rules

Anomaly
Detected

Yes

No

Collection Stage

Detection StagePrevention Stage

Figure 5.2 – IPS operation flow

Our solution was developed according to three basic stages. The first one is the
Collection stage, which performs data collection on the switches flow tables. Basically, the
controller requests per flow counters to the connected switches; waits for the switches to
reply with the per flow counters; and finally, the controller stores the counters in a local
database. In the second stage, detection is performed on the data collected on the previous
stage. Finally, in the third stage, the prevention method is implemented to react to attacks
based on the Detection stage results. In the last stage, if an anomaly is detected, then
new rules are defined and included in the switches flow tables. Then, the switches are
responsible for dropping new similar malicious flows based on those rules. Each of these
stages will be further described in the next sections.

5.3.1 Collection stage

As our protection methods are based on switches counters data, in the first stage,
a job periodically requests flow counters to the switches and stores them on a database.
This job, which is a script, and the database are located on the controller. The statistic
collection interval is a critical point to be considered. On the one hand, if the collection is
performed between wide time intervals, there will be a delay in the attacks detection. On
the other hand, if the time interval is too narrow, there will be an increase on traffic related

80

to collection requests. In this work, this interval was defined as three seconds, as it was
considered appropriate based on our test results, as this interval did not cause any network
overload. This three seconds interval is also the default value set by OpenDayLight (used
in the next Chapter on our experimental evaluation). This threshold can be set according
to the network and detection requirements in the get_counters() function (Method_A) and
TimeIntervalvalueinMethod_BandMethod_C.

Through an API, the controller sends a message to the switch asking for flow coun-
ters and the switch replies this message with one or more messages that contain all the
counters data. On the controller, an application reads these data and extracts the infor-
mation that will be used by the IPS. This information contains the source and destination
addresses, ports and the number of packets from each flow. The counters are updated in
the flow table every time a new packet is received. Those counters are used for generating
statistics, in order to monitor the number of packets and bytes of each stream, in addition to
the duration time since its inception.

5.3.2 Detection stage

In this stage, specific methods must be applied to perform detection against attacks.
According to our scope, we only present methods intended to port scan and DoS in this
section. However, other methods could be used in this stage based on the data collected in
the previous stage. A blacklist is also implemented on the controller, which is used to store
the source of flows that were identified as malicious.

Table 5.2 summarizes the methods being proposed in this thesis. The "DETEC-
TION" column shows the detection method to identify specific attacks showed in column
"ATTACK" when performed against a target, as described in column "TARGET". The last
column, shows what strategy is used to implement detection.

Table 5.2 – Methods being proposed in this thesis
DETECTION ATTACK TARGET BASED ON

METHOD_A Port scan Controller,
switch Statistics

METHOD_B DoS Controller,
switch Statistics, CUSUM

METHOD_C Generic attacks, insider applications, hosts
Statistics, ML,
protocol classification,
behavior analysis

81

A) Detecting port scan attacks

To perform port scan detection, the flow information stored in the database on the
previous stage is analyzed. We called it METHOD_A and each analysis consists on the
following steps [NTL+18]:

• Selection of stored flows that have a reduced number of transmitted packets (which
may characterize port scanning flows) and that have been generated in the last three
seconds;

• Grouping of the selected flows, by source and destination IP and destination port;

• Obtaining the number of flows with similar source and destination addresses in a small
interval that must be defined as required (for example, 1s). Eventual port scan attempts
may occur on any system, so a single stream cannot be considered an attack;

• Scan categorization (horizontal, vertical or mixed) based on source and destination
addresses, destination port and packet count;

• If a port scan is detected, the source IP is added to a blacklist. All the flows from an
address stored in this list will be dropped.

Only one port scan is not considered an attack attempt, so that, in order for a
stream to be considered an attack attempt, some rules have to be met, depending on the
type of performed port scan. For example, source IP addresses that have streams with
number of packets lower than a given threshold, and that have at least a number of target
hosts with same destination port will be considered an anomaly that represents a horizontal
port scanning. Thus, the source address is added to the blacklist.

We implemented this detection method as follow. First, a function getCounters()
collects the switch’s counters and store it in a database. Then, the required thresholds must
be set. After, a function called computeScansPerHost() performs horizontal port scan detec-
tion. Finally, the result of this function, stored in Scans_per_Host, is compared to the defined
threshold to perform detection. If this value is above the threshold, an horizontal port scan
attack is detected. Thus, writeBlacklist() function is used to write an entry in the blacklist,
defineDropRules() defines the flow must be discarded and an alert is send to networks ad-
ministrator and also logs are written by the function logAndAllertHorizontalScan(). No further
analysis is made and the algorithm stops. However, if no horizontal scan is detected, it is
still necessary to check vertical scans. Therefore, function computeTargetHostScanned()
is used to compute the number of scans on common ports and other ports, according our
weight-based method. If the total weigh computed (Target_Host_Scanned) is above the de-
fined threshold (15) an horizontal port scan attack is detected and same functions as used
when a horizontal port scan is detected are used to provide protection. The entire port scan
detection method is show in Algorithm 5.1.

82

Algorithm 5.1 Detecting horizontal port scan in SDN
Require: Target_Host_Threshold , Scans_per_Host_Threshold ;

getCounters();
computeScansPerHost();
if Scans_per_Host > Scans_per_Host_Threshold then

writeBlacklist();
defineDropRules();
logAndAllertHorizontalScan();

else
computeTargetHostScanned();
if Target_Host_Scanned > Target_Host_Threshold then

writeBlacklist();
defineDropRules();
logAndAllertHorizontalScan();

end if
end if

The number of target hosts needed to characterize the attack attempt can be ad-
justed according to the network requirements on which our solution will be used. In the
vertical port scanning detection, it is assumed that a source host performs the scanning of
several ports on the same destination host. In this case, source hosts that have streams
for different ports on the same target hosts may be recognized by this application as an
anomaly.

In order to detect a port scan, a weight-based method was created to allow greater
sensitivity to the attack attempts for the most used ports. Typically, the most common probed
ports, such as Telnet, FTP or SMTP, have a higher weight compared to other ports. The ports
that should have a higher probability to being scanned are 22, 23, 25 and 3389, as they are
the most scanned ports according to the statistics of incidents reported by CERT.br [CER18].
However, this group of common ports must be defined, as required by the network.

Our detection method computes the sum of the total weight from flows of the same
source and destination. If this sum exceeds a threshold, the flows are considered as port
scan, then the source IP is added to the blacklist. This threshold must be properly set ac-
cording to the network, as a higher threshold may reduce the method effectiveness, since an
attacker may be able to perform more scans before being detected, and a lower threshold,
could compromise legitimate access and present a high number of false positive detection.
Whenever the sum of weights from flows of the same source and destination exceeds the
threshold, an attack may have been detected, and the source address is added to the black-
list. Equation 5.1 is used for computing the amount of connections or attempts from a given
source to be considered as a port scan. The calculated value TotalWeight is compared to
the defined threshold for detecting a port scan.

83

TotalWeight = CSP_Weight * CSP + OSP_Weight * OSP (5.1)

Where:

• TotalWeight is the value being calculated to compare to a defined threshold for detect-
ing a port scan attack

• CSP indicates the number of scans on common ports

• OSP the number of scans on other ports

• CSP_Weight is the weight of common scanned ports

• OSP_Weight is the weight of other scanned ports

For mixed port scans, both assumptions already mentioned must be considered. Our IPS
analyses the source hosts that attempt to establish connections on at least the value set
for the threshold Target_Host_Threshold hosts and at least one of these hosts must also
present a sum of vertical port scan weights higher than the threshold set for TotalWeight in
Equation 5.1. In a nutshell, if Target_Host_Threshold hosts have ports scanned and at least
one of these has a different port scanned, it is considered a mixed port scan [NTL+18].

B) Detecting denial of service attacks

A common attack that an adversary can perform in SDN is a DoS. Thus, our ap-
proach is intended to detect such attacks against the switch and controller when an attacker
sends a large number of bogus OpenFlow packets in a short time frame through an en-
crypted channel. Usually, when an SDN switch or a controller is under such attack, there
will be a burst increase in packets sent and also in processing power consumption due to
the encryption and decryption process. Silva et al. [dSMB+15] present a study that identifies
the most appropriate flow features that can be used to classify DoS attacks, FTP traffic and
video streaming.

Although several features can accurately represent DoS flows, we chose the num-
ber of packets per second and the number of bytes per second. We chose those features
to use as input in our detection method due to the characteristics and particularities of how
such attacks can be performed, and based on experimental evaluations (see Section 6.3).
Each feature is computed individually, and an attack is detected if at least one computed
feature observed on the analyzed samples has an abnormal behavior. Those features can
be requested on the switches flow table (counters) in SDN, and could also be computed or
even collected on traditional networks MIBs (Management Information Base) [XC18] through
SNMP, for example. To detect such attacks, we developed a method that we called as

84

METHOD_B. This method is based on the CUSUM algorithm [MRFFFRAB15], which is typ-
ically used as a sequential method to detect anomaly traffic behaviors [JGSG17] [OCD16].
It is based on adding the difference between the current sample value and the collected
samples average, as presented in Equation 2, where:

• C_i: is the current value of the cumulative sums

• C_i-1: the previous value of the cumulative sums

• X_i: is the value of the current sample being computed in the CUSUM

• Average_X: is the average value of the samples that have already been computed

• N: is the number of samples

• i: is a counter for the number of samples

C_i = C_i � 1 + (X_i � Average_X) for i = 1, 2, 3, ... N (2)

The CUSUM algorithm concept is that its computed value over a samples sequence
during the normal condition is negative and only becomes positive when a significant change
occurs [MRFFFRAB15] [CB15] [OCD16]. Hence, we customized this assumption on a way
that the monitored features can be used for detecting encrypted DoS on a switch or a con-
troller in SDN. Thus, we consider that the CUSUM value during a normal traffic behavior
must be lower than a defined threshold. When the CUSUM value is above this threshold,
the sample is considered abnormal. However, the method only detects a DoS attack when
it exceeds a predefined anomaly samples threshold. Based on this behavior, a high false
positive rate is avoided, as only one anomaly sample can be an outlier, which is caused
by the network and does not implies that an attack is happening. First, we use the selected
features (bytes per second and packets per second) fetched from the switch in the Collection
stage, individually, as input in our detection algorithm. The following thresholds must also be
defined, according to the network requirements:

• Thresholds used to compute bytes per second:

– C_Threshold_BS: the maximal difference percentage on bytes per second be-
tween a sample and the average of samples

– Max_Anomaly_Samples_BS: the bytes per second samples percentage that are
above the defined threshold C_Threshold_BS

– Time_Interval: the time interval to analyze bytes per second samples (in seconds)

• Thresholds used to compute packets per second:

85

– C_Threshold_PS: the maximal difference percent on packets per second between
a sample and the average of samples

– Max_Anomaly_Samples_PS: the packets per second samples percent that are
above the defined threshold C_Threshold_PS

– Time_Interval: the time interval to analyze packets per second samples (in sec-
onds)

METHOD_B performs detection based on those thresholds and stored samples.
Each time an abnormal sample is found, that is, the computed CUSUM value is above the
threshold, a counter is incremented and the sample value discarded from the CUSUM com-
putation so that the following samples can be correctly analyzed, because only one anomaly
sample cannot be considered an attack (it could be some noise or failure, for example).
However, if the computed anomaly samples number in a time frame reaches the threshold,
an attack is detected.

In order to compare the results from the CUSUM algorithm, we also have devel-
oped a method that only computes the difference between the sample being analyzed and
the average of samples that have already been computed and considered normal traffic be-
havior samples. This method produced results that are similar from the CUSUM algorithm.
In our experiments (see Chapter 6), we have observed that traffic behavior, i.e., normal and
anomalous, can be characterized by this difference in relation to a defined threshold. Thus,
in this method we also use the selected features (bytes per second and packets per sec-
ond) fetched from the switch in the Collection stage, individually, as input in this detection
algorithm. Hence, METHOD_B performs detection based on those thresholds and stored
samples. Each time an anomaly sample is found, that is, the computed difference is above
the threshold, a counter is incremented. However, if the difference between the sample that
is being analyzed and the average of samples that have already been analyzed is lower than
the threshold, this is considered a normal behavior and the anomalous samples counter is
not incremented. If the computed anomaly samples in a time frame reaches the threshold,
an attack is detected. This anomalous samples threshold must be set properly according
to the network, because only one anomaly sample (or only a few) cannot be considered
as an attack (it could be some noise or failure, for example). The number of samples that
are analyzed is defined by the values set for the time interval to analyze packet-per-second
and byte-per-second samples, and the collection interval is defined in the Collection stage.
Follow thresholds must also be defined, according to the network requirements:

• Thresholds used to compute bytes per second:

– D_Threshold_BS: the maximal difference on bytes per second between a sample
and the average of samples in relation to the samples average (in percent)

– Max_Anomaly_Samples_BS: a threshold for byte-per-second samples that are
above the defined threshold D_Threshold_BS (in percent)

86

– Time_Interval: the time interval to analyze byte-per-second samples (in seconds).

• Thresholds used to compute packets per second:

– D_Threshold_PS: a threshold value for the maximal difference on packets per
second between a sample and the average of samples (in percent)

– Max_Anomaly_Samples_PS: the packet-per-second samples that are above the
defined threshold D_Threshold_PS (in percent)

– Time_Interval: the time interval to analyze packet-per-second samples (in sec-
onds)

Thus, our DoS protection method is composed by four main steps, being:

• Analyze packet-per-second by our customized CUSUM

• Analyze bytes-per-second by our customized CUSUM

• Analyze packet-per-second by computing difference between a sample and the aver-
age of samples

• Analyze bytes-per-second by computing difference between a sample and the average
of samples

In each step, detection is performed by routines computePSCUSUM() and computePSD-
iff(), which compute the cumulative sums strategy and difference over packet-per-second,
respectively, and functions computeBSCUSUM() and computeBSDiff(), which compute the
cumulative sums strategy and difference over bytes-per-second, respectively. Each routine’s
has an boolean output (PSCUSUM, BSCUSUM, PSDiff and BSDiff) that indicates if an at-
tack was detected. If at least at one routine an attack is detected, the algorithm proceeds
to protection, i.e., write an entry in the blacklist (writeBlacklist()), create drop rules for the
flows identified as malicious (defineDropRules()), writes a log and generates an alert to the
networks administrator (logAndAllert()). However, if no attack is detected, the routine define-
ForwardRules() indicates the controller that forwarding rules can be defined. The entire DoS
detection process is shown in Algorithm 5.2.

87

Algorithm 5.2 Detecting encrypted DoS in SDN
Require: Time_Interval , C_Threshold_BS, C_Threshold_PS, D_Threshold_PS;
Require: D_Threshold_BS, Max_Anomaly_Samples_BS, Max_Anomaly_Samples_PS;

getCounters();
computePSCUSUM();
computePSDiff ();
computeBSCUSUM();
computePDDiff ();
if (PSCUSUM = true or BSCUSUM = true or PSDiff = true or BSDiff = true) then

writteBlacklist();
defineDropRules();
logAndAllert();

else
defineForwardRules();

end if

C) Generic attacks

As discussed in Section 5.1 other attacks than DoS and port scan can be performed
in SDN, hence we also developed a method for detecting generic encrypted attacks. We
called it METHOD_C and it is composed by following components:

• Metadata collector: this component is defined in the Collection stage to get switch
counters that could also be customized and new ones could be implemented by using
P4 [BDG+14] [Cis15], which allows to program the Data plane.

• Traffic classification: this component is responsible to identify the network traffic being
exchanged. It can identify the application, transport or application protocol, and even
application type or software (see Table 2.7), as required, by using non-supervised
machine learning methods, as shown in Table 2.6.

• Normal traffic behavior establishment: a machine learning method can be used to
model a standard and normal network behavior based on flow and packet information
(see Section 2.5). This method can collect the required information in the network for a
previously defined time (e.g. one day) and build the expected network standard traffic
behavior.

• Set of allowed protocols: based on the normal traffic behavior, a set of protocols that
are allowed in the network (e.g. application, transport or protocol, and even application
type or software) must be defined. For this task, the traffic classification method that
will be used (see Table 2.6) is a core component.

88

• Blacklist: this module is composed by a table with entries that can identify sources that
are not allowed to communicate in the network. This component is described in the
Protection stage and is the same that is also used by METHOD_A and METHOD_B.

The approach being proposed could be used for detecting several attacks in SDN,
such as insider attack against an application related to data evasion or sabotage, DoS,
port scan, DoS against an application and others. Although this method could also solve
problems tackled by METHOD_A and METHOD_B, those are specific for DoS and port scan,
and, therefore, they perform better than METHOD_C. Furthermore, since METHOD_C is a
generic method, it has to be configured to different environments and contexts. Cisco [Cisc,
Cisa, Cisb] is also working in a similar approach for traditional networks, using proprietary
protocols, software and hardware. Figure 5.3 illustrates our encrypted attacks detection and
prevention proposal workflow.

Get Metadata

Collect and

store Metadata
Start

 Network

traffic

Defining normal

behavior (ML)

Source

 in Blacklist?

Encrypted Traffic

Classification

Method

No

Yes

Drop

flows/packets

Protocol

Allowed?

Check allowed

protocols

No Yes Forward

flows/packets

Normal

behavior?

 Behavior

analysis (ML)

End

No

Output:

Protocol

Yes

Figure 5.3 – Approach for general encrypted attacks detection

89

Initially, a normal traffic behavior must be established and the set of allowed proto-
cols and/or applications must be defined. The detection process is based on the metadata
stored periodically in a database by the switches counters collector process. The first detec-
tion step is to extract the source IP of the data being analyzed and match it to the entries in
the blacklist. If a matching entry is found, a dropping rule is defined in the switches and the
flow is then discarded. Such dropping rule is stored without a time to live stamp, so it can
only be removed by the networks administrator. If no matching entry is found in the blacklist,
the traffic classification process starts to identify the protocol used or even the application
type or software. Then, this information is used to match with a set of allowed protocols
and applications that must be defined previously. If a matching entry is found, it proceeds
to the behavior analysis to compare it to the previously established normal behavior. If no
anomaly is found, a forwarding rule is defined to the switches. Otherwise, a dropping rule
is set and an entry is written in the blacklist. Both normal and abnormal behaviors can be
classified by using machine learning algorithms [ZKF+17]. The most appropriate machine
learning algorithms found in the literature [ZKF+17] are the Bayesian classifier [AMG07], the
Logistic Regression [KKB07], the Random Forest [ZKF+17] and the Decision Tree [XL09].
However, those algorithms can be adapted or others can be used, as required. As input,
the most appropriate features from the stored SDN metadata (counters) can be defined ac-
cording to Silva et al. [dSMB+15], but other features can also be included to perform traffic
classification. Moreover, specific counters could be defined on the data plane by using P4,
as required to improve the traffic classification process and also the normal and abnormal
behavior classification.

5.3.3 Prevention stage

Initially, all SDN switches have empty flow tables. Thus, upon receiving the first
packet, a table miss will occur and the packet will be sent to the controller through a PacketIn
message. On the controller, a PacketIn handler is used to read the packet, analyze the
header and extract the source and destination IP addresses and ports to define forwarding
rules. First, this handler has to check if the incoming flow has a match in the blacklist. If a
matching rule is found in the blacklist, a drop rule is then defined to the switches flow table so
that new incoming malicious flow sources are dropped without further analysis. If no related
entry is found in the blacklist, a new one is created and added in the switch flow table to
provide forwarding to the other packets related to the same stream.

Flow entries can be removed from flow tables through a request from the controller
and by timeout. The timeout mechanism is executed by the switch independently from the
controller and is based on the configuration and state of flow inputs. We defined a timeout
for each stream to avoid overflow on flow tables. A flow will only remain on the table for

90

15 seconds after its last packet was received. Arriving packets on the controller usually
correspond to the first packet of a new flow or, depending on its type and on the application,
the controller can decide to install a rule on the switch so that all packets of a given flow are
sent to the controller to being handled individually. This last case corresponds, usually, to
ICMP, DNS and DHCP control packets or routing protocols like OSPF and BGP.

By defining forwarding rules, in addition to react to the attack attempt, it also pro-
tects against new flows from the same source, without sending a request to the controller.
Some prevention measures were also added on the packetIn handler. For example, by de-
fault every non-malicious connection must be initialized with a SYN flag. Therefore, when
receiving a packet with a flag that is different from SYN, the controller will discard the packet.
This prevents other types of attacks (see Section 2.3).

When a flow is added by the controller in the flow table, its packet header informa-
tion is included on the rule, so that each received stream will have a single entry in the table.
A fifteen seconds timeout is also set, which allows the flow to be kept in the table if there is
a small delay in packets transmission. Table 5.3 shows a flow table with the rules used by
our method. Unused rules were omitted from the table.

Table 5.3 – Example of some flow table records
MATCH RULES ACTION TIMEOUT

ADDRESS PORT
SRC DEST SRC DEST IDLE

10.0.0.11 10.0.1.124 36987 80 forward 15
10.10.0.45 10.10.2.43 23234 80 forward 15
10.0.0.114 10.10.2.29 35455 22 forward 15
10.10.2.24 10.0.0.12 32444 25 drop 0

In the example in Table 5.3, the first three streams are forwarded and their idle_timeout
was set to 15 seconds, so that if no related packet is received in that time, the stream will be
removed from the flow table. The fourth flow has as action its discarding, i.e., when a packet
is received and its header fields match the rules, this packet will be discarded. The fourth
flow also has the timeout set to null, which means that this is a permanent rule and can only
be removed from the table by the controller through a specific message. Thus, if an attacker
starts a DoS attack after a port scan is detected, even if the packets payload is encrypted, it
will be blocked by our IPS, which discards all received flows from the attackers source.

The global view nature of the network enabled by SDN allows the application to
scan individual switches and send discarded streams to others, making it impossible for
such streams to take different routes to the target host. In addition, different controllers
can exchange information about malicious flows and sources, extending protection to other
networks, as a collaborative intrusion detection mechanism.

91

5.4 Discussion

In this chapter, the STRIDE attack model is used to discuss the main attacks that
SDN is vulnerable to. As this thesis goal is to discover how encrypted attacks can be exe-
cuted and identified in SDN, we show that DoS attacks could be empowered in SDN when
encryption is used, by using encrypted packets that are send through the encrypted chan-
nel between switch and controller. A large number of such messages increases processing
power consumption both on switch and controller due to encryption and decryption process.

Then we discussed about encrypted attacks detection possibilities in SDN. Three
approaches are described: protocol-based, modification-based and statistical-based ap-
proaches. Thus, considering the inflexibility on the current network equipment, concerns
on abstracting network functions of switches dedicated to applications in SDN have been
increasing. Security policies can be set by the controller as rules in the flow tables [KF13]
instead of manual and independent configurations. Thus, a switch provides only the filter
function according to the rule in the flow table, not significantly influencing the performance
of the network. Furthermore, SDN has natural statistics features that are useful for intrusion
detection analysis, so that the controller gets more visibility of the network traffic. Thus, this
chapter also presented our methods to identify theencrypted attacks in SDN. Those meth-
ods are statistical-based, which are the most appropriate approach to identify the attacks
that are specific to SDN because natural statistics are provided in such networks that can
be used to identify anomalies.

• Port scan: a weight-based method according to the port number group (common ports
and other ports) is presented. When a defined threshold for scan attempts is reached,
an attack is detected. This method also identifies if a host is being scanned by com-
puting the number of scans per host. Although a port scan is not an encrypted attack,
it is typically used as a first step to perform such attacks. Thus, by detecting and pro-
tecting against port scan in SDN, our method also avoids other attacks (that could be
encrypted) from same source to materialize.

• DoS: a method to detect denial of service attacks against switch and controller is pre-
sented. This method can detect such attacks when a large number of bogus encrypted
messages is sent through the encrypted communication channel between a switch and
the controller. This kind of attack overloads the channel and increases the power con-
sumption on both switch and controller.

• Generic encrypted attacks: we also present a generic detection method that can be
used, for example, to detect insider attacks that perform data evasion or sabotage also
by using encrypted data. Our approach is based on defining a set of allowed protocols
(e.g. application protocols or applications type), establish a normal traffic behavior by

92

using a machine learning algorithm. To perform detection, the method first uses an
encrypted traffic classifier that can be based on packets or flows (when traffic classifi-
cation is based on packets in SDN, P4 should be used to customize switch counters)
to identify the packets/flows protocol and match with the set of allowed protocols. If a
match occurs, a machine learning method is used again to analyze if the traffic has
a normal behavior or not, based on the previous normal behavior established. If an
anomalous behavior is detected, the flows are dropped. Otherwise, a forwarding rule
is generated to allow the traffic.

Whenever an anomaly or attack is detected, an entry is written in a blacklist and
drop rules are defined to the switches flow tables. Moreover, logs and alerts are generated.
Although the developed methods are intended to increase protection against encrypted at-
tacks in SDN, they can be extended to traditional networks. However, the used flow features
must be calculated in traditional networks. This could result in high processing power con-
sumption and also in delays in forwarding packets. Therefore, the hardware and network
bandwidth consumption must be analyzed to define if such approach is suitable for other
networks than SDN.

93

6. CASE STUDY

This chapter describes our test strategy to evaluate our methods, as well as the
experimental network that was implemented in a laboratory environment. We also discuss
the test results and assess the methods performance to help in validating the thesis hypoth-
esis. We analyze the methods in therms of accuracy, processing power consumption and
also network overhead. Specific SDN technologies were chosen in order to build an SDN
infrastructure, as described in the next sections.

6.1 Experimental environment

For our experiments, a virtual network was configured on Mininet [Min18, LHM10],
a platform that allows the creation and emulation of scalable virtual networks with con-
trollers, switches, hosts, links, and also enables the development of different topologies
through Python scripts. The Data plane was established using OpenvSwitch [PPK+09] vir-
tual switches (OvS). On the Control plane, an OpenDaylight [OPE18b] controller was in-
stalled and configured on a remote computer. OpenFlow was chosen as SDN controller
in our experiments due to its detailed documentation and as it supports java based imple-
mentations and provides REST interfaces. This is useful for our statistic collection process
implementation. However, the methods proposed in this thesis can be used even when other
SDN protocols and controllers are adopted, as discussed in Section 2.1. On the Applica-
tion plane our protection methods are running, being METHOD_A and METHOD_B on the
module called "Encrypted DDoS and port scan detection" and METHOD_C on the proposed
module "Generic encrypted attacks detection".

The experiments were performed on an Apple Macbook Pro computer, with 16GB
of RAM (2133MHz), an Intel Core i7 @ 2.8GHz CPU and 256GB SSD. On the Control
plane, a Virtualbox [Ora18] machine with 4GB of RAM and one CPU core was configured
on this hardware, with an Ubuntu 17.1 [Ltd18] Operating System. An Opendaylight Oxygen-
SR1 [OPE18b] controller was installed on this virtual machine. This controller was used for
testing and evaluating our proposed detection and protection methods. The Data plane was
established using OpenvSwitch [PPK+09] virtual switches. As a Southbound communication
protocol, we used OpenFlow version 1.4 [Foua] [Fou14]. OpenFlow was chosen because
it provides the statistical data required by our methods and is the most used protocol in
SDN nowadays, being also supported by most SDN controllers. Opendaylight controller was
chosen due to its friendly interface, REST API communication provided, java and OpenFlow
support. However, other protocols and controllers could be used in this evaluation.

94

6.2 Experimental evaluation on detecting port scan

In this section we present our port scan detection evaluation. First, port scans were
performed in the experimental network implemented and then we analyze how METHOD_A
identifies and reacts to such attacks.

6.2.1 Performing port scan

To perform some port scan attacks on our network, initially tests were generated
to verify the possibility of detecting false positives, when normal requests are made to the
servers. Therefore, a script that makes 200,000 requests to the different servers (see at-
tacker and targets in Figure 6.1) was created and executed. The number of packets vary
between 10 and 3,000, depending on the request. Hence, the system must allow its routing,
because none of the flows has a number of packets equal to or less than five. By analyzing
the generated logs and the blacklist, no entry of port scan attempt was found, showing that
our system did not detect any false positive in such situations.

After that, port scanning flows were generated using Nmap [Lyo18] [Lyo09]. Ini-
tially, a same port number was scanned on different hosts, performing a horizontal scan on
the network, using the “nmap -p PORT ADDRESS" command. The vertical scan test was
performed using the “nmap -sT ADDRESS" command, which scans distinct ports on a target
address. The last scan returned three open ports (22, 53 and 80).

This test allowed the attacker to enhance a large number of scans at a lower interval
than the collection because it was defined on three seconds. However, after this interval,
new attempts will be blocked because the sum of streams with a number of packets equal
to or less than five will be greater than the established threshold for being considered a port
scan.

Scanning tests were also executed without the SYN flag trough the “nmap -sf AD-
DRESS" command, which performs FIN scanning. In this case the controller has discarded
the packets and the scanning did not materialize.

The experimental network topology used in our experiments is shown in Figure
6.1. It is composed by an OpenDaylight controller managing four switches. There are also
five servers, running services, such as web servers and databases, and three hosts that
generate normal requests to the servers. Also, a malicious host is included in this network,
with IP 10.0.0.11, which is running our port scan attack script.

95

Applications

Encrypted
DDoS and
port scan
detection

Application Plane

Controllers

OpenDaylight
Controller

Control Plane

REST

NetworkDevices

Data Plane

OpenFlow

OvS 1 OvS 2 OvS 3 OvS 4
Host 10.0.0.11

(Attacker)

Host 10.0.0.12

Host 10.0.0.13
Web Server
10.0.0.21

Web Server
10.0.0.33

Web Server
10.0.0.31

Host
10.0.0.32

Database
10.0.0.41

Web Server
10.0.0.42

Generic
encrypted

attacks
detection

Targets being scanned

Host that is lunching the port scan attacks

Figure 6.1 – Experimental network topology to evaluate port scan

6.2.2 Detecting and preventing port scan

Port scanning streams are typically limited to a maximum of three packets, for ex-
ample TCP Connect has SYN, SYN/ACK and ACK packets, except in the cases that packets
are re-transmitted. Furthermore, statistically, port scans occur at small time intervals. Since
there is a periodical collection of flow statistics, it is possible to analyze whether there was
an increase on the number of packets between two queries. Therefore, we consider that
a stream is a port scan attempt when the number of packets is equal or less than five, by
setting the threshold Scans_per_Host_Threshold to five. This number corresponds to the

96

three packets responsible for the handshake of a TCP connection added with two tolerance
packets, in case of re-transmission. Since this number of packets is very low, the probability
of having a non-malicious flow detected as scanning is also very low. The number of target
hosts (Target_Host_Threshold) needed to characterize the attack attempt was defined as
three hosts due to the limited size of the network used for testing. Those thresholds are
used in Algorithm 5.1 to perform horizontal port scan detection. To perform vertical scan de-
tection, the common scanned ports weight (CSP_Weight) was set to five, while the weight for
any other port (OSP_Weight) is three. Those values are required as shown in Equation 5.1.
The ports that we chose to have a higher probability to being scanned are 22, 23, 25 and
3389, as they are the most scanned ports according to the statistics of incidents reported by
CERT.br [CER18]. The detection threshold was set to 15. We observed that a higher thresh-
old may reduce the method effectiveness, since an attacker may be able to perform more
scans before being detected, and a lower threshold, could compromise legitimate access
and present a high number of false positive detection.

Our method computes this data to perform detection. Table 6.1 shows flows stored
in the collected counters database of a given host. The stored flow information is source and
destination IP and ports, number of packets and an indication whether the entry corresponds
to the request or to a response to the request that originated the flow.

In the example in Table 6.1, host 10.0.0.11 produced nine flows. Each flow has two
entries on the table, indicating the destination and the request return. Through the column
"Packets", a normal access behavior is shown in the first four flows, since the number of
packets is greater than five. Lines 9 to 14 show that the number of packets of the respective
flows is less than five, characterizing a port scan attack.

According to the defined rules, each port scan has a weight of five, and as the sum
of these reaches the 15 threshold, the IPS considers these flows as an attack attempt, and
discards them. After this, the attacker originated two more streams, which were discarded
and information is stored in the database. This can be seen on the last two entries in Table
6.1. They show an amount of one packet per stream, which corresponds to the SYN packet
received by the controller. The source and destiny addresses are represented in columns
"SRC ADDRESS" and "DST ADDRESS" and the values are IP v4 addresses. The message
type considered was "REQUEST" and "RESPONSE", which are represented by the values
"REQ" and "RESP", respectively.

Table 6.2 presents a quantitative analysis of the flows. Non-malicious flows are
shown on the second column. All 200,000 generated flows were forwarded, with no false
negative alarms. The third column shows the horizontal port scan results. For this, 20
distinct flows were generated. Since the validation is performed after scanning three distinct
hosts, the maximum number of malicious streams to be forwarded is 12 (three per target).
However, some packages were re-transmitted and the IPS received both, original and re-
transmitted packets, recognizing these as two distinct flows and, thus, the analysis resulted

97

Table 6.1 – Some flows information stored in the created database
ID SRC ADDRESS DST ADDRESS SRC PORT DST PORT PACKETS TYPE
1 10.0.0.11 10.0.0.21 33666 80 103 REQ
2 10.0.0.21 10.0.0.11 8080 33666 96 RESP
3 10.0.0.11 10.0.0.21 33668 22 65 REQ
4 10.0.0.21 10.0.0.11 22 33668 61 RESP
5 10.0.0.11 10.0.0.21 33670 110 68 REQ
6 10.0.0.21 10.0.0.11 110 33670 62 RESP
7 10.0.0.11 10.0.0.21 45985 110 68 REQ
8 10.0.0.21 10.0.0.11 110 45985 61 RESP
9 10.0.0.11 10.0.0.31 56974 23 2 REQ
10 10.0.0.31 10.0.0.11 8080 56974 1 RESP
11 10.0.0.11 10.0.0.31 26261 22 1 REQ
12 10.0.0.31 10.0.0.11 22 26261 1 RESP
13 10.0.0.11 10.0.0.31 56974 25 2 REQ
14 10.0.0.31 10.0.0.11 25 56974 1 RESP
15 10.0.0.11 10.0.0.31 48906 110 1 REQ
16 10.0.0.31 10.0.0.11 110 48906 0 RESP
17 10.0.0.11 10.0.0.31 27695 110 1 REQ
18 10.0.0.31 10.0.0.11 110 27695 0 RESP

in a number of 14 streams. These streams were now considered malicious only in the fourth
or fifth checked host. These values can be seen in the third column of Table 6.2.

In the fourth column, which represents the execution of vertical scan, 1,000 mali-
cious flows were generated. This generation, being automatic, was considerably faster than
the collection interval, which resulted in the routing of 658 malicious flows. By the time our
software terminated the analysis, they were considered as malicious source and were added
to the blacklist and the system discarded the remaining 342 packets. In addition, this port
scan also had some duplicated packets, causing 12 malicious streams that were considered
as non-malicious streams.

The last column shows the number of FIN exploitation scans. As explained previ-
ously, uninitialized streams with SYN packets are immediately discarded. Thus, all originated
flows were discarded.

Table 6.2 – Port scan test result with an empty blacklist
Flows Not scan Hor. scan Vert. scan FIN scan
Gernerated 200000 20 1000 1000
Forwarded 200000 14 658 0
Blocked 0 8 342 1000
False negatives 0 2 12 0

The same procedure was performed again to check if all streams were indeed
added to the blacklist. In this procedure the blacklist has not been cleared and the result
is shown in Table 6.3. As it can be observed, all generated flows, including non-malicious

98

ones, were discarded. Similarly to the previous test, at some point the hosts performed a
port scan, then they were added to the blacklist, and therefore were blocked when trying to
perform new attempts to execute new accesses to the host. It is important to notice that both
false positives and false negatives were not observed in this scenario. The average flows
delay imposed by our IPS was five milliseconds, due to blacklist check and controller rules
addition.

Table 6.3 – Port scan test result when the blacklist contains entries
Flows Not scan Hor. scan Vert. scan FIN scan
Gernerated 200000 20 1000 1000
Forwarded 0 0 0 0
Blocked 200000 20 1000 1000

6.3 Experimental evaluation on detecting DoS

As previously discussed, an attacker may be able to perform DoS attacks in sev-
eral ways, for example, by sending a large number of encrypted messages through the
encrypted channel to empower the attacks due to the encryption and decryption process.
By using OpenFlow protocol, for example, different messages can be used to perform such
attacks, such as OFPT_FEATURES_REPLY, OFPT_PORT_STATUS, OFPT_PACKET_IN,
OFPT_PACKET_OUT and OFPT_FLOW_MOD.

6.3.1 Performing DoS

To validate METHOD_B, DoS attacks were also performed in our network. We
developed scripts that generate network traffic, being generated normal and malicious flows.
The script that generates DoS attack was ran on three different hosts at the same time (IPs
10.0.0.11, 10.0.0.12 and 10.0.0.13) that generate bogus messages through the encrypted
channel. These messages were composed by OFPT_PORT_STATUS, OFPT_PACKET_IN,
OFPT_PACKET_OUT and OFPT_FLOW_MOD, performing a DoS attack against the switch
and also against the controller. It is important to note, that by overloading the switches and
the controller, the servers that provide services to the network may be not reached and thus
those services may also be not accessible under the DoS attacks being simulated in this
situation.

The experimental network topology used in our experiments to simulate DoS at-
tacks is shown in Figure 6.2. It is composed by an OpenDaylight controller managing four

99

OpenVSwitch switches. There are also five servers, running services, such as web servers
and databases, and three hosts that are lunching the DoS attacks.

Applications

Encrypted
DDoS and
port scan
detection

Application Plane

Controllers

OpenDaylight
Controller

Control Plane

REST

NetworkDevices

Data Plane

OpenFlow

OvS 1 OvS 2 OvS 3 OvS 4
Host 10.0.0.11

(Attacker)

Host 10.0.0.12
(Attacker)

Host 10.0.0.13
(Attacker)

Web Server
10.0.0.21

Web Server
10.0.0.33

Web Server
10.0.0.31

Host
10.0.0.32

Database
10.0.0.41

Web Server
10.0.0.42

Generic
encrypted

attacks
detection

DoS Targets

Hosts that are lunching the DoS attacks

Figure 6.2 – Experimental network topology to evaluate DoS

Openflow provides secure communication beteween switch and controller by using
TLS over its encrypted channel. Thus, a TLS connection was initiated by the switch on
startup to the controller, which was listening on the TCP port 6653 (this is the default port,
which can also be changed as required). After, switch and controller exchanged certificates
signed by a site-specific private key (provided by Opendaylight) to perform authentication.
Each switch is configured with one certificate for authenticating the controller (controller
certificate, i.e., controller public certificate) and the other for authenticating to the controller
(switch certificate, i.e., switch private certificate). A script was executed to collect and store

100

statistics from the switches every three seconds (same as described in Section 6.2). Two
different situations were simulated. In each simulation, the following data were generated:

• DoS attack: 20,000 packets per second from a compromised host to the switch with
an invalid destiny.

• Normal traffic: 4,000 packets per second being normal traffic exchange between legit-
imate hosts (files being transferred).

DoS Simulation 1. In this simulation, normal traffic was injected first, during nine seconds.
After, DoS traffic was injected during the remaining simulation time (the entyre simulation
time was 30 seconds). Thus, the first samples are based on normal traffic only and the
following samples contain both normal and DoS traffic.

DoS Simulation 2. In this simulation, normal traffic was first injected. After nine seconds, the
attacking script was initiated during six seconds and stopped again, while the normal traffic
injection was still being executed. Thus, the first nine collected samples in this simulation,
are based on normal traffic only, the follow three samples are from normal traffic and also
attacking flows, and the last five samples in this simulation are based on normal traffic only.

Time (s)

Pa
ck

et
s

pe
r s

ec
on

d

0

5000

10000

15000

20000

25000

3 6 9 12 15 18 21 24 27 30

Simulation 1 samples Simulation 2 samples

Figure 6.3 – Packets per second generated in simulations

101

Time (s)

By
te

s
pe

r s
ec

on
d

0

10000000

20000000

30000000

40000000

3 6 9 12 15 18 21 24 27 30

Simulation 1 Simulation 2

Figure 6.4 – Bytes per second generated in simulations

Figure 6.3 and Figure 6.4 show the number of generated packets per second and
bytes per second in both simulations. In DoS Simulation 2, a burst increase in both observed
features is shown at sample 4 (time 12 s), being decreased to previous levels at sample 6
(time 18 s). However, in DoS Simulation 1, similar burst increase is shown at sample 4 (time
12 s) with no significant decrease during the remaining simulation. Thus, the second simu-
lation could represent normal traffic with some noise or failure from samples 4 to 6 (times 12
to 18), while the first simulation could represent an encrypted DoS. Those situations were
simulated in our experiments as they are very common in real networks.

In those simulations, both packet-per-second and byte-per-second features had a
similar behavior. However, an attacker could be able to perform similar attacks by using a
variety of packet length, or packet-per-second. Therefore, our method is using both features
to improve protection.

6.3.2 Detecting and preventing DoS

First, the required thresholds for the detection methods were established. Those
values were defined based on several experiments, as their results were considered more
accurate and with less false positive alerts.

102

• Thresholds used to compute bytes per second:

– C_Threshold_BS: 3%

– Max_Anomaly_Samples_BS: 40%

– Time_Interval: 30 seconds

– D_Threshold_BS: 5%

• Thresholds used to compute packets per second:

– C_Threshold_PS: 3%

– Max_Anomaly_Samples_PS: 40%

– Time_Interval: 30 seconds

– D_Threshold_PS: 5%

Those thresholds and the stored switch counters were then used as input for our
METHOD_B, so that the samples could be analyzed to perform detection. This detection
method uses two different analysis strategies, as described in Section 5.3.2. The first detec-
tion strategy is based on our customized CUSUM and compare the computed values to a
threshold regarding the samples average, and the second strategy computes the difference
between the samples and the average to compare it to the defined threshold for considering
a sample as normal or abnormal. The OpenFlow per port counters Received/Transmitted
packets and Received/Transmitted bytes where collected in the previous stage and are used
as input for this detection stage.

Results in Simulation 1

The collected samples values and also the computed values that are used to per-
form detection are presented in the following tables. The values in columns i and j are
only an index that is incremented on each sample, being i used for the samples that are
being analyzed and j an index that is used for the samples that were considered normal
ones. The column S presents the samples values and column Avg(i) has the samples av-
erage, which is computed on the samples that have already been analyzed and identified
as normal behavior and the sample being analyzed. Therefore, column S_Aux(j) presents
the values of the samples that were considered normal values, because if the samples av-
erage is computed over the whole samples set, our method will fail on detection if only
one (or a few) abnormal sample is found. In column C(i-1) the cumulative sum values
of previous sample is show and in C(i) the value of the cumulative sum considering the
sample being analyzed is show. In column Threshold the values computed by multiplying
the samples average value and the defined thresholds (C_Threshold_PS, C_Threshold_BS,
D_Threshold_PS and D_Threshold_BS), which are represented in column Threshold.

103

The values computed on the first ten samples from both simulations by our cus-
tomized CUSUM are show in Table 6.4 and in Table 6.5. First, the average of normal
samples is computed. Then, the cumulative sums process starts. The values of the cu-
mulative sums are show in column C(i) and the previous values in column C(i-1). After,
the threshold is computed (3% of the average, as previously defined for our experiments).
Finally, detection is performed. If an abnormal sample is found, i.e., if the value in col-
umn C(i) is above the value in Threshold, a counter is incremented in column Attack. Our
METHOD_B defines that an attack was found if the end value in column Attack is equal to
or above 4 (the threshold of abnormal samples defined in Max_Anomaly_Samples_PS and
Max_Anomaly_Samples_BS was defined as 40% of the analyzed samples, with represents
4 samples in our experiments). The Attack end values are 7, as 7 abnormal samples were
found in each detection rule, which exceeds the abnormal ones threshold (4). Therefore, an
attack is detected by both rules.

Table 6.4 – DoS detection in Simulation 1 with CUSUM on PS
i S(i) Avg(i) j S_Aux(j) C(i-1) C(i) Threshold Attack
1 4019 4019 1 4019 0 0 120.57 0
2 4182 4100.5 2 4182 0 81.50 123.01 0
3 3979 4060.00 3 3979 81.50 0.50 121.80 0
4 24028 9052.00 0.50 14976.50 271.56 1
5 24196 9094.00 14976.50 30078.50 272.82 2
6 24391 9142.74 30078.50 45326.75 274.28 3
7 24238 9104.50 45326.75 60460.75 273.13 4
8 23871 9012.75 60460.25 75318.50 270.38 5
9 24006 9046.50 75318.50 90278.00 271.39 6
10 24198 9094.50 90278.00 105381.50 272.83 7

Table 6.5 – DoS detection in Simulation 1 with CUSUM on BS
i S(i) Avg(i) j S_Aux(j) C(i-1) C(i) Threshold Attack
1 6677384 6677384 1 6677384 0 0 200321 0
2 6651879 6664631 2 6651879 0 -12752 199938 0
3 6723156 6684139 3 6723156 -12752 26263 200524 0
4 38219256 14567918 26263 23677601 437037 1
5 38492491 14636227 23677601 47533864 439086 2
6 39388375 14860198 47533864 72062041 445805 3
7 39624231 14919162 72062041 96767109 447574 4
8 39041886 14773576 96767109 121035419 443207 5
9 38910195 14740653 121035419 145204960 442219 6
10 39479076 14882873 145204960 169801163 446486 7

Follow, Table 6.6 and Table 6.7 show the results when differences are computed
with the average to perform detection. The values in column i are only an index that is in-
cremented on each sample. The column S presents the samples values and column Avg

104

has the samples average, which is computed on the samples that have already been ana-
lyzed and identified as normal behavior and the sample being analyzed. Therefore, column
S_Aux(j) presents the values of the samples that were considered normal values, because if
the samples average is computed over the whole samples set, our method will fail on detec-
tion if only one (or a few) abnormal sample is found. Column S(i) - Avg(i) has the value of the
difference between the sample being analyzed and the average of normal samples and the
sample being analyzed. In column Threshold the values computed by multiplying the sam-
ples average and the defined threshold (D_Threshold_PS and D_Threshold_BS, defined as
5% of samples average value). If an abnormal sample is found, i.e., if the value in column
S(i) - Avg(i) is above the values in Threshold, a counter is incremented in column Attack. Fi-
nally, our method defines that an attack was found if the end value in column Attack is equal
to or above 4 (the threshold of abnormal samples defined in Max_Anomaly_Samples_PS
and Max_Anomaly_Samples_BS was defined as 40% of the analyzed samples).

Table 6.6 – DoS detection in Simulation 1 with difference analysis on PS
i S(i) j S_Aux(j) Avg(i) S(i) - Avg(i) Treshold Attack
1 4019 1 4019 4019.00 0 200.95 0
2 4182 2 4182 4100.50 81.5 205.05 0
3 3979 3 3979 4060.00 -81 203.00 0
4 24028 9052.00 14976 452.60 1
5 24196 9094.00 12115.2 604.04 2
6 24391 9142.75 10258.5 706.62 3
7 24238 9104.50 8661.85 778.80 4
8 23871 9012.75 7258 830.00 5
9 24006 9046.50 6571.5 871.72 6

10 24198 9094.50 6087.2 905.54 7

Table 6.7 – DoS detection in Simulation 1 with difference analysis on BS
i S(i) Avg(i) j S_Aux(j) S(i)-Avg(i) Threshold Attack
1 6677384 6677384 1 6677384 0 333869 0
2 6651879 6664631 2 6651879 -12752 333231 0
3 6723156 6684139 3 6723156 39016 334206 0
4 38219256 14567918 23651337 728395 1
5 38492491 14636227 23856263 731811 2
6 39388375 14860198 24528176 743009 3
7 39624231 14919162 24705068 745958 4
8 39041886 14773576 24268309 738678 5
9 38910195 14740653 24169541 737032 6
10 39479076 14882873 24596202 744143 7

105

Results in Simulation 2

In the second simulation METHOD_B both detection rules were also analyzed.
First, Table 6.8 and Table 6.9 present the results when our customized CUSUM is applied.
Follow, in Table 6.10 and in Table 6.11 the results of the difference analysis are presented.
The Attack end value is 2 in the four tables, as only 2 abnormal samples were found in each
simulation. The threshold for abnormal samples was also defined as 40% of the analyzed
samples, with represents 4 samples. As only 2 analyzed samples exceed the abnormal ones
threshold (4), an attack is not detected in Simulation 2. This strategy avoids a large number
of false positive alarms, only one (or a few) samples may not represent an attack, due to
some noise or network failure, for example. Therefore, our method discards the abnormal
computed samples by storing only the normal computed samples in a new data structure
S_Aux(j) to compute the remaining samples correctly by using our customized CUSUM and
also the difference value between samples and average.

Table 6.8 – DoS detection in Simulation 2 with CUSUM on PS
i S(i) Avg(i) j S_Aux(j) C(i-1) C(i) Threshold Attack
1 4042 4042.00 1 4042 0 0 121.26 0
2 4029 4035.50 2 4029 0 -6.50 121.06 0
3 4092 4054.33 3 4092 -6.50 31.16 121.63 0
4 23992 9038.75 4 4239 31.16 14984.42 271.16 1
5 24103 9066.50 5 4117 31.16 15067.67 271.99 2
6 4239 4100.50 6 4011 31.16 169.66 123.01 2
7 4117 4103.80 7 4093 169.66 182.86 123.11 2
8 4011 4088.33 8 4102 182.86 105.53 122.65 2
9 4093 4088.00 105.53 109.53 122.67 2
10 4102 4090.62 109.53 120.90 122.71 2

Table 6.9 – DoS detection in Simulation 2 with CUSUM on BS
i S(i) S_Aux(j) j Avg(i) C(i-1) C(i) Threshold Attack
1 6669300 6669300 1 6669300 0 0 200079 0
2 6647850 6647850 2 6658575 0 -10725 199757 0
3 6710880 6710880 3 6676010 -10725 24145 200280 0
4 38147280 6879897 14543827 24145 23627597 436314 1
5 38444285 6755997 14618078 24145 23850351 438542 2
6 6879897 6533919 6726981 24145 177969 201809 2
7 6755997 6602009 6732784 177060 200272 201983 2
8 6533919 6723178 6699640 200272 34550 200989 2
9 6602009 6685693 -49133 -49133 200570 2
10 6723178 6690378 -16333 -16333 200711 2

106

Table 6.10 – DoS detection in Simulation 2 with difference analysis on PS
i S(i) j S_Aux(j) Avg(i) S(i) - Avg(i) Threshold Attack
1 4042 1 4042 4042.00 0 202.10 0
2 4029 2 4029 4035.50 -6.5 201.77 0
3 4092 3 4092 4054.33 32 202.71 0
4 23992 4 4239 9038.75 14940 451.93 1
5 24103 5 4117 9066.50 12022.2 453.32 2
6 4239 6 4011 4100.50 -6510.5 205.02 2
7 4117 7 4093 4103.8 -5685 205.19 2
8 4011 8 4102 4088.33 -5067.1 204.41 2
9 4093 4089.00 -4431.2 204.45 2
10 4102 4090.62 -3980 204.53 2

Table 6.11 – DoS detection in Simulation 2 with difference analysis on BS
i S(i) S_Aux(j) j Avg(i) S(i)-Avg(i) Threshold Attack
1 6669300 6669300 1 6669300 0 333465 0
2 6647850 6647850 2 6658575 -10725 332928 0
3 6710880 6710880 3 6676010 34870 333800 0
4 38147280 6879897 14543827 23603452 727191 1
5 38444285 6755997 14618078 23826206 730903 2
6 6879897 6533919 6726981 152915 336349 2
7 6755997 6602009 6732784 23212 336639 2
8 6533919 6723178 6699640 -165721 334982 2
9 6602009 6685693 -83684 334284 2
10 6723178 6690378 32799 334518 2

6.4 Network and hardware overhead

In order to measure hardware consumption, we injected some network traffic (only
normal file transfers and control messages, without injecting malicious data) and observed
the controller CPU time and memory consumption without activating our IPS. After that, our
IPS was activated and the same traffic was injected. We then computed the difference on
hardware consumption to determine the amount of resources that our IPS uses, first consid-
ering that only METHOD_A was activated and then only METHOD_B was activated. When
the controller was running without the IPS, it consumes 1.8% CPU and 29% RAM. By ac-
tivating the IPS and METHOD_A, the resource usage increases to 3.1% CPU and 32.2%
RAM. Thus, it consumes 1.3% of CPU and 3.2% of RAM from the used virtual machine.
After, only METHOD_B was activated and new measures were made. The resource usage
increases to 3.3% CPU and 32.9% RAM. Thus, it consumes 1.5% of CPU and 3.9% of RAM
from the used virtual machine (see Section 6.1). Those values were computed based on
the average of 30 samples collected on a 180 s simulation time (a measure was made each
3 seconds). Table 6.12 summarizes the CPU and memory usage by the developed meth-

107

ods. Those values were computed based on 17 repetitions, considering a 95% confidence
interval.

Table 6.12 – CPU and Memory overhead
CPU (%) Memory (%)

METHOD_A 1.3 3.2
METHOD_B 1.5 3.9

Figure 6.5 shows the average of CPU usage on each of the 17 repetitions without
the IPS and also the increase in CPU usage by both evaluated methods. Figure 6.6 shows
the average of RAM usage by our IPS on each of the 17 repetitions.

Repetitions (1 to 17)

C
P

U
 u

sa
ge

 (%
)

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

without IPS with IPS Method_A with IPS Method_B

Figure 6.5 – CPU usage

The following message types were used between our IPS and the switches. The
overhead caused by those messages was measured to verify how many packets our so-
lutions would produce in the network compared to the total packets that were produced in
our experiments. These results were included in the computation of the average network
bandwidth usage.

• OpenFlow_v4.multipart_reply.type == OFPMP_FLOW

• OpenFlow_v4.multipart_request.type == OFPMP_FLOW

Those messages are responsible for around 0.13% of the whole packets number
transmitted on the network. The consumed bandwidth by these packets on the experimental
network was around 0.0038%. These results were obtained through scenarios composed
by the proposed IPS in a network topology presented in Figure 6.2 and transfers of 3.3GB

108

Repetitions (1 to 17)

R
A

M
 u

sa
ge

 (%
)

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

without IPS with IPS Method_A with IPS Method_B

Figure 6.6 – RAM usage

files between the servers, to simulate normal network traffic. On those experiments, 646,691
packets, in a total of 10,008,388,120 bytes, were transferred in the network. Our proposed
IPS produced 837 packets, in a total of 383,292 bytes, of network traffic. These experiments
were repeated 17 times to achieve a confidence level of 95%. It is important to notice that
this bandwidth usage changes according to the network traffic.

6.5 General discussion

The proposed solution deals with the starting point of several different types of
attacks, for example, port scan and DoS (already mentioned and detected as shown in
this chapter). As mentioned before, usually an attacker first scan some ports in a host (or
on several hosts) prior to an actual attack. Chapter 5 presented a solution to detect port
scans that may be used to find possible vulnerabilities points prior to an attack. One of such
attacks, and very common lately, is a Denial of Service (or Distributed Denial of Service)
attack. Typically, the purpose of DoS attacks is to consume resources, such as the network
bandwidth, CPU and memory of a given equipment, like an SDN switch, SDN controller or
application, in order to deny service to legitimate users or even to affect it so that it may not
work as it is intended to [ZHKS16].

A DoS attack may be more efficient when encrypted packets are used, as it con-
sumes more hardware resources to being processed, according to the packets type [ZHKS16,
Gar]. Furthermore, the increasing grow of encrypted traffic, specially SSL/TLS, on the In-
ternet, as well as on enterprise networks, on the one hand provides privacy and authen-

109

tication, but on the other hand compromises threat detection. Current protection systems
and organization’s security controls, like IDS/IPS, Next Generation Firewalls, Unified Threat
Management, Secure Gateways, Data Loss Prevention and anti-malware solutions, must be
improved so that they may be able to combat this new attackers strategy, since they may be
not working on more than 50% of new network attack methods currently [Gar].

A plethora of other attacks, like insider attacks (from malicious or compromised in-
sider), including frauds, sensitive data evasion and industrial espionage are being improved
by attackers, specially by the addition of encryption on malicious packets, and must be dealt
with on SDN by security systems, like IDS/IPS. The main limitation of current SDN IDS,
found in the literature, is their inability of detecting encrypted threats, as packet analysis
cannot be performed since decryption can violate ethical norms and regulations on privacy.
Therefore it is necessary to perform network traffic analyzes without packets decryption to
detect encrypted threats.

The above mentioned threats can be dealt with using the solution presented in
Chapter 5. By analyzing switch counters and then dropping the malicious flows before they
start an attack (or reacting to an attack very fast) can be achieved by our solution. This is
realized since attacks that use port scan will be detected before they even start (as shown
in Chapter 5).

The hypotheses defined to this thesis was validated in this research according to
our detection methods and results, as shown in Chapters 5 and 6. We also show what kind of
methods and approaches found in the literature could be used and adapted to detect such
attacks. In short, we show that SDN switch counters data can be used to detect attacks
in SDN, even when packets are encrypted and sent through an encrypted channel. This
approach also does not affect significantly network performance and is lightweight in terms
of hardware resource usage. The proposed methods are lightweight in therms of:

• Network usage: our methods are based on statistical data that is collected through
specific messages each three seconds. This traffic is around 0.13% from the whole
traffic in our experiments.

• CPU usage: as only a few computations are necessary on the stored statistical data,
our detection methods CPU consumption is around 1.4% for METHOD_ A and 1.5%
for METHOD_B.

• Memory usage: the memory usage depends on the number of connected devices in
the network. In our experiments, the developed IPS used 3% of the available RAM on
the controller.

• Flows forwarding delay: a delay average of 5 milliseconds was observed in our meth-
ods on analyzing flows, due to the rules matching and definition time and also to check
if the incoming flow source is in the blacklist.

110

To support this thesis hypotheses validation, our four research questions could be answered
as:

• RQ1: What are the main attacks in SDN? In Section 2.3 we described several attacks
that traditional networks are vulnerable too, but that also could be adapted to SDN. Be-
sides, we also discuss attacks that may be performed specifically in SDN. In Section
5 we also described how attacks could affect SDN networks according to the STRIDE
model. We also found that encryption could be used to empower such attacks, spe-
cially denial of service, due to encryption and decryption process when a large number
of bogus encrypted messages are sent through the encrypted communication channel
between switch and controller.

• RQ2: Which limitations current IDS have on detecting attacks in SDN? The main limi-
tations found, according to our SMS and other research, is the inability of current meth-
ods to analyze encrypted data, using packet-based approaches. Another limitation, is
the overhead that is typically added to the network by such protection systems, besides
the high false positive rates and high hardware resource consumption needed by most
of the methods that were analyzed. Furthermore, we found that encrypted attacks may
be detected by using three main approaches: protocol-based, modification-based and
statistical-based, as discussed in Chapter 5.

• RQ3: How to protect SDN against malicious encrypted traffic? In Section 5 we de-
scribed our approach to detect such issues in SDN. As packet inspection is difficult and
not feasible in terms of performance in encrypted packets, methods based on statistics
and probability are most appropriate to be used for detecting anomalies in the network,
both when packets are encrypted or not. Thus, methods to identify port scan and de-
nial of service encrypted attacks are presented. Although those methods are intended
to encrypted attacks, they could also be used to detect anomalies in non-encrypted
traffic, as only statistical information is used. In specific networks, like internal sensor
networks in an industry environment, a normal behavior (standard operation) can also
be defined by using machine learning algorithms as a first step. As a second step,
detection can be performed by searching for deviations of this standard operation, also
by using machine learning algorithms, such as Naive Bayes and Random Forest (other
algorithms can be applied in these steps as required). Therefore, traffic classification
methods must also be used to group packets according to the protocol (e.g. applica-
tion protocol). Thus, before those two steps are executed, the environment in which
our methods will be applied to must be set up. One of the activities when setting up the
environment is to define what are the protocols that are allowed in the network. This
will allow new forwarding rules to be created or rules to drop packets from not allowed
protocol will be inserted in the Data plane switches.

111

In our experiments, we consider 10 samples only to simplify the evaluations that are
shown on the tables presented in this section (Tables 6.4 to 6.11). A larger set of samples
was also evaluated, being composed by 30 samples collected in each simulation, according
to the Central Limit Theorem [Pin17] that requires at least 30 samples. However, there was
not found significant changes on the results in comparison to the smaller number of samples
(10) that was used to describe the evaluations presented in this section, because our data
was collected in a controlled environment (synthetic data) and is normalized. It is important
to note, that larger data sets should be use on real networks to evaluate our methods, as we
are intending to do as a next step.

6.6 Chapter summary

This chapter described some results from the detection and protection approaches
being proposed. First, a simulated environment was build on Mininet, with OpenvSwitches,
an Opendaylight controller and some hosts (See Figure 6.1). Then, a script was used to gen-
erate malicious port scan flows to evaluate our protection method (METHOD_A) intended to
defend against such attacks. Our results show that protection was provided by first identify-
ing the scans and then writing an entry in the blacklist and creating drop rules for such flows,
based on its IP address.

After, DoS attacks were simulated on a similar environment (see Figure 6.2) to
evaluate our METHOD_B. Another script was developed and used to inject bogus OpenFlow
messages, such as OFPT_PORT_STATUS, OFPT_PACKET_IN/OUT and OFPT_FLOW_MOD,
through the encrypted channel between the switches and controller, performing a DoS attack
against the switch and also against the controller. Two different situations were simulated,
being the first one initiated with normal traffic only (file transfers from one host to another)
during 9 seconds. Then, the attacking script was started during 21 seconds. In the second
simulation, the script that performs a distributed denial of service attack was started after
9 seconds that our simulation was initiated, during 6 seconds. Thus, in simulation two no
attack was detected, as only 2 abnormal samples were found and a threshold for abnormal
samples to detect an attack was set to 40% (4 samples). This threshold is important to
avoid false positive alerts, that could be caused by network related problems. We show that
the two different strategies used in METHOD_B, being the first one based on a customized
CUSUM and the second one based on differences computation over the collected packet-
per-second and bytes-per-second samples. It is important to note, that it is important to set
up the required thresholds correctly according to the network on which METHOD_B will be
used.

METHOD_C was also proposed in Chapter 5 to protect against other encrypted at-
tacks, such as those lunched by an insider, like sabotage and data evasion. This approach

112

could be implemented by using ISCX2012 and CIDIS2017 intrusion detection datasets to
first define a normal behavior, as these datasets provide different files that have normal traf-
fic only and also files that have malicious and normal traffic in. After, anomaly detection on
the malicious packets stored in those datasets could be performed, both by using Random
Forest, J48 and Naive Bayes algorithms. This strategy could be to classify malicious traffic
according these 3 different algorithms, i.e., at least two of them classify a given traffic as
malicious, then an attack can be detected. A set of allowed protocols could be FTP, SNMP,
HTTPS and DNS, as such traffic is available in the datasets. Furthermore, specific counters
could be implemented on the switches flow tables by using P4, i.e., the Data Plane could be
customized on a way that traffic classification can be not flow based only but also based on
packet information, so that the encrypted protocol can be identified more effectively. Thus,
this method could be customized and used to identify other encrypted attacks than the pos-
sibilities presented in Chapter 5, such as data sabotage performed by an insider, that can be
made against applications. This strategy could also be used in traditional IP networks based
on packet information, such as inter-arrival-time and packet length.

Through the performed tests, the following observations were made on METHOD_A
and METHOD_B, i.e., on detecting port scan and encrypted DoS:

• Average time delay per flow of 5 milliseconds. Due to the need to check the blacklist
and to add rules by the controller;

• 0.034 % of false negatives in detecting port scan. Due to the number of re-transmitted
packets. Therefore, what should have been an attack ended up being considered a
normal flow;

• Some scans carried out until its block. Although the detection algorithm was assertive
in detecting scans, the interval between one analysis and another allowed the attacker
to perform a few scans, being still necessary to use protection against other attacks,
such as DoS.

• The networks bandwidth usage was around 0.0038% of the whole traffic in our simu-
lations.

• The average RAM usage of the IPS on controller was 3%.

• After DoS and port scan were detected, drop rules were defined and entries in the
blacklist were written so that new attempts from same IP source could not materialize.
In the case of a legitimate host that is compromised, it will also be blocked in the
network until a network’s administrator procedure.

Thus, based on the presented results, we show that the attacks simulated in our
environment were detected successful by our methods, using the thresholds that have been
configured. We show that these methods are effective on protecting from the main attacks

113

that can be performed using encryption against SDN switch, controller and applications,
which are information disclosure and denial of service. We also show that these methods
are lightweight, with low resources usage, such as CPU, memory and network bandwidth.
However, our evaluations are based on artificial environment and simulated data, as SDN is
a new paradigm in network communications and no IDS dataset that is suitable to evaluate
our methods was found until this thesis was written. Finally, other overheads, such as the
IPS database memory and CPU usage where not yet evaluated, as we only consider the
resources usage by the IPS itself in this work.

114

115

7. CONCLUSION

In this research we discussed the rise adoption of encryption in computer networks
communication. On the one hand, encryption provides more security, like increasing privacy
and authentication on data exchange. On the other hand, attackers also are using encryp-
tion to empower methods used to malicious purposes and also to bypass protection systems,
since the packets are encrypted and cannot be analyzed by typical packet-based methods
and systems. However, we discussed in Chapter 5 that methods based on protocol analysis,
modification analysis and statistical analysis can be developed based on metadata provided
in the network. Such methods can act as an advanced security sensor to analyze encrypted
traffic in order to identify encrypted threats and anomalies. Due to traditional networks ossi-
fication, new network technologies are emerging to fulfill the rising usage of computer net-
works nowadays. One such technology is SDN, which is managed by a centralized entity,
called controller, and can use protocols, like OpenFlow to provide features and resources
that may be used for detecting anomalies in network traffic. One such feature is the switch
counters data stored in a flow table, that provides, for example, packet-per-second and byte-
per-second counters (see Section 2.1), which can be used to provide network visibility in
encrypted traffic and thus classify encrypted malicious flows. Such metadata can be used to
model a normal traffic behavior and then search for abnormal behavior on incoming traffic,
both by using, for example, machine learning algorithms (e.g. Random Forests and Naive
Bayes Networks). Traffic classification methods can also be applied to identify, for example,
the application protocol, and then apply network rules, such as to define what protocols are
allowed on the network and also the amount of traffic regarding this protocol. Another way
to analyze encrypted data is based on protocol analysis, by first identifying which protocol is
used in data communication and then perform analysis based on its specification, such as
packets length, inter-arrival time and packets or bytes per second.

In Section 5.1 we discuss the main attacks that SDN is vulnerable too, also includ-
ing vulnerabilities that an attacker could explore by using encryption. Our research indicate
that specially denial of service attacks, which may be preceded by an information disclo-
sure attack (e.g. port scan), could be performed with encrypted data through the encrypted
channels to empower it malicious purpose, as the encryption and decryption process re-
quires more resources to be processed. Those attacks could be lunched against an SDN
switch, controller and even applications. Thus, this thesis presents methods for detecting
and also protecting against such attacks in SDN. Our methods are statistical-based on the
switch counters data and intended specially to protect against port scan and DoS, although
protection against other attacks can be provided by adapting our proposed methods. These
data are available to the controller and may be collected through specific messages on pre-
defined time intervals to perform detection and then to block threats. Furthermore, it does
not overload the network and uses low processing power and memory. Thus, whenever an

116

attacker performs a scan on the network, our IPS will detect it and then prevent new mali-
cious attempts, like encrypted DoS and other application threats, improving security of SDN
infrastructures. However, an attacker may not performs an scan in a target SDN or could be
able to bypass our port scan protection method. Therefore, we also developed a method to
identify denial of service in SDN, even if the flows are encrypted and the attack is lunched
distributed. This method is also based on switch counters, which are packet-per-second and
bytes-per-second, by using two different strategies, being: computing cumulative sums, i.e.,
a customized CUSUM, and also by computing the differences in a sample being analyzed
and the average on normal samples analyzed.

We also presented a method for detecting other encrypted attacks, such as those
lunched by an insider, like sabotage and data evasion, and also other attacks that SDN
is vulnerable too, as discussed in Section 5.1. This approach is still being implemented by
using ISCX2012 and CIDIS2017 intrusion detection datasets to first define a normal behavior
and then to perform anomaly detection on the malicious packets stored in those datasets,
both by using Random Forest, J48 and Naive Bayes algorithms. Therefore, we are also
defining and implementing specific counters for our SDN switches by using P4 on a way that
traffic classification can be not flow based only but also based on packet information, so that
the encrypted protocol can be more effectively identified.

Our main goal in this research was to identify how encrypted attacks could be
identified and stopped. We found that encrypted data can be analyzed by using metadata
and develop an analysis strategy based on protocol analysis, modification and statistics.
Our experiments, presented in Chapter 6 show that our methods were effective in detecting
port scan and DoS in SDN, even when the flows are encrypted, being being non-intrusive
and lightweight regarding to network bandwidth overhead, CPU and memory usage. Our
results, presented on the experimental evaluation (see Chapter 6, show the effectiveness of
these methods in detecting and blocking malicious flows through statistics. We also showed
that our system is lightweight when considering resource consumption, such as network
bandwidth switching, memory and processing power usage. Moreover, low false positive
and negative rates were observed in our simulations. Although we are using only two main
metadata or features provided by SDN (packets-per-second and bytes-per-second), others
could be used (See Section 2.1) to improve detection and extend the proposed methods to
protect SDN against other attacks, as the discussed in Section 2.3 and Section 5.1.

It is important to notice that, in the literature, there are few works related to detect-
ing port scan and encrypted DoS for SDN. In addition, the available solutions do not have
protection against them, which makes this work a relevant and promising alternative for
detecting and preventing malicious threats. Besides, as our system works on the SDN con-
troller, it may exchange information with other controllers, allowing a collaborative intrusion
detection and prevention system, providing more security on SDN infrastructures.

117

7.1 Limitations and future work

Security still plays a fundamental role in computing environments. New network
and computing technologies, such as SDN, are emerging and security must be improved
to cope with these new technologies. The rise number of connected devices with Machine-
to-Machine communications, specially in industrial environments, also increases security
needs and challenges. Thus, we present some limitations and future directions for our re-
search.

As our experiments are based on an experimental environment, there might be
some actual existing problems that arise in a real networks environment and traffic that we
did not tackled. Therefore, a real SDN environment and even a hybrid network (SDN and
IP-based networks) should be used to evaluate accuracy and performance of our methods.
Moreover, other overheads, such as the IPS database memory and CPU usage must be
evaluated individually in order to improve even more the performance of our IPS, as we only
consider the resources usage by the IPS itself in this work.

The proposed protection mechanism uses permanent rules on the SDN switches,
which is typically a hardware with low hardware resources. Thus, our IPS could overload
the switch flow table (memory capacity) with a large number of protection rules and so
creating a new problem. Therefore, this should be a next step in improving our IPS. Although
OpenFlow is a the de facto protocol for implementing SDN southbound communication,
nowadays there are other proposals (see Section 2.1). Thus, it is important to evaluate
such protocols in encrypted attacks detection. OpenFlow also provides specific counters
data that could be extended by using P4. Thus, new counters could be defined to improve
detection and specially encrypted traffic classification, which could be made based on packet
information and not only in flow information. The communication and store of data that is
encrypted by using homomorphic encryption schemes should also be investigated. Finally,
the possible adoption of homomorphic encryption schemes in several environments could
also offer new research possibilities to improve malicious traffic detection in encrypted data,
as the traffic can be evaluated and analyzed without decryption.

7.2 Publications

During the development of this thesis we presented and discussed the results of
our research in the following papers:

• NEU, C. V.; TATSCH, C.; LUNARDI, R.; MICHELIN, R.; OROZCO, A.; ZORZO, A.
F. “Lightweight IPS for Port Scan in OpenFlow SDN Networks”. In: Proceedings
of IEEE/IFIP Network Operations and Management Symposium (NOMS), 2018, pp.

118

1–12. DOI: 10.1109/NOMS.2018.8406313. (Best paper of IEEE/IFIP Workshop on
Security for Emerging Distributed Network Technologies).

• NEU, C. V.; ZORZO, A. F.; OROZCO, A. M. S.; MICHELIN, R. A. “An Approach for
Detecting Encrypted Insider Attacks on OpenFlow SDN Networks”. In: 2016 11th
International Conference for Internet Technology and Secured Transactions (ICITST),
2016, pp. 210–215.

• OROZCO, A. M. S.; NEU, C. V.; MICHELIN, R. A.; ZORZO, A. F. “Security Analysis
of Forwarding Strategies in Network Time Measurements Using OpenFlow”. In: 2016
11th International Conference for Internet Technology and Secured Transactions (IC-
ITST), 2016, pp. 148–153

• FAGUNDES, B. J. ; NEU, C. V. ; ZORZO, A. F. ; OROZCO, A. M. S.; MICHELIN, R. A.
"SNORTIK - Uma Integração do IDS SNORT e o Sistema de Firewall do MIKROTIK
ROUTEROS". In: 14 Escola Regional de Redes de Computadores (ERRC), 2016,
Porto Alegre/RS/BRAZIL.

• GARCIA, T.O. ; NEU, C. V. "Definição de Novas Regras para o IDS Snort em Redes
Definidas por Software". In: 15 Escola Regional de Redes de Computadores (ERRC),
2017, Santa Maria/RS/BRAZIL.

During the thesis development, the following contributions, to other thesis, were
also produced:

• MICHELIN, R. A.; ZORZO, A. F.; CAMPOS, M.B.; NEU, C. V.; OROZCO, A. M. S.;
“Smartphone as a biometric service for web authentication”. In: Proceedings of 11th
International Conference for Internet Technology and Secured Transactions (ICITST),
2016.

• LUNARDI, R.; MICHELIN, R.; NEU, C. V.; ZORZO, A. “Distributed access control on
IoT ledger-based architecture”. In: Proceedings of IEEE/IFIP Network Operations and
Management Symposium (NOMS), 2018. DOI: 10.1109/NOMS.2018.8406154.

Other papers are also being produced and should be submitted shortly. Paper
"ZONFlow: Security and Performance Balancing in SDN Control Plane" is being concluded
to submit to a scientific journal. Paper " Detecting encrypted attacks in OPCUA" is also being
concluded and will be submitted to a scientific conference. Other papers are being planned
and will also be submitted to conferences: a)Detecting encrypted DoS in SDN; b) Encrypted
traffic classification in SDN; and c) SIEM logs management based on ITIL. Those papers
are also part of the research developed in this thesis.

Another work of our research group entitled "A Lightweight Blockchain for Industrial
IoT" was submitted to the IEEE Transactions on Industrial Informatics. This work is currently
under review.

119

REFERENCES

[AAG+15] Akhunzada, A.; Ahmed, E.; Gani, A.; Khan, M. K.; Imran, M.; Guizani, S.
“Securing software defined networks: taxonomy, requirements, and open
issues”, IEEE Communications Magazine, vol. 53–4, April 2015, pp. 36–
44.

[AHR+10] Ali, S.; Haq, I. U.; Rizvi, S.; Rasheed, N.; Sarfraz, U.; Khayam, S. A.;
Mirza, F. “On mitigating sampling-induced accuracy loss in traffic anomaly
detection systems”, ACM SIGCOMM Computer Communication Review,
vol. 40–3, July 2010, pp. 4–16.

[AM17] Anderson, B.; McGrew, D. “Machine learning for encrypted malware
traffic classification: Accounting for noisy labels and non-stationarity”. In:
Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2017, pp. 1723–1732.

[AMG07] Auld, T.; Moore, A. W.; Gull, S. F. “Bayesian neural networks for internet
traffic classification”, IEEE Transactions on Neural Networks, vol. 18,
January 2007, pp. 223 – 239.

[AN12] Alcock, S.; Nelson, R. “Libprotoident: traffic classification using lightweight
packet inspection”, WAND Network Research Group, Technical report,
2012.

[APM17] Anderson, B.; Paul, S.; McGrew, D. “Deciphering malware’s use of
tls (without decryption)”, Journal of Computer Virology and Hacking
Techniques, vol. 14, August 2017, pp. 195–211.

[BAP+16] Bull, P.; Austin, R.; Popov, E.; Sharma, M.; Watson, R. “Flow based security
for iot devices using an sdn gateway”. In: Proceedings of the IEEE 4th
International Conference on Future Internet of Things and Cloud, 2016,
pp. 157–163.

[BDG+14] Bosshart, P.; Daly, D.; Gibb, G.; Izzard, M.; McKeown, N.; Rexford, J.;
Schlesinger, C.; Talayco, D.; Vahdat, A.; Varghese, G.; Walker, D. “P4:
Programming protocol-independent packet processors”, ACM SIGCOMM
Computer Communication, vol. 44, July 2014, pp. 87–95.

[BNR+17] Boite, J.; Nardin, P. A.; Rebecchi, F.; Bouet, M.; Conan, V. “Statesec:
Stateful monitoring for ddos protection in software defined networks”. In:
Proceedings of the IEEE Conference on Network Softwarization, 2017, pp.
1–9.

120

[Bra17] Braadland, A. S. “Key management for data plane encryption in sdn using
wireguard”, Master thesis, NTNU, Institutt for informasjonssikkerhet og
kommunikasjonsteknologi, Oslo, 2017.

[Bro] Bro. “Bro network security monitor”. Source: https://www.bro.org, Last
access: 03 october 2018.

[BZ17] Bertoglio, D. D.; Zorzo, A. F. “Overview and open issues on penetration
test”, Journal of the Brazilian Computer Society, vol. 23, February 2017,
pp. 1–16.

[BsC+16] Beunardeau, M.; École normale supérieure; Connolly, A.; Geraud, R.;
Naccache, D. “Fully homomorphic encryption: Computations with a
blindfold”, IEEE Security Privacy, vol. 14, March 2016, pp. 63–67.

[CB15] Christodoulou, V.; Bi, Y. “A combination of cusum-ewma for anomaly
detection in time series data”. In: Proceedings of the IEEE International
Conference on Data Science and Advanced Analytics, 2015, pp. 1–5.

[CCAC11] Condon, E.; Cummins, E.; Afoulki, Z.; Cukier, M. “How secure are
networked office devices?” In: Proceedings of the IEEE/IFIP 41st
International Conference on Dependable Systems Networks, 2011, pp.
526–540.

[CEBBR14] Carela-Español, V.; Bujlow, T.; Barlet-Ros, P. “Is our ground-truth for traffic
classification reliable?” In: Proceedings of the International Conference on
Passive and Active Network Measurement, 2014, pp. 98 – 108.

[CER18] CERT.br. “Centro de estudos, resposta e tratamento de incidentes de
segurança no brasil”. Source: http://www.cert.br/, Last access: 03 may
2018.

[Cisa] Cisco. “Cisco application centric infrastructure”. Source:
http://www.cisco.com/c/en/us/solutions/data-center-virtualization/
application-centric-infrastructure/index.html, Last access: 24 october
2016.

[Cisb] Cisco. “Cisco open sdn controller”. Source: http://www.cisco.com/c/enlus/
products/cloud-systems-management/open-sdn-controller/index.html,
Last access: 24 october 2016.

[Cisc] Cisco. “Encrypted traffic analytics”. In: White Paper. Source:
https://www.cisco.com/c/dam/en/us/solutions/collateral/enterprise-
networks/enterprise-network-security, Last access: 15 august
2018.

121

[Cis15] Cisco. “Openflow performance testing white paper”. Source: https:
//www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/
application-centric-infrastructure/white-paper-c11-731302.pdf, Last
access: 20 november 2015.

[CLLL16] Chen, C.; Li, B.; Lin, D.; Li, B. “Software-defined inter-domain routing
revisited”. In: Proceedings of the IEEE International Conference on
Communications, 2016, pp. 1–6.

[Clo] CloudStack, A. “Apache cloudstack: Open source cloud computing”.
Source: http://cloudstack.apache.org, Last access: 03 september 2018.

[CMT12] Cappelli, D. M.; Moore, A. P.; Trzeciak, R. F. “The CERT guide to insider
threats: how to prevent, detect, and respond to information technology
crimes (Theft, Sabotage, Fraud)”. Addison-Wesley Professional, 1 edition,
432 pages, 2012.

[Com18] Community, S. “The snort project”. Source: https://snort.org, Last access:
03 october 2018.

[DAR] DARPA. “Kdd cup 1999 data”. Source:
http://www.kdd.ics.uci.edu/databases/kddcup99/task.html, Last access:
03 september 2016.

[DDZX16] Dong, P.; Du, X.; Zhang, H.; Xu, T. “A detection method for a novel
ddos attack against sdn controllers by vast new low-traffic flows”. In:
Proceedings of the IEEE International Conference on Communications,
2016, pp. 1–6.

[DKMB15] Dauer, P.; Khondoker, R.; Marx, R.; Bayarou, K. “Security analysis of
software defined networking applications for monitoring and measurement:
Sflow and bigtap”. In: Proceedings of the International Conference on
Future Internet, 2015, pp. 51–56.

[DMKK10] Dehghani, F.; Movahhedinia, N.; Khayyambashi, M. R.; Kianian, S. “Real-
time traffic classification based on statistical and payload content features”.
In: Proceedings of the International Workshop on Intelligent Systems and
Applications, 2010, pp. 1–4.

[DRK+15] Detken, K. O.; Rix, T.; Kleiner, C.; Hellmann, B.; Renners, L. “Siem
approach for a higher level of it security in enterprise networks”. In:
Proceedings of the IEEE 8th International Conference on Intelligent
Data Acquisition and Advanced Computing Systems: Technology and
Applications, 2015, pp. 322–327.

122

[Dro18] Dropbox, C. “Dropbox”. Source: https://www.dropbox.com, Last access: 10
october 2018.

[dSJAF+15] da Silva, A. S.; J.A.Wickbold; A.Schaeffer-Filho; A.K.Marnerides;
A.Mauthe. “Tool support for the evaluation of anomaly traffic classification
for network resilience”. In: Proceedings of the 20th IEEE Symposium on
Computers and Communication, 2015, pp. 514–519.

[dSJAFG16] da Silva, A. S.; J.A.Wickbold; A.Schaeffer-Filho; Granville, L. Z. “Atlantic:
A framework for anomaly traffic detection, classification, and mitigation
in sdn”. In: Proceedings of the IEEE/IFIP Network Operations and
Management Symposium, 2016, pp. 27–35.

[dSMB+15] da Silva, A. S.; Machado, C. C.; Bisol, R.; Granville, L. Z.; A.Schaeffer-
Filho. “Identification and selection of flow features for accurate traffic
classification in sdn”. In: Proceedings of the IEEE 14th International
Symposium on Network Computing and Applications, 2015, pp. 134–141.

[EGdSSGSF16] E. G. da Silva, A. S. da Silva, J. A. W.; Smith, P.; Granville, L. Z.; Schaeffer-
Filho, A. “A one-class nids for sdn-based scada systems”. In: Proceedings
of the IEEE 40th Annual Computer Software and Applications Conference,
2016, pp. 303–312.

[FNO+16] Fagundes, B.; Neu, C. V.; Orozco, A. M. S.; Michelin, R. A.; Zorzo,
A. F. “Snortik - uma integração do IDS SNORT e o sistema de firewall
do MikroTik RouterOS”. In: Anais da 14a Escola Regional de Redes de
Computadores, 2016.

[Foua] Foundation, O. N. “Openflow switch specification 1.4.0”. Source:
https://www.opennetworking.org/wp-content/uploads/2014/10/
openflow-spec-v1.4.0.pdf, Last access: 07 mar 2018.

[Foub] Foundation, O. N. “Openflow switch specification, version 1.0.0”.
Source: https://www.opennetworking.org/images/stories/downloads/
sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf, Last
access: 10 january 2018.

[Fouc] Foundation, O. N. “Openflow switch specification, version 1.3.0”.
Source: https://www.opennetworking.org/images/stories/downloads/
sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf, Last
access: 08 october 2018.

[Foud] Foundation, O. N. “Threat analysis for the sdn architecture”. Source:
https://www.opennetworking.org/wp-content/uploads/2014/10/Threat_
Analysis_for_the_SDN_Architecture.pdf, Last access: 05 october 2018.

123

[Foue] Foundation, O. N. “Threat analysis for the SDN architecture”. Source: https:
//www.opennetworking.org/images/stories/downloads/sdn-resources/
technical-reports/Threat_Analysis_for_the_SDN_Architecture.pdf, Last
access: 10 december 2018.

[Fouf] Foundation, O. U. A. “Opc unified architecture pioneer of the 4th industrial
(r)evolution”. Source: https://opcfoundation.org/wp-content/uploads/2014/
03/OPC_UA_I_4.0_Pioneer_US_v2.pdf, Last access: 03 august 2018.

[Fou11] Foundation, O. N. “Open networking foundation website”. Source: https:
//www.opennetworking.org, Last access: 03 november 2018.

[Fou14] Foundation, O. N. “Openflow switch specification 1.5.0.” Source: https:
//www.opennetworking.org/images/stories/downloads/sdn-resources/
onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf, Last
access: 10 october 2016.

[FS03] Ferguson, N.; & Schneier, B. “Practical Cryptography”. New York: John
Wiley & Sons, 2003.

[GAA+14] Giotis, K.; Argyropoulos, C.; Androulidakis, G.; Kalogeras, D.; Maglaris,
V. “Combining openflow and sflow for an effective and scalable anomaly
detection and mitigation mechanism on sdn environments”, Computer
Networks, vol. 62, 2014, pp. 122 – 136.

[Gar] Gartner. “Are cybercriminals hiding in your ssl traffic?”
Source: https://whitepapers.theregister.co.uk/paper/view/3670/
are-cybercriminals-hiding-in-your-ssl-traffic., Last access: 13 november
2018.

[GBC16] Goransson, P.; Black, C.; Culver, T. “Software Defined Networks, Second
Edition: A Comprehensive Approach”. Morgan Kaufmann, 2016, 2 ed..

[GJW+14] Go, Y.; Jeong, E.; Won, J.; Kim, Y.; Kune, D. F.; Park, K. “Gaining control of
cellular traffic accounting by spurious tcp retransmission”. In: Network and
Distributed System Security Symposium, 2014, pp. 1–15.

[Groa] Group, M. W. “Mawi working group traffic archive”. Source: http://mawi.
wide.ad.jp/mawi, Last access: 19 september 2018.

[Grob] Group, N. W. “Rfc4741: Netconf configuration protocol”. Source: https:
//tools.ietf.org/html/rfc4741, Last access: 03 december 2018.

[GZL06] Gao, M.; Zhang, K.; Lu, J. “Efficient packet matching for gigabit network
intrusion detection using tcams”. In: Proceedings of the 20th International

124

Conference on Advanced Information Networking and Applications, 2006,
pp. 249–254.

[HHB14] Hu, F.; Hao, Q.; Bao, K. “A survey on software-defined network and
openflow: From concept to implementation”, Communications Surveys
Tutorials, IEEE, vol. 16, Fourthquarter 2014, pp. 2181–2206.

[HPSR18] Hofstede, R.; Pras, A.; Sperotto, A.; Rodosek, G. D. “Flow-based
compromise detection: Lessons learned”, IEEE Security Privacy, vol. 16,
February 2018, pp. 82–89.

[HSDK15] Haleplidis, E.; Salim, J.; Denazis, S.; Koufopavlou, O. “Towards a network
abstraction model for sdn”, Journal of Network and Systems Management,
vol. 23, 2015, pp. 309–327.

[IET] IETF, I. E. T. F. “Opflex control protocol”. Source: https://tools.ietf.org/html/
draft-smith-opflex-03, Last access: 15 november 2018.

[IET11] IETF, I. E. T. F. “Rfc6241: Network configuration protocol (netconf)”.
Source: https://tools.ietf.org/html/rfc4741, Last access: 11 december
2018.

[IET13] IETF, I. E. T. F. “Rfc7047: The open vswitch database management
protocol”. Source: https://tools.ietf.org/html/rfc7047, Last access: 03
october 2018.

[IET16] IETF, I. E. T. F. “An architecture for the interface to the routing system (rfc
7921)”. Source: https://tools.ietf.org/html/rfc7921, Last access: 19 october
2018.

[JGSG17] Jazi, H. H.; Gonzalez, H.; Stakhanova, N.; Ghorbani, A. “Detecting http-
based application layer dos attacks on web servers in the presence of
sampling”, Computer Networks, vol. 121, July 2017, pp. 25–36.

[KF13] Kim, H.; Feamster, N. “Improving network management with software
defined networking”, IEEE Communications Magazine, vol. 51–2,
February 2013, pp. 114–119.

[KGR14] Koch, R.; Golling, M.; Rodosek, G. “Behavior-based intrusion detection in
encrypted environments”, IEEE Communications Magazine, vol. 52, 2014,
pp. 124–131.

[KID17] Kolpyakwar, A. A.; Ingle, M. G.; Deshmukh, R. V. “A survey on data mining
approaches for network intrusion detection system”, International Journal
of Computer Applications, vol. 159, 2017, pp. 20–23.

125

[KKB07] Koh, K.; Kim, S.; Boyd, S. “An interior-point method for large-scale l1-
regularized logistic regression”, Journal of Machine learning research,
vol. 8, January 2007, pp. 1519–1555.

[Koc09] Koch, R. “Changing network behavior”. In: Proceedings of the IEEE Third
International Conference on Network and System Security, 2009, pp. 60–
66.

[KR16] Kumar, M. G. V.; Ragupathy, U. S. “A survey on current key issues and
status in cryptography”. In: Proceedings of the International Conference
on Wireless Communications, Signal Processing and Networking, 2016,
pp. 205–210.

[KREV+15] Kreutz, D.; Ramos, F.; E. Verissimo, P.; E. Rothenberg, C.; Azodolmolky,
S.; Uhlig, S. “Software-defined networking: A comprehensive survey”,
Proceedings of the IEEE, vol. 103, January 2015, pp. 14–76.

[KRV13] Kreutz, D.; Ramos, F. M. V.; Verissimo, P. “Towards secure and
dependable software-defined networks”. In: Proceendings of the second
ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking,
2013, pp. 55–60.

[KXF18] Knob, L. A. D.; Xavier, B.; Ferreto, T. “An unikernels provisioning
architecture for openstack”. In: Proceedings of the IEEE Symposium on
Computers and Communications, 2018, pp. 903–908.

[KZMB14] Khondoker, R.; Zaalouk, A.; Marx, R.; Bayarou, K. “Feature-based
comparison and selection of software defined networking (sdn)
controllers”. In: Proceedings of the Computer Applications and Information
Systems, 2014, pp. 1–7.

[LCCY17] Liu, Y.; Chen, J.; Chang, P.; Yun, X. “A novel algorithm for encrypted
traffic classification based on sliding window of flow’s first n packets”. In:
Proceeddings of the 2ND IEEE International Conference on Computer
Intelligence and Applications, 2017, pp. 463–470.

[lCFCG18] ling Chan, C.; Fontugne, R.; Cho, K.; Goto, S. “Monitoring tls adoption
using backbone and edge traffic”. In: Proceedings of the IEEE Conference
on Computer Communications Workshops, 2018, pp. 208 – 213.

[LF17] Lagraa, S.; François, J. “Knowledge discovery of port scans from darknet”.
In: Proceedings of the IFIP/IEEE Symposium on Integrated Network and
Service Management, 2017, pp. 935–940.

126

[LHA+18] Li, S.; Han, K.; Ansari, N.; Bao, Q.; Hu, D.; Liu, J.; Yu, S.; Ahu, Z.
“Improving sdn scalability with protocol-oblivious source routing: A system-
level study”, IEEE Transactions on Network and Service Management,
vol. 15, March 2018, pp. 275–288.

[LHM10] Lantz, B.; Heller, B.; McKeown, N. “A network in a laptop: Rapid
prototyping for software-defined networks”. In: Proceedings of the ACM
SIGCOMM Workshop on Hot Topics in Networks, 2010, pp. 1–6.

[Ltd18] Ltd, C. “Ubuntu”. Source: https://www.ubuntu.com, Last access: 30
october 2018.

[Lyo09] Lyon, G. F. “Nmap Network Scanning: The Official Nmap Project Guide to
Network Discovery and Security Scanning”. USA: Insecure, 2009.

[Lyo18] Lyon, G. “Nmap security scaner”. Source: https://insecure.org, Last
access: 30 october 2018.

[MAB+08] McKeown, N.; Anderson, T.; Balakrishnan, H.; Parulkar, G.; Peterson,
L.; Rexford, J.; Shenker, S.; Turner, J. “Openflow: Enabling innovation in
campus networks”, ACM SIGCOMM Computer Communication Review,
vol. 38, March 2008, pp. 69–74.

[McC18] McCauley, M. “Pox”. Source: http://www.noxrepo.org, Last access: 30
september 2018.

[MdAN+11] Mozzaquatro, B. A.; de Azevedo, R. P.; Nunes, R. C.; Cappo, C.;
de Jesus Kozakevicius, C. S. A. “Anomaly-based techniques for web
attacks detection”, Journal of Applied Computing Research, vol. 1,
December 2011, pp. 111–120.

[MFH18] Mahdavi, E.; Fanian, A.; Hassannejad, H. “Encrypted traffic classification
using statistical features”, The ISC International Journal of Information
Security, vol. 10, January 2018, pp. 29–43.

[Min18] Mininet. “Mininet simulator: An instant virtual network on your laptop”.
Source: http://mininet.org, Last access: 03 may 2018.

[MMIoT] MIT Massachusetts Institute of Technology, L. L. “Darpa, defense
advanced research projects agency for intrusion detection evaluation”.
Source: https://www.ll.mit.edu/ideval/docs/attackDB.html, Last access: 03
october 2015.

[MRFFFRAB15] Martínez-Rego, D.; Fernández-Francos, D.; Fontenla-Romero, O.;
Alonso-Betanzos, A. “Stream change detection via passive-aggressive

127

classification and bernoulli cusum”, Information Sciences, vol. 305,
June 2015, pp. 130–145.

[MSSK18] McGaughey, D.; Semeniuk, T.; Smith, R.; Knight, S. “A systematic
approach of feature selection for encrypted network traffic classification”.
In: Proceedings of the Annual IEEE International Systems Conference,
2018, pp. 463–470.

[MVTG14] Medved, J.; Varga, R.; Tkacik, A.; Gray, K. “Opendaylight: Towards
a model-driven sdn controller architecture”. In: IEEE International
Symposium on a World of Wireless, Mobile and Multimedia Networks,
2014, pp. 1–6.

[MZR14] Michelin, R. A.; Zorzo, A. F.; Rose, C. A. D. “Mitigating dos to authenticated
cloud rest apis”. In: Proceedings of the 9th International Conference for
Internet Technology and Secured Transactions, 2014, pp. 106–111.

[NPSR16] Neelam, D.; Prasenjit, M.; Shashank, S.; Rahamatullah, K. “Research
trends in security and ddos in sdn”, Security and Communication Networks,
vol. 9, December 2016, pp. 6386–6411.

[NS14] Nishtha; Sood, M. “Software defined network - architectures”. In:
Proceedings of the International Conference on Parallel, Distributed and
Grid Computing, 2014, pp. 451–456.

[NTL+18] Neu, C. V.; Tatsch, C.; Lunardi, R.; Michelin, R. A.; Orozco, A. M. S.;
Zorzo, A. F. “Lightweight ips for port scan in openflow sdn networks”.
In: Proceedings of the IEEE/IFIP Network Operations and Management
Symposium, 2018, pp. 1–6.

[NZD+16] Nanda, S.; Zafari, F.; DeCusatis, C.; Wedaa, E.; Yang, B. “Predicting
network attack patterns in sdn using machine learning approach”. In:
Proceedings of the IEEE Conference on Network Function Virtualization
and Software Defined Networks, 2016, pp. 167–172.

[NZOM16] Neu, C. V.; Zorzo, A. F.; Orozco, A. M. S.; Michelin, R. A. “An approach
for detecting encrypted insider attacks on openflow sdn networks”,
Proceedings of the 11th International Conference for Internet Technology
and Secured Transactions, December 2016, pp. 210–215.

[OCD16] Osanaiye, O.; Choo, K.-K. R.; Dlodlo, M. “Change-point cloud ddos
detection using packet inter-arrival time”. In: Proceedings of the 8th
Computer Science and Electronic Engineering, 2016.

128

[OML10] Owezarski, P.; Mazel, J.; Labit, Y. “0day anomaly detection made possible
thanks to machine learning”. In: Proceedings of the 8th International
Conference on Wired/Wireless Internet Communications, 2010, pp. 327–
338.

[ONMZ16] Orozco, A. M. S.; Neu, C. V.; Michelin, R. A.; Zorzo, A. F. “Security analysis
of forwarding strategies in network time measurements using openflow”. In:
Proceedings of the 11th International Conference for Internet Technology
and Secured Transactions, 2016, pp. 148–153.

[Ope] Open Networking Foundation. “Software-Defined Networking: The New
Norm for Networks”. Source: https://www.opennetworking.org/images/
stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf,
Last access: 09 september2018.

[Ope18a] Open Networking Foundation. “Openflow”. Source:
https://opennetworking.org/sdn-resources/openflow, Last access: 02 may
2018.

[OPE18b] OPENDAYLIGHT. “Opendaylight, a linux foundation collaborative project”.
Source: http://www.opendaylight.org, Last access: 30 september 2018.

[Ope18c] OpenStack. “Openstack open source cloud computing software”. Source:
https://www.openstack.org, Last access: 03 september 2018.

[Ora18] Oracle. “Virtualbox”. Source: https://www.virtualbox.org, Last access: 30
october 2018.

[P418] P4, C. “P4 language and related specifications”. Source: https://p4.org,
Last access: 30 september 2018.

[PAGT07] Peddabachigaria, S.; Abrahamb, A.; Grosanc, C.; Thomas, J. “Modeling
intrusion detection system using hybrid intelligent systems”, Journal of
Network and Computer Applications, vol. 30, January 2007, pp. 114–132.

[Pal15] Paladi, N. “Towards secure sdn policy management”. In: Proceedings
of the IEEE/ACM 8th International Conference on Utility and Cloud
Computing, 2015, pp. 607–611.

[Pax98] Paxson, V. “Bro: a system for detecting network intruders in real-
time. computer networks”. In: Proceedings of the 7th USENIX Security
Symposium, 1998, pp. 26–29.

[Pin17] Pinder, J. P. “Introduction to Business Analytics using Simulation”. Elsevier
Inc., 2017, 1 ed..

129

[PPK+09] Pfaff, B.; Pettit, J.; Koponen, T.; Amidon, K.; Casado, M.; Shenker, S.
“Extending networking into the virtualization layer”. In: Proceedings of the
Workshop on Hot Topics in Networks, 2009, pp. 1–6.

[PR06] Peterson, L.; Roscoe, T. “The design principles of planetlab”, ACM
SIGOPS Operating Systems Review, vol. 40, January 2006, pp. 11–16.

[Pre] Presuhn, R. “Rfc3436: Version 2 of the protocol operations for the simple
network management protocol (snmp)”.

[Pro18] Project Floodlight. “Project floodlight: Open source software for building
software-defined networks”. Source: http://www.projectfloodlight.org, Last
access: 30 september 2018.

[PTL15] Parulkar, G.; Tofigh, T.; Leenheer, M. D. “Sdn control of packet-over-
optical networks”. In: Proceedings of the Optical Fiber Communication
Conference, 2015, pp. W1G.4.

[RNME+15] Rodriguez-Natal, A.; Marc, P.-C.; Ermagan, V.; Lewis, D.; Farinacci, D.;
Maino, F.; Cabellos-Aparicio, A. “Lisp: a southbound sdn protocol?”, IEEE
Communications Magazine, vol. 53, July 2015, pp. 201–207.

[Roe99] Roesch, M. “Snort - lightweight intrusion detection for networks”. In:
Proceedings of the 13th USENIX Conference on System Administration,
1999, pp. 229–238.

[RV17] Rangasami, K.; Vagdevi, S. “Comparative study of homomorphic
encryption methods for secured data operations in cloud computing”. In:
Proceedings of the International Conference on Electrical, Electronics,
Communication, Computer and Optimization Techniques, 2017.

[RYU18] RYU SDN FRAMEWORK COMMUNITY. “Ryu network operation system”.
Source: https://osrg.github.io/ryu/, Last access: 30 september 2018.

[SAS+17] Stancu, A.; Avram, A.; Skorupski, M.; Vulpe, A.; Halunga, S. “Enabling
sdn application development using a netconf mediator layer simulator”.
In: Proceedings of the Ninth International Conference on Ubiquitous and
Future Networks, 2017, pp. 658–663.

[SCM09] Sandouka, H.; Cullen, A. J.; Mann, I. “Social engineering detection using
neural networks”. In: Proceedings of the International Conference on
CyberWorlds, 2009, pp. 273–278.

[SD16] Sanzgiri, A.; Dasgupta, D. “Classification of insider threat detection
techniques”. In: Proceedings of the 11th Annual Cyber and Information
Security Research Conference, 2016, pp. 1–4.

130

[SDYL+] Smith, M.; Dvorkin, M.; Y. Laribi, V. P.; Garg, P.; Weidenbacher, N. “Opflex
control protocol”. Source: https://tools.ietf.org/html/draft-smith-opflex-03,
Last access: 19 november 2018.

[SEKC16] Salman, O.; Elhajj, I.; Kayssi, A.; Chehab, A. “Sdn controllers:
A comparative study”. In: Proceedings of the 18th Mediterranean
Electrotechnical Conference, 2016, pp. 1–6.

[SFF+13] Shah, S. A.; Faiz, J.; Farooq, M.; Shafi, A.; Mehdi, S. A. “An architectural
evaluation of sdn controllers”. In: Proceedings of the IEEE International
Conference on Communications, 2013, pp. 3504–3508.

[Shu13] Shukla, V. “Introduction to Software Defined Networking - OpenFlow &
VxLAN”. CreateSpace Independent Publishing Platform, 2013, 1st ed..

[SKS15] Saxena, A.; Kaulgud, V.; Sharma, V. “Flow-application layer encryption
for cloud”. In: Proceedings of the Asia-Pacific Software Engineering
Conference, 2015, pp. 1–6.

[SLG18] Sharafaldin, I.; Lashkari, A. H.; Ghorbani, A. A. “Toward generating a
new intrusion detection dataset and intrusion traffic characterization”. In:
Proceedings of the 4th International Conference on Information Systems
Security and Privacy, 2018, pp. 108–116.

[SSR15] Seeber, S.; Stiemert, L.; Rodosek, G. D. “Towards an sdn-enabled ids
environment”. In: IEEE Conference on Communications and Network
Security, 2015, pp. 751–752.

[SSS+10] Sperotto, A.; Schaffrath, G.; Sadre, R.; Morariu, C.; Pras, A.; Stiller, B.
“An overview of ip flow-based intrusion detection”, IEEE Communications
Surveys Tutorials, vol. 12, April 2010, pp. 343–356.

[SSTG12] Shiravi, A.; Shiravi, H.; Tavallaee, M.; Ghorbani, A. A. “Toward developing
a systematic approach to generate benchmark datasets for intrusion
detection”, Computers Security, vol. 31, May 2012, pp. 357–374.

[Sur10] Suricata. “Suricata open source ids/ips/nsm engine”. Source: https://
suricata-ids.org,2010, Last access: 03 october 2018.

[SWJ15] Scandariato, R.; Wuyts, K.; Joosen, W. “A descriptive study of microsoft’s
threat modeling technique”, Requirements Engineering, vol. 20,
June 2015, pp. 163–180.

[Tü17] Türpe, S. “The trouble with security requirements”. In: Proceedings of the
IEEE 25th International Requirements Engineering Conference, 2017, pp.
122 – 133.

131

[UNBa] UNB. “A network traffic biflow generator and analyzer (formerly
iscxflowmeter)”. Source: http://netflowmeter.ca, Last access: 09
november 2018.

[UNBb] UNB-datasets. “Unb datasets”. Source: https://www.unb.ca/cic/datasets/
index.html, Last access: 02 november 2018.

[UNBc] UNB-ISCX. “Unb iscx. intrusion detection evaluation dataset”. Source: http:
//www.unb.ca/research/iscx/dataset/iscx-IDS-datasep.html, 30 november
2018.

[Vac17] Vacca, J. R. “Computer and Information Security Handbook 3rd Edition”.
Elsevier, 2017.

[VMC08] Viega, J.; Messier, M.; Chandra, P. “Network Security with OpenSSL:
Cryptography for Secure Communications”. O’Reilly Media, 2008.

[VD15] Velan, P.; Čermák, M.; Čeleda, P.; Drašar, M. “A survey of methods
for encrypted traffic classification and analysis”, International Journal of
Network Management, vol. 25, July 2015, pp. 355–374.

[WCCL18] Wang, T.; Chen, H.; Cheng, G.; Lu, Y. “Sdnmanager: A safeguard
architecture for sdn dos attacks based on bandwidth prediction”, Security
and Communication Networks, vol. 2018, January 2018, pp. 52–59.

[WL06] Walton, R.; Limited, W.-M. “Balancing the insider and outsider threat”,
Computer Fraud & Security, vol. 2006, November 2006, pp. 8–11.

[XC18] Xu, H.; Chen, H. “Constructing a basic-element library from snmp mibs
for management information tree of software-defined networking”. In:
Proceedings of the 37th Chinese Control Conference, 2018, pp. 6132 –
6136.

[XL09] Xu, P.; Lin, S. “Internet traffic classification using c4.5 decision tree”,
Journal of software, vol. 20, January 2009, pp. 2692–2704.

[XTS+12] Xu, D.; Tu, M.; Sanford, M.; Thomas, L.; Woodraska, D.; Xu, W. “Automated
security test generation with formal threat models”, IEEE Transactions on
Dependable and Secure Computing, vol. 9, July 2012, pp. 526–540.

[YWS+14] Yu, Z.; Wang, X.; Song, J.; Zheng, Y.; Song, H. “Forwarding programming
in protocol-oblivious instruction set”. In: Proceedings of the IEEE 22nd
International Conference on Network Protocols, 2014, pp. 577 – 582.

132

[YY15] Yan, Q.; Yu, F. R. “Distributed denial of service attacks in software-defined
networking with cloud computing”, IEEE Communications Magazine,
vol. 53, April 2015, pp. 52–59.

[YZ08] Yuan, D.; Zhong, J. “A lab implementation of syn flood attack and defense”.
In: Proceedings of the 9th ACM SIGITE Conference on Information
Technology Education, 2008, pp. 57–58.

[ZGYW16] Zhang, L.; Guo, Y.; Yuwen, H.; Wang, Y. “A port hopping based
DoS mitigation scheme in SDN network”. In: Proceedings of the 12th
International Conference on Computational Intelligence and Security,
2016, pp. 314–317.

[ZHKS16] Zolotukhin, M.; Hämäläinen, T.; Kokkonen, T.; Siltanen, J. “Increasing
web service availability by detecting application-layer ddos attacks in
encrypted traffic”. In: Proceedings of the 23rd International Conference
on Telecommunications, 2016, pp. 1–6.

[ZKF+17] Zhang, Z.; Kang, C.; Fu, P.; Cao, Z.; Li, Z.; Xiong, G. “Metric learning
with statistical features for network traffic classification”. In: Proceedings of
the IEEE 36th International Performance Computing and Communications
Conference, 2017, pp. 1 – 7.

