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I dedicate my work to my family and friends.



“Argumentation constitutes a major component

of human intelligence”

(Plan Minh Dung [45])
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UM FRAMEWORK PARA RACIOCÍNIO E DIÁLOGO EM SISTEMAS

MULTIAGENTES USANDO ESQUEMAS DE ARGUMENTAÇÃO

RESUMO

Um dos aspectos mais importantes em sistemas multiagentes é a comunicação. Entre as

técnicas de comunicação em sistemas multiagentes, abordagens baseadas em argumentação tem

recebido um interesse especial por parte da comunidade dado que essas abordagens fornecem

uma rica forma de comunicação permitindo agentes comunicarem argumentos. Além de uma

rica forma de comunicação, argumentação também fornece um forma elegante de raciocínio não

monotonico. Usando argumentação, agentes são capazes de alcançar conclusões bem suportadas,

construindo argumentos a favor e contra suas atitudes mentais.

Para se comunicar e raciocinar usando argumentação, agentes precisam instanciar argu-

mentos dos padrões de raciocínio (esquemas de argumentação) disponíveis para eles. No entanto,

não há uma abordagem geral para representar esquemas de argumentação em sistemas multiagen-

tes. Assim, nesta tese, investigamos como esquemas de argumentação podem ser representados

em sistemas multiagentes e como agentes podem instanciar esses padrões de raciocínio para ra-

ciocinar e se comunicar. Baseado nessa investigação, propomos um framework para esquemas de

argumentação em sistemas multiagentes.

Além disso, as informações adicionais trocadas por agentes durante comunicações ba-

seadas em argumentação podem sobrecarregar a infraestrutura de comunicação, restringindo a

aplicação de técnicas de argumentação na prática. Assim, baseados na estrutura para esquemas

de argumentação em sistemas multiagentes proposta, também propomos uma abordagem pela

qual os agentes podem trocar mensagens mais curtas durante diálogos, omitindo informações que

são de conhecimento comum entre os agentes (por exemplo, informações sobre a organização

multiagente compartilhada). Em particular, nossa abordagem usa a ideia de enthymemes, bem

como referências para esquemas de argumentação compartilhados e conhecimento organizacional

compartilhado para guiar a reconstrução de argumentos.

Palavras-Chave: Sistemas Multiagentes, Argumentação, Esquemas de Argumentação, Enthyme-

mes.



A FRAMEWORK FOR REASONING AND DIALOGUE IN

MULTI-AGENT SYSTEMS USING ARGUMENTATION SCHEMES

ABSTRACT

One of the most important aspects of multi-agent systems is communication. Among the

communication techniques in multi-agent systems, argumentation-based approaches have received

special interest from the research community because those approaches provide a rich form of

communication by means of agents exchanging arguments. Besides a rich form of communication,

argumentation also provides an elegant form of nonmonotonic reasoning. Using argumentation,

agents are able to reach well-supported conclusions, constructing arguments for and against their

mental attitudes.

In order to communicate and reason using argumentation, agents need to instantiate

arguments from the reasoning patterns (argumentation schemes) available to them. However, there

is no general approach to represent argumentation schemes in multi-agent systems. Thus, in this

thesis, we investigate how argumentation schemes can be represented in multi-agent systems, and

how agents can instantiate those reasoning patterns in order to reason and communicate. Based on

such an investigation, we propose a framework for argumentation schemes in multi-agent systems.

Furthermore, the additional information exchanged by agents during argumentation-

based communication can overburden the communication infrastructure, restricting the practi-

cal applications of argumentation techniques. Thus, based on our framework for argumentation

schemes in multi-agent systems, we also propose an approach whereby agents are able to exchange

shorter messages when engaging in dialogues by omitting information that is common knowledge

(e.g., information about a shared multi-agent organisation). In particular, our approach uses the

idea of enthymemes as well as referring to shared argumentation schemes and common organisa-

tional knowledge to guide argument reconstruction.

Keywords: Multi-Agent Systems, Argumentation, Argumentation Schemes, Enthymemes.
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1. INTRODUCTION

The theory of argumentation is a rich interdisciplinary area of research in philosophy,

communication studies, linguistics, computer science, and psychology [156]. In the past few years,

formal models of argumentation started to stand out and gained importance in artificial intelli-

gence, given they have found a wide range of application in specifying semantics for logic program-

mings, generating natural language text, supporting legal reasoning, and facilitating multi-agent

dialogues and negotiation on the Internet [156].

In particular, argumentation has received significant interest in the Multi-Agent System

community in recent years [17, ?, 68, 72, 78, 89, 114, 131, 142, 145, 150]. The two main lines of

research in the multi-agent community regarding argumentation are argumentation-based reason-

ing and argumentation-based communication [78]. Argumentation-based reasoning has a focus

on agents reasoning over incomplete, conflicting, or uncertain information (nonmonotonic rea-

soning), where they are able to construct arguments for and against certain conclusions (beliefs,

goals, etc.) of their own. Comparing such arguments for and against their conclusions, agents

are able to reach acceptable conclusions, given the knowledge available to them. On the other

hand, argumentation-based communication has a focus on communication between agents, al-

lowing the exchange of arguments to justify a stance and to provide reasons that defend claims

made by individual participants. The main claim appearing in the literature about the benefits

of an argumentation-based approach to communication is the fact that this type of communi-

cation allows agents to reach agreements in situations where other approaches would not (for

example, in negotiation, where argumentation is compared to game-theoretic and heuristic-based

approaches [126]). Such benefits are the consequence of the exchange of additional information

(arguments) which allow agents to make more informed decisions and comparisons.

Although argumentation could have an important role in multi-agent systems, most of the

work in the field of argumentation is concentrated in properties of theoretic frameworks describing

the interaction of arguments, most of them based on abstract argumentation [45]. Closer to the

needs of multi-agent systems, the studies in structured argumentation aim to give structure to

arguments, allowing arguments to be interpreted according to the meaning of their contents. Such

approaches to structured arguments allow us to use different logical languages, normally based on

different kinds of inference rules. Even within the studies in structured argumentation there is little

work that investigates argumentation in the context of agent-oriented programming languages,

or even in multi-agent platforms/frameworks, which could enable extensive use of argumentation

techniques in practical multi-agent systems development. Such an investigation would include,

for example, a particular language to represent knowledge/arguments, which could be naturally

interpreted by agents, a communication language defining precisely the exchange of arguments

among agents in such systems, and it could include the consideration of particular concepts present

in multi-agent systems, such as organisational structures. This thesis aims to do exactly that.
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Further, although approaches for structured argumentation provide a manner to generate

and evaluate the acceptability of arguments from a logical representation, which arguments agents

will be able to construct depends on the knowledge available to them and on inference patterns (or

reasoning patterns) available for that particular domain/application. Towards defining reasoning

patterns in multi-agent systems, argumentation schemes [156] have been discussed in this con-

text [145, 113, 142]. Argumentation schemes are reasoning patterns widely known in argumentation

studies, describing forms of arguments (structure of inferences) that represent structures of reason-

ing used in everyday discourse (i.e., common types of arguments used in everyday discourse), as

well as specific contexts such as legal argumentation and scientific argumentation [156].

Towards exploring the potential of argumentation techniques in multi-agent systems, in

this document we present our research that focused on bringing to multi-agent systems much of the

studies done in argumentation. In particular, we are interested in combining studies done in argu-

mentation with multi-agent oriented programming paradigm (e.g., the JaCaMo Framework [31]).

In order to define reasoning patterns in multi-agent systems, we investigated different ap-

proaches for argumentation schemes, identifying a common structure for argumentation schemes.

Based on this common structure, we were able to propose a formal specification for argumenta-

tion schemes in multi-agent system [103, 102, 99]. This was an important step in our research,

given that, although argumentation schemes are widely studied reasoning patterns used by hu-

mans in everyday discourse, there are few studies identifying and using argumentation schemes

in the context of multi-agent systems. Also, the role of argumentation schemes in the multi-

agent oriented programming paradigm is unclear. Further, considering argumentation schemes in

multi-agent systems from a practical point of view seems as yet an underdeveloped research topic.

Thus, based on the formal specification for argumentation schemes, we suggest an infrastructure

in which agents share argumentation schemes, they are able to instantiate arguments from theses

reasoning patterns, and they are able to use the multiples instances of arguments during reason-

ing and communication. Our approach is built based on the multi-agent oriented programming

paradigm, resulting in a complete synergy between the formal specification of our framework and

its implementation.

In chapter 3, we present our research regarding the structure and representation of

argumentation schemes in multi-agent systems. We adopt a view based on the idea that domain

specific knowledge is shared by agents in multi-agent systems [49]. Therefore, we propose that

argumentation schemes could be shared in multi-agent systems as well, considering that they

describe common reasoning patterns which will be available for agents to instantiate arguments in

that particular system/society. In order to represent and share argumentation schemes in multi-

agent systems, and particularly in the multi-agent oriented programming paradigm, we proposed

two alternatives ways: (i) in Section 3.1, we propose a model for argumentation schemes extending

a multi-agent organisation with a new dimension for argumentation schemes [102]; and (ii) in

Section 3.2, we propose an infrastructure for sharing argumentation schemes using semantics
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data bases (ontologies) [49, 50]. In both approaches, agents are directly able to instantiate such

argumentation schemes, similarly to the way they are aware of the organisation structure.

Agents are able to instantiate arguments from the argumentation schemes and use those

instantiated arguments during reasoning and communication. In Chapter 4, we present our re-

search regarding argumentation-based reasoning. We have developed an argumentation-based

reasoning mechanism to enable agents to reason, generate, and evaluate acceptable arguments in

their reasoning processes [101, 109]. Such an argumentation-based reasoning mechanism was the

first step towards the goal of this research, considering that agents need to be able to interpret and

reason about arguments they receive during communication, as well as they need to be able to

generate and evaluate arguments for and against their mental attitudes (beliefs, intentions, goals)

in order to reach acceptable conclusions and to engage in meaningful communication. Similar

to most of the structured approaches to argumentation, the reasoning mechanism we developed

works by using inference rules representing reasoning patterns (normally specified for particular

applications domains), which was extended to “linked predicates” in order to consider a richer

structure of argumentation schemes. In Chapter 4, we start presenting, in Sections 4.1 and 4.2,

the basic argumentation-based reasoning mechanism we have developed [109, 101]. Afterwards,

in Section 4.4, we present its extended version considering the richer structure of argumentation

schemes. Finally, in Section 4.5, we evaluate our approach, showing its generality and performance

in argumentation-based reasoning.

In Chapter 5, we present our research regarding argumentation-based dialogues. In Sec-

tion 5.1, we start presenting the operational semantics for a set of speech acts for argumentation in

agent-oriented programming languages based on the BDI (Beliefs-Desires-Intentions) architecture

we have proposed in [111, 108]. In Section 5.2, we present the modules and artifacts we have imple-

mented in order to enable argumentation-based dialogues in multi-agent systems. In Section 5.4,

we discuss the role of argumentation schemes in argumentation-based dialogues. In Section 5.5, we

evaluate our framework for argumentation-based dialogues considering argumentation schemes.

In order to evaluate our framework, we define two different protocols for argumentation-based di-

alogues: (i) a protocol for persuasion, based on our previous work [110, 106, 136]; and (ii) a protocol

for data access control in multi-agent systems [100]. After we implemented those protocols, we

ran some simulation. Again, we show the generality of our framework, as it supports the imple-

mentation of different protocols. Finally, in Section 5.6, we present an approach to enthymemes in

multi-agent systems [103]. As it will be easily noted, argumentation-based communication makes

agent communication richer. However, it leads to overheads in agent communication, given the

extra content used in each interaction. Considering that some multi-agent applications could

have restricted network availability, e.g., mobile applications, such computational costs should be

avoided as much as possible. Enthymemes are arguments that can have some of its parts omitted

because of the knowledge shared by the proponent and recipient of such an argument. Therefore,

that allows agents to exchange only the relevant information to understand each other. Thus, in

our approach for enthymemes in multi-agent systems, we propose agents to exchange the minimum
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possible content needed for a mutual understanding of the communication. The infrastructure we

have proposed for sharing argumentation schemes in multi-agent systems seems to encourage the

use of enthymemes in multi-agent systems, guaranteeing the efficiency required in agent commu-

nication.
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2. BACKGROUND

2.1 Agent-Oriented Programming Languages

In the agent-oriented programming paradigm, the agents are computational entities with

autonomous behaviour (i.e., able to make decisions and act without direct human intervention

on unexpected circumstances). These computational entities are situated in an environment that

they are able to sense (through sensors), act upon it (through effectors), and communicate through

message passing [164].

One of the most studied architectures for cognitive agents is the BDI (Beliefs-Desires-

Intentions) architecture which provides a particular structure for agent internal states based on

“mental attitudes”. The internal state of a BDI agent is formed by: (i) Beliefs that represent the

information about the world (including itself and other agents) available to that agent; (ii) Desires

representing the motivations of the agent, i.e., the states of the environment that the agent would

like to reach; and (iii) Intentions which are desires that the agent is committed to achieve by

following particular plans of action.

There exist many agent-oriented programming languages and platforms, such as Jason,

Jadex, Jack, AgentFactory, 2APL, GOAL, Golog, and MetateM, as pointed out in [32]. Those

languages differ in the agent architecture used, in the form of communication/interaction between

them, and also on the programming paradigms that inspired or underlie each language.

Among the languages mentioned above, AgentSpeak(L), the language on which Jason [33]

is based, is one of the best-known languages inspired by the BDI architecture. AgentSpeak(L) is an

abstract logic-based agent-oriented programming language introduced by Rao [128], and subse-

quently extended and formalised in a series of papers by Bordini, Hübner, and various colleagues.

Also, Jason is part of the complete framework to develop multi-agent systems applications consid-

ering all the dimensions we need, named JaCaMo [31] (which we describe in Section 2.4).

AgentSpeak(L) is based on the Procedural Reasoning System (PRS) (Figure 2.1) where

the agents are equipped with a library of pre-compiled plans. Plans in PRS have the following

components: (i) a goal – the post-condition of the plan (the things that it achieves); (ii) a context –

the pre-condition for the plan, defining what must be true of the environment in order for the plan

to be successful; and (iii) a body – the ‘recipe’ part of the plan – it may contain a list of actions and

sub-goals in order to achieve the main goal.

Plans in AgentSpeak(L) have the following format:

triggering_event : context <- body.

where the triggering_event represents a new agent goal (or belief), which is to be pursued and

has the format !goal(Parameter), the context has preconditions needed to perform that plan to

achieve that goal, and the body is a sequence of actions and sub-goals (which trigger others events

and the use of other plans) to achieve the goal.
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Figure 2.1 – The Procedural Reasoning System (PRS) ([33]).

In particular, the main AgentSpeak(L) extensions available in Jason (a Java-based plat-

form for the development of multi-agent systems), according to [33] are:

• Strong negation: Strong negation helps the modeling of systems where uncertainty cannot be

avoided, allowing the representation of things that the agent believes to be true, believes to be

false, and things that the agent is ignorant about;

• Handling of plan failures: Jason has a particular form of plan failure handling mechanism

consisting of plans that are triggered by failure, giving the programmer the chance to act so

as to undo the effects of any action already done before the plan failed, if necessary, and then

adopting the goal (that was not achieved) again, if the conditions are appropriate.

• Belief annotations: One interesting characteristic present in Jason is that it automatically gen-

erates annotations for all beliefs in the belief base about the source from where the belief was ob-

tained (sensing the environment, communication with other agents, or a mental note created by

the agent itself). The annotation has the following format: likes(john, music)[source(john)],
stating that the source of the belief that john likes music is agent john itself.

• Speech-act based communication: Jason uses performatives based on speech acts in its com-

munication language, which goes well with the availability of formal semantics of mental atti-

tudes for the Jason extension of AgentSpeak;

• Plan annotations: programmers can add annotations to plan labels which can be used by

elaborate selection functions, for example for defining preferences in case various different plans

are applicable.

The Jason platform, more generally, has the following features:
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• Distribution: The platform permits easy distribution on a computer network; further details

can be found in [33];

• Environment: In many cases, during development, a simulation of the target application en-

vironment will be needed, so Jason provides support for developing environments, which are

programmed in Java;

• Customisation: Programmers can customise important parts of the agent platform by providing

application-specific Java methods for certain aspects of an agent and the agent architecture.

These parts can be customised through methods of the agent class and agent architecture class

(more details in [33]);

• Language extensibility and legacy code: The extension of the AgentSpeak language in Jason

can be done through the so called “internal actions”, which are implemented in Java (or any

other language using Java Native Interface);

• Integrated Development Environment: Jason is distributed as a plug-in for the jEdit and

Eclipse IDEs (Integrated Development Environment). This facilitates the development of appli-

cations.

As mentioned above, the communication between agents is via message passing, and

Jason’s communication is based on speech acts and is performed by the pre-defined internal action

‘.send’, of the following format:

.send(receiver, illocutionary_force, propositional_content)

where receiver is the name of an agent (each agent has a unique individual name in the

multi-agent system) or a list of agent names, for whom the message is being sent. The

propositional_content is a term in AgentSpeak (a literal, triggering event, plan, or a list of

literals or plans). The illocutionary_force denotes the intention of the sender (often called

performative), as in the speech-act theory. The formal semantics of receiving such messages is

given in [151], and a complete list of all the illocutionary forces available can be found in [33].

New illocutionary forces can be added, as well as the effects that each will have on the

agent’s mental state. This is an important feature for our work, because argumentation-based

dialogues need illocutionary forces that represent specific intentions of message senders, as well as

the required effect in the mental state of the receiver of the message. In Jason, agent plans can be

written in AgentSpeak to give such semantics to new performatives, hence providing an elegant

and transparent way for programming agents that are capable of such argumentations.
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2.2 Organisation in Multi-Agent Systems

“Multi-Agent Systems have evolved towards the specification of global constraints that

heterogeneous and autonomous agents are supposed to follow when concerning open systems. A

subset of these constraints is known as the multi-agent systems organisation” [66].

In open multi-agent systems, the autonomy of the agents can lead the overall system

to undesired behaviour, since each agent does what it wants. This problem may be solved by

assigning an organisation to the system [66]. An organisation can be considered as a set of

behavioural constraints which the agent is subjected when entering into the system, assuming a

role in its organisation [66].

We can have an explicit representation of the organisation available to the agents at

runtime and it is desirable that the agents been able to read, represent, and reason about the

organisation. In these kinds of systems the agents can exert organisational autonomy, since they

may decide whether to follow the organisation or not [66]. To develop multi-agent systems with

this characteristics we need of a framework to ensure organisational constraints and an agent-

oriented programming language that supports the agent decision making about its organisation,

for example, Jason Platform [33] and Moise1 [65].

The Moise model has three dimensions [66]:

• The functional dimension: which refers to the specification of global plans and goals. The

functional dimension is composed by a set of schemes which represent how multi-agent systems

usually achieve its global (organisational) goals stating how these goals are decomposed (by

plans) and distributed to the agents (by missions). Schemes can be seen as a goal decomposition

tree where the root is the global goal, and the leafs are goals that can be achieved by the agents.

• The structural dimension: which refers to the roles, the relation between the roles and the group

of roles. That is, the structural dimension is built in three levels:

– individual level : which defines the behaviours that an agent is responsible for when it adopts

a role;

– social level : which defines the acquaintance, communication, and authority links between

roles;

– collective level : which defines the aggregation of roles in groups;

• The normative dimension: which refer to the norms that specify the obligation and permissions

linked to each role into the organisation. Roles are indirectly linked to missions by means of

permissions and obligations. Roles, also, add some independence between the functional and

the structural specifications.

1Moise is also part of the JaCaMo Framework that we describe later.



20

The MOISE model [66] allows that the normative and structural dimensions can be

changed without changing the functional dimension, so the agents can change its roles and the

norms and achieve the global goals, likewise.

Therefore, the MOISE model [66] enables the declaration of multi-agent systems organ-

isational structures (role, groups, links), functioning (global goals, global plans, missions), obliga-

tions, and permissions. Also, the approach is suitable for reorganisation where the specification

of the organisation can dynamically change. Such characteristics play an important role in our

research, as we will describe in Section 3. The Moise model provides organisational information

to agents, as well as allowing us to have more control regarding communication in multi-agent

systems. While to have more control regarding communication in multi-agent systems is an inter-

esting topic of research, in this work we are going to focus on the how agents use the organisational

information provided by the moise model.

For example, recently, in [63, 30], it was put forward that communication in multi-agent

systems could be defined in the organisation of such systems. The first work, [63], proposed a new

dimension called dialogic for the Moise model; such a dimension focuses on the communication

between roles. The authors argue that communication is one of the main tools that agents have

to coordinate their actions at the social level, the specification of the exchanges/communications

between roles could be a tool for the regulation of the exchanges between agents. Therefore, they

suggest the specification of communication between roles (which agents adopt in the organisation)

at the organisational level. The dialogic dimension, extending the Moise model, is inspired by the

theoretical PopOrg model [38, 39]. The second work, [30], introduced the idea that the normative

specification should include also the control of communication modes in the organisation. There-

fore, the authors proposed to extend the normative part of the organisational model of Moise in

order to specify the interaction modes between agents participating within the organisation. That

work aims to allow the multi-agent organisation to monitor the interaction between agents, and

to make the agents able to reason over the communication modes, similarly to the way they do

with norms. We take some inspiration from that work in our research, extending the Moise model

with a new dimension for argumentation schemes, and describing the relations among the four

dimensions resulting from such extension. That research is presented in Section 3.

2.3 Environment in Multi-agent Systems

Environments for multi-agent systems are abstractions of real or virtual environments,

offering mechanisms for agents to manipulate and perceive the environment in which they are

situated. Multi-agent applications developed using Jason, normally use the CArtAgO Platform [132]

for creating agent environments, given the most recent multi-agent framework called JaCaMo [31].

CArtAgO is a platform based on the artifact notion in multi-agent systems. Artifacts are function-

oriented computational abstractions which provide services that agents can exploit to support their

activities. An artifact makes its functionalities available and exploitable by agents through a set of
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operations and a set of observable properties [132]. Operations represent computational processes

executed inside artifacts, that may be triggered by agents or other artifacts.

Recently, artifacts have been used as control structures for communication, e.g., [94]

and our previous work [97]. In our previous work, CArtAgO artifacts are used to store agent

commitments regarding what they say in argumentation-based dialogues. More details will be

described in Section 5.

2.4 The JaCaMo Framework – All Dimensions in a Single Framework

The JaCaMo Framework [31] brings to multi-agent systems a perspective to the program-

ming level, demonstrating a concrete programming model and platform that allows the integration

of the three multi-agent programming dimensions described in the previous sections, i.e., agents,

organisation, and environment levels. Also, JaCaMo has been described as the first successful com-

bination of the agent-oriented programming (AOP), organisational-oriented programming (OOP)

and environment-oriented programming (EOP) paradigms, proposing a full multi-agent oriented

programming (MAOP) paradigm [31]. Despite the proposal for the unified JaCaMo Framework [31]

(often also referred to as JaCaMo model) the authors agree that there is much more research in the

separated areas, which compose the framework, still to be done; however, the JaCaMo framework

is one of the first steps towards the development of complex (social) autonomous systems based on

a multi-agent paradigm combining all the clearly necessary dimensions.

As described in the literature, agent programming platforms ( Jason, 2APL, GOAL, Jack,

JADE, etc.) are able to deal mostly with the agent level, thus some high-level concepts, considered

in the conception of multi-agent systems, such as organisational and environment concepts cannot

be directly mapped. Commonly, such concepts are mapped as agents as well, in order to provide

an alternative solution for such a gap between the conceptual and practical modelling [31].

A JaCaMo multi-agent system (i.e., a software system programmed in JaCaMo) re-

sults from an agent organisation programmed in Moise [65], organising autonomous agents pro-

grammed in Jason [33], working in a shared distributed artifact-based environments programmed

in CArtAgO [132], as it is shown in Figure 2.2.

In Figure 2.3, it is possible to observe the relation/dependencies between components of

the different dimensions. The connections terminating with filled squares, in Figure 2.3, represent

the synergies and the conceptual mapping between components of the conceptual components

in different dimensions. According to the authors of JaCaMo [31], the mapping was produced

transparently and without extra programming effort. The connection links between the Agent

and Environment dimensions is given by a semantical mapping of agents’ external actions into

artifact operations and artifact observable properties, and events into agent percepts. This means

that agents will be able to execute a particular action in the environment if there is (at least) one

artifact providing such corresponding operation for that action [31]. The connections with non-
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Figure 2.2 – Overview of a JaCaMo multi-agent system [31].

filled squares represent a set of predefined actions that agents can perform, which refer to the basic

functionalities provided by the overall infrastructure, including the environment and organisational

dimensions [31].

Therefore, JaCaMo [31] provides us with a complete framework for developing multi-

agent systems, including the three main dimensions necessary in such a development: agents,

organisation, and environment. Although, JaCaMo is one of the most complete frameworks for

developing multi-agent systems, and there is a recent investigation regarding interaction in JaCaMo

Framework presented in [167], there is no work regarding argumentation in the JaCaMo Framework

which explores all those dimensions. Of course, our proposal is not concerned with JaCaMo

solely, but as JaCaMo provides us a complete framework for developing multi-agent systems and

encompasses much of the research in the multi-agent programming paradigm, it is one of the best

options to provide us with the concepts regarding our research, as well it is one of the best options

to implement our work.

2.5 Argumentation

Argumentation can be seen as the principled interaction of different, potentially conflict-

ing arguments, for the sake of arriving at a consistent conclusion [78].

The survey presented in [78] states that argumentation in multi-agent systems has two

main lines of research: (i) autonomous agent reasoning, such as belief revision and decision-making
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Figure 2.3 – JaCaMo programming Meta-Model [31].

under uncertainty; and (ii) as a vehicle for facilitating multi-agent interaction, because argumen-

tation naturally provides tools to designing, implementing and analysing sophisticated forms of

interaction among rational agents.

According to [78], argumentation lends itself naturally to two main sorts of problems

encountered in multi-agent systems:

• Forming and revising beliefs and decisions: Argumentation provides means for forming

beliefs and decisions on the basis of incomplete, conflicting, or uncertain information. This is

because argumentation provides a systematic means for resolving conflicts among different argu-

ments and arriving at consistent, well-supported standpoints. It also provides a more dialectical

procedure for arriving at acceptable conclusions/decisions, given that different pros and cons

can be compared for such conclusions/decisions [55];

• Rational interaction: Argumentation provides means for structuring dialogues between par-

ticipants that have potentially conflicting viewpoints. In particular, argumentation provides a

framework for ensuring that interaction among agents respects certain principles (e.g., consis-

tency of each participant’s statements).

“As a reasoning mechanism, argumentation provides an alternative way to mechanise

nonmonotonic reasoning. Argument-based frameworks view the problem of nonmonotonic rea-

soning as a process in which arguments for and against certain conclusions are constructed and
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compared. Nonmonotonicity arises from the fact that new premises may enable the construction

of new arguments to support new beliefs, or stronger counterarguments against existing beliefs. As

the number of premises grows, the set of arguments that can be constructed from those premises

grows monotonically. However, because new arguments may overturn existing beliefs, the sets of

beliefs may grow nonmonotonically” [78]. Essentially, argumentation can be used both for theo-

retical reasoning (reasoning about what to believe) as well as practical reasoning (reasoning about

what to do) [78, 125].

In the communication/interaction strand, an inherent characteristic of multi-agent sys-

tems is that agents need to communicate in order to achieve their individual or collective goals.

Agent communication with argumentation techniques allows agents to exchange arguments to jus-

tify their stance and to provide reasons that defend their claims. This improved expressivity has

many potential benefits, but it is often claimed that it should, in particular [78]:

• make communication more efficient by allowing agents to reveal relevant pieces of information

when it is required during a conversation;

• allow for a verifiable semantics based on the agents’ ability to justify their claims (and not on

private mental states); and

• make protocols more flexible, by replacing traditional protocol-based regulation by more so-

phisticated mechanics based on commitments.

On the other hand, this improved expressivity comes with a price. According to [78],

it poses some serious challenges when it comes to designing autonomous agents that actually

communicate by means of argumentation, and makes more difficult:

• the integration with agents’ reasoning, which requires to precisely specify what agents should

respond to others’ agents on the basis of their internal state, but also on the basis of their goals

(a strategy for the agent to participate in the interaction);

• the validation of provable desirable properties of these protocols.

One of the most influential work in argumentation is abstract argumentation [45], where

the content of individual arguments is not relevant and an overall structure of the relations be-

tween arguments is used instead. Abstract argumentation frameworks have their origins in [45],

which studies the acceptability of arguments. In [45], the focus is on the attack relation between

arguments, and the sets of arguments that defend its members, representing the ones that, given

a set of arguments, are acceptable. As most of the work found in the literature make reference to

properties and concepts defined in [45], we dedicate the next section to describe abstract argumen-

tation. We describe abstract argumentation for completeness, because some of these definitions

and concepts are used in the remainder of the document, even though our approach is not based

on absract argumentation frameworks.



25

2.6 Abstract Argumentation

Dung showed in [45] that argumentation can be studied without consideration to the

internal structure of the individual arguments (which became known as abstract argumentation).

In his work, arguments are nodes in an argument graph and arcs in this graph represent attack

relationships between arguments. Formally:

Definition 1 (Argumentation framework). An argumentation framework is a pair AF = 〈A, R〉 where
A is a finite set of arguments and R ⊆ AXA is an attack relation (also known as defeat relation). An

argument Arg1 attacks an argument Arg2 if (Arg1, Arg2) ∈ R.

A simple example is show in Figure 2.4, where argument a1 has two attackers (i.e.,

counterarguments) a2 and a4; furthermore, a2 is attacked by a3 and a4 is attacked by a5.

Figure 2.4 – Simple argument graph.

To evaluate an argument consists of checking whether this argument is acceptable or not

given the other arguments and the attack relation. The acceptability of arguments is defined by

a logical semantics2, where it is considered how an argument interacts with the other arguments.

Below, we have some definitions to study the acceptability of arguments.

Definition 2 (Conflict-free [45]). Let 〈A, R〉 be an argument framework and S a set of arguments

(S ⊆ A). S is conflict-free if no argument in that set attacks another. S defends an argument if it

attacks all the attackers of this argument.

This property, conflict-free, is important when thinking of rational agents. Rational agents

should have a conflict-free position (the set of arguments to position itself about a particular

conclusion) when making a decision or engaging in an argumentation-based dialogue.

For example, in Figure 2.4, arguments {a3, a5} defend a1. The collective acceptability

of a set of arguments can be characterised by various different semantics, as defined below.

Definition 3 (Admissible set [45]). Let S to be a conflict-free set of arguments in a framework AF . S
is admissible if it is conflict-free and defends every element in S.

2Argumentation semantics can be considered “receipts” to evaluate the acceptability of arguments.
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An arguments is admissible if it is a conflict-free set that defends itself against all attack-

ers. In Figure 2.4, the sets: ∅, {a3}, {a5}, {a3, a5} and {a1, a3, a5} are all admissible.

Thus, for example, an agent is able to have a consistent position when using any of those

admissible set of arguments. For example, it could be irrational for an agent to consider the set

{a1, a5}, given that it knows the existence of the attack between a2 and a1. Thus, considering

the argument graph in Figure 2.4, the only rational way to consider the argument a1 in the

extension (set of acceptable arguments) is also to consider a3 and a5 in the extension, given they

are necessary to defend a1 against a2 and a4, respectively.

Definition 4 (Complete extension [45]). An admissible set S is a complete extension if, and only if,

all arguments defended by S are also in S (i.e., S is a fixed point).

In the example in Figure 2.4 the only complete extension is the set {a1, a3, a5}.

The complete extension has some refinements, for example, for S a set of arguments:

• S is a grounded extension if it is the minimal complete-extension (S is the least fixed point).

• S is a preferred extension if it is a maximal complete extension (S is the maximal admissible set).

The grounded extension is unique and contains all arguments that are not attacked, as well as the

arguments that are defended directly or indirectly by non-attacked arguments.

As for the definition of the acceptability of sets of arguments, we can define the status of

individual arguments:

Definition 5 (Argument status [45]). Let 〈A, R〉 to be an argumentation system, and E1, ..., En its

extensions under a given semantics. For Arg ∈ A an individual argument, we say that:

• Arg is skeptically accepted iff ∀Ei .Arg ∈ Ei , with i = 1, ..., n.

• Arg is credulously accepted iff ∃Ei .Arg ∈ Ei .

• Arg is rejected iff @Ei .Arg ∈ Ei .

Normally, the literature in argumentation provides structure for arguments when the

content of such arguments become necessary, and after defining such argument structure and

identifying the attacks relations that come from such content, it is possible to instantiate an abstract

argumentation framework [45] in order to evaluate the acceptable arguments. For example, one of

the latest instantiations of Dung’s abstract formalism appears in Prakken’s work [123]. Prakken [123]

defines the structure of argument using two types of inference rules, strict and defeasible rules,

respectively. Further, this work defines three types of attack between arguments, undercutting

and rebutting attack (originally formalised in [121]), also the third type called undermining attack

(inspired by [152]). In this latest instantiation, the author justifies that the structure of arguments

permits more expressible representations of the attack relation. In fact, when we are interested



27

in multi-agent programming, it is necessary to define some structure for the arguments, in order

to enable them to be interpreted by agents and to give some sort of meaning to them (normally

referencing agent attitudes like intentions, beliefs, goals, etc.). Therefore, arguments could be

represented in the agent-oriented programming language itself, in order to be (directly) interpreted

and understood by agents. Besides Prakken’s work [123], which is one of the branches of the ASPIC+

framework [88], in the next section we describe the main approach for structured argumentation,

most of them based on abstract argumentation but with a given structure for the arguments, based

on different perspectives and logics.

2.7 Structured Argumentation

In abstract argumentation, although the approach provides a clear and precise approach

to formalise aspects of argumentation, the arguments are treated as atomic, i.e., the content of

such arguments is not formalised, thus all arguments are treated as equal [21]. In order to under-

stand individual arguments, it is necessary to provide content to them, which leads to the idea of

“instatianting” abstract argumentation with structured arguments.

There are four main approaches for structured argumentation in the literature, named

the ASPIC+ Framework [88], deductive (based on classical logic) arguments [21], Defeasible Logic

Programming (DeLP) [54], and Assumption-Based Argumentation (ABA) [144]. In this section we

discuss each one of them, in particular the work that gave inspiration and theoretical background

for our argumentation framework in agent-oriented programming languages to be described in

Section 4.

2.7.1 ASPIC+ Framework

The ASPIC+ Framework has been originated from the European ASPIC Project that ran

from 2004 to 2007, which aimed to integrate and consolidate the main approaches to structured

argumentation. Such project has relevant publications, starting from [35], which introduced the

desirable properties for structured argumentation frameworks (called rationality postulates), [123,

87], some instantiations for concrete logics, e.g., [20], and other structured general accounts of

argumentation [6]. The last main publication related to ASPIC+ Framework is [88], and we describe

such structured argumentation framework based on that last work, which is strongly based on the

previous work [87].

ASPIC+ was designed to include strict and defeasible inferences. The first kind is argu-

ments constructed from deductive or strict inference rules, which draw conclusions from premises

using deductive inferences. However, in order to cover the fallibility of an argument, which is

not only present in their premises, arguments in ASPIC+ can be constructed using defeasible in-

ference rules. Such defeasible arguments can be attacked on the application of such defeasible
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inference rules, given that such defeasible rules are interpreted as premises presumptively, rather

than deductively, supporting their conclusions.

Therefore, the ASPIC+ framework is described as a triple 〈L,R, n〉, where:

• L is a logical language closed under negation (¬).

• R =Rs∪Rd is a set of strict (Rs) and defeasible (Rd ) inference rules of the form ϕ1, ... ,ϕn →
ϕ and ϕ1, ... ,ϕn ⇒ ϕ respectively.

• n a partial function n : Rd → L.

The inference rules in ASPIC+ framework are not object-level formulae in the language

L, but are meta to the language [88]. Then, when using the ASPIC+ framework, it is necessary

to specify the so called knowledge base K, containing the premises (separated into axioms Kn

and ordinary premises Kp). Together, the argumentation system and the knowledge base are an

argumentation theory.

To explain what an argument is, [88] introduces the following functions: Prem which

returns the formulæ of K used to build the argument, Conc which returns the conclusion, Sub

which returns the sub-arguments, DefRules which returns all the defeasible rules of the argument,

and TopRule which returns the last inference rule used in the argument. Therefore, an argument

Argi on the basis of an argumentation theory with the knowledge base K and an argumentation

system 〈L,R, n〉 is:

1. ϕ if ϕ ∈ K with Prem(Argi) = {ϕ}, Con(Argi) = {ϕ}, Sub(Argi) = {ϕ}, DefRules(Argi) = ∅,
TopRule(Argi) = undefined.

2. Arg1, ... , Argn → ψ if Arg1, ... , Argn are arguments such that there exists a strict rule

Conc(Arg1), ... , Conc(Argn)→ ψ in Rs.

Prem(Argi) = Prem(Arg1) ∪ ... ∪ Prem(Argn)
Conc(Argi) = ψ
Sub(Argi) = Sub(Arg1) ∪ ... ∪ Sub(Argn) ∪ {Argi}
DefRules(Argi) = DefRules(Arg1) ∪ ... ∪ DefRules(Argn)
TopRule(Argi) = Conc(Arg1), ... , Conc(Argn)→ ψ

3. Arg1, ... , Argn ⇒ ψ if Arg1, ... , Argn are arguments such that there exists a defeasible rule

Conc(Arg1), ... , Conc(Argn)⇒ ψ in Rd .

Prem(Argi) = Prem(Arg1) ∪ ... ∪ Prem(Argn)
Conc(Argi) = ψ
Sub(Argi) = Sub(Arg1) ∪ ... ∪ Sub(Argn) ∪ {A}
DefRules(Argi) = DefRules(Arg1)∪ ...∪DefRules(Argn)∪{Conc(Arg1), ... , Conc(Argn)⇒
ψ}
TopRule(Argi) = Conc(Arg1), ... , Conc(Argn)⇒ ψ
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An argument Argi is called a strict argument when DefRules(Argi) = ∅; a defeasible
argument when DefRules(Argi) 6= ∅; firm when Prem(Argi) ⊆ Kn; and plausible when Prem(Argi)∩
Kp 6= ∅.

Arguments in the ASPIC+ Framework have three kinds of attacks3:

• Undercut: an argument Arg1 undercuts an argument Arg2 (on Argi ) iff Conc(Arg1) = r , where
r is the top rule of Argi , for some Argi ∈ Sub(Arg2).

• Rebut: an argument Arg1 rebuts an argument Arg2 (on Argi ) iff Conc(Arg1) = ϕ for some

Argi ∈ Sub(Arg2) of the form Argj , ... , Argk ⇒ ϕ.

• Undemine: an argument Arg1 undermines an argument Arg2 (on ϕ) iff Conc(Arg1) = ϕ for an

ordinary premise ϕ of Arg2.

Considering the attack relation and preferences between arguments, in ASPIC+, the

defeat relation is defined as follows::

• Arg1 successfully rebuts Arg2 if Arg1 rebuts Arg2 on Argi and Arg1 is not less preferred than

Argi .

• Arg1 successfully undermines Arg2 if Arg1 undermines Arg2 on ϕ and Arg1 is not less

preferred than ϕ.

• Arg1 defeats Arg2 iff Arg1 undercuts or successfully rebuts or successfully undermines Arg2.

With the defeat relation, the acceptability of arguments in ASPIC+ can be defined using

Dung-style abstract argumentation frameworks [45], as described by [88].

For ASPIC+ [88], the strict rules, axioms and defeasible rules are domain specific knowl-

edge, which need to be defined for a particular domain based on the logical language used in

ASPIC+.

2.7.2 Deductive Argumentation

Deductive argumentation has been proposed in [21], where the authors threat arguments

as deductive instances of abstract arguments from Dung’s work [45]. In deductive argumentation,

a conclusion is derived from premises using one or more inference steps, which are infallible,

in the sense that there is no uncertainty in such inferences. This means that when we accept

the premises, we should accept the intermediate conclusions of each inference step and the final

conclusion as well [21]. In [21], the authors assume that deductive reasoning is formalised by a

monotonic logic, and each deductive argument is a pair formed by a set of premises that logically

3We use a general operator for contradictory information, where ϕ is contradictory to ϕ, that is, ϕ ≡ ¬ϕ, ¬ϕ ≡ ϕ,
and so on.
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entails a conclusion, the first and second item respectively, i.e., an argument 〈S, c〉, where S ` c (`
represents the classical consequence relation). The authors [21] argue that the benefits of deductive

argumentation include: (i) the explicit representation of the information used to support the claim

(conclusion of that argument); (ii) the explicit representation of the claim; and (iii) a simple and

precise connection between the support and the claim by means of consequence relation.

The language used in [21] is based on classical logic (propositional and first-order classical

logic), representing argument of the type pi , ... , pj → pk where pi , ... , pj , pk are literals, and modus

ponens is the only proof rule. The authors use argument graphs to represent arguments and

attacks. In argument graphs, the input is a knowledge base (i.e., a set of logical formula), and the

goal is to construct arguments and counterarguments which can be generated from the knowledge

base, thus the output is the argument graph.

Regarding arguments constructed in deductive argumentation [21], there are two main

constraints in the argument structure. The first is the so called consistency constraint, which

describe that the support of an argument needs to be consistent, given that inconsistent premises

in classical logic are normally useless, considering that we are able to draw any predicate from a

contradiction. The second constraint is called minimality constraint, which describes that there

is no S′ ⊂ S such that S′ ` c. Such property is desired for deductive argumentation because it

eliminates irrelevant premises.

In deductive argumentation, a counterargument is an argument that attacks another

argument, which is defined in terms of the logical contradiction between the claim of the counter-

argument and one premise of the claim of the attacked argument.

In deductive argumentation proposed by [21], considering two arguments Arg1 and Arg2,

there are two kind of attack:

• Undercut: Arg1 undercuts Arg2 if there is a simple rule pi , ... , pn → pj in Support(Arg2)

and there is a pk ∈ {pi , ... , pn} such that Claim(Arg1) is the complement of pk .

• Rebut: Arg1 rebuts Arg2 if Claim(Arg1) is the complement of Claim(Arg2).

Based on the attack relation, the arguments can be structured in argument graphs, given

the attack relation between them. Looking for argument graphs, we are able to identify the

acceptable arguments, similar to Dung’s work [45].

2.7.3 Defeasible Logic Programming (DeLP)

Defeasible Logic Programming [53, 54] provides a computational reasoning system that

uses an argumentation engine to obtain answers from a knowledge base represented using a logic

programming language extended with defeasible rules. Defeasible logic programming can be

seen as a formalisation of defeasible reasoning in which the results of logic programming and
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argumentation are combined [54]. The language in Defeasible Logic Program (DeLP for short)

contains classical negation and offers the possibility of using default negation [54], including the

capability for representing knowledge declaratively, and addicting the possibility of representing

defeasible rules, i.e., a weak kind of inference.

The authors argue that, from the research line in nonmonotonic and defeasible rea-

soning, logic programming has emerged as one of the more attractive choices for its theoretical

soundness and effective implementations. Also, they describe that using defeasible reasoning and

logic programming is a natural choice to address the problem of inconsistency [54].

In DeLP, the argumentation-based inference mechanism is able to consider reasons for

and against conclusions, deciding which ones can be obtained (warranted) from the knowledge

base [53, 54]. A defeasible logic program is a set of facts and rules, i.e., (Π,∆) with Π the set of

facts and strict rules and ∆ the set of defeasible rules.

Arguments in DeLP are pairs 〈A,L〉, with L a ground literal and A the argument for L,
A is a minimal set of defeasible rules – A ∈ ∆ – such that (i) there exists a defeasible derivation

for L from Π ∪ A; (ii) no pair of contradictory literals can be defeasibly derived from Π ∪ A; and
(iii) if A contains some rule with an extended literal not F, then the literal F cannot be in the

defeasible derivation of L from Π ∪ A [54].

An argument 〈B,Q〉 is an counterargument for 〈A,L〉 at literal P , if there exists a

subargument 〈C,P〉 of 〈A,L〉, i.e., C ⊆ A, such that P and Q disagree (they are contradictory).

When 〈B,Q〉 is an counterargument for 〈A,L〉, the authors describe that 〈B,Q〉 attacks 〈A,L〉,
and that 〈B,Q〉 and 〈A,L〉 are in conflict [54].

DeLP works by means of queries. When we want to know if a literal Q is warranted from

(Π,∆), we query Q in Defeasible Logic Programming. There are four possible answers for a query

Q posed to a DeLP-program P :

• YES, if Q is warranted from P ;

• NO, if the complement of Q is warranted from P ;

• UNDECIDED, if nor Q nor its complement is warranted from P ; and

• UNKNOWN, if Q is not a signature of the program P .

Informally, a literal Q will be warranted if there exists at least an argument A supporting

Q that prevails after going through a dialectical process considering all its counterarguments [54].

DeLP also allows us to define preferences between arguments, and the authors [54] argue

that such preferences are modular in the argumentation system, and they could be defined by

different criterion established over the set of arguments. However, based on [53], the authors

describe that an argument is preferred to another if there is at least one rule in the first argument

which is preferred to the second.
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The acceptability of an argument in DeLP is given by a dialectical tree, where the root

node is the argument for the queried literal. Each child is a defeater of subarguments in the root

node, and their child defeaters of them, and so on. In other words, a literal is warranted if there

exists an argument for such literal, and all the defeaters for such argument are defeated by other

arguments.

One of the last proposal for DeLP is the so called DeLP Servers [52, 54]. In that work,

the authors propose that reasoning can be seen as a service that can be offered as part of a

knowledge base infrastructure, then client agents distributed in remote hosts are able to consult

different reasoning services implemented as DeLP-Servers that can be also distributed. In such

an approach, both common or public knowledge can be stored in a server and represented as a

DeLP-program, and it works with the client sending a query to DeLP-Server and receiving the

corresponding answer. The DeLP-Server uses the knowledge stored in it to answer a query, but

offering the the possibility to integrate the agent “private” knowledge, which can be sent as part of

the query. Agents can execute queries in parallel and only their private knowledge will be used in

their queries. Therefore, as described by the authors [54], a client cannot make permanent changes

to the public DeLP-program stored in a server.

Furthermore, the authors, in [54], describe that DeLP could implement explanations for

answers, which is an important topic in several areas of Artificial Intelligence. In particular, the

approach presented by them aims to explain the understanding of how the warranted status of a

particular argument was obtained from a given argumentation framework.

2.7.4 Assumption-Based Argumentation (ABA)

Assumption-based Argumentation (ABA for short) [46, 144] was developed starting in the

90s, aiming to be a computational framework to reconcile and generalise most existing approaches

to default reasoning. ABA take inspiration from the Dung’s preferred extension semantics for

logic programming [44], considering its dialectical interpretation for acceptability with negation-as-

failure assumption-based on the notion of “no-evidence-to-the-contrary” [44], and Dung’s abstract

argumentation [45].

ABA is an instance from Dung’s abstract argumentation for determining the acceptabil-

ity of arguments. Therefore, all semantic notions in abstract argumentation apply to ABA as

well [46, 144]. While, in abstract argumentation, the arguments are abstract and primitive, in ABA

arguments are deductions using inference rules supported by assumptions. Attacks between two

arguments are deductions of one argument for the contrary of an assumption in the support of the

second argument. Differently from deductive argumentation presented by [12] and DeLP presented

by [54], ABA does not have rebuttals, and does not impose that arguments need to have consistent

and minimal supports. ABA uses the notion of relevant and largely consistent arguments [46].
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The acceptability of arguments is given by a computational machinery in the form of

dispute derivation, where it is constructed considering a dialectical structure of the proponent’s

argument for a claim, an opponent’s counterargument attacking the argument, the proponent’s

arguments attacking all opponent’s counterarguments, and so on, similar to the so called dialectical

tree in DeLP. As such an approach has its root in logic programming, it has the advantage of a fine

level of granularity, given it offers an interleaving of construction of argument and determining their

acceptability [46]. Arguments are represented by tree-structures, such that the argument generation

can be performed by means of a proof procedure, which searches the space of applications of

inference rules [46].

Attacks in ABA are defined in terms of contrary of assumptions. Considering two argu-

ments, denoted by S1 ` c1 and S2 ` c2 (with S1 and S2 the set of assumptions that support the

conclusions c1 and c2, respectively), the first argument attacks4 the second if c1 is the contrary of

an assumption in S2 [46]. In order to determine the acceptability of a claim in ABA, agents need

to find an argument for the claim that can be defended against attacks from other arguments. The

process to define the acceptable arguments in ABA is similar to abstract argumentation, thus [46]

describes that: (i) a set of arguments is admissible iff it does not attack itself and it attacks every

argument that attacks it; (ii) an admissible set of arguments is complete if it contains all arguments

that it defends; and (iii) the least complete set of arguments is grounded.

In all frameworks, or also called argumentation systems, for structured argumentation

presented in this section, there is a consensus that domain-dependent knowledge must be specified

according to the application to be developed, in order to generate and evaluate arguments for that

particular domain. In other words, an argumentation framework is used to generate arguments

and evaluate the acceptability of such arguments, but which arguments the framework will be able

to generate and evaluate depends on the knowledge available in that application domain, and

domain-dependent reasoning patterns. In the argumentation field, there are seminal studies in

reasoning patterns used for argumentation, which come from a more philosophical point of view,

and they have great potential for the field of artificial intelligence, particularly for applications

in multi-agent systems (although they have been largely unexplored), the so called argumentation

schemes [156]. Therefore, we propose to use argumentation schemes as a meta-level of reasoning

patterns that agents could use to instantiate arguments depending on the knowledge available to

them. To this end, we introduce argumentation schemes in the next section.

2.8 Argumentation Schemes

Argumentation schemes are considered deductive and inductive forms of argument,

added the so called defeasible, presumption or abductive part. Such an argument, considered defea-

sible, may not be very strong by itself, but may be strong enough to provide evidence to warrant

4It is important to note that attacks between arguments depends only on attacking assumptions (undercutting ).
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rational acceptance of its conclusion, given that its premises are acceptable [149] (the argumen-

tation schemes, also, are considered attempts to conclusions under conditions of uncertainty and

lack of knowledge).

The conclusion of a defeasible argument can be accepted tentatively in relation to the

evidence known, but may need to be retracted as new evidence come in. In [156] is argued that the

most important kinds of schemes are defeasible in nature, meaning that even after the argument

has been accepted, it might later be defeated as new evidence enter into consideration. The factor

of defeasibility raises the problem of how schemes are rationally binding. The critical questions

that are possible turn out problematic conclusions in several aspects.

The defeasibility generally is linked with a dialogue, where a proponent, based in a

scheme, assert some conclusion and the opponent, also based in the scheme, may make a critical

question which needs to be successfully answered by the proponent [156].

“Scheme hold great potential for tackling a variety of problems in artificial intelligence.

The real world represents an immerse challenge to artificial agents. Even if we focus only upon

reasoning capabilities, and leave to one side the physical aspects of interacting with the world, an

agent must deal with two fundamental problems: uncertainty and incompleteness” [156]. Typically

such reasoning systems will have to interact not only with the world, but also with humans, which

need to be understood dialectically.

Together, argumentation schemes and critical questions, are used to evaluate a given

argument in a particular case, in relation to a context of dialogue in which the argument occurred.

In an argumentation scheme if all premises are supported by some weight of evidence, then the

weight of acceptability is shifted toward the conclusion, subject to rebuttal by the asking of ap-

propriate critical questions. To judge the strength of an argument is used critical questions, and

critical questions are a benefit of the use of scheme-based approach [156].

To exemplify our approach, we adapted the argumentation schemes Argument from Posi-

tion to Know from [153] to a multi-agent (organisational) platform, so that for example roles that

agents play in the system can be referred to within the scheme. Consider the Argument from role to

know in multi-agent systems (role to know for short) :

“Agent ag is currently playing a role R (its position) that implies knowing things in a

certain subject domain S containing proposition A (Major Premise). ag asserts that

A (in domain S) is true (or false) (Minor Premise). A is true (or false) (Conclusion)”.

The associated critical questions are: CQ1: Does playing role R imply knowing whether

A holds? CQ2: Is ag an honest (trustworthy, reliable) source? CQ3: Did ag assert that A is true

(or false)? CQ4: Is ag playing role R?

The critical questions are to point doubt on the structural link between the premise and

the conclusion. To judge the strength or weakness of an argument based on a scheme is used

associated critical questions (this allow us to judge if the argument is good or fallacious). Critical
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questions are vital in the definition of a scheme. The options, in a dialogue, to an opponent

after receiving an argument are: (i) ask a critical question related to that argument; (ii) provide an

argument against the claim of the argument received; (iii) challenge one of the premises of that

argument; or (iv) accept the conclusion of that argument as a commitment.

The connection between argumentation schemes and argumentation frameworks is not

clear in the literature of argumentation. In particular, how to represent argumentation schemes

in structured argumentation frameworks also is an open question. Although some authors, for

example [123], have suggested that argumentation schemes could be represented as defeasible

inference rules and the acceptability of argument evaluated in frameworks as ASPIC+ [88], the

role of the critical questions seems not fully approached. In Section 3 we propose a formal and

practical representation for argumentation schemes in multi-agent systems, as well as we formally

define the role of the critical questions in the process of defining the acceptability of arguments.
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3. ARGUMENTATION SCHEMES IN MULTI-AGENT SYSTEMS

As described in Section 2.8, argumentation schemes are well-known structures used to

model reasoning patterns, which agents will use to instantiate arguments. Different applications

domains require different argumentation schemes, and some argumentation schemes are domain

dependent and they could be specified for a particular application in multi-agent systems con-

text. Examples of argumentation schemes defined for particular domains are found in: [145] where

they are used for analysing the provenance of information, [113] where they are used by agents for

reasoning about trust, [142] where they are used by agents to argue about human organs transplan-

tation, [58] where they are used to guide the process of data mining in the biomedical research

domain, [72] where they are used to support different treatment options to patients, our own work

presented in [100] where we define two argumentation schemes to implement argumentation-based

interface agents for data access control between smart applications, and so forth.

Besides argumentation schemes are domain-dependent reasoning patterns for argumen-

tation, as the literature suggests, they share a common structure of elements. Argumentation

schemes are represented by a set of premises, a conclusion that can be drawn from the premises,

and a set of critical questions that point out possible problems on using that scheme [156]. Thus,

argumentation schemes can be formalised as:

Definition 6 (Argumentation Scheme). Formally, an argumentation scheme is a tuple

〈SN , C,P, CQ〉 with SN the argumentation scheme identifier (name), C the conclusion of the argu-
mentation scheme, P the premises, and CQ the associated critical questions.

Although argumentation schemes have a well defined general structure, they have some

particularities that make them difficult to model in computational languages, mainly because they

represent stereotypical reasoning patterns that are considered defeasible [156]. Some approaches

in the argumentation literature have suggested that argumentation schemes [156] could be trans-

lated into defeasible inferences [123, 103, 102], and the acceptability of arguments, instantiated

using these rules, could be checked using frameworks such as ASPIC+ [88], DeLP [54], and oth-

ers [101, 109]. However, for this work, the role of the critical questions seems to be missing. That

occurs because critical questions might point out doubts not only about the premises and infer-

ence rules used in an argument (which could be easily verified in those frameworks) but also about

presumptions used in that reasoning pattern, which are not explicitly present in the argument [156]

and, consequently, they cannot be verified in those frameworks.

In order to make explicit the representation of arguments, we introduce the language L
used in this document. We use a first-order language as the basis for our representation, given that

most agent-oriented programming languages are based on logic programming, including Jason [33],

and we are interested not only on the formal specification of our framework but also on its imple-

mentation. In particular, we have a set of atomic formulæ {p0, ... , pn} ∈ L, and a set of defeasible

inferences rules {(pi , ... , pj ⇒ pk ), ... , (pl , ... , pm ⇒ po)} ∈ L. In order to refer to the unification
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process, we use a most general unifier θ (as usual in logic programming). We use uppercase letters

to represent variables — e.g., Ag and R in role(Ag,R) — and lowercase letters to represent

terms and ground literals — e.g., john, doctor and role(john,doctor). We use “¬” to

represent strong negation in L, e.g., ¬honest(pietro) means that pietro is not honest. We also

use negation as failure “not” to represent the absence of information, e.g., not(honest(pietro))
means that an agent is ignorant about (does not know) if pietro is honest1. Atomic formulæ, set

of atomic formulæ, and defeasible inference rules can be annotated with relevant information used

in the inference mechanism2. In this document, annotations are grounded literals representing the

names of argumentation schemes, e.g., pl[sn] and {pi ∧ ... ∧ pj}[sn] are used to represent critical

questions related to the argumentation scheme sn, and (pl , ... , pm ⇒ po)[sn] is used to represent

the defeasible inference rule corresponding the inference modelled by the argumentation scheme

sn.

For example, the argumentation scheme role to know, introduced in Section 2.8, can be

represented using the following defeasible inference rule:

(asserts(Agent,Conclusion),role(Agent,Role),role_to_know(Role,Domain),

about(Conclusion,Domain) ⇒ Conclusion)[as(role_to_know)].

with the argumentation scheme name SN = role_to_know, the conclusion C =
Conclusion, the premises P = {role(Agent,Role), role_to_know(Role,Domain),

asserts(Agent,Conclusion), about(Conclusion,Domain)}. The associate critical

questions CQ are:

• role_to_know(Role,Domain)[as(role_to_know)].

• honest(Agent)[as(role_to_know)].

• asserts(Agent,Conclusion)[as(role_to_know)]

• role(Agent,Role)[as(role_to_know)].

Note that, the second critical question, for example, cannot be identified in the premises

of an argument instantiated from this reasoning pattern, thus an agent is able to question that, when

reasoning or participating in a dialogue, only when it is aware of the argumentation scheme role to

know. That means, the agent is not able to find that information in P (the premises), C (the con-

clusion) or even in the inference rule when it is not aware of the scheme, i.e., it is not able to verify

that information looking for the representation of arguments in structured argumentation frame-

works. One possible solution for that issue, considering the approaches mentioned [123, 103, 102],

could be to overload the computational representation of such arguments in order to make explicit

1Note that negation as failure is used in logic tests, e.g., in inference rules and context of plans in Jason.
2These annotations and the inference mechanism we developed using such annotations are inspired by Labelled

Deductive Systems (LDS) [51].
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the critical questions related to the scheme used to instantiate that argument, i.e., it is necessary to

include an explicit representation of such critical questions as premises into the argument. How-

ever, that infringes the requirement of many argumentation frameworks in which the support of

an argument should be minimal, e.g., [117, 115]. Otherwise, when such critical questions are not

represented in the argument, such information is lost in those approaches. Another option is to

make all agents aware of such reasoning pattern (including the associated critical questions). Thus,

agents are able to identify from which argumentation scheme an argument has been instantiated,

as well as to use the associated critical questions when evaluating such argument. Considering

the current directions on the development of multi-agent systems inspired by the concept of open

systems [66], we argue that the second solution is better than the first one, and the current repre-

sentation of arguments in multi-agent systems requires argumentation schemes to be shared by all

agents in a multi-agent system.

We are considering two alternative ways to represent shared argumentation schemes in

multi-agent systems. The first would be specifying argumentation schemes during the conception

of a multi-agent system (in their organisational specification). Thus, we have proposed an infras-

tructure extending the MOISE organisational model [65] with a new dimension for argumentation

schemes. In this approach, when the multi-agent system organisation is specified, we are able to

specify the reasoning patterns that agents will be able to use in such a system. This approach has

been published in [102], it is named SocARG model, and it will be presented in Section 3.1. The

second approach is based on our previous collaborative work [50, 49, 136], in which argumentation

schemes could be specified in domain-dependent semantics data-bases (ontologies) and shared by

all agents in a multi-agent system. This last approach will be presented in Section 3.2.

3.1 The SocARG model

In this section, we present a formal specification for multi-agent systems called SocARG,

including a new dimension which allows the specification of argumentation schemes that can

be used during interaction/reasoning within an instantiated multi-agent systems. As part of our

model, we also extend usual normative specifications in order to specify constraints over the use

of argumentation schemes (and their instantiated arguments) in the system, considering the roles

and context of agents. Further, we describe a series of relations between the types of specifications

in our approach.

Formally, SocARG is a tuple 〈SS,FS,AS,NS〉, with SS the structural specification, FS
the functional specification, AS the argumentation-scheme specification, and NS the normative

specification. The structural specification (SS) is a tuple 〈R,@, rg〉 with R a set of roles, @ the

inheritance relation between roles, including communication link (linkcom), authority link (linkaut ),

and acquaintance link (linkacq), and rg the organisation root group specification. The functional

specification (FS) is a tuple 〈M,G,S〉 with M the set of missions, consisting of groupings of

collective or individual goals, G is the set of the collective or individual goals to be satisfied, and



39

Figure 3.1 – SocARG links between specifications.

S is the set of social schemes, tree-like structures of plans for goals. The argumentation-scheme

specification (AS) is a set of argumentation schemes, each one is a tuple 〈SN , C,P, CQ〉 with SN
the argumentation scheme name (which must be unique in the system), C the conclusion of the

argumentation scheme, P the premises, and CQ the associated critical questions. The normative

specification (NS) is a set of tuples 〈id , dm, r , scope〉 with id a norm identifier, dm a normative

modality (obligation or permission), r is the role concerned by the normative modality, and scope
the norm’s scope. This formalisation is inspired in the MOISE organisational model. However,

note that our proposal is not tied to the organisational specifications of MOISE, any specification

of (open) multi-agent systems using those same concepts (groups, roles, social plans, sets of goals

allocated to agents, and simple norms) can be used to combined with our argumentation-scheme

specifications for open multi-agent systems.

The specification of argumentation schemes in SocARG is independent of the other or-

ganisational specifications, but it is particularly connected to the normative specification which

links the structural, functional, and argumentation-scheme specifications. In the argumentation-

scheme specification, the argumentation schemes and their corresponding critical questions are

defined. After that, in the normative specification, we can specify which argumentation schemes

and corresponding critical questions can be used by agents depending on the roles they play in the

multi-agent system and the communication links between such roles, both declared in the struc-

tural specification. The usage of argumentation schemes and critical questions can also consider

the context of the social goals, which are associated with the functional specification. The links

between the specifications present in SocARG are represented in Figure 3.1.

In SocARG, argumentation schemes could be defined in XML on the top of the organisa-

tional specification, but other languages such as AML (Argument Markup Language) introduced in

[129], AIF (Argument Interchange Format) [36], could be used instead. This is possible because the

high-level language is interpreted by a form of “management infrastructure”, like the one devel-

oped in [64]. The management infrastructure allows agents developed in different agent-oriented

programming languages to participate in the open system and become aware of such specifications

(argumentation schemes, norms, goals, etc.) through this interface.
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For example, the argumentation scheme Argument from role to know in multi-agent systems,

is specified in the XML file that specifies the multi-agent systems in SocARG. The code in XML is

presented below.

<argumentation_scheme_specification>

<argumentation_scheme id="as1" name="role_to_know">

<conclusion language="Prolog" content="Conclusion"/>

<premise language="Prolog" content="role(Agent,Role)"/>

<premise language="Prolog" content="role_to_know(Role,Domain)"/>

<premise language="Prolog" content="asserts(Agent,Conclusion)"/>

<premise language="Prolog" content="about(Conclusion,Domain)"/>

<critical_questions>

<critical_question id="cq1" content="role_to_know(Role,Domain)"/>

<critical_question id="cq2" content="honest(Agent)"/>

<critical_question id="cq3" content="asserts(Agent,Conclusion)"/>

<critical_question id="cq4" content="role(Agent,Role)"/>

</critical_questions>

</argumentation_scheme>

</argumentation_scheme_specification>

In order to make explicit the use of argumentation scheme in the normative specification,

the MOISE normative specification was extended3 to the form of 〈id , dm, r , scope〉, where the

scope can assume two forms: (i) do(m) considering the execution of a mission m (the usual case

in MOISE model), and (ii) use(as, cons) referring the use of an argumentation scheme as and its

respective constraints cons. The normative specification in XML is extended as well, to include

the scope declaration, which allows us to determine if the norm refers to a mission or to the use

of an argumentation scheme. When doing so one can specify whether that use is permitted or not,

including the constraint related to the critical questions and context. An example is presented in

the XML code below.

<normative-specification>

<norm id="n1" type="obligation" role="r1">

<scope type="do" mission="m1"/>

</norm>

<norm id="n2" type="permission" role="r1">

<scope type="use" arg_scheme="as1">

<context m_id="m1">

<except cq_id="cq1" content="role_to_know(r2,Conclusion)"/>

</scope> </norm>

</normative-specification>

3That extension was inspired by [30].
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The specification of constraints in the normative specification is commonly used by the

literature, given that agents are supposed to be able to reason about the normative specification

when they are playing some role in the multi-agent system. That is, with this approach the

agents are almost directly able to reason about the argumentation schemes constraints as well.

Another important point is that the multi-agent organisation, considering the extended normative

specification, is able to monitor the use of arguments (instantiated by the argumentation schemes)

among the agents. The main specification brings up some relations to the other (organisational)

specifications in SocARG. Although the argumentation schemes, the structural and the functional

specifications are independent and connected through the normative specification, as shown in

Figure 3.1, we can define some relations between such specification, as detailed in the next sections.

3.1.1 Argumentation Schemes and the Structural Specification

The relation between the argumentation-scheme and the structural specifications is es-

tablished, for the most part, in the normative specification, where the roles (from the structural

specification) are linked to the argumentation schemes (in the argumentation-scheme specifica-

tion) that are permitted/obligatory for each role. An indirect, but important, relation between the

argumentation-scheme and the structural specifications is induced by the communication link be-

tween agents. Before any consideration of an agent having permissions/obligations to use certain

argumentation schemes, clearly it will not use arguments instantiated from argumentation schemes

(or any other kind of argument) towards agents with which it has no communication link. This

consideration does not describe anything about the normative specification. Any agent can violate

the norms in order to communicate with other agent using arguments. However, this communica-

tion is not possible without the communication link, because the infrastructure layer is supposed

not to allow the exchange of messages by agents without a communication link.

Another relation between the argumentation-scheme and the structural specifications is

the declaration of groups, where it is possible to specify the cardinality of each role within each

group. The relation comes from the definition of groups where agents can make extensive use

of argumentation in order to achieve the system’s goals. This is a direct relationship with the

permissions/obligation that each member of the group has to use argumentation schemes and the

communication link between the members of the group.

Definition 7 (Argumentative Groups). A group gr is an argumentative group iff

there are agents agi , agj ∈ gr playing some roles ri , rj ∈ SSR and gr ∈
SS rg , where 〈ni , dm, ri , use(asi , consi)〉, 〈nj , dm, rj , use(asj , consj)〉 ∈ NS , dm ∈
{permission, obligation}, and linkcom(ri , rj) ∈ SS@.

Other relations can arise from the argumentation-scheme and the structural specifica-

tions, which will depend on the domain. For example, the argumentation scheme described in

Section 2.8 is directly related to the roles specified in the structural specification. Any argument
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instantiated from this scheme should be consistent with some concrete role from the structural

specification.

3.1.2 Argumentation Schemes and the Functional Specification

Similarly to the structural specification, the relation between the argumentation-scheme

and the functional specification is established, for the most part, in the normative specification.

For example, the normative specification allows us to define the contexts where the argumentation

schemes could be used in order to achieve particular goals or missions (from the functional spec-

ification). Thus, the functional specification is used to restrict the use of argumentation schemes,

therefore any argumentation scheme that the agent role has permission/obligation to use could be

used to achieve the goals the agent has committed to achieve, but argumentation schemes with

context restrictions can be used only within a particular mission as specified.

Definition 8 (Contextual Argumentation Schemes). An argumentation scheme is contextual for

a mission mi if 〈as,ϕ,P, CQ〉 ∈ AS and 〈ni , dm, ri , use(as, cons)〉 ∈ NS with dm ∈
{permission, obligation}, and 〈mi〉 ∈ cons for some mi ∈ FSM.

Contextual argumentation schemes are useful to restrict some types of argumentation

schemes depending on the contexts determined by the functional specification. For example, for-

mal dialogues could use stronger types of arguments as which we introduced in Section 2.8, while

some other dialogues could use weaker argumentation schemes. Therefore, depending on the

organisational goal to be achieved by the agents, they could be restricted by the normative spec-

ification to use only arguments instantiated from the schemes that are adequate for that context.

Further, in some scenarios, the agents could be obliged to use some specific types of arguments.

3.1.3 Argumentation Schemes and the Normative Specification

As mentioned, the normative specification links the argumentation-scheme specification

to the others (i.e., structural and functional specifications), including some indirect relations. How-

ever, besides the normative specification being used to link the schemes to the other specifications,

it has itself some relations with the argumentation-scheme specification.

Definition 9 (Norm-Conforming Argumentation). A Norm-Conforming Argumentation is an argu-

mentation process (e.g., an ongoing instance of an argumentation-based dialogue protocol) that does not

violate the normative specification, i.e., the participating agents only use arguments and critical questions

instantiated from argumentation schemes that the agents are permitted to use, and satisfying also other

constraints on such permissions, e.g. that the agents are playing the roles associated with the permission.

The normative system used to regulate the behaviour of autonomous entities (agents)

is not the aim of our work. Therefore, we will not discuss the internals of a normative system
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here. For our purposes, it suffices to understand that there is some normative system regulating

the behaviour of the agents, enforcing the agents to follow the norms, for example by applying

sanctions in order to try and stop agents from acting in (socially) undesirable ways [29].

We assume multi-agent systems where agents use standard languages to communicate

and to represent arguments. Argumentation-based dialogues can be created based on a set of per-

formatives (also called locutions or speech-acts) that the agents can use, and a protocol defining

which moves/performatives are allowed at each step of the protocol based on some form of con-

straints [79, 80, 110]. One way to support agents in engaging in norm-conforming argumentation-

based dialogues is defining a protocol that restrains the violation of norms, which are followed or

not by agents in an autonomous way. In order to guide the definition of protocols that do not

violate the normative specification of the SocARG model, we introduce some definitions below.

Definition 10 (Norm-Conforming Claims). A claim ψ is norm-conforming iff 〈as,ψ,P, CQ〉 ∈ AS
and 〈ni , dm, role(ag), use(as, cons)〉 ∈ NS with dm ∈ {permission, obligation}.

Definition 11 (Norm-Conforming Questions). A question ϕ is a norm-conforming question for ψ iff

〈as,ψ,P, CQ〉 ∈ AS , where 〈cqi ,ϕ〉 ∈ CQ, and 〈nj , dm, role(ag), use(as, cons)〉 ∈ NS with
dm ∈ {permission, obligation} and 〈cqi ,ϕ〉 6∈ cons.

3.1.4 Benefits of the SocARG Model

There are some clear benefits in using SocARG model, most of them resulting from the

extended normative specification, and the shared argumentation schemes. In this section, we

discuss the main benefits of the model.

Firstly, we argue that there are some benefits which come from the definitions presented

in previous sections (namely Definitions 7, 8, and 9), whereby we are able to specify, in the SocARG

specification: (i) groups of agents that are able to argue; (ii) contexts in which they could argue; and

(iii) to guide agents to argue according to norm constraints. In (open) multi-agent systems, having

this kind of “control” in the multi-agent specifications is rather valuable, given that different appli-

cation domains could require different constraints in regards to communication. As an example, we

could mention multi-agent applications recently developed on mobile systems. Normally, such an

application domain has to restrict communication over the mobile network, using an architecture

based on personal and server agents, where (i) personal agents are only responsible for collecting

user information, sending it to corresponding server-side agents, and to interact with users by

means of an interface, and (ii) server agents are responsible for most of the processing, decision-

making, and (normally intensive) communication with other users’ server agents. Examples of such

systems are found in [47, 136, 27, 26]. Our approach allows for grouping agents and making them

argumentative groups or not, depending on the application needs. Further, our approach allows

specifying the contexts in which certain kinds of arguments could be permitted or prohibited, thus

making the use of arguments specific for particular tasks in a multi-agent coordinated activity.
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Secondly, besides the benefits related to the control of communication, our approach en-

courages argumentation schemes (reasoning patterns) to be shared knowledge within an agent sys-

tem. Such an approach allows us to assume a more rational position for an agent in argumentation-

based dialogues, where they are able to answer more critical questions by themselves. This occurs

given the consideration of social/organisational components in the argumentation schemes, where

such components are common knowledge to all agents. This is the main reason we have made

this exercise of analysing the representation of argumentation scheme in the multi-agent system

specification. Although we have proposed a model for specifying argumentation scheme in the

multi-agent system specification, as mentioned before, our interest is argumentation scheme to be

shared by agents in the system.

With argumentation schemes being shared by all agents in that society/organisation,

and such argumentation schemes making references to components of the organisation, such as

roles, authority link, etc., agents are (rationally) able to identify organisational information that

is referred by argumentation schemes. For example, in the argumentation scheme Argument from

Position to Know, the critical question CQ4:“Is ag playing role R?” is information that comes

from the organisation. These references to organisational knowledge could bring some compu-

tational benefits to multi-agent system communication, as we will discuss later in this document.

Of course, this benefit is inherent from the shared knowledge, and although our approach en-

courages such shared knowledge, it comes from organisation-based approaches that are typically

used in multi-agent systems rather than from our model. However, in open multi-agent systems,

even with agents knowing such information, they could still autonomously question that, overload-

ing the system unnecessarily. In this respect, our model allows us to specify which agents are

able to use such argumentation schemes (which is needed for them to argue), but constraining

the use of critical questions which refer to organisational structure/components. For example as

in 〈n1, permission, ag, use(as1, cons)〉 ∈ NS , with n1 the norm identifier, as1 the argumenta-

tion scheme identifier, the argumentation scheme Argument from Position to Know, and cons an

exception for not using the critical question CQ4.

The agents are able to violate the norms in order to benefit themselves or according to

their intentions, and the normative system is supposed to apply sanctions when this occurs. This

topic is not the subject of our work, and we argue that normative systems could be efficiently

modelled in order to constraint undesired agent behaviour. In such cases, agents will have just

norm-conforming argumentation-based dialogues, making/asking only norm-conforming claims

and questions. Therefore, the argumentation-based communication will occur just as specified in

the SocARG model, allowing a complete specification for multi-agents systems able to use argumen-

tation techniques, which are already known for improving and enriching communication in such

systems [127, 19, 126, 146, 68, 106]. Such specification allows more “control” over the commu-

nication that will occur in such systems. Further, it is possible to improve argumentation-based

dialogues by means of high-level constraints for using the argumentation schemes, as well as by

the shared knowledge, as argued above.
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Although to have more control over communication is an interesting topic, it is not

the main subject in our research, and it is part of our future planned work. The main point

in our research is improving agent communication with argumentation-based techniques. The

first improvement is very clear and already discussed in argumentation-based literature, i.e., rich

communication [126]. The second improvement is related to agent rationality in argumentation-

based communication using argumentation schemes. This means that, if agents are using reasoning

patterns which are shared and known by all other agents in the multi-agent organisation, they can

take some advantages from such a scenario. Agents could be able to communicate only the

information that is required for a mutual understanding of such interactions, optimising agent

communication.

3.2 Using Ontologies to Represent Argumentation Schemes

In [50, 49], we have proposed, in collaborative work, an infrastructure to support agents

sharing knowledge towards semantics databases (web ontologies). In that approach, when de-

veloping a multi-agent system, we are able to specify the knowledge related to that application

domain in OWL ontologies, and using the infrastructure proposed, agents are able to share that

knowledge. Thus, agents use that infrastructure layer as a tool for storing, accessing and querying

domain-specific OWL ontologies.

The main reason to represent shared knowledge in ontologies is to separate domain-

dependent knowledge from a general architecture/structure for the development of a particular

class (type) of applications, for example an architecture composed by personal and server agents [47,

25, 26, 27], which has been used to implement multi-agent systems to support task allocation

between family members [106, 136]. That is, the same structure can be used to implement different

applications, in which only the domain-dependent knowledge (the ontologies) might be replaced.

The infrastructure presented in [50, 49] is implemented in CArtAgO [132] and provides

ontology features to agents by using the OWL API [61], which allows to create, manipulate and seri-

alise OWL ontologies. Figure 3.2 shows an overview of the approach, where we have 3 workspaces

with different configurations. Each workspace can have any number of instances of CArtAgO arti-

facts, and each artifact loads and encapsulates an OWL ontology. The agents can use their regular

knowledge representation approach (e.g., belief base) simultaneous with the semantics databases,

e.g., Workspace 1 in Figure 3.2, or completely replace the old approach, e.g., Workspace 2 in Fig-

ure 3.2. Workspace 3 of Figure 3.2 illustrates the usual approach, in which agents do not use the

CArtAgO artifact to interact with ontologies.

Figure 3.2 clearly demonstrates that the approach presented in [50, 49] allows agents to

share the same ontology, including agents from different workspaces (e.g., the agents on Workspace

1 and 2 are sharing the Ontology 2), as well as it allows the agents to use information from specific

ontologies based on their role in the multi-agent system.



46

Figure 3.2 – Example of agents using shared ontologies (Workspace 1 and 2) versus usual multi-
agent systems (Workspace 3) [50, 49].

3.3 Instantiating Argumentation Schemes

We have described two alternative infrastructure to represent argumentation schemes in

multi-agent systems in Sections 3.1 and 3.2. For both approaches, either an extended organisa-

tional specification or shared ontologies, we are able to implement multi-agent systems in which

agents share the argumentation schemes in a high level representation, as depicted in Figure 3.3.

Thus, all agents in that multi-agent systems will be aware of those reasoning patterns for argumen-

tation. In order to instantiate arguments from the argumentation schemes and, after that, to use

those arguments in reasoning and communication, we propose that agents will have an internal

representation of argumentation schemes, which can then be used by the inference mechanism

we developed. Therefore, we proposed a particular representation of argumentation schemes us-

ing the language L. In our approach, an argumentation schemes is represented as a defeasible

inference rule (p0, ... , pi ⇒ pj)[sn] plus the set of predicates representing the critical questions of

the scheme {pk [sn], ... pl [sn]}, in which sn is the name of the argumentation scheme being repre-

sented. When representing the argumentation schemes in the Jason Platform [33], the inference rule

(p0, ... , pi ⇒ pj)[sn] is represented using a special predicate defeasible_rule(pj, [p0, ... , pi])[sn],
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Figure 3.3 – Our approach to argumentation schemes in multi-agent systems.

and critical questions are represented using the special predicate cq(cqn, pk)[sn], with cqn the crit-

ical question number. More details about the knowledge representation in Jason will be given in

Chapter 4. For example, the argumentation scheme role to know is internally represented by agents

as:

defeasible_rule(Conclusion,[asserts(Agent,Conclusion),

role(Agent,Role),role_to_know(Role,Domain),

about(Conclusion,Domain)])[as(as4rk)].

cq(cq1,role_to_know(Role,Domain))[as(as4rk)].

cq(cq2,honest(Agent))[as(as4rk)].

cq(cq3,asserts(Agent,Conclusion))[as(as4rk)].

cq(cq4,role(Agent,Role))[as(as4rk)].

In this representation, although we have four different predicates in the agent belief

base, these predicates are linked towards the annotated argumentation schemes [as(as4rk)]. That
means, for a particular instance of this reasoning pattern, for example, the variable Role in the

critical questions cq1 and cq4 will have the same unification that the variable Role in the inference

rule.

Using this internal representation for argumentation schemes, agents are able to instan-

tiate arguments.



48

Definition 12 (Argument). Formally, an argument is a tuple 〈S, c〉θsn, where 〈sn,P, C, CQ〉 is the
argumentation scheme used, θ is a most general unifier for the premises in P and the agent’s current

belief base, S is the set of premises and the inference rule of the scheme used to draw c (the conclusion
of the argument). That is, S includes all instantiated premises from P — i.e., for all p ∈ P, pθ ∈ S
— and the inference rule corresponding to the scheme (P ⇒ C); the conclusion c is the instantiation Cθ
such that S |= c (c can be inferred from S).

For example, considering the argumentation scheme role to know introduced in Sec-

tion 2.8, imagine a scenario in which all agents know that john (an agent in the system) is playing

the role of doctor — role(john, doctor) — within the organisational structure. Further, the

agents know that doctors know about cancer — knows(doctor, cancer). Therefore, if john asserts

that “smoking causes cancer” — asserts(john, causes(smoking, cancer)), and causes of cancer

are a subject matter related to cancer — about(causes(smoking, cancer), cancer), all agents are
able to instantiate the argumentation scheme role to know, which allows them to conclude that

smoking causes cancer: causes(smoking, cancer). This argument is presented below:

〈 { defeasible_rule(causes(smoking,cancer),

[asserts(john,causes(smoking,cancer)),role(john,doctor),

role_to_know(doctor,cancer), about(causes(smoking,cancer),cancer)]),

asserts(john,causes(smoking,cancer)),role(john,doctor),

role_to_know(doctor,cancer),about(causes(smoking,cancer),cancer)},
causes(smoking,cancer) 〉[as(as4rk)]

Note that argumentation schemes are general structures for arguments, thus an agent

is able to instantiate different arguments, for example 〈S1, c1〉θ2
sn and 〈S2, c2〉θ1

sn, from the same

argumentation scheme sn, when θ1 6= θ2. Also, depending on the information available for an

agent, it will be able to instantiate conflicting arguments from the same argumentation scheme.

For example, imagine that another agent also playing the role of doctor, called pietro, asserts

that “smoking does not cause cancer”, i.e., asserts(pietro,¬causes(smoking, cancer)). Any agent
aware of both assertion, John’s and Pietro’s assertions, is able to construct conflicting arguments

for ¬causes(smoking, cancer) and causes(smoking, cancer), instantiating the argumentation

scheme role to know, both arguments attacking (in conflict with) each other (as we will see in the

next chapter). However, the agents are able to question if john and pietro are honest (trustworthy,

reliable) sources, if they really play the role of doctor, and the other questionable points indicated

by critical questions in the argumentation scheme used4. Thus, when the critical questions related

to that scheme are not positively answered, that instance of argument might be not acceptable. For

example, if an agent has the information that “Pietro is not a honest source”, i.e., ¬honest(pietro),
that agent is not able to answer positively the critical question honest(pietro), thus that instance

4Here, an important issue on the representation of argumentation schemes appears, in which not all critical
questions refer to information explicitly represented on the structure of arguments instantiated from argumentation
schemes.
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of the argumentation scheme (i.e., that argument) might be not acceptable for that agent, i.e.,

the argument concluding ¬causes(smoking, cancer) might be not an acceptable instance from

the argumentation scheme role to know, while the argument concluding causes(smoking, cancer)
might be an acceptable instance from role to know, supposing that agent knows that john is

honest.

Thus, when considering argumentation schemes in multi-agent systems, the acceptance

of a conclusion from an instance of an argumentation scheme, i.e., an argument instantiated

from an argumentation scheme, is directly associated with the critical questions specified in that

scheme. Critical questions may be asked before a conclusion from an argument to be accepted,

and they point out to disputable information used in that argument [156]. Thus, when considering

argumentation schemes, agents will not only need to instantiate the premises of the argumentation

schemes available to them, i.e., agents need to match the information available to them with the

premises of that argumentation scheme, but also they will need to consider if that argument is an

acceptable instance from that argumentation scheme, i.e., they need to check if they are able to

answer positively the critical questions associated with that argumentation scheme.

Definition 13 (Acceptable Instances of Arguments). An argument 〈S, c〉θsn, instantiated from an

argumentation scheme 〈sn,P, C, CQ〉, is an acceptable instance of argument to an agent ag (where ∆ag

is its knowledge base) iff: (i) all premises in S can be drawn from ag knowledge base, i.e., ∀pθ ∈
S,∆ag |= pθ, either because p is asserted in its knowledge base, or because p is the conclusion of an

acceptable argument; and (ii) all critical question related to the argumentation scheme 〈sn, C,P, CQ〉
are positively answered by ag, i.e., ∀Cqi ∈ CQ,∆ag |= Cqiθ.

Following our example, an agent also needs to have the information that john is honest

in order to have an acceptable instance of the argumentation scheme role to know, concluding that

“smoking causes cancer”. For example, the belief base ∆ represents the information5 an agent needs

to know in order to be able to instantiate an acceptable argument from the argumentation scheme

role to know.

∆ =



honest(john)
asserts(john, causes(smoking, cancer))
role(john, doctor)
role_to_know(doctor, cancer)
about(causes(smoking, cancer), cancer).


Besides instantiating arguments, which are acceptable instances of argumentation

schemes, agents might have conflicting acceptable instances of arguments. Thus, agents need

to check which arguments, given all arguments they are able to instantiate from the argumentation

schemes available to them, are acceptable, given the attack relation between them.

5As we will describe in Section 4, honest(john) could be implemented as an assumption, i.e., honest(Ag):-
not(¬honest(Ag)), describing that an agent Ag could be considered honest if we are not able to show that it is not
honest.
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In order to allow an agent to execute this reasoning, we have proposed a general

argumentation-based reasoning mechanism for Jason agents [101, 109]. After, we have extended

this argumentation-based reasoning mechanism in order to allow agents to execute argumentation-

based reasoning over acceptable instances of arguments from argumentation schemes, according

to Definition 13. In the next chapter, we describe this part of our research.
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4. ARGUMENTATION-BASED REASONING IN

AGENT-ORIENTED PROGRAMMING LANGUAGES

In our research regarding argumentation-based reasoning, part of it published in [101,

109], we have investigated how to implement a general argumentation-based reasoning mechanism

in Jason [33], given its particular language to represent agents’ knowledge. In that research, we

found strong evidence1 that defeasible logic is a starting point to build argumentation systems. Such

a claim can be confirmed by noting that most approaches for structured argumentation (cf. Sec-

tion 2.7) use defeasible rules as part of their meta-language, as well as the claim made in [124].

Based on such evidence, we have implemented an argumentation-based reasoning mechanism in

the Jason platform, using a particular formalisation for defeasible logic [93, 92], adapting its meta-

interpreter implementation in Prolog called Defeasible-Prolog (d-Prolog for short) [91] for Jason [33].

The resulting argumentation-based reasoning mechanism has been presented in our recent publi-

cation [101], which we will describe in this chapter. We focus on both the formal specification of

the argumentation framework as well as the knowledge representation and argumentation-based

reasoning implementation on an agent-oriented programming language.

To the best of our knowledge, the only other strands of research that address

argumentation-based reasoning in an agent-oriented programming language were introduced

in [17, 150] and [68]. In [17], the author implements a separated module in Jason, thus agents

need to query such a module and wait for the answer, making programming agents more difficult

in practice. Our approach seems more adequate, given that the argumentation-based reasoning

mechanism we developed is part of (i.e., integrated with) the agent reasoning cycle, and completely

transparent for developers. In [150], the authors implement an argumentation-based reasoning

mechanism in Jason platform using the Toulmin’s model [149]. That approach is similar to [17], in

the sense that agents in that approach need to execute a plan in order to calculate the status of

a particular claim, given the set of warranties and refutation supporting and refuting that claim.

After that, beliefs are added to the agents’ belief base describing the status of that particular claim.

That is, first agents execute a plan in order to know (belief) what is the status of a particular claim,

given a predefined set of status, e.g., “certainly yes”, then they are able to make decisions based

on that new belief. In [68], the authors describe a preliminary version for argumentation-based

negotiation (one-to-one negotiation) in JADE ( Java Agent DEvelopment Framework) [13], where the

agents negotiate resource allocation. Such work is based on the ABA Framework [46, 144]. The aim

in [68] is to define communication policies which allow agents to provide reasons (arguments) for

their refusal to provide the requested resources. Such communication policies can be implemented

in our argumentation framework as well.

In order to present the argumentation-based reasoning mechanism, we divide this chap-

ter into the following sections. First, we describe the way we represent agents’ knowledge based on

defeasible logic [93] and defeasible-Prolog [91] in AgentSpeak (in particular the AgentSpeak dialect

1In [109] we discuss such evidence.
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available in the Jason platform [33]), including the adaptation of representation and additional

possibilities for knowledge representation available in the Jason platform. Second, we describe the

argumentation-based reasoning mechanism we developed in order to work with the new knowledge

representation internally to the agent reasoning. After presenting the general argumentation-based

reasoning mechanism, we introduce its extended version which allows agents to use argumentation

schemes to instantiate arguments. Finally, we present an evaluation of the argumentation-based

reasoning mechanism we developed.

4.1 Defeasible Knowledge Representation

Defeasible logic [93] and defeasible-Prolog [91] have a particular representation in the

form of facts, rules, and a “superiority” relation. In order to adequately represent this in Jason

we represent facts, inference rules, and the superiority relation as belief predicates that are treated

similarly to other information in the agent’s belief base. So the knowledge representation in our

framework is organised as follow:

• facts: are represented as predicates, so for example “Bob is a graduate student” is repre-

sented as a simple predicate such as grad_student(bob);

• strict rules: are represented as a special predicate strict_rule(Head,Body),

so for example “graduate students are students” is represented as

strict_rule(student(X),grad_student(X)); the body can also be a list

of predicates to represent conjunction;

• defeasible rules: are represented as a special pred-

icate defeasible_rule(Head,Body), so for exam-

ple “graduate students usually study hard” is represented as

defeasible_rule(studies_hard(X),grad_student(X)); as above, the

body can also be a list rather than a single predicate; and

• superiority relation: the superiority relation is represented as sup(Rule1,Rule2) stating

that Rule1 is superior to Rule2.

Further, in order to maintain the coherence when we construct inference rules using first-order

predicates, as is our case, we allow formulæ such as X\==Y into body of rules (i.e., the term

instantiated to X is different from the one with which Y is instantiated), X==Y (i.e., equality), and

X>Y etc2. into the list, allowing us to constrain the instantiated variables (within the same predicate

or not).

2Such formulae also allows us to implement value-based argumentation [15] .
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In argumentation-based reasoning, as well as in any argumentation system, an important

issue related to knowledge representation is the representation of conflicting information. Regard-

ing conflicting information, we can consider different types of opposition, the most common being

negation where the negation of a proposition is its opposite in a strong sense of opposition —

they are in direct contradiction, for example, “This pen is black” and “This pen is not black”.

Besides, there is also a weaker sense of opposition, called contraries, for example, “This pen is

black” and “This pen is green” [156]. In our argumentation framework, we consider both types of

opposition. The strong type, negation, is represented using the usual symbol3 “¬”, so “Bob is not a

graduate student” is represented as ¬grad_student(bob). While the weak type of opposition

is represented using a special predicate comp(good,bad), meaning that “good” is contrary to

“bad”. Therefore, considering the two types of opposition, the notion of conflicting information in

our framework can be defined.

Definition 14 (Conflicting Information). Two pieces of information pi and pj from L are said in
conflict when:

• pi and pj are the negation of each other, e.g., pi = causes(smoking, cancer) and pj =

¬causes(smoking, cancer), or;

• pi and pj are semantically declared as conflicting information, i.e., pi = reliable(john) and
pj = unreliable(john), with some declaration of complement, conflict, or contrary information,
e.g., comp(reliable(john),unreliable(john)).

For both cases we adopt a general operator for conflict pi , in which pj ≡ pi means that pi and pj are

conflicting information.

Having described how we represent individual pieces of information in our framework,

we are now able to describe how arguments are created on top of those. Although the construction

of arguments is related to the argumentation-based reasoning mechanism that we will describe

in the next section, we describe here the representation of arguments themselves. It is important

to note that our argumentation-based reasoning mechanism constructs an argument looking for

the inference rules and facts available in the agent’s belief base at that particular time in order

to derive a specific conclusion from them. Therefore, arguments are composed of a set of beliefs

— representing the facts and inference rules that can be used as support — and that particular

conclusion supported/derived from that set of beliefs.

Definition 15 (Argument). An argument is a tuple 〈S, c〉, where S is a set of beliefs representing facts

and inference rules which supports a conclusion c.

For example, the classical defeasible argument called argument from perception, introduced

by Pollock [122], says that:

3In Jason, the corresponding symbol for strong negation is “∼”.
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“When an object looks red, then (normally, but subject to exceptions) it is red, and this object

looks red to me, therefore this object is red.”

This argument, concluding that some particular object is red, is represented as

〈S, color(obj, red)〉 where S is the set of beliefs representing facts/predicates and inferences

rules used to draw that conclusion, as follows:

[defeasible_rule(colour(obj,red), looks(obj,red)), looks(obj,red)]

meaning that the agent believes, through its sensing capabilities, that the object looks red —

it has a belief looks(obj,red) in its belief base — and the agent has a defeasible rule

defeasible_rule(colour(X,Y),looks(X,Y)) whereby it can infer that any object/thing

that looks like being of some particular colour, can be, at least tentatively, inferred to have that

particular colour, i.e., in that instance the agent can presumably conclude that object to be red

(given also that there is no contrary information to conclude so). Later, in this section, we will

discuss this kind of reasoning patterns in multi-agent systems in more detail.

Similarly to ABA, our approach has its root in logic programming, thus it has the advan-

tage of a fine level of granularity, given it offers an interleaving of construction of argument and

determining their acceptability [46], as we will see in the next section.

4.2 Argumentation-Based Reasoning Mechanism

The argumentation-based reasoning mechanism, as mentioned before, is used by agents

to query the acceptability of conclusions (and their supporting arguments) in their belief bases;

such queries are executed internally during the reasoning process. When a conclusion is queried

internally by an agent, as is usually the case, its reasoning mechanism searches for that information

in their belief base, including acceptable inferences through the extensions we developed.

Before we introduce acceptable arguments (i.e., a conclusion supported by acceptable

inferences given the state of an agent’s belief base) we need to discuss a few issues. Intuitively, in

our argumentation framework we have two kinds of arguments, where arguments that use only strict

rules are stronger than arguments that use any defeasible rules: (i) strict arguments are formed

only by facts and strict rules (i.e., indisputable knowledge). It is assumed that the strict part of

any knowledge base (in practice the agent’s belief base) is consistent (i.e., contradictions cannot be

derived); (ii) defeasible arguments are created using at least one defeasible rule (corresponding

to the points of weakness of the argument).

An important aspect of this argumentation framework is that the strict part of the knowl-

edge in the belief base of agents is assumed to be consistent. This is because the strict knowledge

is composed by beliefs that can be determined as factual and strict inference rules which are

all indisputable knowledge (i.e., they correspond to an agent’s knowledge rather than its beliefs),

therefore strict knowledge can be naturally assumed to be consistent.
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Definition 16 (Consistency of Strict Knowledge). Let ∆strict be the strict part of an agent’s belief base

∆. A belief base is said to be consistent if there is no contradictory information derivable from ∆strict ,

i.e., ∆strict |= ϕ and ∆strict |= ϕ do not hold simultaneously at any given time.

Whenever an agent queries the acceptability of a particular conclusion, the internal

argumentation-based reasoning mechanism developed (extending the normal agent reasoning

mechanism) tries to find a rule for that particular queried conclusion and then it attempts to

prove the premises of that rule as usual in backwards chaining. In summary, the reasoning mech-

anism tries recursively to find a proof for that particular conclusion from the beliefs in the belief

base, including rules, facts, and assumptions.

In this process, the reasoning mechanism considers conflicting arguments (inferences).

Considering a dialectical point of view, two types of attack (conflict) between arguments can be

considered, according to [156]: (i) a strong kind of conflict, where one party has a thesis to be

proved, and the other part has a thesis that is the opposite of the first thesis, and (ii) a weaker

kind of conflict, where one party has a thesis to be proved, and the other part doubts that thesis,

but has no opposite thesis of his own. In the strong kind of conflict, each party must try to refute

the thesis of the other in order to win. In the weaker form, one side can refute the other, showing

that their thesis is doubtful. This difference between conflicts are inherent from the structure of

arguments, and can be found in the work of others, e.g. [123].

Both types of conflicts, the strong and the weaker kinds of conflict, are also considered

in monological argumentation frameworks. On the one hand, the strong kind of conflict refers

to two arguments supporting conflicting conclusions, in which each argument has its own set of

evidence, i.e., its support. On the other hand, the weaker kind of conflict refers to an argument

attacking (in conflict with) part of the support of another argument, i.e., that argument does not

support that the conclusion is false, but it supports that some information used as the support of

that conclusion is not true.

Thus, in order to define the acceptability of an argument (and the respective queried

conclusion) we need to consider conflicting arguments. Conflict between arguments are of two

kinds:

Definition 17 (Attack Between Arguments). Let 〈S1, c1〉 and 〈S2, c2〉 be two arguments. Attacks
between arguments can be generalised as:

• The argument 〈S1, c1〉 rebuts the argument 〈S2, c2〉 iff c1 ≡ c2.

• The argument 〈S1, c1〉 undercuts the argument 〈S2, c2〉 iff c1 ≡ c3 for some 〈S3, c3〉, where
S3 ⊆ S2.

When two arguments are in conflict, i.e., the arguments attack each other, this does

not necessarily mean that one argument defeats the other. Defeat is a “successful” attack, and

it considers the set of arguments that defend each other, including preferences between the con-

flicting arguments [156]. In our framework, the set of acceptable arguments from an agent’s belief
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base is defined in terms of the defeasible semantics introduced in [57]. The defeasible semantics

is similar to the grounded semantics from Dung’s work [45], and it is based on the so-called pre-

empting defeaters [91]. The preempting defeaters of [91] are called ambiguity blocking (in regards to

the argumentation system) in [57]. This means that defeasible arguments that are rebutted by as

strong as, or stronger, arguments (defined through some sort of preference that will be explained

below) are no longer available to rebut other arguments. An example of preempting defeaters is

the knowledge base represented by ∆ below, where we use⇒ to refer to defeasible inferences:

∆ =


a a⇒ b b ⇒ c
x x ⇒ e e⇒ ¬c
y y ⇒ ¬e c ⇒ d


In this example, considering ∆ as the belief base of some agent, the agent may conclude d using

{a, a ⇒ b, b ⇒ c, c ⇒ d} as support. Although there is an argument to ¬c supported by

{x , x ⇒ e, e⇒ ¬c} which rebuts the sub-argument for d that concludes c (undercutting the first

argument), this argument (the argument that derives ¬c) is defeated (by undercut) by an argument

with support {y , y ⇒ ¬e} which prevents the use of that argument to attack the argument for d.

Although in the example above we have an acceptable argument for d , the arguments

with support {y , y ⇒ ¬e} and {x , x ⇒ e} (which is a sub-argument for c in the example) are

in conflict, and the argumentation-based reasoning mechanism4 is not able to decide which one is

acceptable, i.e., both are treated as unacceptable. A way to deal with undecided conflicts is to use

preferences over the arguments.

Clearly, strict arguments are stronger than defeasible arguments and they have priority,

i.e., when arguments are in conflict, strict arguments always defeat defeasible ones. Considering

only defeasible arguments, in our framework we have two types of priority5: (i) priority by speci-

ficity, which is originally defined in defeasible logic [93], and (ii) the explicit declaration of priority

between defeasible rules, using a special predicate in the knowledge representation of our argu-

mentation framework. In priority by specificity, more specific conclusions have priority over more

general ones. To exemplify this idea, consider the well-known Tweety example implemented in a

Jason agent:

defeasible_rule(flies(X),bird(X)).

defeasible_rule(¬flies(X),penguin(X)).
defeasible_rule(bird(X),penguin(X)).

penguin(tweety).

All clauses in the example are defeasible rules. Considering the knowledge above, we

have two conflicting arguments, one supporting that Tweety flies: “Tweety flies, because it is

4This characteristic is from the original implementation of defeasible Prolog [91], and it is what gave rise for the
name ambiguity blocking in [57].

5Although we present here the original argumentation framework we developed, we are working on an extension
which considers more kinds of priority. The preliminary work is found in [82, 83, 107].
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a penguin, penguins are birds, and birds fly”, and one supporting that Tweety does not fly:

“Tweety does not fly, because it is a penguin and penguins do not fly”. Our argumentation-

based reasoning mechanism (as well as defeasible-Prolog [91] on which our reasoning mech-

anism is based) concludes, in this case, that Tweety does not fly, because the rule for pen-

guins defeasible_rule(¬flies(X),penguin(X)) is more specific than a rule for birds

defeasible_rule(flies(X),bird(X)), given that penguin is a subclass of birds, repre-

sented by defeasible_rule(bird(X),penguin(X)). In this manner, the argument for

Tweety does not fly, ¬flies(tweety), has priority over the other one and so defeats it6.

Furthermore, when there exist two rules deriving contradictory information, the language

used in our approach, as described before, allows us to declare, in an explicit way, priority be-

tween these rules, using a special predicate sup(Rule1,Rule2), indicating that inferences using

Rule1 have priority over inferences using Rule2. Therefore, when two conflicting arguments are

constructed using these conflicting rules, this declaration is used in order to decide which conclu-

sion will actually be derived. Therefore, we can define the acceptability of an argument as follows

(based on [57]):

Definition 18 (Acceptable Arguments). An argument 〈S, c〉 is acceptable to an agent ag (where ∆ag

is its belief base) if 〈S, c〉 is finite, and: (a) 〈S, c〉 is strictly inferred, or (b) every argument attacking
〈S, c〉 is defeated by some argument 〈Sn, cn〉 ∈ ∆ag (i.e., all arguments that attack 〈S, c〉 cannot be
inferred from ∆ag because they are attacked by as strong as, or stronger, arguments in ∆ag so they are not

acceptable in ∆ag).

The reasoning mechanism extending the usual agent reasoning mechanism in Jason in

accordance with the argumentation-based reasoning mechanism that we proposed was imple-

mented by adapting d-Prolog [91], using the Prolog-like rules which are interpreted by Jason with

some limitations (e.g., the “cut” operator is not available). The implementation is based on logic

programming and the formal semantic and syntax of the AgentSpeak language extension that can

be found in [33]. A part of that reasoning mechanism is presented below:

strict_der(Content):- Content.

strict_der([Content]):- strict_der(Content).

strict_der([First|Rest]):- strict_der(First) & strict_der(Rest).

strict_der(Content):- strict_rule(Content,Cond) & strict_der(Cond).

In this part of the implementation, we demonstrate the derivation of strict inferences,

where first we check if the queried content is a belief or a formula (i.e., X\==Y, X==Y, etc.), then

if it is a list of a single element, then if it is a list of more than one element, and finally if it is

the Head of a strict rule and if the Condition (which derives the Content) is also strictly

6We have extended, in a parallel work, the preferences in the argumentation-based reasoning mechanism presented
here, considering meta-information available in the Jason Platform, e.g., the source and the time that the information
has been acquired by the agent; such extensions are presented in [82, 83, 107].
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derived. These rules permit the agent to query if a content is strictly derived in its knowledge base

(remember that strict knowledge is indisputably known).

In our framework, when an agent wants to query if it has an argument to support some

conclusion, it uses the special predicates strict_der(Content) and def_der(Content)

depending on whether the agent needs that information to be strictly or defeasibly inferred, re-

spectively. When an agent needs the argument (set of beliefs representing facts and inference rules

used in that acceptable inference) to support a claim in a dialogue or a decision-making pro-

cess, the argument is accessible using a second parameter in the query, which we call Arg. Each

rule and fact used in the inference of that particular query are stored using the internal action

.concat (which concatenates a list with the new element, e.g., a rule or a fact) available in Jason.

Thus, depending on the strategy of the agent, it can verify if it has a strict or defeasible argument,

using strict_der(Arg,Content) and def_der(Arg,Content), or if this distinction is

not necessary, the agent can use the special predicate argument(Content,Arg) inferred by:

argument(Content,Arg):- strict_der(Arg,Content)|def_der(Arg,Content).

where we check first if the content is inferred in a strict way, and then if the content can be inferred

in a defeasible way.

The argumentation-based reasoning mechanism queries the acceptability of arguments

at runtime, and given the way the agent reasoning cycle works, the arguments are constructed

using the most up-to-date information available to the agent given a snapshot of its belief base.

Therefore, the acceptability of that particular argument (supporting the queried conclusion) is

guaranteed to be in accordance with the updated information available for that agent at the mo-

ment of the query. Of course, because of the dynamism of typical multi-agent systems, at the very

next reasoning cycle that same argument may no longer be derivable for that same agent.

4.3 Example

As an example, we use the paper submission scenario from [109, 101]. In our example,

imagine that an agent has submitted a “paper” to BRACIS 2016. The agent believes that its paper

is good and will be accepted, so it commits itself to buy a ticket to Recife because it concludes

go_to(recife) from its belief base, given that BRACIS 2016 is to take place in Recife, i.e., it

has the belief held_in(bracis,recife).

defeasible_rule(go_to(L),[held_in(C,L),accepted(P,C)]).

defeasible_rule(accepted(P,C),[submitted(P,C),good(P)]).

submitted(paper,bracis).

good(paper).

held_in(bracis,recife).
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A plan that the agent could use to buy a ticket for some location instantiated by L has

the following format (in the Jason platform):

+!buyTicket(L) : def_der(go_to(L))

<- buyTicket(L).

meaning that if the agent has reasons to believe that it needs to go to some location L, it may buy a

ticket to that location. When the agent needs the actual argument that supports a particular deci-

sion, it could use argument(go_to(L),Arg), thereby instantiating Arg with such argument,

which could then be used to justify such decision-making to other agents, for example.

However, before the agent buys its ticket, it checks the BRACIS 2016 webpage and re-

alises that the page limit for BRACIS papers is 6 pages (including references) and the agent has,

unfortunately, submitted a longer paper than allowed. In addition to the allowed paper length,

the agent has the information that papers longer than allowed are strictly not accepted. This

knowledge is represented as follows:

strict_rule(¬accepted(P,C),[longer_for(P,C),submitted(P,C)]).
strict_rule(longer_for(P,C),[paper_length(P,X),allowed_length(C,Y),X>Y]).

paper_length(paper,9).

allowed_length(bracis,6).

With the new information the agent can no longer conclude go_to(recife),

considering that the new information allows the inference of a strict argument for

¬accepted(paper,bracis), which defeats the argument for go_to(recife), i.e.,

the argument for ¬accepted(paper,bracis) successfully undercuts the argument for

go_to(recife), considering that they are in conflict and strict arguments have priority over

defeasible ones. Therefore, the plan above is no longer applicable (the plan’s context is no longer

satisfied).

4.4 Reasoning with Argumentation Schemes

In Chapter 3, we described how we represent argumentation schemes in a high-level

infrastructure into multi-agent systems in order to share those reasoning patterns to all agents in

the system. Also, we described how agents internally represent those reasoning patterns in order

to instantiate arguments they might use during reasoning and dialogues.

As described, for example, the argumentation scheme role to know is internally repre-

sented by agents as:

defeasible_rule(Conclusion,[asserts(Agent,Conclusion),

role(Agent,Role),role_to_know(Role,Domain),
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about(Conclusion,Domain)])[as(as4rk)].

cq(cq1,role_to_know(Role,Domain))[as(as4rk)].

cq(cq2,honest(Agent))[as(as4rk)].

cq(cq3,asserts(Agent,Conclusion))[as(as4rk)].

cq(cq4,role(Agent,Role))[as(as4rk)].

Further, these predicates are linked towards the annotated argumentation schemes

[as(as4rk)]. Thus, when agents instantiate this reasoning pattern, the variables used in the predi-

cates will have a corresponding unification.

In order to allow agents instantiating and reasoning using arguments from argumentation

schemes, we have extended the argumentation-based reasoning mechanism introduced in this

chapter. Thus, agents first instantiate argumentation schemes and check if they are acceptable

instances of arguments, according to Definition 13, then they are able to use those acceptable

instances of arguments in order to check which ones are acceptable, considering all arguments

available to those agents, i.e., checking attacks between arguments.

For example, imagine that an agent ag has the following knowledge base:

∆ag =



honest(john)
honest(pietro)
asserts(john, causes(smoking, cancer))
asserts(pietro,¬causes(smoking, cancer))
role(john, doctor)
role(pietro, doctor)
role_to_know(doctor, cancer)
about(causes(smoking, cancer), cancer).


Thus, ag is able to instantiate 2 different acceptable instances of arguments from the

argumentation scheme role to know, according Definition 13:

〈{role(john,doctor), role_to_know(doctor,cancer),

asserts(john,causes(smoking,cancer)),

about(causes(smoking,cancer),cancer),

(role(Agent,Role), role_to_know(Role,Domain),

asserts(Agent,Conclusion),

about(Conclusion,Domain) ⇒ Conclusion)[as(role_to_know)],

causes(smoking,cancer)〉.

〈{role(pietro,doctor), role_to_know(doctor,cancer),

asserts(pietro,¬causes(smoking,cancer)),
about(¬causes(smoking,cancer),cancer),
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(role(Agent,Role), role_to_know(Role,Domain),

asserts(Agent,Conclusion),

about(Conclusion,Domain) ⇒ Conclusion)[as(role_to_know)],

¬causes(smoking,cancer)〉.

Considering that all critical questions are positively answered by the agent ag, both
arguments are acceptable instances of arguments, but they are in conflict with each other in their

conclusions. Thus, considering that an agent has only those arguments, i.e., one argument for and

another argument against the conclusion that causes(smoking, cancer), it is not able to decide

that conflict and both arguments are not acceptable to it. This is a rational position, given the

agent has evidence supporting both conflicting conclusions.

However, when more information became available to the agent ag, the status (accept-

ability) of arguments might change. For example, imagine that pietro is not actually a doctor,

i.e., role(pietro, doctor) is not true, and the agent ag becomes aware of that information to-

wards the hospital director named mathew. Considering that the agent ag also has the following

information about mathew in its knowledge base:

∆ag =



honest(mathew)
asserts(mathew, role(pietro, nurse))
role(mathew, hospital_director)
role_to_know(hospital_director, employee)
about(role(pietro, nurse), employee).


Thus, ag is able to construct another acceptable instance of argument from the argu-

mentation scheme role to know as follows:

〈{role(mathew,hospital_director),
role_to_know(hospital_director,employee),

asserts(mathew,role(pietro,nurse)),

about(role(pietro,nurse),employee),

(role(Agent,Role), role_to_know(Role,Domain),

asserts(Agent,Conclusion),

about(Conclusion,Domain) ⇒ Conclusion)[as(role_to_know)],

role(pietro,nurse)〉.

This argument attacks the argument concluding that ¬causes(smoking, cancer),
at role(pietro, doctor), considering that role(pietro, nurse) is in conflict with

role(pietro, doctor). Thus, this argument is defeated and cannot be used to defeat the ar-

gument concluding that causes(smoking, cancer). That means, we have extended the definition

of acceptable arguments as follows:
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Definition 19 (Acceptable Arguments). An argument 〈S1, c1〉θsn is acceptable for an agent if it is an
acceptable instance of argument from an argumentation scheme sn, and it is not defeated by any other

acceptable argument. That means, considering the set of arguments an agent is able to construct from

its knowledge base, an acceptable argument either is not attacked by any other argument, or when it is

attacked by another argument, this another argument is attacked by an acceptable argument.

Considering that the three arguments above are acceptable instances of arguments from

the argumentation scheme role to know, the argument concluding that causes(smoking, cancer)
is attacked by the argument concluding ¬causes(smoking, cancer), which is attacked by

the argument concluding role(pietro, nurse). Considering that the argument conclud-

ing role(pietro, nurse) is not attacked by any other argument, role(pietro, nurse) and

causes(smoking, cancer) are the two acceptable conclusions (and their respective arguments)

in our example.

4.5 Evaluation

The main characteristic we desire in our framework is generality. In order to evaluate

its generality, we have selected some argumentation schemes from different areas of study in the

literature. We have represented those reasoning patterns in our framework, and then we evaluated

different scenarios of argumentation-based reasoning using them. In Section 4.5.1, we discuss the

argumentation schemes selected to this evaluation, how they are represented in our framework,

and some examples of reasoning that agents can execute using them.

Another interesting exercise we have made to evaluate our framework for argumentation

schemes in multi-agent systems was the modelling of argumentation schemes for a particular class

of multi-agent systems applications. That is, we exercise the process of evaluating a particular ap-

plication domain (problem) and then to model (or identify) argumentation schemes required to that

application domain. In this exercise, we have analysed the problem of data access control between

multi-agent systems applications, then we proposed argumentation schemes that argumentation-

based interface agents could use to make decisions on when to share or not information from its

multi-agent system. In section 4.5.2, we present this research.

Finally, although it is not one of our main goal in this research, we have evaluated

our implementation in order to check how fast agents are able to reach (or not) a particular

conclusion using our extended argumentation-based reasoning mechanism, and how much the

critical questions influence the time necessary to agents reach a conclusion. In Section 4.5.3, we

present these results.
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4.5.1 Representation and Reasoning with Argumentation Schemes from the Literature

Argumentation Scheme from Role to Know: The first argumentation scheme we have repre-

sented in our framework was the argumentation scheme from role to know, which is an adapted

version from the argumentation scheme for position to know [153, 156]. Also, the argumentation

scheme for position to know is the argumentation scheme most used by the literature when exem-

plifying what argumentation schemes are. Here, making reference to multi-agent system concepts,

i.e., roles. This argumentation scheme has been extensively used to exemplify our framework in

the previous sections, and it has been successfully represented in our framework. It allows agents

to construct different arguments based on assertions coming from experts on a particular subject.

After that, agents are able to use those arguments to reach well supported conclusions (when they

exist), as we showed in Section 4.4.

Argumentation Schemes from Biomedical Domain: The second scenario used to evaluate the

generality of our framework comes from a biomedical paper [58], which have extracted seven

causal argumentation schemes from biomedical research domain in order to use them in argument

mining. Although the main goal in [58] is to model argumentation schemes that could be used to

automatise argument mining from research papers in the biomedical domain, we have modelled

such argumentation scheme in order to allow agents to reason about such a domain.

The corresponding argumentation schemes and their representation in our framework

are described below:

• Method of Agreement: This argumentation scheme says that if a group G has a phenotype P

and a genotype M, then that genotype M causes the phenotype P.

This argumentation scheme has been represented in our approach as: sn = ma_paper01,

P = {have_phenotype(G, P), have_genotype(G, M)}, C = cause(M, P), CQ = ∅.

Its representation in Jason predicates is given by the defeasible inference rule:

defeasible_rule(cause(M,P),[have_phenotype(G,P),

have_genotype(G,M)])[as(ma_paper01)].

• Method of Failed Agreement (no effect): This argumentation scheme says that if a group G

does not have phenotype P and has the genotype M, then the genotype M does not cause the phenotype

P.

This argumentation scheme has been represented in our approach as: sn = mfa_paper01,

P = {¬have_phenotype(G, P), have_genotype(G, M)}, C = ¬cause(M, P), CQ = ∅.

Its representation in Jason predicates is given by the defeasible inference rule:

defeasible_rule(¬cause(M,P),[¬have_phenotype(G,P),
have_genotype(G,M)])[as(mfa_paper01)].
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• Method of Difference: This argumentation scheme says that if a group G1 has a phenotype P

and has the genotype M, a group G2 does not have the phenotype P and does not have the genotype

M then the genotype M causes the phenotype P.

This argumentation scheme has been represented in our approach as: sn = md_paper01,

P = {have_phenotype(G1, P), have_genotype(G1, M),¬have_phenotype(G2, P),
¬have_genotype(G2, M), (G1\ == G2)])}, C = cause(M, P), CQ = ∅.

Its representation in Jason predicates is given by the defeasible inference rule:

defeasible_rule(cause(M,P),[have_phenotype(G1,P),

have_genotype(G1,M),¬have_phenotype(G2,P),
¬have_genotype(G2,M),(G1\ ==G2)])[as(md_paper01)].

• Analogy: This argumentation scheme says that if a group G1 has a phenotype P1, a group G2

has a phenotype P2, where P2 is similar to P1, the group G1 has the genotype M1, the group G2

has the genotype M2, where M2 is similar to M1, and the genotype M1 causes the phenotype P1 then

the genotype M2 causes the phenotype P2.

This argumentation scheme has been represented in our approach as: sn = a_paper01, P =
{have_phenotype(G1, P1), have_phenotype(G2, P2), similar(P1, P2), have_genotype(G1, M1),
have_genotype(G2, M2), similar(M1, M2), cause(M1, P1), (G1\ == G2)])}, C =
cause(M2, P2), CQ = ∅.

Its representation in Jason predicates is given by the defeasible inference rule:

defeasible_rule(cause(M2,P2),[have_phenotype(G1,P1),

have_phenotype(G2,P2),similar(P1,P2),have_genotype(G1,M1),

have_genotype(G2,M2),similar(M1,M2),cause(M1,P1),

(G1\ ==G2)])[as(a_paper01)].

• Eliminate Difference: This argumentation scheme says that if a group G1 has a phenotype

P, a group G2 does not have the phenotype P, the group G1 has the genotype AB, the group G2 has

the genotype B, the genotype A is the difference between AB and B, then the genotype A causes the

phenotype P.

This argumentation scheme has been represented in our approach as: sn = ed_paper01,

P = {have_phenotype(G1, P), have_genotype(G1, AB),¬have_phenotype(G2, P),
difference(AB, B, A), have_genotype(G2, B), (G1\ == G2)])}, C = cause(A, P), CQ = ∅.

Its representation in Jason predicates is given by the defeasible inference rule:

defeasible_rule(cause(A,P),[have_phenotype(G1,P),

have_genotype(G1,AB),¬have_phenotype(G2,P),
difference(AB,B,A),have_genotype(G2,B),

(G1\ ==G2)])[as(ed_paper01)].
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• Consistent Explanation: This argumentation scheme says that if a group G1 has a genotype

M1, it has a protein Prot, and it has a phenotype P1, M1 causes Prot, Prot is associated with

the phenotype P1, M1 causes P1, a group G2 has the genotype M2, where M2 is similar to M1, G2

has the protein Prot, G2 has the phenotype P2, where P2 is similar to P1, M2 causes Prot,

Prot is associated with P2, then the genotype M2 causes the phenotype P2.

This argumentation scheme has been represented in our approach as: sn = ce_paper01, P =
{similar(M1, M2), similar(P1, P2), , have_genotype(G1, M1), have_protein(G1, Prot),
have_phenotype(G1, P1), cause(M1, Prot), assoc(Prot, P1), have_genotype(G2, M2),
have_protein(G2, Prot), have_phenotype(G2, P2), cause(M2, Prot), assoc(Prot, P2),
(G1\ == G2)])}, C = cause(M2, P2), CQ = ∅.

Its representation in Jason predicates is given by the defeasible inference rule:

defeasible_rule(cause(M2,P2),[similar(M1,M2),similar(P1,P2),

have_genotype(G1,M1),have_protein(G1,Prot),

have_phenotype(G1,P1),cause(M1,Prot),assoc(Prot,P1),

have_genotype(G2,M2),have_protein(G2,Prot),

have_phenotype(G2,P2),cause(M2,Prot),assoc(Prot,P2),

(G1\ ==G2)])[as(ce_paper01)].

• Different Consistent Explanation: This argumentation scheme says that if a group G1 has

a genotype M, it has a protein Prot, and it has a phenotype P, M causes Prot, Prot is associated

with P, a group G2 does not have a phenotype P, it does not have a genotype M, and it does not

have the protein Prot, then the genotype M causes the phenotype P.

This argumentation scheme has been represented in our approach as: sn = dce_paper01,

P = {have_genotype(G1, M), have_protein(G1, Prot), have_phenotype(G1, P),
cause(M, Prot), assoc(Prot, P),¬have_genotype(G2, M),¬have_protein(G2, Prot),
¬have_phenotype(G2, P) (G1\ == G2)])}, C = cause(M, P), CQ = ∅.

Its representation in Jason predicates is given by the defeasible inference rule:

defeasible_rule(cause(M,P),[have_genotype(G1,M),

have_protein(G1,Prot),have_phenotype(G1,P),cause(M,Prot),

assoc(Prot,P),¬have_genotype(G2,M),¬have_protein(G2,Prot),
¬have_phenotype(G2,P), (G1\ ==G2)])[as(dce_paper01)].

Example: As an example for the argumentation schemes presented in [58], the author

used a short excerpt, in which they have extracted the following relations and domain knowledge:
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∆ =



group(opt)
group(affected_knockout_mice)
have_phenotype(opt, opt_pheno)
have_phenotype(affected_knockout_mice, ataxia)
have_genotype(opt, Itpr1opt/opt)
have_genotype(affected_knockout_mice, Itpr1∆18/∆18).
cause(Itpr1opt/opt, opt_pheno).
similar(opt_pheno, ataxia)
similar(Itpr1opt/opt, Itpr1∆18/∆18)


In order to test this scenario in our framework, we have represented this knowledge,

∆, in an agent’s belief base, as well as we made this agent aware of the argumentation schemes

proposed in [58]. Thus, the agent is able to conclude, using our extended argumentation-based

reasoning mechanism developed, that cause(Itpr1∆18/∆18, ataxia). This result is the same

result described in the example from [58].

Argumentation Scheme for Proposed Treatment: The third scenario used to evaluate the gener-

ality of our framework comes from the paper [72], in which the authors propose an argumentation

scheme used to generate arguments in support of different possible treatment. Providing such

arguments to patients, the application aims to help patients to agree about treatment plans. The

argumentation scheme for a proposed treatment (ASPT for short) says that “Given a patient facts

F, in order to realise the goal G, treatment T promotes the goal G, therefore the treatment T should be

considered”. The associated critical question for this scheme are: CQ1: Has this treatment been

unsuccessfully used on the patient in the past? CQ2: Has the patient experienced side effects from

this treatment in the past? CQ3: Is there an equivalent cheaper treatment for the treatment step

of the patient?

This argumentation scheme has been represented in our approach as:

sn = aspt, P = {facts(P, F), goal(P, G), promote(T, G)}, C = consider(P, T),
CQ = {not(unsuccessfully_used(T, P)),¬not(experienced_side_effects(P, T)),
not(cheaper(T2, T) ∧ promote(T2, G))}.

Its representation in Jason predicates is given by the defeasible inference rule:

defeasible_rule(consider(P,T),[facts(P,F), goal(P,G),

promote(T,G)])[as(aspt)].

Further, the critical questions associated to this scheme are represented using the following predi-

cates:

cq(cq1,not(unsuccessfully_used(T,P)))[as(aspt)].

cq(cq2,not(experienced_side_effects(P,T)))[as(aspt)].

cq(cq3,not(cheaper(T2,T) & promote(T2,G)))[as(aspt)].
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Example: The authors in [72] describe a running example in which a patient named

Eric has been diagnosed with hypertension. Thus, he desires to reduce hypertension, looking for

treatment. The knowledge available to the application is represented in ∆.

∆ =



facts(eric, [age(52), ethnicity(white), weight(overweight)])
goal(eric, reduce_hypertension)
promote(tls, reduce_hypertension)
promote(t1l, reduce_hypertension)
promote(t1h, reduce_hypertension)
promote(t2l, reduce_hypertension)
promote(t2h, reduce_hypertension)
cheaper(t1h, t2h)
cheaper(t1l, t2l)


According to this scenario, the authors [72] describe that there are 5 different treatments

that could be used to reduce Eric’s hypertension (the Eric’s goal), named tls, t1l, t1h,

t2l and t2h. Considering that t2l and t2h are more expensive than t1l and t1h, they do

not satisfy the critical question CQ3, and therefore there is no acceptable instance of argument

for those treatments. Thus, only the treatments tls, t1l and t1h are acceptable instances

of this argumentation scheme. tls, t1l and t1h are proposed as treatment options. Our

argumentation-based reasoning mechanism reach the same result for the acceptable treatments

described in the example from [72].

4.5.2 Argumentation Schemes for Data Access Control

The last argumentation schemes considered in our evaluation have been proposed

in [100], in which we have analysed the problem of data access control between multi-agent systems.

In this particular work, we proposed to solve that problem using argumentation-based interface

agents. The interface agents make decisions based on the proposed argumentation schemes for

data access control and the argumentation-based reasoning mechanism described in the previous

sections. In this section, we present the argumentation schemes for data access control and our

research describing how we reach the modelling of those reasoning patterns.

Our motivation is that security concerns are an increasingly important issue, mainly

regarding sharing and using data, given the increasing use of IoT (Internet of Things) devices

and the proliferation of big data mechanisms [71]. IoT has emerged from the idea that every-

thing can be connected, adding new dimensions to the world of information and communication

technology [40]. Given the vision of IoT, the number of devices connected to the Internet has

been increasing and consequently the amount of data available on the internet has also been in-
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creasing [141]. This opens opportunities for studies in areas like big data analysis [166], machine

learning [118], and many others.

Data access/sharing control were not sufficiently studied in previous decades, considering

that data were shared within boundaries of organisations, e.g., companies and universities. In such

organisations, trust and security issues were easily solved [71]. However, with the recent proposal

of IoT, including the integration of different smart applications (e.g., healthcare, smart cities, smart

home/building, etc.), sharing information between different systems has become mandatory [118].

Consequently, the problems of data sharing/access control and privacy protection have become

challenging issues when integrating different smart applications [168].

System of Systems (SoS) [159] is a natural way to think of the modelling of these current

ideas from the integration of different smart applications, in which heterogeneous systems (smart

applications) are modelled as subsystems, which cooperate to achieve a higher purpose of the

whole system (e.g., a global IoT). Multi-Agent Systems (MAS) [164] provide an interesting paradigm

to implement SoS models; in particular, MAS provides a suitable approach to implement smart

applications in IoT7 [56]. Thus, it is a natural choice to think of the modelling of such systems

using multi-agent systems, although data access control in such systems seems not sufficiently

studied.

Here, we are interested in the communication interface that implements data access

control between different smart applications, which is currently a challenge in the integration of

different systems, mainly because of the uncertainty contained in the information used during this

decision making process [71, 69]. In that respect, we propose the modelling of data access control

interfaces using argumentation-based agents. Also, we propose two argumentation schemes (i.e.,

reasoning patterns) for data access control. These reasoning patterns take into consideration the

most relevant models for data access control in the literature [11, 48, 4], generalising the reasoning

an agent needs to carry out when treating a request. Guided by the critical questions in the

schemes, agents are able to deal with the uncertainty about the information used during this

decision making process. Furthermore, considering our approach for data access interface using

argumentation-based agents, agents are able to understand why a request has been denied to it.

Understanding this answer allows agents to provide additional information in order to be correctly

categorised, as well as to expose emergency situation in which emergency access control rules may

apply. The argumentation schemes we will present in this section have been published in [100].

Access Control Models

Role-Based Access Control (RBAC) models provide mechanisms to protect resources from

unauthorised use in an organisation. In such models, instead of specifying all the actions (accesses)

each user is allowed to execute, each attempt to access an object is specified by categorising users

into roles [3]. Thus, RBAC models assume that different individuals are classified into roles8 and

7We refer the reader to IoA (Internet of Agents) workshop series for an overview about this topic http://ioa.alqithami.com/.
8Similarly to roles present in multi-agent systems based on the organisational paradigm.

http://ioa.alqithami.com/
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different roles have different access permissions to data [11, 48]. However, in RBAC models, role

is the only form of category, while more general approaches can be defined. Consequently, in [11],

the author proposes a meta-model for access control based on categories, arguing that having a

common/agreed semantics is essential when access control information needs to be shared.

In Category-Based Access Control (CBAC) meta-model [11], a category9 is any class or

group to which entities are designated [11, 4], and entities are constants from the domain of dis-

course. Following [11, 4], a CBAC model is defined by a countable set C of categories, denoted

as {c0, c1, ... , cn}; a countable set P of principals (the entities that are able to require access to

resources), denoted {p0, p1, ... , pn}; a countable set A of actions, denoted {a0, a1, ... , an}; a count-
able set R of resources identifiers, denoted {r0, r1, ... , rn}; a finite set Auth of possible answers to

access request {grant, deny, undetermined}, and a set S of situations identifiers to denote envi-

ronment information, which are application dependent [11], and they can represent, for example,

IP address, time instants, system state, external state, etc.

The following relations are defined for a CBAC meta-model [11]: (i) principal-category

assignment: PCA ⊆ P × C, such that (p, c) ∈ PCA iff a principal p ∈ P is assigned to category

c ∈ C; (ii) permission-category assignment: ARCA ⊆ A×R×C, such that (a, r , c) ∈ ARCA iff the

action a ∈ A on resource r ∈ R can be performed by principals assigned to category c ∈ C; (iii)
authorisations: PAR ⊆ P ×A×R, such that (p, a, r ) ∈ PAR iff a principal p ∈ P can perform

action a ∈ A on the resource r ∈ R. Thus, a principal p is authorised to perform the action

a on a resource r only if p belongs to a category c such that for some category below c in the

hierarchy (and including c itself) the action a is authorised on r , otherwise the request is denied.

The general idea is summarised by the following rule, in which subc(c’,c) checks if c’ is a

subcategory of c:

(p, a, r ) ∈ PAR ⇐ (p, c) ∈ PCA ∧ subc(c′, c) ∧ (a, r , c′) ∈ ARCA

In [4], the authors extend the CBAC model in order to consider policy composition,

where an access control policy is combined with an emergency policy that specifies how various

emergency situations affect the rights of users to access resources. Thus, two access control policies

are considered, π1 and π2. π1 describes the usual access control rules, and π2 the emergency policy,

describing emergency situations s in which the access may be granted for a particular category of

principals c.

(p, a, r ) ∈ PAR ⇐ (p, c) ∈ PCA ∧ subc(c′, c) ∧ (a, r , c′) ∈ ARCAπ1

(p, a, r ) ∈ PAR ⇐ (p, c) ∈ PCA ∧ subc(c, c′) ∧ emrg(s) ∧ (a, r , c′) ∈ ARCAπ2

9Here, categories are defined as the classification types used in access control [11], differently from [59].
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As an example, [4] describes a hospital scenario, in which, although only family doctors

may have access to the record of their patients, during an emergency situation, all doctors (i.e., a

super-category) may have access to the record of that patient.

(D, read, record(P)) ∈ PAR ⇐ (D, doctor) ∈ PCA ∧ emrg(cardiac_emrg, P) ∧
(read, record(P), doctor) ∈ ARCAπ2

An Architecture for Data Access Control

Based on the access control models presented, here we propose an architecture for data

access control, considering the modelling of a system based on SoS and MAS. In other words, we

propose an approach for data access control in which the whole system is composed of subsystems

(SoS) and each subsystem is implemented as a MAS. First, we describe how we define the access

control policy, considering not only the usual access control rules from [11], but also considering

the idea of emergency access control rules from [4]. Afterwards, we describe how we structured

the hierarchies of categories for information and agents, using not only the idea of categories

from [11], but also categories of information, which allows us to use a category to describe the

information. Finally, we describe how external requests are treated by a subsystem, considering

the access control policy and the external information available to agents dealing with the request.

Access Control Policy

An access control policy is defined by a set of access control rules, which are specified

according to the application needs. One of the most natural ways to define an access control policy

is specifying it during the project of the system [2]. Another option is to start with a predefined

access control policy and dynamically adjust it according to the system needs. For simplicity, we

will consider that the access control policy is defined during the system design phase; however,

note that a dynamic access control policy could be used in our approach, given that agents have an

explicit representation of the rules and could use the updated access control policy when making

decisions.

Access control rules specify which categories of agents have access to which categories

of information. Thus, we use two distinct kinds of categories in this work. The first, access-category,

is the usual concept for categories in CBAC [11], describing categories of principals, here agents,

which request to access resources, here information. The second, information-category, is used for

categories of information. Using information-category not only allows us to group information of

similar privacy but also allows us to describe hierarchies between categories of information. Both

characteristics provide a semantic description of the information belonging to each category, which

is essential when applying argumentation-based techniques in such domains.

Besides the access control rules from CBAC [11], we also consider emergency access

control rules from [4] as part of the access control policy. Thus, the resulting access control rules
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have the following format:

(access-category(ri )
access=====⇒ information-category(ci ))

(access-category(ri ) ∧ emergency(si )
access=====⇒ information-category(ci )).

meaning that “the access-category ri has access to the information-category ci” and “during an

emergency situation si , the access-category ri has access to the information-category ci”, respec-

tively.

While the assignment of information to an information-category and the access control

rules are internally defined in the multi-agent system that owns the information using only in-

formation from the system itself, external requests will require additional information from the

requester in order to categorise it according to the local definition of access-category and, conse-

quently, to support decisions on whether to grant access to the information or not. Each category

in access-category is defined by a set of constraints that the requester needs to satisfy in order to

be so categorised. Constraints can include different characteristics of the requester, i.e., its role

and reliability, as well as characteristics of its environment, organisation, domain, and so forth [11].

A Structure for Categories

When considering different smart applications, within the IoT domain for example, we

are able to think of the information generated by each application as being categorised into two

major categories, public and private information. Public information is the contribution that a

subsystem makes to the whole system, resulting from the processing of other information in order to

avoid disseminating private information, e.g., about the end-users and/or the system. Figure 4.1(a)

illustrates this idea, in which public data are available for external requests, but private data, e.g.,

the location of a vehicle in a smart city, are not available for external requests. In summary, all

applications might have access to public data, and access control policies may have an access

control rule that provides access to public information for all agents in the system. Differently,

private information may be granted access only to an access-category for which the access to such

information is specified in the access control policy, i.e., there is an access control rule granting

access for the access-category of the requester to the information-category of that information.

In Figure 4.2(a), we show the hierarchy between the different information-category. We

consider that information is either private or public. Also, private information is categorised as

end-user and system information. Note that an access control rule that grants access for an access-

category to the information-category private also grants access to the information-category end-user

and system.

In Figure 4.2(b), we show how we consider the hierarchy between the different access-

category. At the root, we have a general access-category of all agents, which includes both subcate-

gories of internal and external agents, representing agents playing some role inside that subsystem,

and external agents which do not play any role in that subsystem. For both internal and external

agents, a number of subcategories can be defined, based on the different roles considered and
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(a) Data Access Between Different Application.

Private Inf 
Public Inf

XPolicy

IoT

(b) Interface Agents for Data Access Control.

Figure 4.1 – An Architecture for Data Access Control.

(a) Information-Category Hierarchy. (b) Access-Category Hierarchy.

Figure 4.2 – A Structure for Categories in Data Access Control.

other constraints required for each category in that system. Thus, an agent can be categorised in

more than one access-category, and two agents playing the same role may not be categorised in the

same access-category, given that the role is only part of the definition of the categories. Note that

a subcategory inherits the access from superior categories, so if there is a rule granting access for

the access-category all agents to the information-category public information, that means it grants

access for access-categories external agents, public information, and any subcategory of those too.

Interface Agents for Data Access Control

In SoS, heterogeneous systems cooperate to achieve a higher purpose [159]. During

the development of SoS, the communication interfaces are considered one of the more complex

and difficult tasks [159]. When implementing SoS using the MAS paradigm, the communication

interface with external systems is implemented using specialised agents. Thus, a communication

interface for data access control corresponds to agents which are responsible for making a decision
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about sharing or not the information according to who is the requester and the access control policy

of that particular system. Figure 4.1(b) illustrates an interface agents for data access control.

When the agent responsible for the communication interface receives a request from an

external agent a1 to access information i1, it carries out an argumentation-based reasoning process

in order to construct an acceptable argument that grants access for a1 to i1, considering the access

control policy (the information-category of i1, the access control rules, and the access-category

constraints). When this agent is able to construct an acceptable argument granting access for

requester a1 to information i1, that information access request is granted, otherwise it is denied.

Argumentation Scheme for Data Access Control

Based on the meta-model introduced in [11], as well as the emergency policies introduced

in [4], we introduce an Argumentation Scheme for Data Access Control named AS4DAC. The

argumentation schemes presented in this section have been published in [100].

[premise] Information I has security information-category C. [premise] Agent A belongs to

an access-category R which has access to information with security information-category C.

[conclusion] Agent A has access to information I.

This conclusion is reached unless the answer to any of the following questions is no:

CQ1 Does information I belong to information-category C?

CQ2 Does agent A belong to access-category R?

CQ3 There exists an access control rule that grants access for R to I?

CQ4 Is this conclusion free from conflict with any other information-category Ci to which infor-

mation I is also assigned, which is not a super-category of C, and where there is no access

control rule that grants access for R to Ci?

CQ5 Is this conclusion free from conflict with any other access-category Ri that the agent A is

also allocated to, which is not a super-category of R, and where there is no access control

rule that grants access for Ri to C?

CQ6 In the case where this conclusion is based on an emergency access control rule that grants

access for R to C during an emergency situation Si , is Si the case?

As mentioned above, while the attribution of information to information-category and

the access control rules (the access control policy) are internally defined in the multi-agent sys-

tem which owns the information, external requests will require additional information from the

requester in order to categorise it according to the internal definition of the access-category and,

consequently, to make a decision about granting access to that information or not. Considering
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the defeasibility of this information, it is necessary to give special attention to this process when

receiving a request. Therefore, we introduce the Argumentation Schemes for Access-Category

Attribution, named AS4ACA, which allows agents to investigate the attribution of a requester to

access-category in more depth.

[premise] An access-category R is defined by a set of constraints S. [premise] Agent A satisfies

the constraints S. [conclusion] Agent A belongs to the access-category R.

CQ1 Does agent A satisfy all constraints si in the set of constraints S?

CQ2 Is R the more specific access-category for which A satisfies the constraints?

Note that not only should an agent satisfy all constraints required by a particular access-

category in order to be so categorised, but it should be also categorised in the more specific

access-category it satisfies the constraints, given more specific categories inherit access from the

super-categories in the hierarchy of access-categories.

Representing the Argumentation Schemes

Considering the argumentation schemes introduced in the previous section, AS4DAC

can be formalised in our framework as follows: SN = AS4DAC; C = access(A,I); P =

{inf_category(I,C), ac_category(A,R), access(R,C)}. The critical questions are

represented as follows:

• CQ1 = { inf_category(I,C) };

• CQ2 = { ac_category(A,R) };

• CQ3 = { access(R,C) };

• CQ4 = { not( inf_category(I,C2), ¬subc(C,C2), ¬access(R,C2) )};

• CQ5 = { not( ac_category(A,R2), ¬subc(R,R2), ¬access(R2,C) )};

• CQ6 = { not( emrg(S,access(R,C)), ¬S )}

Also, AS4ACA can be formalised as follows: SN = AS4ACA; C = ac_category(A,R); P =

constr(S,R), satisfies(A,S). The critical questions are represented as follows:

• CQ1 = { in(Si,S), constr(S,R), satisfies(A,Si) };

• CQ2 = { not( subc(R2,R), constr(S2,R2), satisfies(A,S2) )};
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Note that the conclusion of AS4ACA, i.e., ac_category(A,R), is one of the premises

in AS4DAC. When an agent answers CQ2 in AS4DAC, i.e., it checks the access-category of the

requester, an instance of the argumentation scheme AS4ACA is used to infer that information,

bringing to light the particular critical questions from that scheme, i.e., CQ1 and CQ2 in AS4ACA.

This is an example of the use of nested argumentation schemes, which is an underdeveloped area

of study in the argumentation literature.

As mentioned above, the attribution of agents to access-category is made by the systems

receiving the request, even with the information coming from external sources. Thus, it makes

sense to use a specific argumentation scheme in order to guide the verification of the truth of this

external information. In contrast, the attribution of information to information-category and the

definition of the access control policy are made internally by the multi-agent system which receives

the request, thus more simple/direct verification is possible and the critical questions in AS4DAC

account for that.

Argumentation-Based Reasoning for Data Access Control

An example of argument, instantiated from AS4DAC, is given below, with θ =
{I 7→ i1, C 7→ c1, A 7→ a1, R 7→ r1}:

〈 {inf_category(i1,c1), ac_category(a1,r1), access(r1,c1),

[inf_category(I,C), ac_category(A,R), access(R,C) ⇒ access(A,I)]},
access(a1,i1) 〉

Considering our approach for data access control, an agent may grant access for a

requester a1 to information i1 only if there is an acceptable argument concluding access(a1, i1),
considering the existence of an access control rule that grants access for the access-category of

a1 to the information-category of i1. Remembering that an instance of argument 〈S, c〉θsn from an
argumentation scheme SN , is acceptable to an agent ag (where ∆ag is its knowledge base) if: (i)

all premises in S are acceptable to ag, i.e., ∀pθ ∈ S,∆ag |= pθ, either because p is asserted in

its knowledge base, or because p is the conclusion of an acceptable argument; and (ii) all critical

questions related to the argumentation scheme 〈SN , C,P, CQ〉 are positively answered by ag, i.e.,
∀Cqi ∈ CQ,∆ag |= Cqiθ.

Considering the example of argument above, this argument is acceptable to an

agent ag when: (i) ∆ag |= inf_category(i1, c1), which is asserted in ∆ag ; (ii) ∆ag |=

ac_category(a1, r1), which requires ag to instantiate an acceptable argument from the argu-

mentation scheme AS4ACA; (iii) ∆ag |= access(r1, c1), which is asserted in ∆ag ; and (iv)

all critical questions are also positively answered by ag: ∆ag |= inf_category(i1, c1), ∆ag |=

ac_category(a1, r1), ∆ag |= access(r1, c1), ∆ag |= {not(inf_category(i1, c2),¬subc(c1, c2), ¬access(r1, c2))},

∆ag |= {not(ac_category(a1, r2),¬subc(r1, r2), ¬access(r2, c1))}, ∆ag |= {not(emrg(s1, access(r1, c1)),¬s1))}.
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Note that an agent will always be able to categorise an information i1 to an information-

category and a requester a1 to an access-category10, given the hierarchy of categories defined

in Figure 4.2. Thus, when an access to i1 is denied, i.e., the agent is not able to construct an

acceptable argument for access(a1, i1), that means (i) there is no access control rule granting

access for the access-category of a1 to the information-category of i1 (CQ3 in AS4DAC); (ii) there

exist a counter-example for access(a1,i1) (CQ4 and CQ5 in AS4DAC); or, (iii) the emergency

situation considered, if any, is not true (CQ6 in AS4DAC). In all cases, the agent denies access for

a1 to i1 with the following argument:

〈 {inf_category(i1,c1), ac_category(a1,r1), ¬access(r1,c1),
[inf_category(I,C), ac_category(A,R), ¬access(R,C) ⇒ ¬access(A,I)]},
¬access(a1,i1) 〉

When an agent a1 receives this argument, it is able to respond with additional informa-

tion. This information may clarify to the agent dealing with the request the correct access-category

to categorise ai , answering differently CQ2 in AS4DAC (i.e., the conclusion of AS4CAC) and, pos-

sibly, answering positively CQ3, CQ4 and CQ5 in AS4DAC. Also, a1 may provide information

about an emergency situation that may grant access to this information, considering an emergency

access control rule.

Scenarios of Data Access Control

Travelling Patient

In our first scenario, we illustrate an emergency situation that requires sharing data

between two different hospitals. In our scenario, a patient named Bob is being monitored and

receiving treatment in a hospital H1 located in Brazil. Bob decides to travel to the UK, receiving

a bracelet that informs how to contact H1 in case of emergency. During the time Bob is staying in

the UK, Bob starts to feel a strong pain in the chest, becomes unconscious, and goes to hospital

H2 located in the UK.

As Bob is unconscious (it seems an emergency situation), a receptionist of H2, named

Anna, calls H1 in order to know the patient record.

πH1 =


a-c(all)

access=====⇒ i-c(public)

a-c(internal-family_doctor)
access=====⇒ i-c(private-end_user-patient_data)

a-c(internal-doctor) ∧ emrg(unc) access=====⇒ i-c(private-end_user-patient_data)

a-c(external-hospital_doctor) ∧ emrg(unc) access=====⇒ i-c(private-end_user-patient_data)


10However, this categorisation may change as the agent acquires more information about a1.
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Considering the access control rules11 of H1, specified in πH1, the agent responsible

for answering the request categorises Anna to the access-category external-hospital_receptionist.

Thus, it is not able to construct an acceptable argument for access(anna,record(bob,R)),

denying access to that information. As Anna has been correctly categorised, she sends a message

〈H1,consider,emrg(is(bob,unc))〉, asking to H1 to consider the emergency situation in

which Bob is unconscious; however, the information is denied again.

Thus, Anna passes the phone call to a doctor named John who is treating that patient at

H2, and John requests the records. The agent responsible for dealing with the request categorises

John to the access-category external-hospital_doctor, and provides the information to John, given they

already know the emergency situation emrg(is(bob, unc)), and external-hospital_doctor has access to

private-end_user-patient_data during such emergency situations.

Smart Building

The second scenario illustrates an emergency situation (fire) in a smart building B1.

During the rush time, when many people are in the building, an emergency situation due to fire

is detected and the building is evacuated. B1 is able to detect how many people are inside the

building, which is public information; however, the location of each person inside the building is

available only for the internal-manager and for an external-fireman in emergency fire situations,

i.e., emrg(fire). When a fireman arrives, it requests access to information on how many people

are inside the building, which is public information, thus B1 answers that there are 2 people inside

the building. With this information, the fireman requests the location of each person inside the

building.

πB1 =


a-c(all)

access=====⇒ i-c(public)

a-c(internal-manager)
access=====⇒ i-c(private-end_user)

a-c(external-fireman) ∧ emrg(fire) access=====⇒ i-c(private-end_user)


Considering the access control rules of B1, specified in πB1, and the already known

emergency fire situation, i.e., emrg(fire), B1 provides the information to the fireman.

4.5.3 Evaluating the implementation

We have evaluated our implementation of the extended argumentation-based reasoning

mechanism considering argumentation schemes in two main points. The first point was to have

an implementation that returns the same result from the scenario extracted from the literature

and implemented in our framework. That is, we evaluate our implementation, representing the

11We are using a-c for access-category and i-c for information-category.
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argumentation schemes from the previous sections, and analysing whether our implementation

allows agents to reach the same conclusion described in the examples of each argumentation

scheme from the literature. For all examples, our implementation reaches the expected result.

The second point was to evaluate the influence of the number of premises and critical

questions in the time necessary to agents reach a conclusion in our approach. This evaluation

is important because it can guide future developers on how to model argumentation schemes for

particular applications, e.g., the argumentation scheme for data access control we modelled.

In order to evaluate the time required to reach a conclusion, we have generated argu-

mentation schemes, varying the number of critical questions and premises. The results are shown

in Figure 4.3 and 4.4
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Figure 4.3 – Time (ms) for reaching a conclusion considering one level of inference.

In the first experiment, we have fixed only one level of inference for argumentation

schemes, that means that premises and critical questions are directly asserted in agents’ belief

base. Thus, an agent need only to find an argumentation scheme that allows it to instantiate an

acceptable instance of argument concluding that particular information.

Figure 4.3 shows the results of our experiments, varying the number of premises and

critical questions from 1 to 10. It can be noted that the influence of checking the premises and

critical questions in the final time to reach that particular conclusion is similar.

When considering 2 levels of inference, that means, premises of an argumentation scheme

are the conclusions of another argumentation scheme in which premises are asserted in the agents’

belief bases, we obtain a different result.

Figure 4.4 shows the result of our experiments, varying the number of premises (and

respective argumentation schemes, given each premise is the conclusion of another argumentation

scheme) and the critical questions. It can be noted that the number of premises has a greater
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influence on the time to reach a particular conclusion than the number of critical questions. This

is resulting from the fact that premises of the argumentation scheme used to infer that particular

conclusion are the conclusion of another argumentation scheme with its own critical questions,

which also need to be positively answered in order to be acceptable.
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Figure 4.4 – Time (ms) for reaching a conclusion considering 2 levels of inference.

4.6 Final Remarks

In this chapter, we presented an extended version for our argumentation-based reasoning

mechanism we have developed in an agent-oriented programming language, published in [101, 109],

in order to consider argumentation schemes. We have evaluated our approach by taking some ar-

gumentation schemes from different areas in the literature, and representing those scheme in our

framework. Also, in order to demonstrate the process of modelling an argumentation scheme for a

particular application domain, we have proposed argumentation schemes for data access control.

Using the argumentation schemes for data access control and our extended argumentation-based

reasoning mechanism, we are able to implement argumentation-based interface agents that imple-

ment data access control in multi-agent applications.

Our approach for data access control was built considering: (i) the models for data

access control from [11, 48, 4, 62] and work that applied such models in the specification of access

control policies [3, 2, 1]; (ii) approaches that apply argumentation-based techniques considering the

specification of argumentation schemes in their conception [143, 89, 113]; (iii) the problem of data

access control [71, 168, 37, 161, 75, 160, 135, 138]; and (iv) our argumentation-based framework for

argumentation schemes in multi-agent systems.
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To the best of our knowledge, our work is the first to propose argumentation schemes for

data access control. We specified those reasoning patterns considering characteristics of the most

relevant models for data access control, providing a general approach for reasoning about data

access control. Others approaches have modelled problems of data access control/sharing using

argumentation. In [71, 69, 70], the authors model the problem of data access control/sharing using

argument rules and define preferences between such rules, thus they are able to treat the problem

as an argumentation problem, solving the conflicts present in the access control policy. Note that

our work is more general than those, given that we proposed a reasoning pattern that agents use

during reasoning and decision-making, considering the access control policy of that system. Thus,

instead of translating the access control policy to an argumentation problem, in our approach,

an agent carries out a decision-making process using argumentation-based reasoning, guided by

our schemes, considering the access control policy and the relevant external information about

the request. In [119], the authors propose an argumentation-based protocol in which a client agent

may persuade a server agent in order to gain access to information. The main idea in that work

is that the client’s arguments could persuade the server agent, making it change the permission

previously denied for that client. Our work differs from [119] given that, in the context of our

work, an external agent should not be able to change the internal system’s access control policy.

An evolutionary access control policy may result from argumentation-based dialogues within the

system, in order to adapt its access control policy, which is part of our intended future work.

Finally, we have evaluated the time required by agents to reach a conclusion using our

framework for argumentation schemes, depending on the number of premises and critical questions

in each scheme, and the level of depth considered. In our experiments, we considered only two

levels of depth, given most of the approaches from the literature consider only one argumentation

scheme in their application. Our work [100] seems to be one of the first work to consider nested

argumentation schemes (2 levels of depth).
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5. ARGUMENTATION-BASED DIALOGUES IN

AGENT-ORIENTED PROGRAMMING LANGUAGES

In the previous chapter, we described the argumentation-based reasoning mechanism

we develop in an agent-oriented programming language, and how we extended it considering

argumentation schemes. Using the argumentation-based reasoning mechanism, agents are able to

reach well-supported conclusions/beliefs. Also, agents are able to reason about new information

perceived from the environment or received from other agents during communication. An agent

needs only to include such perceived or received information in its belief base (with the appropriate

source of information) and query if that is acceptable for it, given the current belief base state1.

Besides improving their reasoning capabilities, agents are able to rationally engage themselves

in argumentation-based dialogues, reasoning about the arguments received from other agents,

evaluating and generating arguments to position themselves in dialogues.

Agent communication normally is based on speech acts theory [137], where different

speech acts have a different meaning, even when the content used is the same. The literature

of argumentation-based dialogues follows the same principles, proposing performatives to en-

able argumentation-based dialogues [8, 7, 114, 116, 81], which are regulated by some rules defined

through protocols. However, such work does not focus on the effects of such speech act in the

internal state of agents, as [151], which could formally define the communication between agents in

argumentation-based dialogues towards proving important properties and guaranteeing precision

and coherence in such communications.

Towards argumentation-based dialogues in agent-oriented programming languages, we

have identified the most common speech acts in the literature mentioned above, and we have

formalised such performatives using operational semantics [120] in BDI-based agent-oriented pro-

gramming languages (e.g., Jason). The operational semantics provide us with precise effects of

communications. Its implementation combined with the argumentation-based reasoning mecha-

nism, described in Chapter 4, and a protocol enable argumentation-based dialogues in multi-agent

systems.

Therefore, in Section 5.1, we start this chapter describing the speech acts we selected

from the literature and its operational semantics in BDI-based agent-oriented programming lan-

guages, previously published in [111, 108]. In section 5.2, we briefly describe a CArtAgO artifact we

developed to support argumentation-based dialogues, which implements the commitment stores

formalised in our semantics, mentioning the protocol for task reallocation published in [110]. Also,

in Section 5.2, we describe a Jason module we have implemented, which facilitates the imple-

mentation of different protocols in Jason agents. After that, in Section 5.4 we briefly describe

how argumentation schemes can be considered in argumentation-based dialogues. After that, in

Section 5.5, we evaluate our framework for argumentation scheme in multi-agent systems in the

1Note that our approach guarantees that the acceptability of arguments is verified using the updated agents‘ belief
base, i.e., they consider their last and updated mental state when querying the acceptability of arguments.
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dialogue perspective. In order to evaluate our framework, we model two different protocols, and

we show different dialogues resulting from those protocols, based on different configurations of

agents. Finally, in Section 5.6, we describe some computational benefits our approach brings to

multi-agent system communication, in which agents can use enthymemes (incomplete arguments)

instead of complete arguments. Our approach for enthymemes in multi-agent system brings ben-

efits related to agents’ rationality and economy, in which agents communicate only the essential

information to understand each other.

5.1 Formal Semantics

5.1.1 New Performatives for AgentSpeak

The performatives selected to enable argumentation-based dialogues in AgentSpeak are

presented below2, along with the intended (informal) meaning:

• assert: an agent that sends an assert message declares, to all participants of the dialogue,

that it is committed to defending this claim. The receivers of the message become aware of

this commitment. As described in [162], the assert performative could be used both to express

an entire argument within a single locution or to express, individually or in combination, the

constituent parts of an argument (conclusion and premise(s)).

• accept: an agent that sends an accept message declares, to all participants of the dialogue,

that it accepts a previous claim of another agent. The receivers of the message become aware

of this acceptance.

• retract: an agent that sends an retract message declares, to all participants of the dia-

logue, that it is no longer committed to defending its previous claim. The receivers of the

message become aware of this fact.

• question: an agent that sends an question message declares, to all participants of the

dialogue, that it desires to know the reasons for a particular piece of information. The

receiver of the message presumably will provide the support set (an argument) for that

information.

• challenge: the challenge performative is similar to question, except that the sender of

the message is committed to defending a claim contrary to the previous claim of another

agent. It requires a previous assert or justify message in which that claim has been introduced

by another agent.

2These performatives and their formal semantics have been published in [111, 108] and they are described here for
completeness. Later in this paper, we extend this semantic in order to accommodate argumentation schemes, the main
focus of our research.



83

• justify: the justify is used to respond to a question or challenge message3.

Further, performatives opendialogue and closedialogue are used for creating

and concluding dialogues, respectively; and two other performatives, acceptdialogue and

refusedialogue, are used by the participants to accept or refuse taking part in a dialogue,

respectively.

5.1.2 The Basis for the Operational Semantics

We define the semantics of speech acts for argumentation-based dialogues in AgentS-

peak using operational semantics, a widely used method for giving semantics to programming

languages [120]. We use a multi-level semantics representation we introduced in [104, 105]. The

operational semantics is given by a set of inference rules that define a transition relation between

configurations 〈AG, D〉 of the multi-agent system4 where:

• The AG component is a set of tuples 〈id , Conf 〉 representing each agent in the society,

where each agent is identified by a unique identifier id and the agent current internal state

is represented by Conf . The agent state is in fact given by a configuration of the operational

semantics of AgentSpeak as formalised in the existing literature (e.g., [151]); we assume some

familiarity with the semantics of AgentSpeak.

• The set of all dialogues in that society, D, is a set of tuples 〈did , Ags, Status〉 where:

– did is a dialogue identifier (which is unique for each dialogue within that multi-agent

system);

– Ags is a set of tuples 〈id , CS〉, where id identifies a particular agent that is participating

in the dialogue and CS is its commitment store;

– Status represents the status of the dialogue and for the time being we assume it is one

of only two values: OPEN if the dialogue is ongoing and CLOSED otherwise.

The agent configuration (Conf ) is given by a tuple 〈ag, C, M, T , s〉, originally defined

in [151], where:

• ag is a set of beliefs bs and a set of plans ps.

• An agent’s circumstance C is a tuple 〈I, E , A〉 where:
3While some protocols suggest that assert messages could be used to respond a question or challenge mes-

sages, we think that using the justify helps programmers to design and implement protocols.
4We use only components that are needed to demonstrate the semantics, but we emphasise the existence of other

components such as roles, norms, etc.
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– I is a set of intentions {i , i ′, ...}. Each intention i is a stack of partially instantiated

plans.

– E is a set of events {(te, i), (te′, i ′), ...}. Each event is a pair (te, i), where te is a

triggering event and i is an intention — a stack of plans in case of an internal event, or

the empty intention T in case of an external event. For example, when the belief revision

function (which is not part of the AgentSpeak interpreter but rather of the agent’s

overall architecture), updates the belief base, the associated events — i.e., additions

and deletions of beliefs — are included in this set. These are called external events;

internal events are generated by additions or deletions of goals from plans currently

executing.

– A is a set of actions to be performed in the environment.

• M is a tuple 〈In, Out , SI〉 whose components characterise the following aspects of commu-

nicating agents (note that communication is typically asynchronous):

– In is the mail inbox: the multi-agent system runtime infrastructure includes all messages

addressed to this agent in this set. Elements of this set have the form 〈mid , id , ilf , cnt〉,
where mid is a message identifier, id identifies the sender of the message, ilf is the

illocutionary force of the message, and cnt its content: a (possibly singleton) set of

AgentSpeak predicates or plans, depending on the illocutionary force of the message.

– Out is where the agent posts messages it wishes to send; it is assumed that some under-

lying communication infrastructure handles the delivery of such messages. Messages in

this set have exactly the same format as above, except that here id refers to the agent

to which the message is to be sent.

– SI is used to keep track of intentions that were suspended due to the processing of

communication messages; the intuition is as follows: intentions associated with illocu-

tionary forces that require a reply from the interlocutor are suspended, and they are

only resumed when such reply has been received.

• When giving semantics to an AgentSpeak agent’s reasoning cycle, it is useful to have a

structure which keeps track of temporary information that may be subsequently required

within a reasoning cycle. T is a tuple 〈R, Ap, ι, ε, ρ〉 with such temporary information; these

components are as follows:

– R is the set of relevant plans (for the event being handled).

– Ap is the set of applicable plans (the relevant plans whose contexts are true).

– ι, ε, and ρ record a particular intention, event, and applicable plan (respectively) being

considered along with the execution of one reasoning cycle.
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• The current step within an agent’s reasoning cycle is symbolically annotated by s ∈
{ProcMsg, SelEv, RelPl, ApplPl, SelAppl, AddIM, SelInt, ExecInt, ClrInt}. These labels

stand for, respectively: processing a message from the agent’s mail inbox, selecting an event

from the set of events, retrieving all relevant plans, checking which of those are applica-

ble, selecting one particular applicable plan (the intended means), adding the new intended

means to the set of intentions, selecting an intention, executing the selected intention, and

clearing an intention or intended means that may have finished in the previous step.

• The semantics of AgentSpeak makes use of “selection functions” which allow for user-defined

components of the agent architecture. We use here only the SM functions, as originally

defined in [151]; the select message function is used to select one message from an agent’s mail

inbox.

In the interests of readability, we adopt the following notational conventions in our

semantics rules:

• If C is an AgentSpeak agent circumstance, we write CE to make reference to the E com-

ponent of C, and similarly for other components of the multi-agent system and of the

configuration of each agent.

• We write AGid to identify the agent represented by that id in the set of agents AG. We use

this whenever the component corresponds to a set of tuples 〈id , ...〉. Also, if AG is a set of

tuples 〈id , Conf 〉, then we refer to a configuration (Conf ) of one agent (identified by id ) in
AG by AGid

Conf .

• We write b[as(asid), d(did), s(id)] to identify the origin of a belief related to a dialogue,

where asid is the argumentation scheme identifier, did is a dialogue identifier, and id an

agent identifier (as refers to argumentation scheme, d refers to dialogue and s refers to

source). Whenever an agent makes a statement related to a dialogue, the dialogue identifier

did is added as an annotation.

• We use two transitions to represent the state change of the multi-agent system, where the

transition −→AS (transition of the configuration of an individual agent) is part of the tran-

sition −→DS (the transition of the multi-agent system). So each transition in the agent

configuration also causes a transition in the multi-agent system configuration exactly in the

component AGaid
Conf , where aid refers to the identifier of the agent which went through the

transition.

Also, we use aid to refer to the agent that is executing an internal action of interest or

receiving a message. Finally, we make use of a function called CTJ (where CTJ stands for “care to

justify”) that returns TRUE if the agent wishes to justify its previous assertion (this depends on the

agent’s reasoning and makes reference to agents’ autonomy).
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5.1.3 Semantic Rules for Sending the New Performatives

In this section, we give semantics for sending the new performatives which allow

argumentation-based dialogues, showing how it affects the state of the agent and the state of

the dialogue.

Tι = i [head ← .send(did , assert, p);h]
p /∈ CS 〈aid , CS〉 ∈ Ddid

Ags

(a) 〈AG, D〉 −→DS 〈AG′, D′〉
(b) 〈ag, C, M, T , ExecInt〉 −→AS 〈ag, C ′, M ′, T , ProcMsg〉

where:

(a) D′did
Ags = (Ddid

Ags \ {〈aid , CS〉}) ∪ {〈aid , CS′〉}
with CS′ = CS ∪ {p}

AG′aid
Conf = the transition given by (b)

(b) M ′
Out = MOut ∪ {〈mid , id , assert, p[d(did)]〉}

for each Agsid ∈ (Ddid
Ags \ {Agsaid})

C ′
I = (CI \ {Tι}) ∪ {i [head ← h]}

(ExecActSndAssert)

Internal Action .send with assert: The action .send with performative assert up-

dates the CS of the agent that performs the action and sends, to all agents in the dialogue, a

message stating that the sender is willing to defend this claim.

The agent can use assertion attitudes as defined in [114, 116], but in any case the agent can

only assert a formula it did not previously assert; that is, an agent cannot assert again formalæ that

are already in its CS. While this semantics for the performative assert formalises the general

effects such communication causes on the agent’s mental attitudes, later in this document we

formalise it according to our framework for argumentation schemes in multi-agent systems.

Another important point to be noticed is that an assertion is always made to a particular

dialogue (identified by did ) and not to a specific agent; this is because the agents will introduce

new claims to be defended to all agents participating in the dialogue and not to an individual

agent.
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Tι = i [head ← .send(tid , accept, p[d(did)]);h]
p /∈ CS 〈aid , CS〉 ∈ Ddid

Ags

(a) 〈AG, D〉 −→DS 〈AG′, D′〉
(b) 〈ag, C, M, T , ExecInt〉 −→AS 〈ag, C ′, M ′, T , ProcMsg〉

where:

(a) D′did
Ags = (Ddid

Ags \ {〈aid , CS〉}) ∪ {〈aid , CS′〉}
with CS′ = CS ∪ {p}

AG′aid
Conf = the transition given by (b)

(b) M ′
Out = MOut ∪ {〈mid , id , accept, p[d(did)]〉}

for each Agsid ∈ (Ddid
Ags \ {Agsaid})

C ′
I = (CI \ {Tι}) ∪ {i [head ← h]}

(ExecActSndAccept)

Internal Action .send with accept: The action .send with performative accept up-

dates the CS of the agent that performs the action and sends, to all agents in the dialogue, a

message stating that the agent accepts the claim made by another agent identified using tid . Note
that p (the formula that was accepted) has the annotation [d(did)], this means that p has been

previously asserted in that dialogue (identified by did ). In other words, an agent can only accept a

claim made by another agent in that same dialogue.

Tι = i [head ← .send(did , retract, p[d(did)]);h]
p ∈ CS 〈aid , CS〉 ∈ Ddid

Ags

(a) 〈AG, D〉 −→DS 〈AG′, D′〉
(b) 〈ag, C, M, T , ExecInt〉 −→AS 〈ag, C ′, M ′, T , ProcMsg〉

where:

(a) D′did
Ags = (Ddid

Ags \ {〈aid , CS〉}) ∪ {〈aid , CS′〉}
with CS′ = CS \ {p}

AG′aid
Conf = the transition given by (b)

(b) M ′
Out = MOut ∪ {〈mid , id , retract, p[d(did)]〉}

for each Agsid ∈ (Ddid
Ags \ {Agsaid})

C ′
I = (CI \ {Tι}) ∪ {i [head ← h]}

(ExecActSndRetract)

Internal Action .send with retract: The agent performs this internal action to retract

a previous claim that the agent itself asserted in that dialogue. The agent’s CS is updated with

the removal of the given formula. A message is sent to each agent in the dialogue informing the

decision of that agent to retract its previous claim.
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Tι = i [head ← .send(id , question, p[d(did)]);h]

(a) 〈AG, D〉 −→DS 〈AG′, D, 〉
(b) 〈ag, C, M, T , ExecInt〉 −→AS 〈ag, C ′, M ′, T , ProcMsg〉

where:

(a) AG′aid
Conf = the transition given by (b)

(b) M ′
Out = MOut ∪ {〈mid , id , question, p[d(did)]〉}

C ′
I = (CI \ {Tι}) ∪ {i [head ← h]}

(ExecActSndQuestion)

Internal Action .send with question: The action .send with performative question

is used when an agent wants to question another agent in order to know either an argument

supporting p or an argument supporting ¬p. In both cases, p could have been asserted in that

dialogue or not. This message is sent only to the agent which is being questioned. As we will see

later, an agent may question an implicit part of an argument using the question performative, for

example, a critical question related to an argument instantiated from an argumentation scheme

known by the agent.

Tι = i [head ← .send(tid , challenge, p[d(did)]);h]

(a) 〈AG, D〉 −→DS 〈AG′, D′〉
(b) 〈ag, C, M, T , ExecInt〉 −→AS 〈ag, C ′, M ′, T , ProcMsg〉

where:

(a) D′did
Ags = (Ddid

Ags \ {〈aid , CS〉}) ∪ {〈aid , CS′〉}
with CS′ = CS ∪ {¬p}

AG′aid
Conf = the transition given by (b)

(b) M ′
Out = (MOut ∪ {〈mid , tid , challenge, p[d(did)]〉})

∪ {〈mid , id , assert,¬p[d(did)]〉}
for each Agsid ∈ (Ddid

Ags \ {Agsaid ∪ Agstid})
C ′

I = (CI \ {Tι}) ∪ {i [head ← h]}

(ExecActSndChallenge)

Internal Action .send with challenge: The action .send with the performative

challenge is performed when an agent wants to challenge another agent about an assertion

it previously made. Differently from the question performative, when an agent makes a challenge

move it is willing to defend a claim contrary to the claim of the other agent.

The message with a performative challenge is sent only to the agent that made the

previous claim. As the agent is willing to defend its claim, messages are sent to all other agents in

the dialogue with the respective assert messages.
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5.1.4 Semantic Rules for Receiving the New Performatives

In this section, we give semantics for receiving the new performatives that allow

argumentation-based dialogues, showing how they affect the state of the agent and the state of

the dialogue.

SM(MIn) = 〈mid , sid , assert, p[d(did)]〉

(a) 〈AG, D〉 −→DS 〈AG′, D, 〉
(b) 〈ag, C, M, T , ProcMsg〉 −→AS 〈ag′, C ′, M ′, T , ExecInt〉

where:

(a) AG′aid
Conf = the transition given by (b)

(b) M ′
In = MIn \ {〈mid , sid , assert, p[d(did)]〉}

ag′
bs = agbs + p[d(did), s(sid)]

C ′
E = CE ∪ {〈+p[d(did), s(sid)], T〉}

(Assert)

Receiving an assert Message: The information asserted in the dialogue is added

to the belief base of the receiver with an annotation of the dialogue identifier d(did) and the

identifier of the agent that asserted the claim as the source of that information s(sid). The agent

that received the message can react to this because of the event generated by the belief addition,

as usual in AgentSpeak. Whether an agent accepts or not the information received from another

agent depends on its acceptance attitude as described in [114, 116], which depends on if the agent

has or not an acceptable argument to or against that information. Note that, p can be either an

argument or an atomic information. When an argument, it can be annotated with the relevant

information from our framework for argumentation scheme in multi-agent systems. For example,

it could be an argument 〈S, c〉θsn, with S the support of that argument, c its conclusion, sn the

argumentation scheme 〈sn, C,P, CQ〉 used to instantiate that argument, and θ the general unifier

used.

SM(MIn) = 〈mid , sid , accept, p[d(did)]〉

(a) 〈AG, D〉 −→DS 〈AG′, D, 〉
(b) 〈ag, C, M, T , ProcMsg〉 −→AS 〈ag′, C ′, M ′, T , ExecInt〉

where:

(a) AG′aid
Conf = the transition given by (b)

(b) M ′
In = MIn \ {〈mid , sid , accept, p[d(did)]〉}

ag′
bs = agbs + p[d(did), s(sid)]

C ′
E = CE ∪ {〈+p[d(did), s(sid)], T〉}

(Accept)
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Receiving an acceptMessage: This message means an agent (identified by sid ) accepts
a claim previously made, as part of this dialogue, by another agent. The receiver of the message

become aware of this acceptance.

SM(MIn) = 〈mid , sid , retract, p[d(did)]〉

(a) 〈AG, D〉 −→DS 〈AG′, D, 〉
(b) 〈ag, C, M, T , ProcMsg〉 −→AS 〈ag′, C ′, M ′, T , ExecInt〉

where:

(a) AG′aid
Conf = the transition given by (b)

(b) M ′
In = MIn \ {〈mid , sid , retract, p[d(did)]〉}

ag′
bs = agbs − p[d(did), s(sid)]

C ′
E = CE ∪ {〈−p[d(did), s(sid)], T〉}

(Retract)

Receiving a retract Message: This message means an agent, identified by sid , is
withdrawing its earlier assertion. The formula is removed from belief base of the receiver of the

message, with the appropriate source and dialogue annotation.

SM(MIn) = 〈mid , sid , question, p[d(did)]〉
CTJ(p) = TRUE

(a) 〈AG, D〉 −→DS 〈AG′, D′〉
(b) 〈ag, C, M, T , ProcMsg〉 −→AS 〈ag, C, M ′, T , ExecInt〉

where:

(a) D′did
Ags = (Ddid

Ags \ {〈aid , CS〉}) ∪ {〈aid , CS′〉}
with CS′ = CS ∪ {Sp}

AG′aid
Conf = the transition given by (b)

(b) M ′
In = MIn \ {〈mid , sid , question, p〉}

M ′
Out = MOut ∪ {〈mid , id , justify, 〈Sp,ψ〉[d(did)]〉},

with Sp |= ψ, where either ψ = p or ψ = ¬p
for each Agsid ∈ (Ddid

Ags \ {Agsaid})

(Question)

Receiving a question Message: If the agent can or wants to reply, in keeping with

agent autonomy (this is represented in the semantics through a CTJ function which is meant to

be agent specific), then the agent’s CS will be updated with the support of the argument for or

against p, and the argument will be also sent to all other agents in the dialogue.
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SM(MIn) = 〈mid , sid , justify, 〈Sp,ψ〉[d(did)]〉

(a) 〈AG, D〉 −→DS 〈AG′, D, 〉
(b) 〈ag, C, M, T , ProcMsg〉 −→AS 〈ag′, C ′, M ′, T , ExecInt〉

where:

(a) AG′aid
Conf = the transition given by (b)

(b) M ′
In = MIn \ {〈mid , sid , justify, 〈Sp,ψ〉[d(did)]〉}

and for each p ∈ Sp :
ag′

bs = agbs + p[d(did), s(sid)]
C ′

E = CE ∪ {〈+p[d(did), s(sid)], T〉}

(Justify)

Receiving a justify Message: This is similar to the assert performative, except for

the fact that the content of the message is a set of formulæ that justify the previous claim of the

sender of the message (identified by sid ). Note that, using our approach for argumentation scheme

in multi-agent systems, arguments will be also annotated with the argumentation scheme and the

unifier used to instantiate that argument.

SM(MIn) = 〈mid , sid , challenge, p[d(did)]〉
CTJ(p) = TRUE

(a) 〈AG, D〉 −→DS 〈AG′, D′〉
(b) 〈ag, C, M, T , ProcMsg〉 −→AS 〈ag′, C, M ′, T , ExecInt〉

where:

(a) D′did
Ags = (Ddid

Ags \ {〈aid , CS〉}) ∪ {〈aid , CS′〉}
with CS′ = CS ∪ {Sp};

AG′aid
Conf = the transition given by (b)

(b) M ′
In = MIn \ {〈mid , sid , challenge, p[d(did)]〉}

M ′
Out = MOut ∪ {〈mid , id , justify, Sp[d(did)]〉}

for each Agsid ∈ (Ddid
Ags \ {Agsaid})

where Sp |= p and Sp ∈ agbs

ag′
bs = agbs + ¬p[d(did), s(sid)]

(Challenge)

Receiving a challenge Message: If the agent can or wants to reply (we assume the

CTJ function determines whether that is the case or not), the agent’s CS is updated with the

support of the previous claim p and the support is also sent to all other agents in the dialogue.

In addition to the question performative, this rule adds that the agent identified by sid (i.e., the

sender of the message) is willing to defend the claim contrary to the previous claim that is being

challenged.
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5.2 Artifacts to Support Argumentation-Based Dialogues

The semantics presented in the previous section can be implemented extending the in-

ternal action .send (for sending messages) and the .asl file (which can be included as part of

the agent program) with plans similar to the KQML plans available with Jason. Such AgentSpeak

file is used to treat the receiving of messages related to the performatives to which we gave seman-

tics. The corresponding dialogue system can be implemented using a CArtAgO artifact [132] to

coordinate agent interactions. Thus, when agents use the speech acts we defined in order to com-

municate with each other, commitments related to what they say are created in a shared artifact,

and all agents participating in such dialogues will have such commitments available to them as

observable properties in that artifact. Also, the artifact allows agents to include and remove other

participants in dialogues, as well as to execute a broadcast for all participants when needed.

The dialogue artifact provides the following operations:

• addAgent(Ag): This operation adds an agent Ag to the dialogue;

• removeAgent(Ag): This operation removes an agent Ag from the dialogue;

• addCS(Content): This operation adds the content unified in Content to the commit-

ment store of the agent that executes the operation;

• removeCS(Content): This operation removes the content unified in Content from the

commitment store of the agent executing the operation;

• allAgents(List): This operation returns a list List of all agents participating in that

dialogue.

Also, we have implemented the commencement rules (rules defining how agents start a

dialogue), as predefined agents plans. In order to start a dialogue, an agent only need to create

a goal !opendialogue(< agents >,< subject >), specifying with which agents it would like to

be part of a dialogue, and the subject of such a dialogue. Thus, this plan follows creating an

instance of dialogue, i.e., it adds a new dialogue to the multi-agent system, creating a dialogue

artifact with an unique identifier, after it sends messages to all agents with a special performative

opendialogue, inviting them to participate in the new dialogue, and waits for all agents to reply

with either an acceptdialogue or a refusedialogue message. After all agents have responded,

it generates an event called +continueDialogue(ID), with ID the dialogue id. An agent can

react to +continueDialogue(ID) in order to continue the dialogue. Also, we made available a

pre-implemented plan !closedialogue(< ID >). This plan sends, to all agents in the dialogue to

be closed, a message warning them that the dialogue, identified by ID, is being closed (using the

performative closedialogue). The semantic meaning for receiving such messages are as follows:
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Figure 5.1 – Dialogue Artifact for Argumentation-Based Dialogues.

• opendialogue: adds a belief about the dialogue to be started with the source of the agent

that proposed the opening of the dialogue (i.e., the sender of the message); The agents

that receive the message should react to the event generated, i.e., react to +dialogue(ID),
deciding whether to accept or not to participate in the dialogue, and presumably responding

with the appropriate message (acceptdialogue or refusedialogue).

• closedialogue: removes the belief about the ongoing dialogue. The dialogue can be closed

only by the same agent (identified by id ) which previously opened the dialogue.

• acceptdialogue: the sender of the message is removed from the set of agents that are

expected to respond. If all agents respond, the intention can be resumed, otherwise the

intention remains suspended.

• refusedialogue: the sender of the message is removed from the set of agents that are

expected to respond, as well as from the set of agents participating in the dialogue. If all

agents have replied, the intention can be resumed.

Besides the performatives agents are able to use in argumentation-based dialogues,

agents might follow some rules established by protocols. Protocols are used to restrict the moves

agent can do (where moves correspond to the speech-act they are able to use), and the strategy of

the agents can be implemented as AgentSpeak plans. The strategy for the agents can be rewrit-

ten or replaced easily. As an example of protocol we mention our previous work [110], where we

defined a protocol for task reallocation in a collaborative scenario [106, 136].

In order to facilitate the implementation of different protocols and strategies, we have

implemented a set of inference rules that programmers can use through queries. Among the more

useful queries are:
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• has_argument(Content, Justification): using this predicate, it is possible to query if an

agent has an argument supporting a particular conclusion.

• has_argument_against(Content, Justification): using this predicate, it is possible to

query if an agent has an argument against a particular conclusion.

• inCS(Content): using this predicate, it is possible to query if the agent, which is executing

that query, has already included that information, unified in Content, in its commitment

store.

• inCS(Content, AgentName): using this predicate, it is possible to query if an agent, which its

name is unified in AgentName, has that information, unified in Content, in its commitment

store.

• isSubject(Content): using this predicate, it is possible to query the subject of the dialogue.

With this set of pre-implemented queries, pre-implemented plans, and semantics rules,

we aim to facilitate the implementation of different protocols and strategies, which will enable

different types of argumentation-based dialogues.

5.3 Example

In this section, we describe how our argumentation-based reasoning mechanism pre-

sented in the previous chapter can be used in agent communication. Aimed for decen-

tralised systems, as multi-agent systems are supposed to be, we consider that agents use the

argumentation-based reasoning mechanism to decide the acceptability of the information received

in argumentation-based dialogues. Therefore, when an agent receives a claim or an argument,

each information needs to be processed in order to check if that information is acceptable or not

given the current state of the agent’s own belief base.

For example, we can consider the agent acceptance attitudes introduced in [116, 114]

adapted for our argumentation framework as follows: (i) a credulous agent accepts any claim c
if it is unable to construct an acceptable argument against c, i.e., it does not has an acceptable

argument 〈S, c〉; and (ii) a sceptical agent accepts any claim c if it has an acceptable argument

supporting c, i.e., it has an acceptable argument 〈S, c〉.

In Jason, the handling of received messages is done by special plans triggered by the

architecture layer as5 +!msg_received(Sender,Performative,Content). These plans

can be reimplemented to suit particular multi-agent system domains. The acceptance attitudes

described above, can be implemented as follows:

5Such a triggering event is customisable in the Jason configuration files.
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+!msg_received(Sender,assert,Content):

not(has_argument_againt(Content,Arg)) &

acceptance_attitude(credulous)

<- +Content[source(Sender)]; .send(Sender,accept,Content).

+!msg_received(Sender,assert,Content):

has_argument(Content,Arg) &

acceptance_attitude(sceptical)

<- +Content[source(Sender)]; .send(Sender,accept,Arg).

When the agent wants to assert some claim in a dialogue, following the same approach

suggested in [116, 114], the agent could have two assertion attitudes adapted to our framework: (i) a

confident agent asserts a claim c if it does not have an acceptable argument against c, i.e., it does
not have an acceptable argument 〈S, c〉; and (ii) a thoughtful agent asserts a claim c only if it has

an acceptable argument supporting c, i.e., it has an acceptable argument 〈S, c〉. These assertion
attitudes can be implemented as follows:

+!assert(Sender,Content):

not(has_argument_against(Content,Arg)) &

assertion_attitude(confident)

<- .send(Sender,assert,Content).

+!assert(Sender,Content):

has_argument(Content,Arg) &

assertion_attitude(thoughtful)

<- .send(Sender,assert,Content).

The plans above are used to exemplify the use of the argumentation-based reasoning

mechanism of our framework in argumentation-based communication. While we demonstrate the

implementation of some agent attitudes from [116, 114], more sophisticated plans can be imple-

mented in order to enable interesting argumentation-based dialogues, which could include storing

the moves and assertions done by agents in dialogue, checking the commitments already done in

the dialogue using the predicate inCS(Content), for example.

For example, we have implemented a protocol for task reallocation, presented in [110].

The protocol was defined using the well-known speech acts from the literature in argumenta-

tion [8, 7, 114, 116, 81] and the CArtAgO artifact we developed, also presented in [97]. Also, the

operational semantics of the speech acts for agents based on the BDI mental attitudes presented in

this section was published [111, 108]. Such a protocol, artifacts, and operational semantics definition

were developed considering argumentation-based dialogues between agents without considering

argumentation schemes, therefore, we do not describe such work here in depth.
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5.4 Argumentation-Based Dialogues with Argumentation Schemes

In an argumentation-based dialogue using argumentation schemes, agents can consider

the critical questions (explicitly available to them towards the argumentation schemes) as extra

moves allowed in such dialogues. For example, for the argumentation scheme Argument from role

to know in multi-agent systems introduced above, the correspondent critical questions are internally

represented by agents as special predicates cq(cqid,Content)[as(asid)]:

cq(cq1,role_to_know(Role,Conclusion))[as(role_to_know)]

cq(cq2,honest(Agent))[as(role_to_know)]

cq(cq3,asserts(Agent,Conclusion))[as(role_to_know)]

cq(cq4,role(Agent,Role))[as(role_to_know)]

Therefore, when an agent receives a justify message with the content labelled with an

argumentation scheme, it is able to check all the critical questions available to that scheme and to

use the appropriated ones to question the other agents. Consider the example below6:

+!msg_received(Sender,assert,〈S,c〉θ[as(AS)]):
not(has_argument_against(c,Arg)) &

cq(Cq,Content)[as(AS)] & not(Content)

<- .send(Sender,question,Content).

In this example, the agent receives an argument annotated with as(AS) meaning that the conclu-

sion of this argument c is inferred from a particular argumentation scheme AS. If the agent does

not have an acceptable argument against c (of course this could depend on the agent profile), it

can check the critical questions for which it has no answers — cq(Cq,Content)[as(AS)] &

not(Content)— then question the Sender about such critical questions in the argumentation

scheme used to infer c.

5.5 Evaluation

In order to evaluate our framework for argumentation-based dialogues using argumenta-

tion scheme in multi-agent systems, we have defined two protocols using argumentation schemes,

and we have implemented these protocols using our framework. We show that our framework

can be used to implement different protocols, in which the modules and artifacts we implemented,

described in Section 5.2, support this development.

In Section 5.5.1, we start describing a framework we use to model argumentation-based

dialogues based on dialogue games. After, in Section 5.5.2, we describe a general persuasion proto-

col we extended from our previous work [110] in order to consider argumentation schemes. Finally,

6The example was simplified for showing the role of critical questions in dialogues.
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in Section 5.5.3, we describe a protocol for data access control, which is based on the argumen-

tation schemes for data access control we introduced in Section 4.5.2. For both protocols, we will

show different dialogues outputs from our implementation, given different agent configurations.

5.5.1 A framework for Argumentation-Based Dialogues

In this section, we describe a framework to specify dialogue games. In our previous

work, published in [110], we have used this framework to model argumentation-based dialogues.

Here, we use the same framework to specify two different argumentation-based protocols based

on our approach for argumentation schemes in multi-agent systems. The framework for dialogue

games is based on the work of McBurney et al. [80, 79], in which the elements that correspond to

the dialogue game specification are:

• Commencement Rule: it describes the condition for an agent to start a dialogue.

• Locutions: it describes the set of locutions, in our case the locutions from Section 5.1.1, an

agent is allowed to use, following a particular protocol.

• Combination Rules: it describes the possible combination of locutions. Normally, it de-

pends on the strategy of the agent (e.g., corresponding the agent attitudes to assert and

accept claims in the dialogue [116, 114]).

• Commitments: it describes the update of commitments of the participants following the

semantics of the speech acts used, in our case the updates described in Section 5.1, where

each speech-act/performative introduces commitments of participants.

• Termination Rules: it describes when a dialogue ends.

In particular, Dialogue rules will govern the interactions between the agents, where each

agent moves by performing the allowed utterances. These rules (which correspond to a dialogue

game [80]) are expressed as if-then rules, which are then easy to implement. The dialogue rules

specify the moves each player can make, and so specify the protocol under which the dialogue takes

place [7].

Definition 20 (Dialogue Game Protocol [110]). A dialogue game protocol is formally represented as a

tuple 〈MO, DI〉, where MO is a finite set of allowed moves, and DI a set of dialogue rules.

Definition 21 (Dialogue Move [110]). We denote a move in MO as Mi(α, β, content, t), where i is
the type of move made by agent α and addressed to agent β at time t regarding content content. We

consider the following set of types of moves, denoted by P (q.v. Section 5.1.1): assert, accept, question,

and justify. The content of a move (content) can be an argument (a set of predicates and rules) or a

single predicate.
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The dialogue rules in DI indicate the possible moves that an agent can make following

a previous move of the other agent. The formalisation we give here follows the work of Bentahar

et al. [16]. To define the dialogue rules, we use a set of condition (denoted by C) which reflect the

agents’ strategies. Formally, we have:

Definition 22 (Dialogue Rules’[110]). Dialogue rules can assume one of two forms:

1) First, we have dialogue rules that specify which moves are allowed given the previous move and

conditions (corresponding to the combination rules of the dialogue game).∧
0<k≤ni,
i,j∈P

(Mi(α, β, content, t) ∧ Ck ⇒ M
j
k(β,α, contentk, t′)

where P is the set of move types, Mi and Mj are in MO, t < t′ and ni is the number of allowed

communicative acts that β could perform after receiving a move of type i from α.

2) Second, we have the initial conditions (corresponding to the commencement rules of the dialogue game),

which do not require that any move was previously executed.∧
0<k≤n,
j∈P

(Ck ⇒ M
j
k(α, β, contentk, t0)

where t0 is the initial time and n is the number of allowed moves that α could make initially.

Using this framework for dialogue games, we will define two different protocols, consid-

ering argumentation scheme. After, we show how our framework for argumentation schemes in

multi-agent systems can be used to specify dialogue rules, and how we implement those protocols

(and respective dialogue rules) in Jason’s agent.

In order to define the dialogue rules we use the following notation:

• We write ∆ag to represent the agent ag’s knowledge base. ∆ag includes ag’s private knowl-

edge, argumentation scheme and organisational knowledge, i.e., ∆AS ∪∆Org ⊂ ∆ag.

• We write CSag to represent the agent ag’s commitment store, which is updated according the

semantics rules described in Section 5.1.

• We write ∆ag |= 〈S, c〉θsn to represent that an agent ag is able to instantiate an accept-

able argument supporting c (according Definition 19) from the information available in its

knowledge base ∆ag, which includes the argumentation scheme sn used to instantiate that

argument.

• We write (∆agi ∪ CSagj ) |= 〈S, c〉θsn to represent that an agent agi is able to construct an

acceptable argument supporting c from its knowledge base and agj ’s commitment store.
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5.5.2 A Protocol for Persuasion

A persuasion dialogue is used when an initiator agent believes something that it wants

to convince another agent to believe [139]. In this type of dialogue, an agent starts the dialogue

with an assert move, asserting the information it wants the other agent to believe (the subject of

the dialogue) [110]. After, agents are able to present their arguments supporting or attacking the

subject of the dialogue. In the end, either the other agent accepts the subject of the dialogue, when

the arguments from the initiator agent convince it, or the initiator agent accepts that it cannot

convince the other agent to accept the subject of the dialogue, closing the dialogue.

In the previous sections, we have used examples of arguments typically used in persua-

sion dialogues, for example, the ones instantiated from the argumentation scheme argument from

role to know. For example, in a hospital, nurses usually use arguments based on the doctors’

assertions in order to convince patients to accept treatment, a diagnostic, etc.

In order to evaluate our framework, we have implemented the following persuasion pro-

tocol, which is an extended version of [110], making reference to components of our framework for

argumentation schemes in multi-agent systems:

1. an agent agi starts a dialogue with another agent agj , executing an assert move

assert(agi , agj , p), trying to convince agj to believe in p. p becomes the subject of the

dialogue (the protocol goes to (2)).

2. an agent agj receives an assert move assert(agi , agj , p), and it checks if it has an ar-

gument against p. When it has no argument against p, it accepts p executing an accept

move accept(agj , agi , p) (the protocol goes to (5)). Otherwise, when agj is able to construct

an argument against p, it executes a question move question(agj , agi , p), asking for an

argument supporting that assertion (the protocol goes to (3)).

3. an agent agi receives a question move question(agj , agi , p), and it responds with a

justify move justify(agi , agj , 〈S, p〉θsn), introducing an argument which supports the

questioned proposition (the protocol goes to (4)).

4. an agent agj receives a justify move justify(agi , agj , 〈S, p〉θsn), and it checks if the new

information received from agi convinces it to accept the subject of the dialogue, i.e., if it has

no argument against the subject of the dialogue, considering the information received from

agi . In case agj has no argument against the subject of the dialogue, it accepts the subject

of the dialogue executing an accept move accept(agj , agi , p) (the protocol goes to (5)).

Otherwise, when agj is able to construct an argument against the subject of the dialogue,

either (i) it executes an assert move assert(agj , agi ,¬p), committing itself to support that

¬p is the case7 (the protocol goes to (2)); or (ii) it checks if it is able to answer negatively any

7Note that agj is able to execute this move only when it did not assert ¬p previously, i.e., ¬p /∈ CSagj .
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critical question related to the argumentation scheme sn that agi has used to instantiate its

argument. In the case it is able to answer negatively a critical question from sn, it executes
an assert move assert(agj , agi ,¬cq), with cq the critical question (the protocol goes to

(2)).

5. an agent agj receives an accept move accept(agi , agj , p), and in the case the accepted

proposition is the subject of the dialogue, the dialogue ends with both agents believing in

the subject of the dialogue. In the case the accepted proposition is a critical question, the

agent which accepts the critical question returns to step (4) in the protocol, accepting the

subject of the dialogue, questioning another critical question, or committing itself to support

that the subject of the dialogue is not the case.

Dialogue Rules:

• Initial Rule: The first move (commencement rule) introduces the subject of the dialogue

(where subject(p) means that the predicate p is the subject of the dialogue). Each dialogue

has only one subject. The agent that introduces the subject of the dialogue is called

proponent, and the other agent participating in the dialogue is called opponent [41] (we use Pr

and Op, respectively, to refer to them).

Cin1 ⇒ assert(agi , agj , p)

where:

Cin1 = ∃〈S, p〉θsn : ∆agi |= 〈S, p〉θsn

The dialogue starts when an agent wants to argue about a given subject. The initial rule

restricts that an agent needs to have an argument that supports its claim in order to start

an argumentation-based dialogue (as the agent will be committed to defending the initial

assertion). Considering our framework for argumentation scheme in multi-agent systems,

it requires the agent being able to instantiate an acceptable instance of argument from an

argumentation scheme in ∆AS.

• Assert Rules: We have two dialogue rules that restrict the possible next move for agents to

respond to an assert move:

assert(agi , agj , p) ∧ Cas1 ⇒ accept(agj , agi , p)

assert(agi , agj , p) ∧ Cas2 ⇒ question(agj , agi , p)

where:

Cas1 = @〈S, p〉θsn : (∆agj ∪ CSagi ) |= 〈S, p〉θsn

Cas2 = ∃〈S, p〉θsn : (∆agj ∪ CSagi ) |= 〈S, p〉θsn
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The options of the agent are: (i) to accept the previous claim, where condition Cas1 means

that the agent will accept a claim if it has no argument against it; and (ii) when the agent

has an argument against the previous assertion, Cas2, the agent will question the other agent

to provide the support of its previous claim.

• Question Rule: The dialogue rule that restricts the moves after an agent receives a

question message is:

question(agi , agj , p) ∧ Cqs1 ⇒ justify(agj , agi , 〈S, p〉θsn)

Where:

Cqs1 = ∃〈S, p〉θsn : (∆agj ∪ CSagi ) |= 〈S, p〉θsn

Considering that the agent has asserted a predicate p previously (which allowed the question

move), the agent is committed to defending its claim in the dialogue, so it will provide the

support to this claim.

• Justify Rules: We have four dialogue rules that restrict the possible next move for agents to

respond to a justify move:

justify(agi , agj , 〈S, c〉θsni
) ∧ Cjs1 ⇒ accept(agj , agi , p)

justify(agi , agj , 〈S, c〉θsni
) ∧ Cjs2 ⇒ assert(agj , agi , p)

justify(agi , agj , 〈S, c〉θsni
) ∧ Cjs3 ⇒ assert(agj , agi , cq)

justify(agi , agj , 〈S, c〉θsni
) ∧ Cjs4 ⇒ closedialogue(agj , agi)

justify(agi , agj , 〈S, c〉θsni
) ∧ Cjs5 ⇒ justify(agj , agi , S′)

where:

Cjs1 = @〈S′, p〉θsnj
: (∆agj ∪ CSagi ) |= 〈S′, p〉θsnj

∧ Op(agj) ∧ subject(p)

Cjs2 = ∃〈S′, p〉θsnj
: (∆agj ∪ CSagi ) |= 〈S′, p〉θsnj

∧ p 6∈ CSagj ∧ Op(agj) ∧ subject(p)

Cjs3 = ∃cqθ : (∆agj ∪ CSagi ) |= cqθ ∧ cqθ 6∈ CSagj ∧ cqθ ∈ CQ ∧ 〈sni , C,P, CQ〉 ∈ ∆AS

Cjs4 = @〈S′, p〉θsnj
: (∆agj ∪ CSagi ) |= 〈S′, p〉θsnj

∧ 〈S′, p〉θsnj
6∈ CSagj ∧ Pr(agj) ∧ subject(p)

Cjs5 = ∃〈S′, p〉θsnj
: (∆agj ∪ CSagi ) |= 〈S′, p〉θsnj

∧ 〈S′, p〉θsnj
6∈ CSagj ∧ Pr(agj) ∧ subject(p)

The agent will accept the subject of the dialogue, Cjs1, if the justification received from the

proponent has changed the agent’s conclusion, otherwise either the agent will assert that it is

committed to supporting a claim against the subject of the dialogue when it has an argument

against it, Cjs2, or it will assert that some critical question related to that argument are not

positively answered, Cjs3. In the case in which the agent that receives the justify move from

the opponent cannot itself reach the same conclusion, given the new information received
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(i.e., the agent does not have an acceptable argument for the subject of the dialogue anymore),

the agent closes the dialogue, Cjs4. In the final case, the agent sends a new argument8 to

support the subject of the dialogue, Cjs5.

• Accept Rule: The dialogue rule that restricts the moves when an agent receives an accept

message is:

accept(agi , agj , p) ∧ Cac1 ⇒ closedialogue(agj , agi)

where:

Cac1 = subject(p) ∧ Pr(agj)

When the agent receives an accept move it will close the dialogue. Only the proponent will

receive an accept move when the opponent accepts the subject of the dialogue.

Implementation in Jason Agents

The dialogue rules can be easily implemented in Jason platform. When an agent receives

a message, an event of the type +!msg_received(Sender, Performative, Content) is generated
to the receiver agent, and the agent can treat that event generating new goals. Thus, the dialogue

rules presented in this section can be implemented towards agents plans that aim to respond to

received messages.

The number of plans to treat receiving a particular message will be equal to the number

of dialogue rules that restrict the next possible move the agent can respond. For example, the

assert rules presented in this section can be implemented using the following agent’s plans:

+!respondAssert(Sender,Content):

not(has_argument_against(Content,Arg))

<- !accept(Sender,Content).

+!respondAssert(Sender,Content): has_argument_against(Content,Arg)

<- !question(Sender,Content).

Similarly, other condition used in dialogue rules can be easily implemented using our

framework through the modules and artifacts we implemented, described in Section 5.2.

Experiments

We ran some experiments to show different outputs from the protocol for persuasion

implemented in our framework. In our experiments, two agents, named ag1 and ag2, use

8The argument is new because, as defined in the protocol, the agent cannot repeat a move with the same content.
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the argumentation scheme role to know in order to argue about whether smoking causes can-

cer or not, based on doctors’ assertions. Thus, the agent ag1 starts a dialogue asserting that

causes(smoking, cancer), which becomes the subject of the dialogue. The ag1’s knowledge is

represented in ∆ag1

∆ag1 =



reliable(john)
¬reliable(pietro)
asserts(john, causes(smoking, cancer))
role(john, doctor)
role_to_know(doctor, cancer)
about(causes(smoking, cancer), cancer).


In the case that the agent ag2 has no argument against the subject of the dialogue, i.e.,

causes(smoking, cancer), it accepts it, as show the output from our implementation in Figure 5.2.

Figure 5.2 – First Example

In the case that the agent ag2 has an argument against the subject of the dialogue, we

have a different output.

∆ag2 =


asserts(pietro,¬causes(smoking, cancer))
role(pietro, doctor)
role_to_know(doctor, cancer)
about(causes(smoking, cancer), cancer).


Considering the ag2’s knowledge represented in ∆ag2, in which ag2 assumes that Pietro

is a reliable doctor by assumption, it initially has an argument against the subject of the dialogue.

But, after receiving the information that Pietro is not a reliable doctor from ag1, it accepts the

subject of the dialogue. The output of this dialogue is shown in Figure 5.3.



104

Figure 5.3 – Second Example

5.5.3 A Protocol for Data Access Control

In this section, we propose a protocol for data access control in multi-agent systems,

based on the argumentation schemes for data access control described in Section 4.5.2. In this

section, we start describing the dialogue game specification for this protocol. After, we describe

its implementation in our framework.

Different from the previous protocol, this protocol was specified based on argumentation

schemes used in a particular application domain, i.e., argumentation schemes for data access

control. Consequently, the protocol for data access control is more simple than a protocol for

persuasion. Basically, a requester agent will request access to a particular piece of information,

and an interface agent will provide or not the information according to the data access control

rules of that system, and who is the requester. After, in the case that the access to the information

was denied, the requester agent is able to provide more information about itself, or about any

emergency situation that could change that decision. The protocol is as follows:

1. an agent agi (the requester) opens a dialogue with another agent agj (the interface agent)

executing a question move question(agi , agj , access(agi,φ)), requesting access to infor-

mation φ (the protocol goes to (2)).

2. an agent agj (the interface agent) checks if it has an acceptable argument supporting

access(agi ,φ). In the case it has an acceptable argument, it grants access to that informa-

tion, executing an accept move accept(agj , agi , access(agi,φθ)) (the protocol goes to (3)).

In the case, agj is not able to construct an acceptable argument to access(a1,φ),
it executes a justify move justify(agj , agi , 〈S,¬access(agi,φ)〉θ[as(as4dac)]),
with S = {inf_category(φ, c1), ac_category(agi , r1), ¬access(r1, c1),
[inf_category(I, C), ac_category(A, R),¬access(R, C) ⇒ ¬access(A, I)]}, justify-

ing that the access-category of agi has no access to the information-category of φ (the

protocol goes to (4)).

3. an agent agi closes the dialogue.
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4. an agent agi decides to: (i) provide more information, either about itself in order to be

categorised into a different access-category, or about an emergency situation in order to

make agj to consider the emergency access control rules — for both cases agi executes an

assert move assert(agi , agj ,ϕθ), with ϕθ the information agi wants to be considered by

agj (the protocol goes to (5)); (ii) accept that it has no access to information φ (the protocol

goes to (3)).

5. an agent agj adds the information received to its knowledge base (the protocol goes to (2)).

Dialogue Rules

• Initial Rule: The first move (commencement rule) introduces a request from an agent agi

(the requester), requesting access to a particular piece of information φ, to another agent agj

(the interface agent) which will decide to provide or not the requested information to agi .

Cin1 ⇒ question(agi , agj , access(agi,φ))

where: Cin1 = true

Note that there is no condition to execute this move at the level of dialogue rules specification.

We could argue that an agent might have its motivation to obtain that information, but it is

part of the agent strategy and attitude towards participating in such dialogue.

• Question Rule: We have two dialogue rules that restrict the moves after an agent receives a

question message:

question(agi , agj , access(agi,φ)) ∧ Cqs1 ⇒ accept(agj , agi , access(agi,φθ))

question(agi , agj , access(agi,φ))∧Cqs2 ⇒ justify(agj , agi , 〈S,¬access(agi,φ)〉θ[as(comp_as4dac)])

where:

Cqs1 = ∃〈S, access(agi,φ)〉θ[as(as4dac)] : (∆agj ∪ CSagi ) |= 〈S, access(agi,φ)〉θ[as(as4dac)]

Cqs2 = ∃〈S,¬access(agi,φ)〉θ[as(comp_as4dac)] : (∆agj ∪ CSagi ) |=
〈S,¬access(agi,φ)〉θ[as(comp_as4dac)]

Basically, the interface agent provides the information when it has an acceptable argument

concluding that the request agent has access to the requested information, Cqs1. This ac-

ceptable argument is an instance from the argumentation scheme for data access control,

as4dac. Otherwise, it will have an acceptable argument concluding that the requester agent

has no access to that information, thus it justifies to the requester why it has not access to

the requested information, Cqs2.
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• Justify Rules: We have three dialogue rules that restrict the possible next move for agents

to respond to a justify move:

justify(agi , agj , 〈S,¬access(agi,φ)〉θ[as(comp_as4dac)])∧Cjs1 ⇒ assert(agj , agi , role(agj,ϕ))

justify(agi , agj , 〈S,¬access(agi,φ)〉θ[as(comp_as4dac)]) ∧ Cjs2 ⇒ assert(agj , agi , emrg(ϕ))

justify(agi , agj , 〈S,¬access(agi,φ)〉θ[as(comp_as4dac)]) ∧ Cjs3 ⇒ closedialogue(agj , agi)

where:

Cjs1 = ∃ role(agj,ϕ) : (∆agj ∪ CSagi ) |= role(agj,ϕ) ∧ role(agj,ϕ′) ∈ S ∧ role(agj,ϕ′) 6=
role(agj,ϕ) ∧ role(agj,ϕ) 6∈ CSagj

Cjs2 = ∃ emrg(ϕ) : (∆agj ∪ CSagi ) |= emrg(ϕ) ∧ emrg(ϕ) 6∈ CSagj

Cjs3 = true

The options of the requester agent are: (i) to assert the correct role it plays in the multi-agent

systems it belongs, when the interface agent has used a different role, Cjs1; (ii) to assert an

emergency situation in which an emergency policy could apply for that particular case, Cjs2;

(iii) to close the dialogue, accepting that it has no access to that information.

• Assert Rules: We have two dialogues rules that restrict the possible next move for agents to

respond to an assert move:

assert(agi , agj , role(agi,ϕ)/emrg(ϕ)) ∧ Cas1 ⇒ accept(agj , agi , access(agi,φθ))

assert(agi , agj , role(agi,ϕ)/emrg(ϕ))∧Cas2 ⇒ justify(agj , agi , 〈S,¬access(agi,φ)〉θ[as(comp_as4dac)])

where:

Cas1 = ∃〈S, access(agi,φ)〉θ[as(as4dac)] : (∆agj ∪ CSagi ) |= 〈S, access(agi,φ)〉θ[as(as4dac)]

Cas2 = ∃〈S,¬access(agi,φ)〉θ[as(comp_as4dac)] : (∆agj ∪ CSagi ) |=
〈S,¬access(agi,φ)〉θ[as(comp_as4dac)]

The conditions Cas1 and Cas2 are similar to the question move. When the interface agent has

an argument concluding that the requester agent has access to that information, Cas1, it will

provide the information. When it has an argument concluding that the requester agent has

no access to that information, Cas2, it will justify why the requester agent has no access to

that information.

• Accept Rules: We have one dialogue rule that restrict the next move for agents to respond

to an accept move:

accept(agi , agj , access(agj,φθ))⇒ closedialogue(agj , agi)
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There is no condition for an agent close the dialogue after receiving the requested informa-

tion.

Experiments

We evaluated the protocol for data access control using the scenarios from Section 4.5.2.

The first scenario, the smart building scenario, describes that the building is on fire, and there

exists a data access control rule that grants access to information of people’s location for a fireman

in emergency situations of fire.

∆interface =



inf_category(location(v1), end_user_inf)
role(nick, fireman)
constr(role(fireman), fireman)
satisfies(nick, role(fireman))
emrg_rule(fire, access_rule(fireman, end_user_inf))
fire



Figure 5.4 – First Example – Scenario 1

Considering the knowledge base ∆interface (the interface agent ag2), we have the output

shown in Figure 5.4 from our implementation. In this first example, Nick (agent ag1 in our output),

is a fireman, and it requests access to the information location(v1), representing the location of

a person inside the building. Considering that the interface agent knows that Nick is a fireman

and it is an emergency situation of fire, it provides access to the information.

In the second example, we assume that the interface agent does not know that it is an

emergency situation of fire, thus, when Nick requests access to that information, the interface agent

first denies the access, justifying that nick has no access to that information. As Nick has been

correctly identified as a fireman, which could be identified in the support of the argument used

by the interface agent, it provides the information that it is an emergency situation of fire to the

interface agent. With this new information, the interface agent grants access to that information.

The output of our implementation is shown in Figure 5.5.
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Figure 5.5 – Second Example – Scenario 1

The second scenario, the travelling patient, describes that a person from a hospital

requests access to the record of a patient from another hospital.

∆interface =



constr(role(family_doctor), family_doctor)
constr(role(doctor), doctor)
inf_category(record, patient_data)
access_rule(family_doctor, patient_data)
role(joe, doctor)
emrg_rule(unc, access_rule(doctor, patient_data))
unc


In the first example, the interface agent has all knowledge about the situation, i.e., it

knows that the patient is unconscious, thus, when a doctor named Joe requests the information,

the interface agent provides it. The output of our implementation is shown in Figure 5.6.

Figure 5.6 – First Example – Scenario 2

In the second example, we simulate a situation in which the interface agent does not

know that the patient is unconscious, and it has correctly categorised Joe as a doctor. Thus, first

the interface agent denies access to that information, and considering that Joe (i.e., ag1) has been
correctly categorised, it communicates the emergency situation in which the patient is unconscious.

With this new information, the interface agent grants access to that information. The output from

our implementation is shown in Figure 5.7.
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Figure 5.7 – Second Example – Scenario 2

In the third example, we assume that the interface agent (i.e., ag2) receives the request

and categorises Joe as a nurse. Thus, it denies access to the information, justifying that nurses

have no access to the record of patients. When Joe receives this argument, it identifies that it has

been wrongly categorised, providing its correct role in the system it belongs to. Even though the

interface agent denies access, but now categorises Joe as a doctor. Thus, Joe informs the interface

agent that the patient is unconscious, and the interface agent grants access to the information.

The output from our implementation is shown in Figure 5.8.

Figure 5.8 – Third Example – Scenario 2

5.6 An Approach for Enthymemes in Multi-Agent Systems

Enthymemes are arguments in which one or more statements (which are part of the argu-

ment) are not explicitly stated, i.e., they are arguments with “missing premises” or even “missing

conclusions” [156]. They are more realistic arguments, in the sense that real-world arguments (i.e.,

arguments presented by humans) usually do not have enough explicitly presented premises for the

entailment of the claim [23]. Further, some authors describe that arguments can be naturally con-

sidered enthymemes, because they are not based on strict consequence, in which the conclusion

follows the premises in a strict way, but based on enthymematic consequence [60]. That is, arguments

are based on reasoning patterns (argumentation schemes) in which only part of the knowledge nec-

essary to instantiate an acceptable instance of that argumentation scheme is explicitly represented

in the argument, missing, for example, information that is identified through the critical questions.
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Using enthymemes in human activities has widely known benefits, allowing economy,

efficiency, and efficacy [90]. For example, the authors in [90] note that:

1. being short it can easily be followed by the audience;

2. starting from what is known and already taken for granted is important, because the ad-

dressee will, in consequence, be well-disposed towards what is said;

3. omitting premises is also justified by reasons of economy, where if something is well known

it is unnecessary to repeat it;

4. omitting the conclusion has advantages in terms of economy, but might also be beneficial to

efficiency because if the audience comes to the conclusion by itself, its acceptance is more

easily acquired; and

5. allowing members of the audience to come to a conclusion by themselves might be more

respectful towards them.

Besides the use of enthymemes characterising more rational and “intelligent” agents,

bringing them closer to human reasoning and communication, they also could bring some compu-

tational benefits for multi-agent systems, as we discuss in this section.

When agents use enthymemes, the common knowledge is removed from the original

argument by the proponent of such an argument (such process is called encoding in [23]), where it

is assumed that all information removed from the original argument is known by the recipients and,

therefore, they are able to reconstruct (or to decode [23]) such an argument, understanding exactly

what meant to be communicated. If both the proponent and recipients use the same common

knowledge, then this process is straightforward [67]. However, normally, this is not the case, and

the recipients generate an approximation of such an argument in the reconstruction process, given

the disparities between the different views on what constitutes common knowledge [67].

In our framework for argumentation scheme in multi-agent systems, we can imple-

ment enthymeme-based communication, guaranteeing that all agents, which are involved in an

argumentation-based dialogue, will have the same understanding when using enthymemes, by

means of guiding the reconstruction of arguments by the recipients using argumentation schemes

and available organisational knowledge. Also, recall that we have an infrastructure that ensures

that all agents will have the same perception on what constitutes common knowledge9 (i.e., organ-

isational information and argumentation schemes).

Definition 23 (Enthymeme). Let 〈S, c〉θsn be an acceptable argument to agent agi. An enthymeme for
〈S, c〉θsn is a tuple 〈S′, c〉θsn, where S′ ⊂ S and S′ ⊆ (∆agi \ (∆Org ∪∆AS)).

9In this section, we use ∆Org and ∆AS in order to represent the organisational information and the argumentation
schemes available for agents, respectively.
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Figure 5.9 – Constructing arguments using argumentation schemes and organisational information.

Returning to our example in which an agent instantiate an argument from the argu-

mentation scheme role to know based on the assertion of a doctor named john. That argument

contains, in its support, all premises and inference rules needed to entail the conclusion, and it

could be constructed as:

〈 { defeasible_rule(causes(smoking,cancer),

[asserts(john,causes(smoking,cancer)),role(john,doctor),

role_to_know(doctor,cancer), about(causes(smoking,cancer),cancer)]),

asserts(john,causes(smoking,cancer)),role(john,doctor),

role_to_know(doctor,cancer),about(causes(smoking,cancer),cancer)},
causes(smoking,cancer) 〉θ[as(as4rk)]

The corresponding enthymeme has the following format (considering the common knowl-

edge presented in Figure 5.9):

〈 { asserts(john,causes(smoking,cancer)),

about(causes(smoking,cancer),cancer)},
causes(smoking,cancer) 〉θ[as(as4rk)]

Based on the label [as(as4rk)] and the most general unifier θ, an agent receiving the

enthymeme is able to identify the missing premises, understanding which information the sender

agent has used to conclude causes(smoking,cancer), given that all missing premises are

organisational information and, therefore, common knowledge. Also, based on the argumentation

scheme annotated in the argument, the receiver agent is able to identify that information that is

implicit in the argument, pointed out by the critical questions of that scheme.
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5.6.1 Semantics for Speech-acts using Enthymemes

We formalise the construction and reconstruction of enthymemes (i.e., the encoding and

decoding processes) by agents, associated with the speech act used by agents in the interactions.

Therefore, we extend the operational semantics for the speech acts described in this chapter,

including the encoding and decoding processes mentioned, which are associated with receiving

and sending messages. This semantics has been partially published in [103]. The operational

semantics extends the previous semantics in the agent configurations 〈ag, C, M, T , s〉, thus we

only write the components necessary to describe those processes.

In the interest of readability, we adopt the following notational conventions in our se-

mantic rules:

• We write: (i) b[s(id)] to identify the origin of a belief, where id is an agent identifier (s is an

abbreviation for source); (ii) [dec(sni)] to identify information that was decoded from an

enthymeme, guided by the argumentation scheme sni; and (iii) b[as(sni, θ)] to identify the

argumentation scheme and the unifier used by the other agent in the received move.

• We use a function prem() which returns all premises in the support of the argument, e.g.,

prem(S) returns all premises in the support of the argument 〈S, c〉.

5.6.2 Semantics for Sending Messages

In this section, we present the formal semantics for agents sending the speech acts, in

which we formalise the process for encoding arguments into enthymemes.

Tι = i [head ← .send(id , assert, 〈S, c〉θsni);h]
S ⊂ ∆ag ∆ag |= c 〈sni, C,P, CQ〉 ∈ ∆AS

∀p ∈ P, pθ ∈ prem(S) c = Cθ

〈ag, C, M, T , ExecInt〉 −→AS 〈ag, C ′, M ′, T , ProcMsg〉

where:

M ′
Out = MOut ∪ {〈mid , id , assert, 〈S′, c〉θsni〉}

with S′ = S \ (S ∩ (∆Org ∪∆AS))
C ′

I = (CI \ {Tι}) ∪ {i [head ← h]}

(ExActSndAssert)

Sending an assert or justify message: when an agent executes the internal action for sending

a message with the performative assert or justify, the agent needs to have an acceptable

argument for that particular conclusion10, which was drawn using the argumentation schemes sni.

10While we use, in this work, the thoughtful attitude [116, 114], other agent attitudes could be used just as well.
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Such argument is encoded into an enthymeme 〈S′, c〉θsni , where all common knowledge is removed

from the argument support, i.e., in this work, the organisational knowledge ∆Org and the contents

of the argumentation scheme used ∆AS are removed. The corresponding message is posted in the

agent mailbox and the current agent intention is updated, removing the internal action, given that

its execution is completed. Here, we only present the ExActSndAssert semantics rule, given

that the semantic rule for the performative justify has a similar formalisation.

5.6.3 Semantics for Receiving Messages

In this section, we present the formal semantics for agents receiving the speech acts.

Furthermore, the semantics formalise the process of decoding enthymemes into arguments.

Receiving an assert or justify message: when an agent selects an assert or justify mes-

sage from its mailbox, the message is removed from the agent’s mailbox, the agent’s belief base

is updated with all information contained in the support of the intended argument, annotating

clearly which formulæ have been received from the sender and which have been decoded. Further,

the agent’s belief base is updated with the information that the sender has asserted c using the

argumentation scheme sni grounded by θ, and the respective event is generated for that.

SM(MIn) = 〈mid , sid , assert, 〈S, c〉θsni〉
〈sni, C,P, CQ〉 ∈ ∆AS ∀pθ ∈ S, p ∈ P c = Cθ

〈ag, C, M, T , ProcMsg〉 −→AS 〈ag′, C ′, M ′, T , ExecInt〉

where:

M ′
In = MIn \ {〈mid , sid , assert, 〈S, c〉θsni〉}

ag′
bs = agbs ∪ {p[s(sid)]θ|for all p ∈ P and pθ ∈ S} ∪

{p[s(sid), dec(sni)]θ|for all p ∈ P and pθ 6∈ S} ∪
{asserts(sid , c)[as(sni, θ)]}

C ′
E = CE ∪ {〈+asserts(sid , c)[as(sni, θ)], T〉}

(Assert)

It is important to mention that, when the agent receives an assert or justify message, the content is

an enthymeme. Thus, the enthymeme is decoded into the original sender’s argument, guided by

the argumentation scheme, and the agent that receives the enthymeme updates its belief base with

all premises in the intended argument, including the sender as the source for all that information,

but also identifying the decoded premises with dec(sni).

Implementation in Jason Agents

We have implemented an interface, as we implemented the updates to the agents’ com-

mitment stores, which encode the arguments to enthymemes and vice versa. This interface uses a

Jason module we implemented, in which the following queries are available:
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• enthymemetisation(Arg, Enthymeme, AS, Unifier): which receives the intended argu-

ment Arg, and returns the corresponding enthymeme Enthymeme, the argumentation

scheme used to instantiate that argument AS, and the unifier function used to instanti-

ate that argument from that argumentation scheme Unifier. This query uses a predicate

annot2remove(< List >), in which a list of annotation identify the predicates that should

be removed from the intended argument during the process of enthymemetisation (to en-

code an argument to an enthymeme). In our examples, we have used the following list

of annotations annot2remove([source(org), as(_)]), meaning that all information from the

organisation, annotated with source(org), as well as all argumentation scheme rules, anno-

tated with as(_), will be removed from the intended argument.

• decodification(Enthymeme, AS, Unifier, ArgD): which receives an enthymeme

Enthymeme, an argumentation scheme AS, and a unifier function Unifier, and returns the

intended argument ArgD properly annotated.

Although we only remove organisation knowledge and argumentation scheme from the

intended arguments in our examples, it can be easily extended through a different list of annotated

predicates to remove, defined through the predicate annot2remove(< List >). For example, it

could be interesting to remove other information an agent has learned to be shared knowledge.

Thus, a likely direction for this work could be combining our work on Theory of Mind (ToM) [95,

96, 134] with our approach for enthymemes.

Example

Consider a short dialogue between a nurse and two patients in a hospital scenario using

the argumentation scheme from role to know as4rk. Imagine that the nurse is supposed to

explain to two patients, Alice and Bob, who were diagnosed with cancer, how they probably got the

illness11. Following the protocol introduced for persuasion, the nurse executes an assert move

explaining that smoking causes cancer, in which the following enthymeme is resulting from the

ExActSndAssert rule:

〈{asserts(john,causes(smoking,cancer)),
about(causes(smoking,cancer),cancer)]}, causes(smoking,cancer)〉θ[as(as4rk)]

Based on the common knowledge that john is a doctor and doctors are experts in

such domains (see Figure 5.9), both patient accept that “smoking causes cancer”. While we have

a short and human-like communication, the understanding of the arguments is the same than

communicating it entirely.

11It is important to mention that we assume the nurse was asked to explain the doctor’s diagnosis; we do not assume
that the nurse made the diagnosis themselves.
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5.6.4 Properties

In this section, we describe the main properties of our approach for enthymemes, namely:

(i) both agents, the sender and the receiver, will have the same understating of what has been

uttered, ensuring that arguments will not lose their meaning; (ii) agents will exchange shorter

content, given that arguments are encoded into enthymemes. (iii) enthymemes can be built to

an entire audience, and not only to a particular recipient. The properties presented here are

important aspects for multi-agent applications that are run distributed over a network, possibly

using mobile devices, etc.

Proposition 1. Both agents, sender and receiver, will have the same understanding of the uttered argu-

ments.

Proof (sketch). The architecture proposed in this work guarantees that an argument is decoded ex-

actly as the intended argument, which was previously encoded into an enthymeme. This process

is guaranteed by the semantic rules presented in the previous section, especially for sending and

receiving the assert and justify moves. The process uses the general unifier θ and the annota-

tion of the reasoning pattern used, i.e., the argumentation scheme used to draw up that particular

conclusion. Thus, it is guaranteed that the same reasoning pattern will be used to decode the

enthymeme into the intended argument and that all variables will be correctly instantiated, based

on θ.

Proposition 2. Agents will exchange less content using our approach.

Proof (sketch). When agents utter new arguments, i.e., they execute an assert or justify move,

the argument is encoded into an enthymeme. This means that all common knowledge (in this work,

specifically organisation-related knowledge ∆Org and the argumentation schemes ∆AS) is removed

from the intended argument (the removed information is never transmitted from sender to receiver).

Even for an argument which was instantiated without the use of any organisational knowledge, still

shorter content will be uttered than the intended argument, given that the inference rule used to

draw that particular conclusion (from ∆AS) will be removed from the original argument, as it can

be retrieved by the receiver from the scheme.

Proposition 3. Enthymemes can be built to an entire audience within the same organisation.

Proof (sketch). Considering that all agents belong to the same organisation, argumentation schemes

are shared by all agent in that organisation, and all agents are aware of the organisational structure,

i.e., all agents share ∆Org and ∆AS, an enthymeme can be built to an entire audience, and all agents

will have the same understanding of that uttered argument. The proof follows the Proposition 1,

considering that the information removed from the intended argument is known by all agents in

that organisation and all agents will use the same argumentation scheme (also known by all agents)

to reconstruct the intended argument.
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5.6.5 Evaluation

We ran some experiments to evaluate our approach for enthymeme in multi-agent sys-

tems. Note that the Propositions 1 and 3 are easy to follow, given our formal framework for

enthymemes in multi-agent systems, and the implementation that follows this formal definition.

Also, in Proposition 2, it is easy to note that agents will always remove the argumentation scheme

they used to instantiate an argument when communicating, adding only a reference to this argu-

mentation scheme, which is shared by all agents. Besides omitting the argumentation schemes,

agents will also omit organisational knowledge, but how much organisation knowledge agents are

using in their argument will depend on the application domain and scenarios of argumentation.

In the experiments for argumentation-based dialogue using enthymeme, we extended

the agent architecture in Jason in order to show the length of messages communicated by agents.

Using this extended architecture we are able to compare dialogues, showing how much content is

reduced when agents communicate enthymemes instead of arguments.

In Figure 5.10 we show an output of the persuasion dialogue presented in Section 5.5.2,

including the length of messages. In Figure 5.11 we show the same persuasion dialogue, but now

using enthymemes.

Figure 5.10 – Length of messages using arguments



117

Figure 5.11 – Length of messages using enthymemes

In this experiment, agents reduce the length of messages, when communication en-

thymeme, in an average of 48% (45% the first argument, and 51% the second argument). Note that

two premises of these arguments are organisational knowledge.

In Figure 5.12 we show an output of the dialogue for data access control presented in

Section 5.5.3, including the length of messages. In Figure 5.13 we show the same dialogue, but now

using enthymemes.

Figure 5.12 – Length of messages using arguments

Figure 5.13 – Length of messages using enthymemes

In this experiment, agents reduce the message size, when communication enthymeme, in

an average of 47% (46% the first argument, and 48% the second argument).
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5.7 Final Remarks

In this chapter, we presented an argumentation framework for argumentation-based di-

alogues in multi-agent systems based on the argumentation schemes structure we presented in

Chapter 3, combined with the argumentation-based reasoning mechanism we presented in Chap-

ter 4. First we presented the formal semantics for performatives commonly used in argumentation-

based dialogue we have published in [108, 111]. Those semantics rules formalise, in a precise way,

the updates agents execute in their mental attitudes according to the performative received and/or

sent. After, we have presented the artifacts we developed to support argumentation-based dialogue,

which allowed to implement the semantics rules in a multi-agent system platform. We also argue

that such artifacts facilitate programmers to implement different argumentation-based protocols in

multi-agent systems, given the functionalities they provide. After, we have discussed the role of

argumentation schemes in argumentation-based dialogues, in which argumentation schemes en-

able agents to use extra moves in argumentation-based dialogues based on that information that

is implicit in the arguments used by agents. That information becomes explicit to agents when the

argumentation scheme used to instantiate that argument is identified.

Considering the formal semantics proposed in this chapter, the artifacts to support

argumentation-based dialogue in multi-agent systems, and our considerations about argumen-

tation schemes in multi-agent systems, we evaluated our framework defining two different protocol

that takes into account the proposed structure for arguments, including the references to shared

argumentation schemes. We formalise the protocols using a formal framework [110], we show how

the formal protocol can be implemented towards Jason plans, and we evaluated different outputs

for each protocol, considering different agents configurations.

Finally, we present an approach for enthymemes (shorted and rational arguments) for

multi-agent systems. In our approach, agents exchange only the information needed to ensure

that both sides, the proponent and recipient(s), will have the same understanding of the uttered

arguments. Our approach allows agents to exchange fewer messages with shorter content, which

could be very useful both for making argumentation-based communication more efficient as well

as for avoiding network overload. Improving the efficiency of argumentation-based communica-

tion could benefit all applications that use argumentation techniques, and decreasing the network

usage could benefit all applications that use constrained networks, e.g., applications which use the

mobile network such as [136, 74]. In this version of our approach for enthymemes in multi-agent

systems, we allow agents to omit organizational knowledge only (but other approaches can be

easily incorporated). Thus, note that considering organisational information and argumentation

schemes as common knowledge, our approach allows agents to construct appropriate enthymemes

not only for specific agents but also to an entire “audience”, when the audience belongs to the

same organisation.
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Also, we noted in the literature that considering argumentation schemes in multi-agent

systems from a practical point of view seems as yet an underdeveloped research topic. Here, we

described how we used argumentation schemes integrated with multi-agent platforms, and how

they are used by agents to instantiate arguments and to refer to the critical questions for those

arguments during argumentation-based dialogues.



120

6. RELATED WORK

In this chapter, we discuss the main work related to our argumentation-based framework

for argumentation scheme in multi-agent systems. As can be noted, the main contribution of our

work is a formal and implemented framework for argumentation schemes in multi-agent systems.

On the one hand, to the best of our knowledge, our approach is the first approach to propose such

a framework. On the other hand, there are a few works that consider (or propose) argumentation

schemes in multi-agent systems. In Section 6.1 we will detail each one of them, relating them to

our framework.

Further, an interesting direction in our work was the research regarding enthymemes,

which seems a recent topic of research in multi-agent systems. Given its potential to bring agent

communication closes to human-like communication, we dedicate Section 6.2 to discuss the related

work about this topic, and in which points our work contributes to the state-of-art in enthymemes-

based communication frameworks.

Finally, in Section 6.3, we discuss the related work concern on the problem of data access

control in multi-agent systems (or general applications) using argumentation-based techniques. We

dedicate that section to this topic, given that we gave special interest to this kind of application

when evaluating our framework. As described, it seems that our work is the most general approach

for data access control using argumentation-based interface agents.

6.1 Argumentation Schemes in Multi-Agent Systems

Recently, Parson et al. [113] present a set of argumentation schemes for reasoning about

trust. The authors argue that trust is a natural mechanism by which an autonomous party can

deal with the inherent uncertainty regarding the behaviours of other parties and the uncertainty in

the information it shares with those parties. Emphasising that trust is crucial in any decentralised

system. The schemes presented in [113] are abstract patterns of reasoning which can be applying

in multiple situations, geared toward trust. The argumentation schemes are the following: trust

from direct experience, trust from indirect experience, trust from expert opinion, trust from authority,

trust from reputation, trust from moral nature, trust from social standing, trust from majority behaviour,

trust from prudence, trust because of pragmatism. For example, the argumentation scheme of Trust

from Authority [113] specifies that if B is in a position of authority, then A may trust in B. The critical

questions of this scheme are: Is B really in position of authority? Is B’s authority relevant in this

case?, etc. Exist an interesting link between our research and the work of Parsons et al. [113]. For

example, the argumentation scheme of Trust from Authority discussed, is very interesting to our

framework. We can extend this argument to specifies that A can believe that if B says something

this information probably is true, because the position of authority of B. We can extend the critical

questions as well, questioning if the role of the agent B (considering the organisation) is relevant in
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the field where the information is contained, and thus can be considered true. The link between

argumentation schemes and the organisation of a multi-agent system is a very interesting topic of

research. While we made a few links between multi-agent systems organisation and argumentation

schemes, there are many other argumentation schemes in the literature in which this link also is

possible, and [113] is one of these works.

The, also recent, work of Toniolo et al. [147, 146] proposes an argumentation-based model

for deliberation dialogues based on argumentation schemes. The authors argue that their model

facilitates agreements about joint plans by enriching the quality of the dialogue through the ex-

change of relevant information about plan commitments and norms. The work [147] proposes three

argumentation schemes that agents can use during the discussion according to issues of practical

reasoning such as concurrent actions (arguments for concurrent actions), causality among actions

(arguments for plan constraints) and norms (arguments for norms.). Some critical questions presented

are: Is the action possible according to concurrent action in the plan? Is the action possible

according to causal plan constraints? Is there any norm which regulates actions or states of the

world? For example, in arguments for norms, if a norm obliges the execution of an action, the

agent can use the attack that this action should be executed. The work of Toniolo et al. [147] is

related to the execution of actions in multi-agent systems. Although our focus is not the execution

of actions, the consideration of norms is relevant to our research, where the organisation model

specifies which is allowed and prohibited to be done by the agents. This work is another example

specifying argumentation schemes that can be linked to the multi-agent system organisation.

In [145], Toniolo et al. propose the argumentation schemes which present the essential

elements of provenance that warrant the credibility of the information. The authors argue that

the introduction of schemes about provenance facilitates the decision-making process by providing

a rational method to assess the credibility of a piece of information and to resolve conflicting

information. The argumentation scheme for provenance extends the argumentation scheme of

position to know [156]. This work [145] also is relevant to our research, where, similar to it, we have

extended the argumentation schemes of position to know considering the role of the agent which

the information is provenance from. Also, the authority link between the agent specified by the

organisational model, combined with the argumentation scheme from [145] could be considered in

future work.

In [131], the authors describe that “argumentation schemes are patterns of non-deductive

reasoning that have long been studied in argumentation theory, and have more recently been

identified in computational domains including multi-agent systems as holding the potential for

significant improvements in reasoning and communication abilities”. The work demonstrates that

(i) individual agents can reasoning about and develop arguments that employ schemes, and (ii)

that communication structures can be built up around those schemes. Two points refer possible

implementation of argumentation schemes following [131]: (i) the representation and manipulation

of schemes by one agent; (ii) the use of this representation in multi-agent cases, where this repre-

sentation can be explored in communication design. The authors suggest ARAUCARIA [129, 130]
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as a possible manner to represent arguments, where ARAUCARIA uses AML (Argument Markup

Language) as the language to represent arguments (AML is an underlying language XML). The

authors, further, argue that implementing scheme-based communication situated in a multi-agent

system is currently a work in progress. Another claim from [131], is that the way in which particular

schemes are judged is a feature of the community or society in which that agent resides (demon-

strating a close analogy to human communities). The claims found in [131] demonstrate that the

consideration of an organisational model linked to the specification of argumentation schemes is

a promising research area, as well as the work described above confirms these claims. Also, it

has inspired us in the modelling of our framework, in which we looked to a formal argumentation

scheme structure in order to model our framework.

In [55], the authors claim that Dung’s work in abstract argumentation does not fit a

wide class of arguments used by human argumentation where pros and cons are balanced in

order to choose among different options. Thus, the authors in [55] propose a formal model of

structured argumentation which generalises Dung’s abstract argumentation frameworks to also

handle with the balancing of arguments. Differently from other work in structured argumentation,

[55] generalises abstract argumentation frameworks, which could be simulated using structured

argumentation. An interesting point in [55], is that the authors divide human argumentation

into different types, including: (i) practical argumentation, comparing arguments on pros and cons

to choose a course of action, including arguing about preconditions and effects of the actions;

(ii) theoretical argumentation, constructing and comparing arguments to choose among alternative

theories (choosing the more coherent theory); (iii) factual argumentation, arguing about whether

or not some event occurred; etc. An important issue in [55], we emphasise, is that they are not

interested in trying to find some way to model the approach proposed in Dung’s methodology. In

that work, argumentation schemes play the role of abstract structures for generating, validating

and weighing arguments (however, in that paper, only the weighing function was presented, given

that they were interested only in balancing arguments). In the framework, arguments are a tuple

(s, P, c, u), with s the argumentation scheme instantiated by the argument, P the premises of the

argument (a finite subset of the language), c the conclusion of the argument, and u the undercutter

of the argument. The framework considers issues instead of a contrary binary relation, where issues

is n-ary relation. Similar to [55], we also use argumentation schemes as abstract reasoning patterns,

but in our work related to multi-agent systems instead. The framework proposed in [55] has similar

concepts to our proposal for argumentation schemes in multi-agent systems, and such concepts

are considered in our research. Although we have not considered weighting argument, as in [55],

it is a likely direction to our research, combining our framework for argumentation schemes in

multi-agent systems, and our previous work on using meta-information in argumentation-based

reasoning [82, 83, 84, 85, 107].

In [165], the author describes that argumentation schemes could require a computational

approach where agents use the components of a scheme to construct and present arguments and

counterarguments, thus argumentation schemes could be useful in multi-agent systems. In that
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work, the author proposes a syntactical analysis for argumentation schemes, helping to clarify what

is needed in order to provide denotations of the terms and predicates in a semantic model. Further,

the author claims that, from a wide perspective, the analysis proposed begins to bridge the gap

between the realisation of argumentation in natural language and their formal analysis. Following

the analysis presented in [165], our work in representing argumentation schemes in agent-oriented

programming languages could cover different levels of descriptions of argumentation schemes. For

example, in an agent belief base, argumentation schemes are represented according to the agent-

oriented programming language, in our case, Jason predicates, therefore they could be classified as

Labelled roles and Instantiated predicates [165], while in the organisational model such argumentation

schemes could be represented in XML. Furthermore, in [165] the author describes different kinds of

argumentation schemes, which could play a part in our research, including argumentation schemes

for arguing about facts, direct analysis, and reanalysis.

In [162], the author identified a property that captures the relationship between dialogue

games and argumentation schemes called “scheme awareness”. This property describes the degree

to which a given game can exploit schemes within a dialogue and the game features that support

this. The aim of that work is to provide a guide for designing dialogue games enabling them

to better exploit argumentation schemes. The author argues that many sets of argumentation

schemes can be used to annotate a specific analyse of argument structure, and in this context such

argumentation schemes provide a mechanism for collecting, comparing, and evaluating instances

of arguments, allowing yet to model a variety of reasoning methods making the computational

reuse more receptive to argumentation. Further, the author argues that argumentation schemes

can be used in relation to dialogue games as both: (i) at the development stage, providing a guide to

developing new game rules; and (ii) at the deployment stage, providing relevant lines of argument

for the player to explore, as well as to suggest appropriate responses to the others’ positions, and

to provide a facet of strategic information players may use to achieve their goals. Also, the author

emphasises that while dialogue games have become a popular approach to structured interaction,

for both agents-agents and agents-humans, the dialogue games available do not exploit the benefits

of using argumentation schemes [162].

Further, the author in [162] suggests that the literature in argumentation schemes and

dialogue games can be classified as follows:

• Games unable to utilise (i.e., represent and manipulate) argumentation schemes

• Games able to utilise a single argumentation scheme

• Games able to utilise multiple/arbitrary argumentation schemes

Also, the author describes that there is no game at the third level, considering multiple argumen-

tation schemes. At the second level, in which the game is able to utilise a single argumentation

scheme, the author describes some games that utilise the practical reasoning scheme [9]:



124

In the current Circumstances, R, we should perform Action, A, to achieve New Cir-

cumstances, S, which will realise some goal, G, which will promote some value, V

Between such works, the author describes the PARMA protocol [10]. Another work is Toulmin

Dialogue Game or TDG [14] that is explicitly based upon a specific argumentation scheme called

Toulmin Argument Scheme [149]. The author describes that a game should support the expression

of an argument as a single complex utterance. Regarding this point, the author describes that, even

single move can present distinct forms, for example, the assert move could be used both to express

an entire argument within a single locution or to express, individually or in combination, the

constituent parts of an argument (conclusion, major and minor premise(s)). The author emphasises

that the second option enables dialogue games to be specified in such a way that enables expressive,

fine-grained, and more natural dialogues.

Furthermore, the author [162] proposes to extend the Dialogue Game Description Lan-

guage (DGDL) [163] with meta-information in order to make clear the role of each part in the utter-

ances made by agents. Thus, that author suggests to label content as an instance of an argument,

to label the conclusion of an argument, to label the major and minor premises of an argument, to

label content as an element of a type of argumentation scheme, and to label content as part of an

instantiated argumentation scheme. Thus the author use a representation of “key:values” to label

the content, e.g., assert(“conclusion”:“p”, “major-premise”:“q”), assert(“conclusion”:“p”, “scheme-

name”:“expert-opinion”). The author argues that the aim of the paper is to explore the minimal set

of requirements to enable the labelling of move content with argumentation schemes using meta-

data. Aiming sufficient support for arguments and argumentation schemes in dialogue games.

Our work has similar directions to [162], in the sense that we allow agents to identify

the different parts in an utterance through the semantics we introduced for speech acts used in

argumentation-based dialogues, with content properly annotated by the argumentation schemes

used. Note that while [162] increases the amount of content communicated by agents, we aim to

make the communications as simple as possible, communicating only the essential information to

reach a mutual understanding of that communication.

In [34], the authors aim to connect research made on computational linguistics and

argumentation theory, looking for a clear natural language account for argumentation schemes.

Thus, they analyse how argumentation schemes fit into categories of the discourse relations in the

Peen Discourse Treebank (PDTB).

In [148] the authors propose an argumentation-based approach based on argumentation

scheme that can be used in team deliberation dialogues focused on establishing agreements about

the best course of action to adopt when considering teamwork. The authors explore the conflicting

situation in which agents’ actions may be incompatible with existing commitments and norms. One

important point in [148] is that agents are able to clarify the nature of the conflicts in a joint plan.

The argumentation schemes introduced in that paper are patterns of argument that are commonly

used in deliberation dialogue, and they could be incorporated in our framework.
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In [131], the authors describe a model for argumentation schemes in agent communica-

tion. Their results show advantages of flexibility, scope, knowledge sharing, as well as compu-

tational efficiency. Besides the AI literature has interested in non-deductive forms of reasoning,

argumentation schemes provide a more fine-grained analysis than other typical approaches within

AI. Although argumentation schemes have been investigated by the literature, a more refined rep-

resentation of such structures of reasoning are necessary to multi-agent systems field, becoming

adequate to a computational interpretation and implementation.

The authors [131] point out the following advantages of using argumentation schemes in

agent communication:

• The stratification of the belief base. According agents become large (considering agents

developed in real-world applications), deduction and search in their data bases (belief bases)

becomes computationally expensive. Using argumentation schemes reduces the branching

factor, given that a conclusion is reached using only some types of propositions.

• Reduction of the load for the header. Processing an incoming argument is similarly compu-

tationally intensive, and this search is reduced given the scheme-based stratification.

• Inter-agent communication. The scheme is judged by the community (society) and arguments

instantiated from those have a particular way to be evaluated.

• It allows human-machine communication through the medium of natural language restricted

through structural constraints and ontological limits.

• To have agents configure their reasoning capabilities on the bases of the definitions of a set

of schemes.

6.2 Enthymemes

In [67], the author presents an argumentation framework for “real arguments”. That work

is based on an existing proposal for logic-based argumentation [18], but considering enthymemes,

which are arguments with missing premises and seem more like those used by people in general.

In the framework for real arguments presented in [67], when an agent wishes a recipient to be

aware of an argument (they refer to this argument as intended argument), the proponent may send

an enthymeme instead of the intended argument. The work describes the processes of encoda-

tion (creating an enthymeme from an argument) and decodation (rebuilding the argument from an

enthymeme) claiming that by using a ranking information in the so-called cobase (common knowl-

edge) they can obtain a reasonable decoding of an enthymeme (given that an agent could decode

an enthymeme using another formula than the original used by the proponent of the arguments).

Further, they say that if the recipient and the proponent have identical common knowledge, then

the intended argument is one of the decodation [67]. They evaluate enthymemes in terms of quality
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(premises of the intended argument follow the decodation) and efficiency (premises of the decoda-

tion follow the intend argument). Both evaluations allow us to measure the mutation occurring in

arguments during the processes of dialogues. However, as mentioned by the authors, to measure

mutation in their work it is necessary for the proponent to send the intend argument to the recip-

ient as well (or the recipient needs to send its decodation to the proponent). In our approach for

enthymemes, while we improve the computational and linguistic aspect of argumentation-based

dialogues using enthymemes, we guarantee that both sides of communication will have the same

understanding of what has been communicated, in which enthymeme will be decoded exactly like

the intended argument.

In [23], the authors investigate the use of enthymemes, following the work presented

in [67], in inquiry dialogues, showing that enthymemes can be managed by the agents involved

and how common knowledge can evolve through dialogues. That work seems very interesting,

given that the goal of participants in an inquiry dialogue is exactly to share knowledge, in order

to jointly construct arguments. In that work, they emphasise that “while humans are constantly

handling examples using enthymemes, the logical formalisation that characterises the process re-

mains underdeveloped” [23]. Although the work is concerned with agent-human and human-agent

communication through enthymemes, we take some inspiration from [23] in our work. Such work

started in [22], but without any reference to enthymemes. The authors state that the decodifica-

tion is not guaranteed given that agents may have different views on what constitutes common

knowledge. The process is only guaranteed when agents have identical beliefs. Our work dif-

fers from [23], given that we are interested in agents constructing and exchange enthymemes as

a means to make agent communication computationally more efficient, while [23] aimed to al-

low agents to construct enthymemes together. However, our work takes into consideration some

definitions presented in [23], as well as the concepts presented in that work.

In [76], the authors argue that the term “enthymeme” could be misinterpreted from Aris-

totle. The real meaning of enthymeme could be arguments based on defeasible generalisations.

However, considering that the term enthymeme is well established in logic as an argument with

missing premises, the authors suggest to maintain that definition, but with the following qualifica-

tions: (i) taking into account arguments with missing premises or conclusions that are based on

argumentation schemes that are defeasible (instead of only deductive arguments); (ii) considering

current work that already treats enthymemes using defeasible argumentation schemes; (iii) keeping

in mind Burnyeat’s theory that Aristotle was well aware of the importance and uses of defeasible

argumentation schemes. Note that our work considers both views of enthymemes, i.e., the implicit

information pointed out by the critical questions of an argumentation scheme, as well as explicit

premises of arguments omitted when their represent shared knowledge.

In [154], the author says that his three previous papers described below are the three

main principles to develop a dialectical theory of enthymemes (including argumentation schemes,

arguer’s commitments, and common knowledge).
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• In [158], the author showed how enthymemes are often based on implicit premises that can

be classified as falling under the heading of common knowledge. The work shows several

examples of enthymemes that are found in ordinary conversational argumentation. Also,

it shows that implicit premises based on common knowledge can be commonly founded in

argumentation, although the author did not propose a solution for the inherent problem of

enthymemes.

• In [157], the authors showed how argumentation schemes could be applied to an argument

found in the text of a discourse. Also, they show how an argumentation scheme can be

used to reveal implicit premises needed to make the argument fit the requirements of the

scheme. This method of reconstructing enthymemes was shown to be valuable in revealing

the needed premises in an argument with implicit premises, even though it was conceded

that it did not provide an automated enthymeme system that could be mechanically applied

to a given argument in the text of a discourse to reveal any implicit premises or conclusions

in the given argument.

• In [155], the author surveyed research on common knowledge in artificial intelligence, show-

ing how argumentation and common knowledge work together.

In [154], Walton presented a model of dialogues, including a common knowledge database

with the propositions that no agent would dispute, or have any interest in disputing, given that

such information is widely accepted as being true, or at any rate are not widely subject to doubt

or disputation. The common knowledge database is described as domain-dependent because what

is taken to be common knowledge varies widely depending on the context of the dialogue [154].

According to the authors, the model proposed in [154] has three of the four necessary components.

The model has: (i) the set of locution rules, dialogue rules and commitment rules; (ii) a set of

propositions the participant agrees to be common knowledge; and (iii) a set of propositions for

each participant representing the explicit and implicit commitments. The missing components in

the framework, as described by the author [154], are the set of argumentation schemes representing

a wide variety of types of arguments used in everyday conversational argumentation, including

defeasible schemes as well as deductive and inductive ones. Our work is inspired by Walton’s

work, but here in the multi-agent system context. Thus, the common knowledge data base Walton

refers to in his approach, here is the organisation knowledge, which no agent should dispute. Also,

we propose an infrastructure to share argumentation scheme in multi-agent systems, making all

agents aware of this set of reasoning patterns, which is a direction pointed out by Walton.

In [77], the author points out that there may be different reasons for an agent not to

share some part of its knowledge (i.e., using enthymemes), such as some cost on the communica-

tion process. Also, the author says that “if missing formulae to complete the enthymeme are not

part of the agent’s beliefs, then it will use a badly completed enthymeme in her argumentation

framework” [77]. This shows the main problem in using enthymemes, given that the nature of

arguments and attacks is not absolute; it depends on the agent’s beliefs and on its way to complete
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enthymemes. The work in [77] is based on the approach to deductive arguments [18, 21] and claims

that under the assumption that the agents share all their knowledge and beliefs, the personal

beliefs of the agents can be represented as additional arguments and we could obtain a single

argumentation framework like in Dung’s work [45], representing the whole information about a

topic, reaching the acceptable conclusion from that. However, the author thinks that this assump-

tion is too strong for at least three reasons. The author thinks that there may be technical issues

with this information sharing, for example, there may be some cost on communication between

agents, or the global amount of information in the network may be too important to be stored in

a centralized way. Also, for strategical reasons, agents may choose not to share their knowledge

and beliefs. In that work, the author argues that the approach in [67] has two main problems:

(i) the mapping of common knowledge by an Agent A describes the perception that agent A has

of its common knowledge with the other agent. If this perception is wrong, then there could be

some exchange of enthymeme that the other agent cannot decode accurately; (ii) even with a good

evaluation of the common knowledge by such perception of common knowledge, the choice of a

bad threshold could also lead to enthymemes that the other agent cannot decode. They argue that,

in realistic situations, agents do not share all their knowledge and beliefs [77]. In our approach for

enthymemes, we considered the authors perceptions [67], in which we developed an approach that

avoids the problems mentioned in [67].

In [24], the authors claim that whilst humans are constantly handling examples based

on enthymemes, proposals for logic-based formalisations of the process remain underdeveloped.

Arguing also that deciding how to construct or deconstruct enthymemes is difficult, and proposals

for logic-based formalisations of the process remain also underdeveloped. They define properties

that characterise aspects of relevance theory (in particular, the idea that an argument is relevant if

it maximises cognitive effect whilst minimising cognitive effort) and show that these properties hold

for their system of enthymemes. The authors assume that an agent will prefer to use inferences

step that require less cognitive effort, so if different conclusions could be taken from the same

enthymeme, an agent is able to consider that the others will use the inferences that require less

cognitive effort. When an agent receives an enthymeme missing the claim (conclusion), then it looks

for the highest ranked parts of its cobase (common knowledge) to try to find a way of meeting the

most pressing required information it can, given the premises that have been provided and the

shared knowledge. The authors conclude the paper saying that “argumentation is an important

cognitive activity that needs to be better understood if we are to build intelligent systems better

able to deal with conflicts arising in information and between agents”.

In [157], the authors investigate the role of argumentation scheme in enthymemes recon-

struction. The study shows that for the ten analysed case studies, they require a less strict standard

of reasoning that is defeasible in nature. One possible solution to the enthymeme problem (fill the

missing premises) is to make the best interpretation possible (to reconstruct the best/stronger ar-

gument possible); however, this could make a (originally) weak argument stronger, which may be
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distorting it. We took the same directions pointed out in [157], but here, considering a framework

for argumentation schemes in multi-agent systems.

6.3 Data-Access Control

In [43], the authors propose a persuasion protocol (also described as an information-

seeking protocol by the authors) for access authorisation. In that work, a server and a client

argue about seeking and granting authorisation to access some information source. The scenario

presented in [43] is based on two agents, a client and a server, where the client tries to access some

information held by the server agent and the server agent tries to convince the client agent that

it cannot give to it the access. In [43] a permission is denoted by a function perm(y, x,ϕ), which
returns 1 when y can give access to agent x the content of information ϕ, and 0 otherwise. The

link between permissions and arguments is made by defining arguments about to give access to

information or not, i.e., defining a tuple 〈A, y , x ,ϕ, i〉 with A the argument for (when i = 1) or

against (when i = 0) a given permission. In addition, the authors, in [43], describe that a consistent

permission should respect the following constraints: (i) y need to has the control of ϕ; (ii) arguments

for and against permission respect the defeat relation; and (iii) the permission is supported by at

least one acceptable argument.

An important consideration comparing our work with [43] is that our work does not aim

to allow agents to change the permissions. It only allows agents to perceive a wrong classification

of the request or an emergency situation in which such access should be granted. In contrast, [43]

describes that an information ϕ has been provided because: (i) the client agent had the permission;

or (ii) the client agent did not have the permission, but a persuasion has occurred, all arguments

and counter-arguments related to the permission have been exchanged, and the server agent has

decided to change the permission the client agent has. We argue that an agent should not be able

to change the permissions in a MAS in such easy way.

In [28], the authors investigated argumentation-based reasoning for access control in

the context of agents negotiating access to resources or web services in virtual organisations. In

particular, the authors describe an approach in which the parties are able to negotiate about which

policy to apply, given that it is possible to have more than one way to achieve a security goal.

The authors describe that a formal framework for negotiation about data access control needs:

(i) a formal representation of the language (arguments about access control); and (ii) a formal

representation of the possible moves (request, grant, challenge, defend, etc.) and a interaction

protocol to specify the sequences of moves are allowed. Thus, the authors address the formalisation

of arguments about interactive and declarative access control situations.

In [42], the authors describe an architecture, communication language and protocol for

regulated exchange of information between police officers. Such interactions are negotiation with

embedded persuasion dialogues. Considering that in many organisation information has to be
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exchanged and such activity is normally regulated by law, that approach aims to allow agents

interact to promote optimal information exchange while respecting such law. Following [42], the

problem of regulated information exchange has two sides (i) one the one hand, the privacy of

the persons who are the subjects of the information must be protected; one the other hand, the

legitimate interest of the exchanging institutions must be served. Also, while some institutions

have as a goal to share and acquire as much information as possible, other institutions have the

goal to protect as much information they can in order to protect their own objectives. In the most

cases there is a central institution (e.g., the state, the mother company, etc.) which aims to optimal

and legitimate information exchange between such institutions, from where several conflicts of

interest arise from those diverging goals. Also, the authors describe that, for example, some

police departments are reluctant to share investigation information with other departments, even

if the sharing of information is allowed. Thus, that work aims to develop automated support for

information-exchanging police officers.

In [73], the authors argue that when users’ privacy constraints are distributed (most of

the cases), the transactions have effects on others and preserving the privacy is more difficult

than the ones managed by single users. Thus, they modelled different users from social network as

agents, representing their privacy rules, and using argumentation-based reasoning agents to decide

whether content should be shared or not. In that work, each agent in the system is equipped with

an ontology and the semantic rules that capture its user’s privacy constraints, thus when a user

decides to put up a content online, the user’s agent contacts all those other agents relevant to

the content (tagged or mentioned people) to request permission. Each user’s agent evaluates the

request, and if the content is acceptable, then the content can be shared online. In the case an agent

has a concern (the user’s privacy constraints are violated), it starts a persuasion dialogue to solve

the conflict of opinion. Using an argumentation engine based on assumption-based argumentation

(ABA), the authors propose a distributed argumentation for privacy, which they called PriArg.

The basic idea is that agents can exchange argument until all involved agents decide to stop

presenting arguments, and the ABA engine checks if the resulting conclusion is to share or not the

post1. Other works towards privacy negotiation in social networks are: [86, 140].

1We quote the following sentence from that work: “In systems, where transactions are managed by a single user,
such as e-commerce systems, preserving privacy of the transactions is merely the capability of access control” [73].
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7. CONCLUSION

In this document, we presented a complete (formal and implemented) framework for

reasoning and dialogues in multi-agent systems using argumentation schemes. As it can be seen in

the relevant literature on argumentation, the studies of argumentation schemes (and enthymemes)

in multi-agent systems are still very recent and it is considered as an underdeveloped area. The

framework described in this document presents three main contributions to the literature on multi-

agent system and argumentation, corresponding to the chapters 3, 4 and 5.

First, in Chapter 3, we introduced a formal consideration of argumentation schemes

in multi-agent systems, including: (i) two alternative ways to represent these reasoning patterns

into multi-agent systems, extending the organisational specification in such systems with a new

dimension for argumentation schemes or sharing argumentation schemes using semantics data-

bases (ontologies), respectively; and (ii) an internal representation for argumentation scheme in

Jason agents, which allows them to instantiate arguments from such reasoning patterns using the

knowledge available to them. To the best of our knowledge, this work is the first to introduce a

formal e general approach for argumentation scheme in multi-agent systems.

Second, in Chapter 4, we extended our previous work on argumentation-based reason-

ing in order to consider argumentation schemes. That is, we extended the argumentation-based

reasoning mechanism developed in [109, 101] in order to consider the internal representation of

argumentation schemes in Jason agents. Thus, using the extended argumentation-based reasoning

mechanism, agents are able to instantiate arguments from the argumentation schemes and other

knowledge available to them (which we called acceptable instances of argumentation schemes).

Then, agents are able to check the acceptability of those arguments, considering the constella-

tion of arguments they are able to construct, and the attack relations among such arguments.

After, we showed the generality of our framework representing various argumentation schemes

from different areas in the literature and implementing agents able to reason about those domains.

Further, in order to show how argumentation schemes could be modelled for a particular applica-

tion domain, we investigated the problem of data access control in multi-agent systems, proposing

argumentation schemes that interface agents might use to make decisions about sharing or not

information that has been requested. In this exercise, we show a complete process of knowledge

engineering towards modelling argumentation schemes for data access control. Furthermore, we

evaluated the implementation of the extended argumentation-based reasoning mechanism in or-

der to show how the use of nested argumentation scheme (i.e., argumentation schemes in which

premises of arguments are inferred using others argumentation schemes) has influence on the time

necessary to agents reach a particular conclusion. This evaluation is very useful to help develop-

ers on choices they will make when modelling argumentation schemes in our framework. To the

best of our knowledge, the extended argumentation-based reasoning mechanism we developed is

the first implemented mechanism that considers a general structure of argumentation schemes in

agent-oriented programming languages. That is, agents are able to reason over any argumenta-
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tion scheme structured in our framework, as well as they are able to reason over any number of

argumentation schemes.

Third, in Chapter 5, we described the link between argumentation schemes and dia-

logues. We started describing the main speech-acts used in the literature of argumentation-based

dialogues and our previous work defining the operational semantics for those speech-acts [108, 111].

We also described artifacts we implemented to support argumentation-based dialogues in multi-

agent systems. After, we discussed how the particular structure of argumentation schemes allows

agents to execute extra moves in argumentation-based dialogues, using the critical questions re-

lated to each argumentation scheme. Those extra moves might be considered when defining

protocols for argumentation. In order to evaluate our framework in the dialogue perspective, i.e.,

to evaluate the support that our framework provides when defining and implementing different

protocols for argumentation, we have formally defined and implemented two different protocols

using our framework. For each protocol, we ran some experiments using different agents’ con-

figurations. Our experiments show that our framework is general enough to implement different

scenarios of argumentation found in the literature, reaching the same conclusions presented by

the authors of those scenarios. Also, considering some characteristics in our framework, we in-

vestigated how agents could use more rational communications through using enthymemes, i.e.,

how agents can rationally omit shared knowledge during communication. Our experiments show

that we are able to reduce considerably the amount of content that agents communicate during

argumentation-based dialogues using our approach for enthymemes in multi-agent systems. These

results are important mainly when considering multi-agent systems that run in distributed envi-

ronments using restrict network infrastructure. To the best of our knowledge, our work is the

first framework to support the implementation of protocols for argumentation, based on argumen-

tation schemes, in multi-agent systems, as well as the first general approach for enthymemes in

multi-agent systems.

7.1 Extensions and Future Work

In the previous chapters, we presented only part of the work we have made on argu-

mentation and multi-agent systems. For simplicity and readability, we presented only the core of

our framework, and we are going to shortly discuss some of the extensions we have developed

in this section. The main extensions focused on (i) using different meta-information available in

multi-agent systems to calculate the strength of arguments, defining preferences between argument

in argumentation-based reasoning and dialogues; and (ii) the modelling of other agents’ mental

attitudes in order to take advantage of that information in argumentation-based dialogues;

In a series of papers [82, 83, 85, 84, 107], we have investigated how our approach

for argumentation-based reasoning in multi-agent systems, presented in Chapter 4, could be ex-

tended in order to consider preferences between arguments. We noted that there are many meta-

information produced into multi-agent systems that could be used to calculate a degree of truth to
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each piece of information that agents acquire during their execution. Thus, we proposed an ap-

proach in which agents consider different meta-information to calculate a degree of truth on their

beliefs. After, based on this degree of truth on their beliefs, they are able to calculate the strength

of each argument they are able to construct using that information. Comparing the strength of

arguments, agents are able to define preferences between arguments, deciding conflicts they could

not decide without preferences. The main idea in that extended version of our work is that agents

will prefer arguments constructed from more updated information, as well as information from

more trustworthy sources (agents, sensors in the environments, themselves, etc.). Also, considering

agents that define preferences between arguments based on the sources of information used in

those arguments, we have proposed a strategy that agents could use during argumentation-based

dialogues [112]. In that work, we propose that agents might construct more appropriate arguments

to a particular recipient if they consider who are the sources of information the recipient trusts.

Also, in a series of papers [96, 95, 134], we have investigated how agents can model

other agents’ mental attitudes in order to use this model to take advantage of their opponents

during communication. Those studies focused on an interesting topic of research called Theory of

Mind, in which an agent is not only able to model other agents’ minds but also to simulate other

agents’ reasoning over that model. Thus, an agent is able to anticipate the consequences of saying

something during a dialogue. We have used a simplified version of these studies in [112], in which

agents model how much other agents trust each other, in order to construct more appropriate

arguments depending on who is the recipient and the recipient’s view on trustworthy sources.

Besides the extensions briefly discussed, there are many directions for the research we

described in this document. The main directions are listed below:

• Human-computer Interaction: arguments from our approach can be easily translated to

text and/or voice, requiring only an HCI interface in our framework. This direction for

our research might allow us to implement different kinds of applications in which such

interaction is necessary, e.g., health care application for people with disability, applications to

support learning, Ambient Intelligence, and many others. Also, using enthymemes in human-

computer interaction seems a very interesting topic of research, given humans normally

communicate enthymemes [156]. It could allow us to implement more rational and efficient

communication between humans and computers, in which only the necessary information

for a mutual understanding is communicated.

• Explainable AI: One of the greatest challenges to the Artificial Intelligence community to-

day is to develop more transparent techniques [133], in which humans are able to understand

a decision made by a machine, for example. There are many scenarios in which artificial in-

telligence will be useful only when transparent methods could be implemented, e.g., support

to diagnostics in hospitals, autonomous vehicles, decision-making in critical environments,

and many others. As we can easily note, argumentation provides a mechanism that, based

on acceptable arguments, allows agents to make decisions, and those decisions can be easily
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explainable to humans, in which the agent only need to present the arguments used to sup-

port that decision. Our framework allows us to implement applications in which agents are

able to explain their decision-making and beliefs. In future work, we intend to implement

such applications.

• Ranking Semantics: the literature of argumentation has discussed the so-called ranking

semantics, in which arguments are ranked from the most acceptable to the weakest argu-

ment [5]. Our research regarding preferences between arguments seems to be related to

ranking semantics. In our future work, we intend to investigate this relation.

• Theory of Mind and Enthymemes: a likely direction for our research is combining our

approach for theory of mind in multi-agent systems [95, 96, 134] and our approach for

enthymemes. Thus, agents could acquire a model of other agents’ mental attitudes, e.g.,

beliefs, and according to this model, they might be able to decide which information they

share, omitting such information during communication.

• Applications and Interfaces: as described in this document, our main goal was to de-

velop a complete framework for argumentation schemes in multi-agent systems. Using this

framework, we are able to implement different applications and interfaces. For example, as

described in Chapters 4 and 5, we have modelled argumentation schemes that can be used

to implement argumentation-based interface agents for data access control. In our future

research, we intend to improve this implementation in order to make it widely applicable, as

well as we intend to use our framework to implement applications and interfaces, focusing

on the social good.

7.2 Publications

We have published the following papers related to the research presented in this docu-

ment:

• In [99], we provide an overview of the complete framework for argumentation scheme in

multi-agent systems presented in this document.

• In [102], we describe the extended organisational specification presented in section 3.1.

• In [109, 101], we present the development of the argumentation-based reasoning mechanism

described in Chapter 4.

• In [108, 110, 111, 106], we present the formal semantics of speech act for argumentation-

based dialogues in agent-oriented programming languages, and a brief description of the

artifacts implemented to support argumentation based dialogue in multi-agent systems, also

presented in Chapter 5.
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• In [103, 98], we present our approach for enthymemes in multi-agent systems, also presented

in Section 5.6.

• In [100], we present the modelling of argumentation schemes for data access control, also

presented in Section 4.5.2.

• In [104, 105], we present an abstract multi-level semantics model used to formalise state

transitions in multi-agent systems. This semantics provides an independent view of different

levels of abstraction in multi-agent systems, the same idea was used in the formal semantics

presented in Section 5.1.

• In [107, 82, 83, 85, 84], we present the extended version of the argumentation-based reason-

ing mechanism presented in Chapter 4, in order to account preferences between arguments.

In [112], we propose strategies agents can use against agents that define preferences between

arguments based on the trust relations they have in a multi-agent system.

• In [95, 96, 134], we present an approach for Theory of Mind in agent-oriented programming

languages, in which agents are able to model other agents’ mental attitudes during com-

munication. This approach will be combined with our work on enthymemes in our future

research.

• In [49, 50], we propose an infrastructure to support shared semantics data bases (ontologies)

in multi-agent systems, which can be used to shared argumentation schemes as well as other

domain-specific knowledge when developing multi-agent system applications.

• In [150], we propose an extended agent architecture for the DBI model, in which agents can

execute argumentation-based reasoning using a particular scheme based on the Taulmin’s

model for argumentation.
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