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ANALISE DE SIMULAÇÕES REMD PARA PREDIÇÃO DE ESTRUTURAS DE
PROTEÍNAS PARA REDUZIR O VOLUME DE DADOS ANALÍTICOS

RESUMO

Proteínas executam um papel vital em todos os seres vivos, mediando
uma série de processos necessários para a vida. Apesar de existirem
maneiras de determinar a composição dessas moléculas, ainda falta-nos
conhecimentos suficiente para determinar de uma maneira rápida e barata a
sua estrutura 3D, que desempenha um papel importante na suas funções.
Um dos principais métodos computacionais aplicados ao estudo das
proteínas e o seu processo de enovelamento, o qual determina a sua
estrutura, é Dinâmica Molecular. Um aprimoramento deste método,
conhecido como Replica Exchange Molecular Dynamics (ou REMD), é capaz
de produzir resultados muito melhores, com o revés de significativamente
aumentar o seu custo computacional e gerar um volume muito maior de
dados. Esta dissertação apresenta um novo método de otimização deste
método, intitulado Filtragem de Dados Analíticos, que tem como objetivo
otimizar a análise pós-simulação filtrando as estruturas preditas
insatisfatórias através do uso de métricas de qualidade absolutas. A
metodologia proposta tem o potencial de operar em conjunto com outras
abordagens de otimização e também cobrir uma área ainda não abordada
por elas. Adiante, a ferramenta SnapFi é apresentada, a qual foi designada
especialmente para o propósito de filtrar estruturas preditas insatisfatórias e
ainda operar em conjunto com as diferentes abordagens de otimização do
método REMD. Um estudo foi então conduzido sobre um conjunto teste de
simulações REMD de predição de estruturas de proteínas afim de elucidar
uma séries de hipóteses formuladas sobre o impacto das diferentes
temperaturas na qualidade final do conjunto de estruturas preditas do
processo REMD, a eficiência das diferentes métricas de qualidade absolutas
e uma possível configuração de filtragem que utiliza essas métricas. Foi
observado que as temperaturas mais altas do método REMD para predição
de estruturas de proteínas podem ser descartadas de forma segura da
análise posterior ao seu término e também que as métricas de qualidade
absolutas possuem uma alta variância (em termos de qualidade) entre
diferentes simulações de predições de estruturas de proteínas. Além disso,
foi observado que diferentes configurações de filtragem que utilize tais
métricas carrega consigo esta variância.

Palavras-Chave: Replica Exchange Molecular Dynamics, Predição de
Estruturas de Proteínas, Filtragem, Métrica de Qualidade



ON THE ANALYSIS OF REMD PROTEIN STRUCTURE PREDICTION
SIMULATIONS FOR REDUCING VOLUME OF ANALYTICAL DATA

ABSTRACT

Proteins perform a vital role in all living beings, mediating a series of
processes necessary to life. Although we have ways to determine the
composition of such molecules, we lack sufficient knowledge regarding the
determination of their 3D structure in a cheap and fast manner, which plays an
important role in their functions. One of the main computational methods
applied to the study of proteins and their folding process, which determine its
structure, is Molecular Dynamics. An enhancement of this method, known as
Replica-Exchange Molecular Dynamics (or REMD) is capable of producing
much better results, at the expense of a significant increase in computational
costs and volume of raw data generated. This dissertation presents a novel
optimization for this method, titled Analytical Data Filtering, which aims to
optimize post-simulation analysis by filtering unsatisfactory predicted
structures via the use of different absolute quality metrics. The proposed
methodology has the potential of working together with other optimization
approaches as well as covering an area still untouched at large by them to the
best of the author knowledge. Further on, the SnapFi tool is presented, a tool
designed specially for the purpose of filtering unsatisfactory structure
predictions and also being able to work with the different optimization
approaches of the Replica-Exchange Molecular Dynamics method. A study
was then conducted on a test dataset of REMD protein structure prediction
simulations aiming to elucidate a series of formulated hypothesis regarding
the impact of the different temperatures of the REMD process in the final
quality of the predicted structures, the efficiency of the different absolute
quality metrics and a possible filtering configuration that take advantage of
such metrics. It was observed that high temperatures may be safely
discarded from post-simulation analysis of REMD protein structure prediction
simulations, that absolute quality metrics posses a high variance of efficiency
(regarding quality terms) between different protein structure prediction
simulations and that different filtering configurations composed of such
quality metrics carry on this inconvenient variance.

Keywords: Replica-Exchange Molecular Dynamics, Protein Structure
Prediction, Filtering, Quality Metric
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1. INTRODUCTION

Understanding biological mechanisms and processes has a major impact
on the scientific community, enabling the research of new drugs, early
prediction of diseases related to genetic disorders and novel treatments for
previously cryptic diseases and resilient infections. Biological
macromolecules known as proteins are the primary components of cell
structures and have a pivotal role in their function, executing and
intermediating a myriad of biological processes. Knowledge of the structure,
dynamic and functions of such molecules can greatly enhance our
understanding of living beings, from small to large, some of which posses a
much higher control of natural phenomenons such as aging, illnesses, etc.
Although there are experimental ways to determine the biological function of a
biological molecule, this functional analysis cannot describe the physical and
chemical behavior native to a molecule. Some times the molecule chemical
composition itself (such as electrical charge, pH, etc) does not fully determine
its biological function. Studying the tridimensional structure of such molecules
has a lot of advantages therefore. In fact, there were 12 Nobel Prizes in
chemistry and physiology or medicine awarded for work in this field from
1956 to 2006. Almost one in four chemistry prizes since 1956 have been for
structure work. [Mic07].

Every protein is formed by a sequence of 20 different amino-acid residues
that, by interacting physicochemically, form its unique 3D structure. These
sequences, translated from the DNA, may be retrieved from the GenBank
[Ben17] at not cost over the Internet. The three-dimensional structures of
these sequences, on the other hand, are not so abundant. While some of
them may be obtained from a few databases around the world, most notably
the Protein Data Bank (or PDB) [Ber00], the majority of these structures are
still unknown to us. Currently, there are around 96 million non-redundant
unique proteins sequences. (BLAST, accessed September 15th, 2016) [Alt90].
However, in PDB, we only find around 123,837 proteins’ 3D structures. By
eliminating redundancy by filtering similar structures, only 1,375 different
protein folds are obtained (PDB Statistics, accessed Sept 11th, 2017).

There is a large gap between our capability of generating new protein
sequences and our capability of solving the 3D structure of new proteins, with
different protein folding from those already known [Pav11]. An important tool
to reduce this gap is Structural Bioinformatics. Structural Bioinformatics, as
defined by Luscombe et al., is “conceptualizing biology in terms of
macromolecules (in the sense of physical-chemistry) and then applying
“informatics” techniques (derived from disciplines such as applied maths,
computer science, and statistics) to understand and organize the information
associated with these molecules, on a large-scale.” [Lus01]. Structural
Bioinformatics, an important subarea of Bioinformatics, aims to understand
how a protein reaches its 3D structure from just its amino-acid sequence. This
problem is called the Protein Structure Prediction problem (or PSP), which
emerged more than 60 years ago. Although progress has been made, it still
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unsolved at large. Given its biological importance and NP-Complete
complexity, the protein structure prediction (or PSP) problem is one of the big
challenges of modern science [Cre09, Dil12].

There are experimental techniques available to determine a protein
structure with a high degree of precision. Among these are Nuclear Magnetic
Resonance (NMR) spectroscopy and X-ray crystallography. These techniques,
however, are costly both in matters of time and money. They also require an
specialist who known the techniques in length. Faster and cheaper ways to
achieve the same, or at least similar results, are in great need for the scientific
community.

Seeking to solve the PSP problem, a series of computational methods are
being proposed and/or enhanced. Among these are the homology modeling
[Mar00], fold recognition [Ale95, Söd05, Käl12], de novo methods [Sim99,
Zha05, Lam16] and the ab initio methods [Che05, Jay06]. Between those
cited, the ab initio methods, while not the most precise, are the only ones that
are able to result in novel protein folding patterns [Flo06]. That is because they
use only the primary amino acid sequence of a protein and attempt to
simulate its folding process in complex software packages. Molecular
Dynamic (MD) methods are used for this, which calculate every atom
movement and interaction between other atoms in the system with a series of
variables such as the atoms force fields and interatomic potentials. These
methods result in one or several predictions for the native structure of the
simulated protein, that is, the 3D structure of the protein found in nature and
usually the most physically stable.

The main problem with common MD methods is that the energy
landscape of proteins is far from being a perfect parabola. The true nature of
the energy landscape of the proteins is very rough [Fra91], due to this and
aided by the fact that in conventional MD methods the system temperature
remain constant, the predicted protein conformations tend to get trapped in
one of several local minimums. This impair the capacity of the method to have
the desired sampling efficiency. Beyond that, the temperature chosen for the
simulation has a large impact on the results, as in high temperature a larger
degree of movement is present in the atoms, making them less prone to
converge into a stable structure. On the other hand, low temperatures cause
the simulations to converge too rapidly in local minimums, never reaching
better structural conformations.

The REMD (Replica-Exchange Molecular Dynamics) was designed to
solve this problem with a few modifications. Firstly, several different replicas
would be simulated in parallel at different temperatures, and these replicas
can exchange their system temperatures at fixes intervals. Secondly, the
Monte Carlo method is used to enable detrimental movements in the energy
landscape as a mean to overcome peaks separating local minimums from the
global minimum [Han97, Sug99]. The REMD method is being increasingly
more used over the last few years, specially in studies of specific protein’s
folding and dynamic [Sue03, Sei05, Lei07, Xu08, Lei08, Bec07, Kou10].

A significant drawback for this method, however, is that even with
powerful computers, the execution of this protein fold simulation algorithm
and the posterior analysis of the resulting data can take up to several weeks.
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If this time can be shortened, it could reduce both the computational and
personnel costs for future projects significantly.

Although the REMD method guarantee a wider sampling in the energy
landscape over conventional MD methods, which is generally a good thing to
have, the extra predicted structures are not necessarily closer to the native
structure of the target protein. Having this issue in sight, we decided to
develop a tool capable of receiving a large volume of predicted structures
(packed together in an ensemble file) from a finished REMD PSP simulation
aiming to predict a protein with a still undefined 3D structure and filter the
unsatisfactory predictions, that is, predicted structures distant from the native
structure of the protein. In order to do so, several absolute quality metrics are
used. Further information about these metrics are discussed in chapter 2.10.
Additionally, a study directed to determine the impact of the different
temperatures on the final quality results in each REMD replica was performed
as part of the test to find good filtering methodologies.

Although the idea is rather simple, no such tool was found in the literature
search performed, containing several different virtual databases with
extensive use by the scientific community. The proposed tool was also
modeled with the specific intent of working together with other optimization
techniques of the REMD method, proposed by several different authors. The
final output of the tool is an ensemble of predicted structures containing a far
lower ratio of unsatisfactory predictions. This ensemble can then be further
analyzed by specialized professionals to extract the best predicted structure,
that is, the prediction closer to the native structure of the target protein. The
smaller and filtered ensemble can make this process considerably faster, and
possibly with a higher degree of precision as well.

This dissertation presents the Snapshot Filtration (SnapFi) tool, which
purpose is to reduce the massive volume of data generated from a REMD
PSP simulation by means of filtering unsatisfactory structure predictions,
along with a filtering configuration composed by different absolute quality
metrics. It is also presented other techniques that can effectively filter
unsatisfactory predictions with an acceptable degree of precision. Although
this feature could not have being tested in full, it is also expected that the
proposed tool is capable of working together with several other REMD
optimization techniques. The tool is also capable of working with conventional
MD methods, given that it is properly configurated first.

In order to test possible filters for the SnapFi tool, a series of REMD PSP
simulations were used, kindly granted by Lipinksi-Paes and Norberto de
Souza [Lip17] through personal communication. The tested set of proteins
contained α, β and αβ proteins conformations. All simulations were performed
under 50 ns each. The solution structure of the human villin c-terminal
headpiece subdomain was used to test several preliminary hypothesis, some
even outside the proposed work spectrum of this dissertation, but whose
results are nevertheless worth reporting to future colleagues interested in
further studying it.

To verify the quality of the filters found and the efficiency of the SnapFi
tool, several different comparisons were performed, evaluating the divergence
between the final quality results (using both the RMSD and the GDT_TS score)
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between the initial ensemble and the final ensemble of predicted structures. A
comparison of the resulting quality of filtering the initial predicted structures
ensemble with each of the absolute quality metrics alone was performed as
well. Overall, the tested filtering methods could not achieve the desired
reduction of computational cost, but are capable of providing more reliable
results when comparing to simple filtering means (e.g. using a single absolute
quality metric to filter out unsatisfactory structure predictions).

1.1. Organization

This dissertation is organized in 8 chapters:

 The first chapter presents the introduction to the problem and an overall
description of the study performed.

 The second chapter contain the theoretical base required for the
understanding the performed study. Firstly, the proteins and their
composition are explained, followed shortly by a brief explanation of the
PSP problem. The computational methods for predicting the 3D
structures of proteins are then summarized. The Levinthal paradox is then
introduced followed by the explanation of Molecular Dynamics. The
Monte Carlo and replica exchange are then described. The AMBER14
software in then introduced. The biannual CASP conference is also briefly
described. Finally, different ways of evaluating a predicted protein
structures are presented.

 In the third chapter, the motivation and the objectives of this dissertation
are presented.

 Chapter 4 presents a detailed analysis of the related works pertaining
REMD PSP simulations optimizations.

 Chapter 5 contains the methodology used in this study, describing the
proteins tested, the REMD PSP test dataset used, and so on.

 The sixth chapter finally present the SnapFi tool along with the proposed
filter methodology and the results obtained from this study.

 Finally, chapter 7 presents the final consideration and the conclusions
extracted for this work.

 The last chapter contains the bibliography used in this study.
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2. THEORETICAL BASE

This chapter addresses a theoretical base on the main concepts that will
be used on this dissertation. Firstly, the concepts of proteins are addressed,
followed shortly by the PSP problem. In the sequel, the methods of PSP are
displayed with further details. Lastly, the protein structure quality metrics
used in this work are explained in an overall manner.

2.1. Proteins and their composition

Proteins are vital for all biological processes in our body. They mediate
virtually every process that takes place in a cell, exhibiting an almost endless
diversity of functions. They are the most abundant biological macromolecules,
occurring in all cells and all parts of cells. Not only abundant in quantity, they
are also abundant in variety, where thousands of different kinds may be found
in a single cell. All proteins of every organism, from the simplest bacteria to
human beings, are constructed from the same ubiquitous set of 20 amino
acids. Since each amino acid has a side chain with distinctive chemical
properties, this group of 20 precursor molecules may be regarded as the
alphabet in which the language of protein structure is written [Leh12]. All 20 of
the common amino acids are α amino acids. They have a carboxyl group and
an amino group bonded to the same carbon atom (the central α carbon). They
differ from each other in their side chains, or R groups, which vary in structure,
size, and electric charge, and which influence the solubility of the amino acids
in water. Figure 1 represents this common chemical structure of amino acids.
While there are more than these 20 types of amino acids, the other existing
amino acids are less common. Some of them are residues modified after a
protein has been synthesized and others are amino acids present in living
organisms but not as constituents of proteins [Leh12]. Figure 2 represents the
set of 20 different types of amino acids, grouped by electrical charge and
polarity.

To generate a particular protein, amino acids are covalently linked in a
characteristic linear sequence. The most remarkable aspect is that cells can
produce proteins with strikingly different properties and activities by joining
the same 20 amino acids in many different combinations and sequences.
From these basic building blocks of life, different organisms can make a wide
diversity of products as enzymes, hormones, antibodies, transporters, muscle
fibers, the lens protein of the eye, feathers, spider webs, rhinoceros horn, milk
proteins, antibiotics, mushroom poisons, and an infinite number of other
substances having distinct biological activities. Figure 3 depicts two amino
acids (Glycines) joining together to form a simple peptide (a dipeptide) via a
peptide bond. When many amino acids are joined together, the resulting
structure is called a polypeptide (Figure 4). A polypeptide with enough
molecular weights can be called a protein. Although there is no clear
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boundary to when a polypeptide is not a protein, a polypeptide is usually
addressed as a protein when its molecular weight is 10.000 or higher [Leh12].

Regarding the structure of the proteins, there are four defined hierarchy
levels (Figure 5). A description of all covalent bonds linking amino acids
residues in a polypeptide chain is the primary structure of a protein. In other
words, the primary structure of a protein can be defined as its amino-acid
sequence. The secondary structure of a protein refers to particularly stable
arrangements of amino acids residues that form recurring structural patterns.
The most prominent of those are α helixes and β sheets. Where a regular
pattern is not found, the secondary structure is sometimes referred to as
undefined or as a random coil. The tertiary structure describes all aspects of
the 3D folding of a polypeptide. Whereas the secondary structure refers to the
spatial arrangement of amino acid residues that are adjacent in a segment of
a polypeptide, the tertiary structure includes longer-range aspects of amino
acid sequence, i.e. amino acids that are far apart in the polypeptide sequence
and in other secondary structures. Finally, when a protein has two or more
polypeptide subunits, the arrangement of these protein subunits in 3D
complexes is referred to as quaternary structure [Leh12].

Figure 1 - Chemical structure of an amino acid, where R represents the side
chains. Regardless of the amino acid type, they all have the same base
structure: when un-ionized, a carboboxyl group (-COOH) and an amino group
( 

2NH- ) bond to the same carbon atom (the α carbon). The amino acid can
also assume a zwitterion (or hybrid) form, where the carboxyl group lose its
hydrogen atom (becoming COO-) and the amino group gain one (becoming


3NH ). As the α-carboxylic acid group is a weak acid and the α-amine group is

a weak base, the first form is rarely found in nature, being its zwitterion form
the most common of the two. The amino acids differ among themselves solely
by their side chains, also knows as the R group, which also bond to the same
central α carbon. Adapted figure from [Joh18].
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Figure 2 - The 20 different types of amino acids, classified according to
charge and polarity. Figure obtained from [Leh12].

Figure 3 - Two amino acids (Glycines) joining together to form a simple
peptide (a dipeptide) via a peptide bond. The excess atoms (H2O) join
together to form a water molecule, unbinding from their original amino acids.
Adapted figure from [Zim17].
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Figure 4 - A polypeptide structure diagram divided according to its amino acid
residues. Figure extracted from [Les05].

Figure 5 - Hierarchical levels of proteins, ranging from the simple primary
structure composed solely by amino acid sequence of the protein to the
quaternary structure, containing the arrangement of the subunits of the
protein and the position of all atoms in a 3D spectrum. Figure extracted from
[Leh12].

2.1.1. Primary structure of proteins

The primary structure of a protein is the description of all covalent bonds
(mainly peptide bonds and disulfide bonds) linking its amino acid residues in a
polypeptide chain [Leh12]. This amino acid sequence that define peptides
and proteins can be obtained through different methods such as mass
spectrometry [Ast19], Edman degradation (Edm50) or through the DNA
nucleotide sequence that code the protein [Leh12]. By convention, the
primary structure of a protein is reported starting from the amino-terminus (N)
end to the carboxyl-terminus (C) end.

Peptide conformation are also defined by three dihedral angles (also
known as torsion angles) called φ (phi), ψ (psi), and ω (omega), reflecting
rotation about each of the three repeating bonds in the peptide backbone
[Leh12]. The first two revolves around the N-Cα and the Cα-C, while the latter
revolves around the peptide bond. The side chain also posses torsion angles
that vary from residue to residue. These are called χ1 (chi1), χ2 (chi2), etc.
Figure 6 depict these torsion angles.
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Figure 6 - Schematic representing the torsion angles of a peptide. The φ and
ψ angles revolve around the N-Cα and the Cα-C atoms, while the ω angle
revolve around the peptide bond between the two amino acid residues. Figure
extracted from [Tie07].

2.1.2. Secondary structure of proteins

The secondary structure of proteins refers to the local spatial
arrangement of main-chain atoms, without regard to the positioning of its side
chains or its relationship to other segments [Leh12]. The secondary structure
also includes other forms of bonding between residues beyond the peptide
bonds, such as the hydrogen bonds. Among all the possible conformations
that the peptide structure can adopt, some are particularly stable and occur
on a regular basis in a wide gamma of different proteins. The most prominent
are the α helix and the β sheets conformations. These are called regular
structures (or regular patterns). These two patterns are particularly common
because they result from hydrogen bonds between the nitrogen and the
oxygen from the -NH and CO groups of peptide units, without involving the
side chain of the peptides. Although the hydrogen bond is a weak bond, their
high quantity grant great stability to these structures [Mac13]. These two
structures will be further discussed in the following sections. Where a regular
pattern is not found, the secondary structure is sometimes referred to as
undefined or as a random coil.

2.1.2.1. Alpha helix

The α helix (Figure 7) was the first regular structure theorized by Pauling
in 1948 and based on x-ray studies of animal hair, porcupine quills, silk, wool
and other materials performed by William Astbury and colleagues in the 1930
decade [Ast31, Ast33, Ast34, Ast35]. The model he theorized, and later
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confirmed in work with Corey and coworker Herman Branson [Pau51], was
the simplest arrangement the polypeptide chain can assume that maximizes
the use of internal hydrogen bonding. In this structure, the polypeptide
backbone is tightly wound around an imaginary axis drawn longitudinally
through the middle of the helix, and the R groups of the amino acid residues
protrude outward from the helical backbone [Leh12].

Figure 7 - Schematic of an α helix. The polypeptide chain adopts an
helical pattern around an imaginary axis with 3.6 amino acids per turn. The
hydrogen bonds between the main chain of the peptide units stabilize the
structure. The side chain protrude outward from the helical backbone. Figure
extracted from [Was17a].

2.1.2.2. Beta sheets

On their paper published in 1951 [Pau51], Pauling and Corey also
predicted another regular structure beyond the α helix. This structure was the
β sheet, which is also supported by hydrogen bonds created between the
main chain of the peptide units, but it adopts an extended conformations that
zigzags instead of forming an helix. The arrangement of several segments
side by side, all of which are part of the β sheet, resemble a pleated sheet.
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Hydrogen bonds form between adjacent segments of polypeptide chain
within the sheet, forming a planar structure. The individual segments that form
a β sheet are usually nearby on the polypeptide chain but can also be quite
distant from each other in the linear sequence of the polypeptide; they may
even be in different polypeptide chains. This fact alone make the β sheet a
difficult structure to be predicted using in silico methods.

The R groups of adjacent amino acids protrude from the zigzag structure
in opposite directions, creating the alternating pattern, never interacting
between themselves. Depending on the relative orientation of the β sheet
segments, it can be classified as either parallel or antiparallel (having the
same or opposite amino-to-carboxyl orientations, respectively). Their
structure is very similar, with minor changes regarding the repeating period of
the segments, where a parallel β sheet has a repeating period of 6.5 Å and the
antiparallel β sheet has a repeating period of 7 Å (The Ångström, Å, named
after the physicist Anders J. Ångström, is equal to 0.1 nm. Although not an SI
unit, it is used universally by structural biologists to describe atomic
distances—it is approximately the length of a typical CH or OH bond). The
hydrogen bonding patterns are also different, whereas the interstrand
hydrogen bond are essentially in line in the antiparallel β sheet and slightly
distorted or not in-line for the parallel variant [Leh12]. Figure 8 depicts both
variants of the β sheets.

Figure 8 - Schematic of both types of β sheets. (a) antiparallel β sheets.
(b) parallel β sheets. Figure adapted from [Leh93].

2.1.3. Tertiary structure of proteins

The secondary structure elements are in most cases too simple to
execute the complex functions of proteins. This requires a higher degree of
organization, which is achieved by the folding of the entire polypeptide chain.
[Kes10]. The result of this wide scale folding is called the tertiary structure of a
protein.
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The tertiary structure of a protein is, therefore, the representation of the
arrangements of secondary structures distributed in a 3D space. In short, the
protein tertiary structure is defined by its atomic coordinates. Whereas
secondary structure includes solely spatial arrangement of amino acid
residues that are adjacent in a segment of a polypeptide, tertiary structure
includes longer-range aspects of amino acid sequence such as the
interaction of atoms in different secondary structures. This structure level is
also called the native structure or functional structure of the protein, since the
function a protein fulfills is a direct consequence of its 3D structure [Kes10].

While secondary structures are similar in all proteins, there are countless
of different types of tertiary structures. The two most common forms of
experimentally determining the tertiary structure of a protein is using Nuclear
Magnetic Resonance spectroscopy and X-ray crystallography. As already
cited previously in Chapter 1, these processes are both time consuming and
very costly. Figure 9 depicts an example of the tertiary structure of a protein.

Figure 9 - Tertiary structure representation of a computationally designed
peptide extracted from the Protein Data Bank (PDB ID: 1PSV). The green helix
is an α helix, while the blue loop contains a β sheet.

2.1.4. Quaternary structure of proteins

Some proteins contain two or more separate polypeptide chains, or
subunits, which may be identical or different. The arrangement of these
protein subunits in 3D complexes constitutes quaternary structure [Leh12].
These subunits are kept together by means of non-covalent interactions
between the subunits, the same forces that maintain the tertiary structure of
the proteins stable [Mac13].
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An important example of a protein with a quaternary structure is the
Hemoglobin present in our blood (Figure 10), which consists of a tetramer,
that is, a protein structure containing four subunits proteins. In this case, four
globular proteins.

Figure 10 - Cartoon drawing and partial atom representation of the structure
of hemoglobin, composed by four equal globular protein subunits. Figure
extracted from [Was17b].

2.2. The proteins structure prediction (PSP) problem

The PSP problem is that of finding the native-like structure of a given
protein based on its amino-acid sequence only. The amino-acid sequence
and its resulting 3D structure are directly linked to the protein function. “[...]
each type of protein has a unique amino acid sequence that confers a
particular 3D structure. This structure, in turn, confers a unique function.”
[Leh12]. The exact amino-acid sequence of a protein is so important that a
single change in one of them can result in harmful and often severe
consequences. Thousands different human genetic diseases have been
traced to the production of defective proteins. The defect can range from a
single change in the amino acid sequence (as in sickle cell anemia) to larger
missing portions of the polypeptide chain (as in most cases of Duchenne
muscular dystrophy).

However, the prediction of the 3D structure of proteins and even
simplified approaches are, as shown by Crescenzi et al. [Cre09], an
NP-Complete problem. Throughout the past six decades, many different
algorithmic approaches have been attempted, and although progress has
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been made, the definitive solution to this problem remains a mystery. While
the general objective is to predict the 3D structure from the primary sequence
of a protein, our current knowledge, and computational power are simply
insufficient to solve a problem of such high complexity. Besides the efforts of
many different research groups, this problem, even after almost 70 years,
remains unsolved and still very pertinent to the society [Hel08]. Perhaps even
more now with the recent advances in pharmaceutical industry and the
identification of several new genetic related diseases.

2.3. Computational methods for predicting the 3D structure of proteins

Computational methods for protein structure prediction can be classified
into four groups according to Floudas et al. [Flo07]:

1. comparative modeling [Bia14, Mar00, Lyr14, Bra12];
2. fold recognition [Bow91, Jon92];
3. first principles methods with database information [Roh04, Sri95] and
4. first principles methods without database information [Osg00].

2.3.1. Comparative modeling

Comparative Modeling (or Homology Modeling) relies on the principle that
sequences which are related evolutionarily exhibit similar 3D folded structures,
that its sequence similarity suggests structural similarity [Flo07].

This approach is, currently, the method that yields the best results in the
PSP area for proteins with a reasonable evolutionary relation. It also confers a
significantly high accuracy compared to the other methods. The drawback of
Comparative Modeling is that, in order to use this approach, one must have a
good structural model, evolutionarily related to the target protein. Many times
it is not possible to have such structure at hand, making this approach limited
to a certain degree of proteins. Furthermore, this approach cannot result in
any novel protein folding as it relies on already existing folding methods. It
also does not confer the possibility to further study the folding process of the
given protein.

This method, in summary, is an excellent choice when the target protein
has a similar protein model, but a poor choice when targeting a novel protein
without any similar models. Examples of Comparative Modeling methods are:
SWISS-MODEL [Bia14], MODELLER [Mar00], ReformAlign [Lyr14] and
PyMOD [Bra12].

2.3.2. Fold recognition

Fold Recognition or Protein Threading, is relatively similar to the
Homology Modeling. It differs to the Homology Modeling because it does not
use a single homologous model protein, but rather a series of proteins with
similar sequence on particular points. That is, even if the target protein does
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not posses another model protein with a highly similar amino acid sequence
and resolved 3D structure, it could still have specific parts of its amino acid
sequence similar to specific parts of other proteins, which fold in a similar
form [Lev76, Flo06]. In such cases, the proteins are said to be remotely
homologous [Lip17].

It is based on the principle that the number of different folded proteins
structures is significantly more limited than the vast number of different
sequences generated out of genome projects [Lev76]. The method works by
trying to identify remotely homologous proteins within a collection of
candidates. When such proteins are identified, the sequence alignment
process begin, similar to the Comparative Modeling method. When it is not
possible to identify homologies by aligning pairwise sequences, the protein
threading technique is used [Jon92]. It then uses statistical data to predict the
correct fold of the protein according to the folding of others proteins with a
similar sequence that it was aligned.

The drawback, similarly to the Homology Modeling, is that this approach
relies on having proteins with similar amino-acid chains in some part [Lip17]. It
also relies on statistics and probability that do not guarantee to find the best
matches. Examples of Fold Recognition methods are: GENTHREADER
[Jon99], 123D [Ale95], ORFEUS [Gin03], PROSPECT (Protein structure
prediction and evaluation computer toolkit) [Xu00], Bio Shell-Threading
[Gni14], FFAS03server [Jar05], RaptorX server [Käl12], Phyre server [Kel09],
HHpred [Söd05], LOOPP server [Teo04], SPARKS-X [Yan11].

2.3.3. First principle methods with database information

The first principle methods (or ab initio methods) with database
information do not compare a target to a known protein directly, but rather
compare fragments, that is, short amino acid subsequences. These short
structures can be obtained from the Protein Data Bank [Ber00]. Once
appropriate fragments have been identified, they are assembled to a structure,
often with the aid of scoring functions and optimization algorithms.

The ab initio term refer to methods for structure prediction that do not use
experimentally known structures. The scoring functions resemble energy
functions, and the fragment assembly with optimization algorithms resembles
free energy optimization, therefore this type of method was given its own
distinct classification. This classification, however, is somewhat vague, as
already cited by Floudas and colleagues in [Lev76], and could (with a certain
debate) be incorporated as a specific type of Fold Recognition as fragment
assembly methods cannot be considered ab initio structure prediction
methods in the same strict sense as ab initio methods that are based on free
energy minimization.

Although the ab initio methods are significantly slower and less precise
than the other two categories presented, its main advantage is due to the fact
that they are capable of predicting novel folding as they are not bound by
known protein structures [Flo07]. Due to the fact that fragments are used for
comparison, when the first principle methods with database information result
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in novel foldings, these are direct results of the composition of motifs or
fragments of supersecondary structures of known structure [Tra07].

Examples of first principle methods with database information are:
TASSER e ITASSER [Roy10, Zha04], ROSETTA e ROSETTA@home [Roh04,
Sim99], FRAGFOLD [Jon01], CABS-Fold [Bla13], SIMFOLD [Chi03],
PROFESY (PROFile Enumerating SYstem) [Lee04], A3N (Artificial neural
network N-gram-based method) [Dor10a], CReF
(Central-residue-fragment-based method) [Dor10b], PEP-FOLD [Lam16],
BHAGEERATH [Jay06, Nar06] e QUARK [Xu12].

2.3.4. First principle methods without database information

The first principle methods (or ab initio methods) that do not rely on
database information attempt to predict protein structure make directly use of
the Anfinsen’s thermodynamic hypothesis [Anf73], which states that the
native structure of a given protein corresponds to its lowest free energy state.
“It is generally assumed that a protein folding sequence folds to a native
conformation or ensemble of conformations that is at or near the global
free-energy minimum” [Bra12].

These methods attempt to identify this lowest free energy state of the
target protein in its environment based on complex computational simulations
that employ the use of the laws of physics and using only its amino acid
sequence. The only additional information required by these methods beyond
the target protein’s primary structure is a suitable potential energy (or force
field) function. These functions describe the internal energy of the protein and
its interactions with the surroundings. Since predicting protein structures
generally involve many atoms, it is not yet feasible to treat these systems
using quantum mechanics. The problem, therefore, become much more
tractable when turning to empirical potential energy functions, which are
much less computationally demanding than quantum mechanics. These
potential energy functions posses a cutoff radius which measures in which
distance (in Ångströms) the interactions between atoms is calculated. The
greater the cutoff value is, the larger the number of interactions is calculated,
making the result more precise but significantly more costly in computational
terms.

Using such approaches comes at a cost however. As the developed force
fields distance from the real world physics (with yet unknown formula), the
results of the simulation do not converge to a single accurate result [Sto17].
Thus finding such functions can be considered one of the two main
subproblems for finding the correct native-like conformation for a given
protein. “[...] the problem of finding native-like conformations for a given
sequence can be decomposed into two subproblems: (a) developing an
accurate potential and (b) developing an efficient protocol for searching the
resultant energy landscape” [Bra12].

A number of laboratories across the world still research better potential
energy functions, which in turn are (generally) incorporated in the different
softwares solutions to this method that are usually developed by the same
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authors. Examples of developed force fields functions are: AMBER [Cor95],
CHARMM [Bro83], GROMOS [Chr05] e OPLS [Jor96].

Differently from the method with database information, the first principle
method without database information can result in truly unique protein folds.
Moreover, this method can be applied to any given target sequence using
only physically meaningful potentials and atom representations. These
advantages alone are enough reason to motivate its use. The main drawback
of this method, on the other hand, is that due to the large degree of freedom
to fold a protein, it must consider a massive number of possible
conformations. Even the simplest of proteins can demand a large computing
power, as the PSP problem was proved to be a NP-Complete problem
[Cre09]. This will be further discusses in section 2.4. With such a broad range
of targets and the inability to directly or indirectly apply database information,
these methods are the most difficult of the protein structure prediction
methods [Lev76].

Even though these methods are computationally demanding, first
principle structure prediction is an indispensable complementary approach to
any knowledge-based approach for several reasons:

1. In some cases, even a remotely related structural homologue may not be
available. In these cases, first principle methods are the only alternative;

2. New structures continue to be discovered which could not have been
identified by methods which rely on comparison to known structures.

3. Knowledge-based methods have been criticized for predicting protein
structures without having to obtain a fundamental understanding of the
mechanisms and driving forces of structure formation. First principle
structure prediction methods, in contrast, base their predictions on
physical models for these mechanisms. As such, they can therefore help
to discriminate correct from incorrect modeling assumptions, and to
deepen the understanding of the mechanisms of protein folding.

The filtering tool proposed in this work will focus on methods of this group.

2.4. The Levinthal paradox

The free energy landscape of large molecules like proteins is vast and
complex. There are many degrees of freedom and a myriad of possible
conformations it could adopt. According to Tramontano [Tra04]: “The number
of possible conformational states of a protein is enormous (at least 2100 for a
chain of 100 amino acids) and is therefore computationally intractable. In fact,
this observation is also relevant for the development of a folding theory as it is
obvious that a protein cannot explore such a large number of states in a
reasonable time frame, as required by the hypothesis that the native structure
is thermodynamically the most stable”.

To better illustrate this, for a protein to sequentially sample all its possible
conformational states at a rate similar to the observed protein folding rate,
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which is about 1 picosecond per state, it would take about 1038 seconds. To
have a perspective, the age of the universe is currently estimated to be 1017

seconds. This observation remain true even if the protein fold at a rapid rate of
nanoseconds. Contradicting the theory is that most small proteins fold
spontaneously within millisecond or even microsecond. Cyrus Levinthal
raised this problem first in 1968, in an attempt to explain that, rather than
sampling possible conformations randomly, nature search for “folding
pathways” to find the native state of a protein [Lev68].

This paradox was solved in 1992 by the folding funnel theory, which
explain that the loss of entropy of the energy chain is immediately
compensated by an energy gain [Leo92, Loc01, Nym98, Onu97, Soc98,
Wol97, Fin97]. The theory also allows to estimate a protein folding time in
agreement with experimental observations [Gal00]. Figure 6 depicts the
proposed energy landscape funnel.

Figure 11 - Energy landscape of a protein folding. The energy landscape is
“rough”, with several peaks and non-native local minimums in which partially
folded proteins (also called a Molten globule) can become trapped. According
to the Anfinsen’s thermodynamic hypothesis [Anf73], the native state of the
protein correspond to the global minimum of the energy landscape. Figure
obtained from [Spl17].

The funnel theory helped us better understand the pathway taken during
a protein folding process. However, simulating this folding process with ab
initio methods, even with simplified approaches, is a NP-Complete problem
as proved by Pierluigi Crescenzi and colleagues [Cre09]. Many researches
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around the world are still attempting to solve this problem or at least find an
alternative viable solution to it. While the general objective is to predict the 3D
structure from the primary sequence of a protein, our current knowledge, and
computational power are simply insufficient to solve a problem of such high
complexity. Besides the efforts of many different research groups, this
problem, even after almost 70 years, remains unsolved and still very pertinent
to the society [Hel08]. Perhaps even more now with the recent advances in
pharmaceutical industry and the identification of several new genetic related
diseases.

2.5. Molecular dynamics

The first Molecular Dynamic (or MD) method was published on 1959 by
Alder and Wainwright [Ald59] and later by Rahman [Rah64] in 1964. In most
MD simulations, the trajectories of atoms and molecules in the system are
determined by solving Newton’s equations of motion for a system of
interacting particles using potential energy (or force field) functions.
Unfortunately, as our capacity to simulate quantum mechanics is still out of
our computational capabilities, these in silico simulations are not 100%
accurate. Long MD simulations can generate errors in numerical integration
that accumulate as the simulation continues. There are way to minimize this,
but not eliminate them entirely.

MD simulations also require a simulation medium (i.e., a solvent). A series
of different solvation models were then developed. They not only enable MD
simulations, but also enable thermodynamic calculations applicable to
reactions and processes which take place in solution, including biological,
chemical and environmental processes [Sky15]. There are 3 different types of
solvation models, each with own pros and cons:

1. Explicit Solvation Models provide the most descriptive and realistic
models for the solvent, where its molecules are explicitly described in the
simulation system with determined position, rotation, charge, etc. This
impacts in a large increase to the degrees of freedom of the system and
thus significantly impact the computational costs of the (already costly)
simulation.

2. Implicit Solvation Models provide the system with a reasonable
description of the solvent behavior and are generally computational
efficient. They consider the solvent as a continuous isotropic medium with
the underlying assumption that the solvent molecules themselves may be
removed from the system if the continuous medium replacing them
sufficiently represents equivalent properties. These models, however, are
not as precise as the explicit solvation and fail to account for local
fluctuations in the solvent density.

3. Hybrid Solvation Models incorporate aspects of implicit and explicit
solvation models, aiming to minimize computational cost while retaining at
least some of the precise resolution of the solvent. Contrary to the other
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two solvation methods, these are specialized models built by extensive
research and vary considerably from one to another.

Despite high the computational costs and its inexact accuracy, MD
methods are still the most versatile in silico technique to study biological
macromolecules, and thus predict a protein 3D structure, to date. Molecular
Dynamics is what makes the ab initio methods possible. It also enables
otherwise impossible experiments, such as simulating a protein fold at
extreme pressures or temperatures. Beyond that, some proteins do not form
crystals or dense solutions, which are necessary for experimental protein
structure resolution. Additionally, experiments in vitro or in vivo can pose a
hazardous risk to health if poorly performed, adding to their already high
costs of time and money. The in silico approaches are an attractive solution to
these problems.

In 1977, McCammon and colleagues performed the first Molecular
Dynamic simulation involving proteins [Mcc77]. The team simulated the
bovine pancreatic trypsin inhibitor protein on a vacuum environment for
8,8e-12 seconds. Since then, MD techniques are being enhanced and, as a
consequence, the target proteins are both larger and more complex. The
advances in computers and parallel architectures also greatly contributed to
enable such simulations to be performed on a feasible time. They also made
possible for more realistic force fields functions to be used, which require a
longer processing time.

Molecular dynamics (MD) “has had a long history and has evolved into an
important and widely used theoretical tool that allows researchers in
chemistry, physics, and biology to model the detailed microscopic dynamical
behavior of many different types of systems, including gases, liquids, solids,
surfaces, and clusters.” [Tuc99]. While the majority of works still use MD
methods only as a mean of refining models [Dal12, Dor13, Jag08, Kri04,
Mar12, Mel12, Mir14, Par12, Lee02], it has gained more attention by the
scientific community after successful works which used MD to predict the
native structure of proteins such as [Dua98, Bow09, Zag02, Lei08, Lei09].

2.6. Monte Carlo

The simulation of a protein folding is a optimization problem. However,
simple optimization algorithms fail to solve it due to the rough nature of a
energy landscape of proteins. The local optimization methods identify in a
series of steps one path to the local minimum, and do not allow the function
value to increase at any stage [Zve08] (i.e., the free energy of the simulated
protein cannot increase at any given point). This means that energy peaks
cannot be crossed over. Therefore, when local running optimization
algorithms on an energy landscape, without means to overcome energy
peaks, the quality of the results depend solely on a favorable topology and a
“lucky start” of the starting point, when it is located inside the global minimum
energy valley. Observing Figure 12, it is possible to infer that only the P1

starting point will ever reach the global minimum A of the energy landscape
due to the energy peaks separating the starting points P2 and P3 from it.
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Figure 12 - Diagram illustrating a one-dimensional minima problem. The black
line represent the energy landscape of a protein obtained through an
hypothetical energy function. The points A, B and C represent local minima.
P1, P2 and P3 represent three different starting points on the energy
landscape. Figure adapted from [Zve08].

While it is possible to locate the global minimum with such methods, this
would require the method to be run several times using different random
starting points. Eventually one starting point would be withing the global
minimum energy valley and the function would correctly identify it. This
however, is intractable for a problem of such high complexity as the protein
structure prediction problem [Zve08]. As described in chapter 2.4, the number
of possible conformations a protein can adopt in its energy landscape is
simply overwhelming.

The Monte Carlo method address this issue by allowing movements
considered detrimental in the energy landscape. This freedom of movement
must be controlled however, as not to impair the ability of the method to
identify the global minimum in a reasonable time frame. Otherwise it would
behave exactly like running several local optimization methods hoping for one
instance to identify the global minimum, or in the worst case scenario
randomly walk in the energy landscape without direction. Detrimental
movements are then controlled by a probability function.

A folding state of a protein can be defined by the position of all atoms in
the system. It is possible to assign an energy value to this state by using a
suitable force field. Therefore we can determine an energy value to all
possible folding states of a proteins. When the system is in equilibrium, the
relative probability of any given state occurring is given by the Boltzmann

weighting
kTEe /1

, where E1 is the assigned energy value for that state, k is
the Boltzmann’s constant and T is the absolute temperature in Kelvins (K)
[Zve08]. The exact probability of state 1 occurring is given by dividing this by
the partition function Z (see EQ. 1), where M denotes the number of all states
accessible by the system.
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The probability of an state pi occurring is then defined by EQ. 2.
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While it is impractical to calculate the partition function Z, the Monte Carlo
method sidesteps this problem by looking at the ratio of probabilities for two
states. Considering two states S1 and S2, with assigned energy E1 and E2

respectively, the ratio of probabilities is given by EQ. 3.
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Therefore, with any given state S1 we can readily determine if an state S2

is more likely to occur at equilibrium. If ΔE21 is negative (i.e., state S2 has lower
energy) the EQ. 3 will result in a value greater than one (i.e., S2 is more likely
to occur) and the movement from the state S1 to the state S2 is accepted. On
the other hand, if the state S2 has a higher energy than state S1 (i.e., the
move is uphill on the energy surface) the above term has a value between 0
and 1. Instead of plainly rejecting the movement based on the detrimental
assigned energy value, a random number from a uniform distribution in the
interval 0 to 1 [Aba94, Zve08] is used to determine if the movement is
accepted or rejected. If the selected random number is less than the resulting
value from EQ. 3, then the movement is accepted (even if detrimental),
otherwise it is rejected.

This acceptance/rejection rule is called the Metropolis Criterion (or
Metropolis–Hastings algorithm), a sampling method created by Wilfred Keith
Hasting in 1970 [Has70], which is a generalization of another sampling
method introduced by Nicholas Metropolis and colleagues in 1953 [Met53].
Figure 13 illustrates this algorithm.

The Metropolis–Hastings algorithm works in a way that, as more sample
values are produced, the distribution of values more closely approximates the
desired distribution. For the PSP problem that is a distribution of assigned
energy converging to the global minimum. As the sample values are produced
iteratively, the distribution of the next sample is dependent only on the current
sample value. This makes possible to reconstruct the sequence of samples
into a Markov chain, which becomes particularly useful when proving the
correctness of the Monte Carlo method and variations.

By choosing movement via this criterion, the Monte Carlo method has the
requirements, under suitable conditions, to locate the global energy minimum,
which will be the state with the highest probability at equilibrium. The suitable
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conditions required is that movements are of appropriate magnitude to allow
efficient coverage of the available state (movements too far apart leaves gaps
in the energy landscape while movements too near can result in intractable
computational complexity). Another condition is that all the low energy states
can be accessible from each other without crossing unduly high energy
barriers [Zve08]. This latter condition can be diminished with the use of lower
movement steps, but this greatly increases the computational complexity of
the problem as already cited.

Figure 13 - Illustration of the Metropolis Criterion for the acceptance or
rejection of movements in the Monte Carlo method. Figure extracted from
[Zve08].

The Monte Carlo method proved to be an attractive solutions to the
research community to lighten the computational costs of classical MD
methods. Like conventional MD methods, the Monte Carlo method is also
employed on several steps of the prediction, serving on multiple purposes
such as refinement [Chi06, Ols14], predicting secondary structures [Hof14,
Lin12, Lin09a], predicting side chain conformations [Nag12] or effectively
attempting to predict the native structure of proteins [Lip17, Aba94, Car03,
Cho04, Gib01, Har02, Jay06, Lip12, Lip14, Nar06, Ped97, Zha07].

2.7. Replica-Exchange Molecular Dynamics

The Replica-Exchange Molecular Dynamics (or REMD) method, also
known as Multiple Markov Chain Method (or MMCM) or even parallel
tempering, was created by Sugita and Okamoto in 1999 [Sug99] as a
formulation for the MD algorithm using the replica exchange method, which



44

was originally proposed by Swendsen and Wang in 1986 [Swe86], extended
by Geyer in 1991 [Gey91] and latter developed by Hukushima and Nemoto in
1995 [Huk95].

Since then, this method has been used in several fields of the
bioinformatics area, including studies of structure-function relationship in
proteins [Mic15], DNA [Mac14], RNA [Ber13, Roe14], protein stability [Hat14],
folding dynamics [Eng13, Jan14, Xue15], and secondary structure prediction
[Zha15].

The main objective of the REMD method is to overcome multiple-minima
problem by exchanging non-interacting replicas of the system at several
temperatures [Sug99]. It works by simulating the protein fold of several
different copies of the target protein (also called replicas) in different
temperatures in a parallel and independent way (i.e., the simulations do not
influence each other). Some of these temperatures are way higher than those
found in living beings, but necessary to reach wider, more energetic, protein
structure conformations. A frequency rate stipulated by the user named EAF
(or Exchange Attempt Frequency), such as 1ps, defines the period rate in
which exchange attempts will be performed. At these events, adjacent
replicas attempt to exchange temperatures with each other. This prompt
replicas simulating in lower temperatures to acquire the energy necessary to
break energy barriers and therefore overcome local-minimum states, and
replicas simulating in higher temperatures to cool down and gradually
converge into a single stable structure. The simulation continues until a
certain number of steps (simulation time), or a certain degree of convergence,
is reached. Figure 14 exemplifies this process.

Figure 14 - Schematic of a REMD simulation. The colored lines represent the
different replicas being simulated through an MD software. T1, T2, T3 and T4

represent different temperature levels. At fixed period rates, adjacent replicas
attempt to exchange temperatures. Figure obtained from [Row01].

The theoretical basis for Monte Carlo simulations is the Markov chain
theory and, as already cited, the sequence of samples can be reconstructed
as a Markov chain. It is, therefore, desired that the configurations generated
by the Markov chain sample the Boltzmann distribution, after an initial
transient, “equilibration” period [Man99]. It is desired to sample the
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Boltzmann distribution as it describes that states with lower energy will have a
higher probability of occurring than states with higher energy [Atk09] (Figure
15).

Figure 15 - Graphical representation of several aspects of the Boltzmann
distribution. The x axis defines the free energy of states (i.e., adopted 3D
structure). The purple line represent the number of possible states in that
given energy value. The green line represent the probability of that given
energy occurring, which is a Gaussian distribution. Finally, the blue line
represents the probability of the state occurring in nature, where lower energy
states will have a higher probability of occurring than higher energy states.
Figure extracted from [Atk09].

Additionally, it is also desired that the limiting distribution of the Markov
chain exists and is unique (i.e., the distribution converge into a single unique
state) [Man99]. This result is assured if the Markov chain is regular and
satisfies the detailed balance condition [Par88]. Manousiouthakis and Deem
proved in 1999 [Man99] that a Monte Carlo simulation need only to abide by
the (weaker) balance condition (or BC) to be considered correct. The BC, in
turn, simply requires that a Boltzmann distribution is maintained at all times
[Lip17, Man99]. This proves that most Monte Carlo methods and hybrid
approaches are indeed capable of producing optimal results given enough
time.

The REMD method, which uses the Metropolis Criterion, not only
guarantee the balance condition, but also the detailed balance condition.
Sugita and Okamoto described in their paper [Sug99] that the transition
probability of an exchange attempt must be the same that the probability of
accepting the inverse movement. This is show in EQ. 4, where  XWREM is
the product of all Boltzmann factors for each replica of the simulation for the
state X, and  'XXw  is the transition probability of state X to state X’. The
states of the REMD simulation are defined as the current coordinates and
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momenta for each replica being simulated. The product of all Boltzmann
factors is explained in deep at the original paper [Sug99], but can be roughly
translated as the weighted value of the probability of the state X occurring.

       XXwXWXXwXW REMREM  ''' (EQ. 4)

The transition probability of state X to state X’ is given by the Metropolis

criterion in EQ. 5, where
][i

mx labels the replica i with temperature m.
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The delta of EQ. 5 is given by EQ. 6, where k is the Boltzmann constant, T
is the temperature level m (in Kelvin), E is the energy assigned to the structure
i or j with its respective atom coordinates q.
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If the exchange attempt is successful, then the velocities of all the atoms
in the replicas are rescaled uniformly by the square root of the ratio of the two
temperatures described in EQ. 7, where p is momenta of atoms of their
respective structures.
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The REMD method defined that only replicas on adjacent temperatures
attempt to exchange temperatures since the fist term of the delta formula
(defined by the bracket in EQ. 6) decrease exponentially the acceptance ratio
of the exchange.

A variety of thermostats methods is also employed to control the energy
present in the replicas, in order to maintain a balance of total energy. Popular
thermostats used in REMD PSP simulations are the Anderson thermostat
[And80], the Berendsen thermostat [Ber84], the Nosé-Hoover thermostat
[Nos84, Hoo85], and the Langevin thermostat [Lon92].

The studies performed by Rosta, Buchete and Hummer [Ros09] have
concluded that the Berednsen thermostat produce a balance shift regarding
the folding states of predictions according to the temperature of the system,
pointing that the folded state is overpopulated by about 10% at low
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temperatures, and underpopulated at high temperatures. While this has an
undesired impact on certain aspects of the results such as the enthalpy of
folding [Ros09], this may contribute to better filtering the resulting ensemble.
This will be discussed latter on this work.

As the REMD method simulate the protein fold of the target protein on
several different temperature levels in an independent way, and also adding
the temperatures exchange process, relying on the convergence of the results
is virtually impossible. This is solved by taking “snapshots” of the simulating
structures as they fold and unfold. The rate in which these snapshots are
taken can be defined by the user, but the standard practice is taking a new
snapshot every picosecond.

Although the REMD method was proposed about two decades ago, it is
still one of the most used methods to simulate protein folding for its capability
of breaking free from local-minimum states and for generating a wider array of
structures compared to conventional simulation methods, making it a
valuable tool for the scientific community. Examples of researches which
used the REMD as the main form of predicting the 3D structure of a target
protein include [Urb08, Ho06, Fuk02, You03]. Beyond predicting the structure
of proteins, the REMD method is also employed on other areas such as
crystallographic structure refinement, geometric parameters optimization and
evaluation of the ligand-receptor interaction [Lip17].

The main drawback for this method, however, remains its high
computational costs. Both for simulating the protein fold as well as analyzing
its posterior results. While conventional MD methods can converge the fold
simulation process and result in a single prediction, the REMD method do not
share the same advantage. The solution of taking snapshots of the
predictions result in a large ensemble of predictions with size equal to EQ. 8,
where TTotal represents the total time of the simulation (in picoseconds),
PSnapshots represents period time in which snapshots are taken (also in
picoseconds) and Nreplicas represents the number of replicas used in the
simulation.

replicasSnapshotsTotal NPTS  (EQ. 8)

As an example, using only 10 replicas on a 50ns simulation (a short
simulation time given some larger proteins are found to fold in a timeframe of
seconds) and with a snapshot period of 1ps, the resulting ensemble of
predictions would contain around half a million entries. Arguably impossible to
be analyzed manually on a reasonable timeframe.

2.8. AMBER14

The AMBER [Cas05, Pea95, Amb17] is an example of molecular dynamics
simulation software package that can run and analyze MD simulations for
proteins, nucleic acids and carbohydrates [Lip17]. The package is composed
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of two parts: (i) a set of molecular mechanical force fields for simulations of
biomolecules and (ii) a package of simulations programs.

Generally, an AMBER simulation is composed of tree steps: (i)
configuration of the system; (ii) simulation; and (iii) trajectory analysis. The
AMBER also supports the MD simulation with explicit or implicit solvent
[Nym08], the latter usually having a significant lower computational costs
[Lip17]. The implementation of the implicit solvent models were developed
using the Poisson-Boltzmann equation and the Generalized Born
approximation model as basis [Onu02, Sti90], while the explicit solvent
models are treated by the Particle-Mesh Ewald (PME) method [Dar98]. This
work used the version 14.0 of the AMBER molecular dynamics package
[Cas14].

2.9. CASP: Critical Assessment of Structure Prediction

Every 2 years since 1994, the international community of proteins
structure prediction researchers assemble for the Critical Assessment of
Structure Prediction (or CASP) [Uni17]. In this conference, several different
methods of structure predictions are tested in a blind manner.

At the time that predictions are made, neither predictors or the organizers
and assessors know the structures of the target proteins. The targets for
predictions are either structures soon-to-be solved by X-ray crystallography
or NMR spectroscopy, or structures that have just been solved (mainly by one
of the structural genomics centers) and are kept on hold by the Protein Data
Bank. The only information predictions have is the sequence of amino acids
(or primary structure) of the target protein. Since its start, much has changed
on the CASP proceeding methodology, be it the evaluating methods or in the
participation categories. The latest instance of the CASP meeting happened
in 2016, labeled CASP12, where the assessment categories were divided as
follow:

1. High Accuracy Modeling: include domains where majority of submitted
models are of sufficient accuracy for detailed analysis. Established
numerical methods are used to evaluate main chain, side chains, atomic
accuracy, and contacts, as well as hydrogen bonds and covalent
geometry;

2. Biological Relevance: assess models on the basis of how well they
provide answers to biological questions. Target providers are asked to
say what questions prompted the determination of the experimental
structure, and the ability of models to provide answers to those questions
are compared with the extent to which the experimental structure can do
so in addition to assessing aspects of accuracy that include sequence
alignment, backbone accuracy, and side chain placement;

3. Topology: assess domains where all submitted models are of relatively
low accuracy using the established CASP metrics together with assessor
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judgment;

4. Data Assisted: assess how much the accuracy of models is improved by
the addition of sparse data. Targets for which such data are available are
re-released after initial data independent models have been collected,
together with the available data. Data types need to include simulated and
actual sparse NMR data, crosslinking data, and low angle X-ray scattering
data;

5. Contact Prediction: assess the ability of methods to predict three
dimensional contacts in targets structures;

6. Refinement: analyze success in refining models beyond the accuracy
obtained in the initial submissions. Selected targets from among those
released in the main modeling experiment are included. Assessors select
one of the best models received during the prediction season, and reissue
it as a starting structure for refinement;

7. Assembly: assess how well current methods can determine
domain-domain, subunit-subunit, and protein-protein interactions;

8. Accuracy Estimation: assess the ability to provide useful accuracy
estimates for models at the overall, residue, and atomic levels.

Some of these categories are also divided between (a) human and (b)
server, as to minimize the impact of high end laboratories to less fortunate
research groups. Most of the quality metrics used to assess the quality of
predictions, which will be presented in Chapter 2.11, were extracted from this
important conference.

2.10. Ramachandran Plot

The Sasisekharan-Ramakrishnan-Ramachandran map (also known only
as Ramachandran map, diagram or plot), originally developed by
Ramachandran, Ramakrishnan, and Sasisekharan in 1963 [Ram63], is a
fundamental tool in the analysis of protein structures. It is a way to visualize
energetically allowed regions for backbone dihedral angles ψ against φ of
amino acid residues in protein structure based on the fundamental law that
two atoms can’t occupy the same space at the same time. This limit the
conformational angles that peptide bonds can adopt without atoms colliding
with each other into predictable bands.

There are four basic types of Ramachandran plots, depending on the
stereo-chemistry of the amino acid: generic (which refers to the 18
non-glycine and non-proline amino acids), glycine, proline, and pre-proline
(which refers to residues preceding a proline [Mac91]) [Ho05]. The ω angle at
the peptide bond is normally 180°, since the partial-double-bond character
keeps the peptide planar [Pau51]. For the ψ and φ angles, they can be
observed in Figure 16, depicting a Ramachandran plot for the general case.
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Because dihedral angle values are circular (i.e., 0° is the same as 360°), the
edges of the Ramachandran plot "wrap" around. Therefore, the small strip of
allowed values along the lower-left edge of the plot are a continuation of the
large, extended-chain region at upper left.

The Ramachandran plot is used as a way to assess protein structure
predictions and also as a component to absolute quality metrics which will be
described in chapter 2.11.2.

Figure 16 - A Ramachandran plot of the torsion angles that specify protein
backbone conformation, with the regions of probable alpha-helix and
beta-strand labeled as α and β respectively. The red lines denote favored
regions. Brown lines denote allowed regions. White regions are prohibited
angles conformations. Plot created based on the data-set of Lovell et al. 2003
[Lov03]. Figure obtained from [Dcr17].

2.11. Quality metrics

Quality metrics are the main form of evaluating a predicted protein
structure quality. They are divided into (a) Relative Quality Metrics and (b)
Absolute Quality Metrics. Depending on the protein structure, its parameters
and the availability of a model structure some metrics are best advised.

2.11.1. Relative quality metrics

Relative quality metrics refer to the quality metrics that use a model
structure of the target protein, often determined experimentally by NMR
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spectroscopy or X-ray crystallography, to calculate the quality of the given
prediction. These metrics are precise and result in a reliable assessment,
sometimes being used to test and compare novel absolute metrics. Although
there are several different relative quality metrics in existence, only 3 were
initially chosen to be analyzed in this work due to the limited time frame
available. Table 1 presents an abridged version of their functionality.

Table 1 - Functionality Abridgment of Relative Quality Metrics

Relative Quality Metric Functionality Abridgment
RMSD Measures the distance between same atoms of

two structures of the same protein.
GDT_TS Calculates the largest set of amino acid residues'

alpha carbon atoms in the model structure that
falls within a defined distance cutoff of their
position in the experimental structure.

QCS Attempt to mimic visual inspection by human
expert. Captures both global and local structural
features, with emphasis on global topology.

2.11.1.1. RMSD

The Root-Mean-Square Deviation (or simply RMSD) is a measure
originated from the statistic area and was latter adapted to bioinformatics. It is
used to compare two structures of the same protein by measuring the
distance between the same atoms of both structures.

The RMSD is the most commonly used relative quality metric. Possibly
because the result is a measure of length units in Ångströms (The Ångström,
Å, named after the physicist Anders J. Ångström, is equal to 0.1 nm. Although
not an SI unit, it is used universally by structural biologists to describe atomic
distances—it is approximately the length of a typical COH bond). Therefore it
is easy to interpret its results, where a larger RMSD value means the
predicted structure differs more from the model structure in terms of distance.
On the other hand, the lower the output value is, the closer the atoms are to
each other. Ultimately, the best possible output is 0, when both structures are
effectively the same when superimposed.

Equation EQ. 9 shows how the RMSD is calculated, were δ is the distance
between the atom i from the predicted structure and the same atom in the
model structure or the mean position of the N equivalent atoms.
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Often the RMSD is is calculated using only the backbone heavy atoms (C,
N and O atoms ), or even using solely the Cα atoms. It is also common that,
during the RMSD calculation, translations and rotations are performed on one
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of the structures with the intent of obtained the best superposition, which
minimizes the resulting RMSD value [Lip17]. Given two sets of n atoms v and
w, the RMSD is defined by EQ. 10.
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EQ. 10 can be further expanded into a more visible equation showed in
EQ. 11, where x, y and z denotes the position of the atom i in the Cartesian
coordinate system.
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2.11.1.2. GDT_TS

The Global Distance Test (or GDT_TS to represent “total score”, or simply
GDT) is used to measure the similarity between two structures of the same
protein, resulting a value between 0 and 1 (where 0 represents 0% similarity
and 1 represents 100% similarity). This metric was developed with the intent
of being more accurate than the common RSMD. As RSMD only measures
the rough mean distance between atoms, a completely different structure
from the native structure may have the same RSMD score than a very similar
structure, but with very distant end points from the native structure. The GDT
metric is more sensible to factors like these, recognizing outlier regions of
individual loop regions in a structure that are otherwise significant accurate
[Zem99, Zem03]. The GDT_TS is calculated using the formula show in EQ. 12,
where GDTPn is an estimation of the percent of residues that can fit under
distance cutoff <= n.0 Ångströms (1.0 Ångström for P1, 2.0 Ångströms for P2,
and so on) [Pre17a].

 
0.4

_ 8421 PPPP GDTGDTGDTGDTTSGDT 
 (EQ. 12)

2.11.1.3. QCS

The Quality Control Score (or simply QCS) is a method developed to
contribute to CASP in terms of automatic evaluation of predicted structures.
This score is deemed particularly useful to compare poor predictions.
According to its authors, the QCS metric reflects their manual evaluations
experience and aims to capture global features of models defined by the
mutual arrangement of secondary structure elements (or SEEs).
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The QCS is calculated using a weighted sum of six different scores (EQ.
13), where wn is a weight multiplier, SP is a score attributed to the position of
SEEs, SL is a score attributed to the length of SEEs, SH is a score attributed to
the handedness of SSE triplets (i.e., handedness defines the position of a
third SSE when two SSEs are being considered), SA is a score attributed to the
angle between SSE vectors, SI is a score attributed to the interaction between
SSE vectors and finally SC is a score attributed to the contact between all Cα

atoms. More information about individual scores can be found in the original
paper [Con11].
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Overall, QCS is in agreement with manual inspection and correlates well
with GDT_TS. However, QCS can reveal models with a better global topology
that are missed by GDT_TS. This metric is not only suitable to select
candidates for manual inspections in the CASP assessment, but also can be
useful as an independent and objective method to assess the quality of
structure prediction with emphasis on the global topology [Con11].

Although the QCS metric is used with frequency on the CASP conference,
it was deemed to be have an unnecessary degree of precision for testing the
SnapFi tool, where the simple RMSD and GDT_TS scores are both readily
available in the AMBER package and provide an output value more easily
interpreted by the vastness of the research community. While this metric was
presented among the others in the Plan of Study and Research of this work in
2016, it was ultimately discarded.

2.11.2. Absolute quality metrics

Absolute quality metrics refer to quality metrics that do not rely on model
structures. These metrics are especially important to evaluate the predictions
of ab initio methods, where an homologous (or even remotely homologous)
protein is not provided. Due to the lack of a 3D structure for comparison,
measuring a predicted protein structure’s quality becomes a complex task.

To perform such task, a standardized ranking method is then made
necessary. Many different absolute metrics for ranking predictions were
developed by several authors, each using different approaches and
mathematical formulas. These metrics are capable of distinguishing and
classifying different predicted structures through the assessment of different
properties of the structure such as the torsion angles of the amino acid
residues, a measurement of how “common” a stereochemical conformation is
compared to already known structures, comparisons with the native states of
other non-related proteins, etc. Because of that, different absolute quality
metrics tend to perform a better assessment of certain proteins types and
structures with certain conformations than others.
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Most absolute quality metrics, however, are based on potential energy
formulas. Most of them are measured in kcal/mol while others just denote
energy values without a proper unit. By using the Anfinsen’s thermodynamic
hypothesis [Anf73], that means that the lowest the value resulted from these
metrics, the better the predicted structure is.

In general, there are two types of potential energy functions for protein
structure prediction: physics-based and knowledge-based. Physics-based
potential functions are developed from ab initio quantum chemical
calculations, whereas knowledge-based potential functions are developed
from statistical analysis of known protein structures. The knowledge-based
potentials may be further divided into two categories: all-atom potentials and
coarse-grained (semi)-residue-based potentials [Lu08]. In many applications,
knowledge-based potential functions outperform the physics-based
potentials [Bra05, Sko06].

It is worth mentioning that absolute quality metrics are unable to classify a
predicted structure as the native state of the protein if one is made, contrary
to relative quality metrics. Although not having an optimal accuracy, they are
a viable alternatives for when the most accurate methods are unavailable due
to the lack of funds and/or time (since NMR and X-ray crystallography are
both expensive and time-consuming options, often demanding several weeks
or even months).

For this work, 8 different absolute metrics were chosen according to their
popular use and quality when evaluating predicted protein structures, and
also for their overall availability and facility of installation and use. Additionally,
the energy minimization of the predicted structures was also proposed to be
used as a way to assess the predicted structures during the course of this
study. The amount of metrics chosen was defined to fit in the time frame
available for this work. Table 2 presents an abridged version of their
functionality. Except for the GFactor and Probscore absolute quality metrics,
all scores are based on potential energy functions, which means that lower
score values are better than higher score values.

Table 2 - Functionality Abridgment of Absolute Quality Metrics

Absolute Quality Metric Functionality Abridgment
DFIRE An all-atom potential energy function based on a

distance-scaled, finite ideal gas reference state.
dDFIRE A “dipolar” DFIRE potential energy function

based on the orientation of angles involved in the
dipole-dipole interactions.

DOPE A potential energy function grounded entirely in
the probability theory, using probability density
functions (pdf).

GFactor A logs-odds score based on how “normal” a
given stereochemical property is.

GOAP A generalization of previous approaches of
orientation-dependant energy potentials that
consider only representatives atoms or blocks of
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side-chains and polar atoms.
OPUS-PSP An orientation-dependent statistical all-atom

energy potential derived from side chain packing.
Probscore A quality metric created based on three different

scores generated by the MolProbity service,
providing a single number that represents the
central MolProbity protein quality statistics.

RWplus A distance-dependent and
orientation-dependent potential energy
function that uses a random-walk ideal chain as
the reference state.

Minimized Energy The minimized energy of the structure calculated
using a potential energy function with the sander
module, both provided by AMBER 14.

2.11.2.1. DFIRE

The DFIRE is a distance-scaled, finite ideal-gas reference (DFIRE) state
proposed by Zhou and Zhou in 2002 [Zho02]. The ideal gas state used as a
basis to construct the DFIRE state is a theoretical gas state composed by
several randomly moving point particles whose only interaction is a perfectly
elastic collision. This theoretical state is useful due to it obeying the ideal gas
law first proposed by Émile Clapeyron in 1834 and presented in EQ. 14, where
P is the pressure of the gas, V is the volume of the gas, n is the amount (in
moles) of the substance, R is the ideal gas constant (equal to the product of
the Boltzmann constant and the Avogadro constant) and T is the absolute
temperature of the gas (in Kelvin). This simplified equation of state is useful for
facilitating simple analysis such as statistical mechanics, which in turn enable
the development of knowledge based energy potential formulas.

nRTPV  (EQ. 14)

The DFIRE reference state is used to construct a residue-specific
all-atom potential of mean force from a database of 1011 nonhomologous
(less than 30% homology) protein structures with resolution less than 2 Å.
This all-atom potential based on the proposed state is used as an absolute
quality metric (referred only as DFIRE in this work), which, according to the
authors, is able to recognize more native proteins than previously developed,
residue-specific, all-atom knowledge-based potentials.

2.11.2.2. dDFIRE

This quality metric is a “dipolar” DFIRE (dDFIRE) energy function based
on the orientation of angles involved in the dipole-dipole interactions
proposed by Yang and Zhou in 2008 [Yan08]. Each polar atom is treated as a
dipole and the orientation of the dipole is defined by the bond vectors that
connect the polar atom with other heavy atoms.
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The dDFIRE energy function is then extracted from protein structures
based on the distance between two atoms and the three angles involved in
dipole–dipole interactions. According to its authors “[...] it provides a
consistent treatment for the possible orientation-dependent interaction
between polar and nonpolar atom and between polar atoms and
non-hydrogen bonded. Moreover, an integrated treatment of distance and
angle dependence produces a parameter-free statistical energy function”
[Yan08].

2.11.2.3. DOPE

The Discrete Optimized Protein Energy (DOPE) is an atomic distance
dependent statistical potential created from a sample of native structures that
does not depend on any adjustable parameters. It was proposed by Shen and
Sali in 2006 [She06]. DOPE is based on an improved reference state that
corresponds to non-interacting atoms in a homogeneous sphere with the
radius dependent on a sample native structure; thus accounting for the finite
and spherical shape of the native structures.

The DOPE potential was extracted from a nonredundant set of 1472
crystallographic structures. It is grounded entirely in the probability theory,
using probability density functions (pdf). A series of these functions are
created and then paired to form joint pdfs. These joint pdfs are used in the
final DOPE formula that comprehends several mathematical steps, which are
explained in deep in the original paper [She06].

2.11.2.4. GFactor

The G-factor (referred as GFactor in this work) absolute quality metric
provides a measure of how “normal”, or alternatively how “unusual”, a given
stereochemical property is. It was published by Laskowski and colleagues in
1996 [Las96]. The properties for which GFactor is computed are the
combinations for each residue angles ϕ-ψ, the combination for each residue
χ1 - χ2 , and finally the residues’ χ1 values. It is essentially a logs-odds score
based on the observed distribution of these given properties in
high-resolution X-ray crystal structures.

A low G-factor score represents that the property corresponds to a
low-probability conformation while a high G-factor score represents a high
probability conformation. More precisely, values below −0.5 represent
unusual property where as values below −1.0 represent high unusualness
[Gan12]. Positive values, on the other hand, denote increasingly “regular”
conformations.

2.11.2.5. GOAP

The generalized orientation-dependent all-atom potential (GOAP)
absolute quality metric is a potential energy function proposed by Zhou and
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Skolnick in 2011 [Zho11]. It depends on the relative orientation of the planes
associated with each heavy atom in interacting pairs.

This metric is a generalization of previous approaches of
orientation-dependant energy potentials (such as DFIRE, DOPE, etc) that
consider only representatives atoms or blocks of side-chains and polar atoms.
It can be decomposed into a distance-dependent part, which is treated
identically as in DFIRE, and an angle-dependent part (denoted GOAP AnGular,
or GOAP_AG). More details about the GOAP_AG potential can be found in the
original paper [Zho11].

According to the authors “GOAP naturally integrates orientation
dependent polar atoms interactions, hydrogen-bonding, and side-chain
interactions”.

2.11.2.6. OPUS-PSP

The OPUS-PSP absolute quality metric is an orientation-dependent
statistical all-atom Potential derived from Side chain Packing (hence the PSP)
proposed by Lu, Dousis and Ma in 2008 [Lu08]. The side-chain packing is an
important determinants of protein structure, as sequence identities of all
polypeptide chains are solely designated by side-chains.

The basis of the OPUS-PSP hinges solely on side-chain packing
interactions described by a unique basis set of rigid-body building blocks.
This basis set is formed by decomposing the chemical structures of 20 amino
acid residues into 19 block types. An energy potential function is then
generated from the orientation-specific packing statistics of pairs of those
blocks in a non-redundant structural database.

The OPUS-PSP absolute quality metric was designed to bridge the gap
between all-atom and residue-based potentials and overcome a series of
drawbacks of both methods. Overall, this quality metric is a generally
applicable potential for protein structure modeling, specially for handling
side-chain conformations, one of the most difficult steps in high-accuracy
protein structure prediction and refinement.

2.11.2.7. Probscore

MolProbity is a general purpose web service created by several authors
[Che10, Dav07]. It is available at no costs at [Mol17]. One of its functions is to
provide broad-spectrum solidly based evaluation of structure quality at both
the global and local level for both proteins and nucleic acids. It relies heavily
on the power and sensitivity provided by optimized hydrogen placement and
all-atom contact analysis, complemented by updated versions of
covalent-geometry and torsion-angle criteria.

The aggregated MolProbity score (or MolProbity score), referred as
Probscore in this work, is an absolute quality metric created based on three
different scores generated by the MolProbity service, providing a single
number that represents the central MolProbity protein quality statistics. It is a
log-weighted combination of the clashscore, percentage Ramachandran not
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favored and percentage bad side-chain rotamers, giving one number that
reflects the crystallographic resolution at which those values would be
expected. Therefore, a structure with a numerically lower MolProbity score
than its actual crystallographic resolution is, quality-wise, better than the
average structure at that resolution. The formula to calculate the MolProbity
score along a brief description of its composing terms can be found at
[Pre17b].

2.11.2.8. RWplus

The RW potential is a distance-dependent atomic potential proposed by
Zhang and Zhang in 2010 [Zha10] that uses a random-walk ideal chain as the
reference state. An ideal chain (or freely-jointed chain) is the simplest model
to describe polymers, where it can be considered as the segments of an ideal
polymer and is defined by a random walk (i.e., random movement) in three
dimension space in which any kind of interactions among monomers is
neglected. The orientation-dependent all-atom potential energy function can
also capture the feature of side-chain packing such as the OPUS-PSP
absolute quality metric.

The RWplus is a hybrid energy potential composed of a distance
dependent energy term from the original RW and an implemented orientation
dependent term. 20 vector pairs were defined to describe the side-chain
orientation of 20 amino acids. The orientation term was then generated from
the orientation specific packing statistics of those vector pairs in a
nonredundant high-resolution structural database and used to built the
RWplus energy potential function.

Because the ideal chain has no amino acid-specific interactions between
the subunits but keeps the sequence continuity, it mimics the generic entropic
elasticity and connectivity of polymer protein molecules, which could not be
described by other reference states such as ideal gas systems used in DFIRE
and DOPE absolute quality metrics. As a result, the RW potential has a
steeper energy at short distances than these analytical energy potentials
functions, which helps the RW potential to capture strong signals at
short-range interactions. The hybrid potential RWplus was found to indeed
improve the ability of regular RW in recognizing the native-like structural
features.

2.11.2.9. Minimized Energy

The energy minimization of the structures was also proposed as a way to
assess the predictions of the simulations. In theory, the structure prediction
with lowest minimized energy would more closely match the native structure
of the protein considering the Anfinsen’s thermodynamic hypothesis [Anf73],
which states that the native state of the protein correspond to the global
minimum of the energy landscape (Figure 11).

The energy minimization is a form of geometry optimization in contrast to
molecular dynamics simulations. While the latter simulates the motion of
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molecules regarding several aspects like time, temperature, chemical forces,
velocities, the Newton’s laws of motion, among several others physical
properties, thus producing a trajectory of the folding pathway, geometry
optimization, on the other hand, aims to reach the global minimum
disregarding basic physical boundaries. While both could ultimately achieve
the same results, they arrive at it via different approaches.

The tleap module of AMBER 14 was used to generate the required input
files for the energy minimization and the sander module, also provide in the
AMBER, was used to calculate the minimized energy. The standard
configuration of the sander module use the gradient descent optimization
algorithm (Figure 17) to calculate energy minimization. This algorithm finds the
local minimum by utilizing an iterative method where each step is taken at the
direction of the negative function’s gradient (or at the approximate gradient),
which correspond to the direction closest to the minimum.

Figure 17 - Illustration of gradient descent on a series of level sets,
represented by the blue lines. The central point corresponds to the global
minimum of the function. The red arrows represent the 4 iterative steps taken
by the algorithm. Figure obtained from [Ale17].

The force field used to calculate the potential energy was the ff12SB force
field provided by AMBER 14. Most of the parameters needed for this process
were defined as the default values used in several tutorials of energy
minimization provided by AMBER and were the following:
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1. The maximum cycles of minimization (maxcyc) was defined as 1000
cycles. Although discovered that this value could be significantly lowered
after consultation with orienting professor Dr. Osmar Norberto de Souza, the
parameter was left intentionally high as a mean to evaluate the performance
difference between more or less energy minimization cycles. Due to the
results obtained, which will be discussed in chapter 6.6.2, running the energy
minimization with less steps became unnecessary.

2. The non-bonded cutoff (cut), that defines the radius (in Ångströms) in
which atomic interactions are computed, was defined as 9999 (effectively
infinite cutoff).

3. The maximum radius for generalized born (rgbmax) defines the
effective maximum distance for considering pairs of atoms to contribute to
the calculation of the effective Born radii. In short, it defines the threshold in
which the solvation interactions will affect the atoms of the system. The
default value of 9999 (effectively infinite cutoff) was used.

4. The implicit generalized born (igb) parameter defines which type (if
any) of generalized Born solvation model will be used. The value of 1 was
used, which correspond to the pairwise generalized Born solvation model
proposed by Hawkins, Cramer and Truhlar in 1995 [Haw95, Haw96].

5. The number to print progress (ntpr) value defines the number of steps
that must occur before the minimization progress is printed on the output file.
This value was set to 100 cycles.
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3. MOTIVATION AND OBJECTIVES

This chapter addresses the motivation for performing this work along with
the broad and specific objectives of the research.

3.1. Motivation

The PSP problem emerged in the 1960 decade [Anf73] and, until today,
no definitive solution has been found. Given the biological importance of
proteins and its NP-Complete complexity, the PSP problem is one of the big
challenges of modern science [Cre09, Dil12]. In a review published in 2012,
Dill and MacCallum [Dil12] emphasized the advances attained by the scientific
community across the globe regarding this area and the lingering importance
of newer and more accurate methods to predict the structure of proteins
based on their amino acid sequences.

Achieving such thing in a fast and cheap manner would enable research
groups to unveil still obscure processes of life, such as aging and memory
creation, as well as helping treat enduring diseases such as cancer or drug
resistant bacteria and viruses. Not to mention possible applications of great
impact for industries such as the biopharmaceutical and synthetic materials
industry. The increase of participants in the CASP conference every two years
is a strong indicator of the increased number of interested researches in
solving this problem.

While there are ways to experimentally determine the structure of proteins,
such as Nuclear Magnetic Resonance (NMR) and X-ray crystallography, these
methods are time-consuming, require specialized personal and are also very
costly. Beyond that, experiments in vitro or in vivo can pose a hazardous risk
to health if poorly performed. Faster and cheaper ways to achieve the same,
or at least similar results, are necessary. The in silico experimentation is an
attractive solution to these problems. The main problem with the in silico
approaches currently available is that, beyond not being 100% precise, they
also either fail to predict novel conformational folds, fail to search the energy
landscape of possible structure conformations in a acceptable time frame or
yield a massive amount of structure predictions which must be analyzed
posteriorly.

The REMD method is one of the best DM methods for simulating a protein
fold. Being able to predict novel protein folds as well as provenly being able to
locate the global energy minimum given enough simulation time. Its main
drawback fits the last category of the drawbacks of in silico methods: it yields
a massive amount of structure predictions which must be analyzed posteriorly.
If the time to analyze these structures can be shortened, it could reduce both
the computational and personnel costs for future projects significantly.

The main motivator for this work is, therefore, finding a way to alleviate
the analytical workload produced by such methods, preferentially without
significantly impacting its resulting quality.
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3.2. Broad Objectives

The broad objectives of this proposal are the creation of a tool that filters
out unsatisfactory protein structures predictions on REMD PSP simulations,
targeting to reduce the overall volume of data that need to be analyzed for
future studies based on this method.

3.3. Specific Objectives

The specific objectives of this proposal are the following:

1. Devise a method based on the cited quality metrics to limit the amount of
data that needs to be analyzed on REMD PSP simulations;

2. Devise a novel metric based on these results capable of extracting the
best structure, or an ensemble of best structures, from REMD PSP
simulations;

3. Test the devised methods on REMD PSP simulations;

4. Analyze the results compared to the existing literature.
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4. RELATED WORKS

There are many described works that aim to improve the time efficiency of
REMD PSP simulations. A pilot search were performed on the PubMed
database [Pub17], ACM Digital Library [Ass17], Wiley Online Library [Joh17],
IEEE database [IEE17] and the Google Academics search engine [Goo17]
using only the search string “REMD”. Results were filtered manually by the
author according to their relevance to this study. A total of 20 works were
gathered in this step and can be found in Table 3.

Table 3 - Pilot Search Results

Title Year Reference
Accelerating the replica exchange method through
an efficient all-pairs exchange

2007 [Bre07]

An improved replica-exchange sampling method:
Temperature intervals with global energy
reassignment

2007 [Li07a]

Optimization of replica exchange molecular
dynamics by fast mimicking

2007 [Hri07]

Hamiltonian replica exchange molecular dynamics
using soft-core interactions

2008 [Hri08]

Optimized Explicit-Solvent Replica Exchange
Molecular Dynamics from Scratch

2008 [Nad08]

Asynchronous Replica Exchange for Molecular
Simulations

2008 [Gal08]

TIGER2: An improved algorithm for temperature
intervals with global exchange of replicas

2009 [Li09]

Replica exchange simulation method using
temperature and solvent viscosity

2010 [Ngu10]

How hot? Systematic convergence of the replica
exchange method using multiple reservoirs.

2010 [Rus10]

Replica Exchange with Solute Scaling: A More
Efficient Version of Replica Exchange with Solute
Tempering (REST2)

2011 [Wan11]

Replica Exchange Statistical Temperature Molecular
Dynamics Algorithm

2012 [Kim12]

Superposition-Enhanced Estimation of Optimal
Temperature Spacings for Parallel Tempering
Simulations

2014 [Bal14]

Increasing the sampling efficiency of protein
conformational transition using velocity-scaling
optimized hybrid explicit/implicit solvent REMD
simulation

2015 [Yu15]

TIGER2 with solvent energy averaging (TIGER2A):
An accelerated sampling method for large molecular

2015 [Li15]
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systems with explicit representation of solvent
Greedy replica exchange algorithm for
heterogeneous computing grids

2015 [Loc15]

Improving the Replica-Exchange
Molecular-Dynamics Method for Efficient Sampling
in the Temperature Space

2015 [Che15]

Enhanced Conformational Sampling Using Replica
Exchange with Concurrent Solute Scaling and
Hamiltonian Biasing Realized in One Dimension

2015 [Yan15]

Accelerating molecular simulations of proteins using
Bayesian inference on weak information

2015 [Per15]

GENESIS: a hybrid-parallel and multi-scale
molecular dynamics simulator with enhanced
sampling algorithms for biomolecular and cellular
simulations

2015 [Jun15]

Large Scale Asynchronous and Distributed
Multi-Dimensional Replica Exchange Molecular
Simulations and Efficiency Analysis

2015 [Xia15]

From these 20 cited works, the common terms present in the abstract,
title and keywords fields, and also pertaining this described study, were
extracted. They were the following:

 Molecular Dynamics
 MD
 Simulation
 REMD
 Replica Exchange
 Sampling
 Optimization
 Filter
 Filtering

Based on these common terms, a refined search string using a Boolean
logic was built aiming to better filter the large amount of studies using the
REMD method:

(REMD OR replica exchange) AND (sampling OR optimization OR filter OR
filtering)

While regular Molecular Dynamics can also contribute to optimize the
REMD method, the usage of this term in the final search string massively
increased the amount of studies found to the point of becoming intractable to
analyze them in the available time frame for this work and it was, therefore,
discarded.

Using the presented final search string, an extensive search was
performed on the PubMed database [Pub17] as well as the ACM Digital
Library [Ass17], Wiley Online Library [Joh17], IEEE Xplore Digital Library
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[IEE17], Scopus database [Els17] and the ACS Publications database [Ame17].
These virtual databases are widely known among the scientific community
and largely used.

Searching for “Replica Exchange”, due to the Steeming process adopted
by the Wiley Online Library and the ACS Publications database which also
use variants of the word, would result in incorrect searches like “Replicated”
and the final ensemble would contain a massive amount of undesired works.
The term was then excluded from the search on these two databases.

A total of 2032 studies were found. Table 4 show the contribution of each
database to this total.

Table 4 - Number of Studies Found on Each Database

Database Number of Studies Found % of Total
ACM Digital Library 9 ≈ 0%
ACS Publications Library 651 ≈ 32%
IEEE Xplore Digital Library 21 ≈ 1%
PubMED Database 484 ≈ 24%
Scopus Database 674 ≈ 33%
Wiley Online Library 193 ≈ 10%

From this large portion of articles, book chapters and revisions, only a few
were chosen as related work to the described study. Regarding the
acceptance and rejection of the studies, the following criteria were used:

1. Only studies written in the English language were considered.

2. The title of the studies were read. Those considered completely out of
the scope of this work were rejected.

3. The abstracts were then read. Those considered out of the scope of
this work were rejected.

4. The full text of the remaining studies were then read and accepted or
rejected based on the following criteria:

a) Studies of MD directed to specific proteins or protein types were
rejected.

b) Studies which increased the quality output of the REMD method,
but not its computational cost were rejected.

c) The remaining studies which successfully decreased the
computational costs of the REMD or regular MD methods were
accepted.

After these criteria were applied, the remaining ensemble of studies was
significantly filtered and totaled 77 entries, in which only 56 were unique.



66

Table 5 show the exact contribution of each database to this total. Adding the
studies found in the pilot search to this ensemble, a total of 63 unique related
works were found.

Table 5 - Related Works Found for Each Database (Containing Duplicates)

Database Number of Studies Found % of Total
ACM Digital Library 2 ≈ 3%
ACS Publications Library 11 ≈ 14%
IEEE Xplore Digital Library 5 ≈ 7%
PubMED Database 27 ≈ 35%
Scopus Database 32 ≈ 42%
Wiley Online Library 0 = 0%

Although the idea for creating a tool capable of filtering an ensemble of
structure predictions based on existing absolute quality metrics is rather
simple, no such tool was found in the literature review performed. Several
different approaches to optimize the REMD method using both hardware and
software solutions were found however.

In order to better analyze the studies found, a simple classification form
was created based on the optimization approach of the REMD method. The
vast majority of the different correlated works found can be fitted into 3
distinct categories created by the author. Table 6 depicts the unique studies
found and their assigned optimization category.

Table 6 - Related Works with Assigned Optimization Category

Title Year
Optimization
Category Reference

Multiplexed-Replica Exchange
Molecular Dynamics Method for
Protein Folding Simulation

2003
Simulation

Convergence
Efficiency

[Rhe03]

A Novel Hamiltonian Replica Exchange
MD Protocol to Enhance Protein
Conformational Space Sampling

2006
Simulation

Convergence
Efficiency

[Aff06]

Improved Efficiency of Replica
Exchange Simulations Through Use of
a Hybrid Explicit/Implicit Solvation
Model

2006
Calculation
or Hardware
Efficiency

[Oku06]

Accelerating the Replica Exchange
Method Through an Efficient All-Pairs
Exchange

2007
Simulation

Convergence
Efficiency

[Bre07]

An Extremal Optimization Search
Method for the Protein Folding
Problem: The Go-Model Example

2007
Simulation

Convergence
Efficiency

[Shm07]

An Improved Replica-Exchange
Sampling Method: Temperature
Intervals with Global Energy

2007
Simulation

Convergence
Efficiency

[Li07a]
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Reassignment
Dynamics and Optimal Number of
Replicas in Parallel Tempering
Simulations

2007
Number of
Replicas
Efficiency

[Nad07a]

Folding Simulations with Novel
Conformational Search Method 2007

Number of
Replicas
Efficiency

[Son07]

Grid-Based Asynchronous Replica
Exchange 2007

Calculation
or Hardware
Efficiency

[Li07b]

Improving Convergence of
Replica-Exchange Simulations through
Coupling to a High-Temperature
Structure Reservoir

2007
Simulation

Convergence
Efficiency

[Oku07]

Molecular Dynamics Simulations Using
Temperature-Enhanced Essential
Dynamics Replica Exchange

2007
Simulation

Convergence
Efficiency

[Kub07]

Optimization of Replica Exchange
Molecular Dynamics by Fast Mimicking

2007 Special [Hri07]

Optimizing Replica Exchange Moves
For Molecular Dynamics 2007

Simulation
Convergence
Efficiency

[Nad07b]

Serial Replica Exchange
2007

Calculation
or Hardware
Efficiency

[Haf07]

Smart Resolution Replica Exchange:
An Efficient Algorithm for Exploring
Complex Energy Landscapes

2007
Simulation

Convergence
Efficiency

[Liu07]

A Global Optimization Scheme: Kernel
Replica Exchange Simulation Method
for Protein Folding

2008
Number of
Replicas
Efficiency

[Mu08]

Asynchronous Replica Exchange for
Molecular Simulations 2008

Calculation
or Hardware
Efficiency

[Gal08]

Fragment Replica-Exchange Method
for Efficient Protein Conformation
Sampling

2008
Number of
Replicas
Efficiency

[Suz08]

Hamiltonian Replica Exchange
Molecular Dynamics Using Soft-Core
Interactions

2008
Number of
Replicas
Efficiency

[Hri08]

Replica-Exchange Accelerated
Molecular Dynamics (REXAMD)
Applied to Thermodynamic Integration

2008
Simulation

Convergence
Efficiency

[Faj08]

Optimized Explicit-Solvent Replica
Exchange Molecular Dynamics from
Scratch

2008
Number of
Replicas
Efficiency

[Nad08]

Enhanced Conformational Sampling Of
Nucleic Acids By a New Hamiltonian

2009 Calculation
or Hardware

[Cur09]
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Replica Exchange Molecular Dynamics
Approach

Efficiency

Optimal Replica Exchange Method
Combined with Tsallis Weight
Sampling

2009
Simulation

Convergence
Efficiency

[Kim09]

TIGER2: An Improved Algorithm for
Temperature Intervals with Global
Exchange of Replicas

2009
Simulation

Convergence
Efficiency

[Li09]

How Hot? Systematic Convergence of
the Replica Exchange Method Using
Multiple Reservoirs.

2010
Simulation

Convergence
Efficiency

[Rus10]

Replica Exchange Simulation Method
Using Temperature and Solvent
Viscosity

2010
Number of
Replicas
Efficiency

[Ngu10]

Massively Parallelized
Replica-Exchange Simulations of
Polymers on GPUs

2011
Calculation
or Hardware
Efficiency

[Gro11]

Optimization of Monte Carlo Trial
Moves for Protein Simulations 2011

Calculation
or Hardware
Efficiency

[Bet11]

Replica Exchange with Solute Scaling:
A More Efficient Version of Replica
Exchange with Solute Tempering
(REST2)

2011
Number of
Replicas
Efficiency

[Wan11]

Coulomb Replica-Exchange Method:
Handling Electrostatic Attractive and
Repulsive Forces for Biomolecules

2012
Number of
Replicas
Efficiency

[Ito12]

Efficient Conformational Sampling in
Explicit Solvent Using a Hybrid Replica
Exchange Molecular Dynamics
Method

2012
Number of
Replicas
Efficiency

[Cha12]

Free Energy Guided Sampling
2012

Simulation
Convergence
Efficiency

[Zho12]

pH-Replica Exchange Molecular
Dynamics in Proteins Using a Discrete
Protonation Method

2012
Simulation

Convergence
Efficiency

[Das12]

Replica Exchange Statistical
Temperature Molecular Dynamics
Algorithm

2012
Number of
Replicas
Efficiency

[Kim12]

A Convective Replica-Exchange
Method for Sampling New Energy
Basins

2013
Simulation

Convergence
Efficiency

[Spi13]

A Framework for Flexible and Scalable
Replica-Exchange on Production
Distributed CI

2013
Calculation
or Hardware
Efficiency

[Rad13]

A Hadoop Approach to Advanced
Sampling Algorithms in Molecular

2013 Calculation
or Hardware

[Niu13]
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Dynamics Simulation on Cloud
Computing

Efficiency

Implementing Replica Exchange
Molecular Dynamics Using Work
Queue

2013
Calculation
or Hardware
Efficiency

[Smi13]

K MapReduce: A Scalable Tool for
Data-Processing and
Search/Ensemble Applications on
Large-Scale Supercomputers

2013
Calculation
or Hardware
Efficiency

[Mat13]

MuSTAR MD: Multi-scale Sampling
Using Temperature Accelerated and
Replica Exchange Molecular Dynamics

2013
Simulation

Convergence
Efficiency

[Yam13]

Optimization of Umbrella Sampling
Replica Exchange Molecular Dynamics
by Replica Positioning

2013
Simulation

Convergence
Efficiency

[Das13]

Accelerate Sampling in Atomistic
Energy Landscapes Using
Topology-Based Coarse-Grained
Models

2014
Simulation

Convergence
Efficiency

[Zha14]

Scalable replica-exchange framework
for Wang-Landau sampling 2014

Calculation
or Hardware
Efficiency

[Vog14]

Superposition-Enhanced Estimation of
Optimal Temperature Spacings for
Parallel Tempering Simulations

2014
Simulation

Convergence
Efficiency

[Bal14]

Theory of Adaptive Optimization for
Umbrella Sampling 2014

Simulation
Convergence
Efficiency

[Par14]

A Generic Implementation of Replica
Exchange with Solute Tempering
(REST2) Algorithm in NAMD for
Complex Biophysical Simulations

2015
Calculation
or Hardware
Efficiency

[Jo15]

A LAMMPS Implementation of
Volume–Temperature Replica
Exchange Molecular Dynamics

2015
Simulation

Convergence
Efficiency

[Liu15]

Accelerating Molecular Simulations of
Proteins Using Bayesian Inference on
Weak Information

2015
Simulation

Convergence
Efficiency

[Per15]

Asynchronous Replica Exchange
Software for Grid and Heterogeneous
Computing

2015
Calculation
or Hardware
Efficiency

[Gal15]

Conformational Sampling
Enhancement of Replica Exchange
Molecular Dynamics Simulations Using
Swarm Particle Intelligence

2015
Simulation

Convergence
Efficiency

[Kam15]

Enhanced Conformational Sampling
Using Replica Exchange with
Concurrent Solute Scaling and

2015
Number of
Replicas
Efficiency

[Yan15]
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Hamiltonian Biasing Realized on One
Dimension
GENESIS: a Hybrid-Parallel and
Multi-Scale Molecular Dynamics
Simulator with Enhanced Sampling
Algorithms for Biomolecular and
Cellular Simulations

2015
Calculation
or Hardware
Efficiency

[Jun15]

Greedy Replica Exchange Algorithm
For Heterogeneous Computing Grids 2015

Calculation
or Hardware
Efficiency

[Loc15]

Increasing The Sampling Efficiency of
Protein Conformational Transition
Using Velocity-Scaling Optimized
Hybrid Explicit/Implicit Solvent Remd
Simulation

2015
Calculation
or Hardware
Efficiency

[Yu15]

Improving the Replica-Exchange
Molecular-Dynamics Method for
Efficient Sampling in the Temperature
Space

2015
Calculation
or Hardware
Efficiency

[Che15]

Large Scale Asynchronous and
Distributed Multi-Dimensional Replica
Exchange Molecular Simulations and
Efficiency Analysis

2015
Calculation
or Hardware
Efficiency

[Xia15]

TIGER2 With Solvent Energy Averaging
(TIGER2A): An Accelerated Sampling
Method for Large Molecular Systems
with Explicit Representation of Solvent

2015
Simulation

Convergence
Efficiency

[Li15]

A Population-Based Conformational
Optimal Algorithm Using
Replica-Exchange in Ab-Initio Protein
Structure Prediction

2016
Simulation

Convergence
Efficiency

[Zha16]

Coarse kMC-based replica exchange
algorithms for the accelerated
simulation of protein folding in explicit
solvent

2016
Number of
Replicas
Efficiency

[Pet16]

Hadoop-Based Replica Exchange
Over Heterogeneous Distributed
Cyberinfrastructures

2016
Calculation
or Hardware
Efficiency

[Pla17]

Multiscale Implementation of
Infinite-Swap Replica Exchange
Molecular Dynamics

2016
Simulation

Convergence
Efficiency

[Yu16]

Walking Freely In The Energy And
Temperature Space By The Modified
Replica Exchange Molecular Dynamics
Method

2016
Simulation

Convergence
Efficiency

[Chen16]

Efficient Conformational Search Based
on Structural Dissimilarity Sampling:
Applications for Reproducing

2017
Simulation

Convergence
Efficiency

[Har17]
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Structural Transitions of Proteins

Many solutions that improve the efficiency of REMD simulations are
based on parallelizing the process (often by temperatures) on a computational
efficient grid or reducing the effort needed to compute the factors on each
step of the simulation. There are also methods that divide the workload of
each step by assigned a certain number of atoms and/or residues into several
different processors or even different machines. Both kinds of approaches are
usually fitted to run on large and powerful computational grids, often
designed specifically for this purpose, such as the Anton massively parallel
supercomputer [Sha07a]. There are also methods that rely on reducing the
computational burden of MD simulations, often grouping atoms into residues
or removing atoms deemed unnecessary for the final quality of the predictions.
While these cited methods achieve faster run simulations, they do not
significantly alter the REMD process itself in terms of replicas and total
simulation time. These optimization approaches were then labeled as
“Calculation or Hardware Efficiency”.

Methods within the “Number of Replicas Efficiency” optimization category
are the second largest group of the related works found. These approaches
(exclusive to the REMD method) aim to optimize the simulation by reducing
the amount of replicas that need to be run simultaneously without significantly
affecting the sampling efficiency, that is, the capacity of the replicas to reach
a wide array of potential 3D structures. By reducing the number of replicas of
a REMD PSP simulation, even if its only one, the computational cost is
significantly reduced (see EQ. 8). Disregarding the cost of posterior analysis,
these optimization approaches have greater impact on computer with lower
performance however, as a powerful enough computer (or cluster) capable of
simulating all replicas in parallel in a totally independent way is not really
affected by this optimization.

The number of existing works that use this approach to optimize the
REMD method is a strong indicator that the simulation process is somewhat
faulty at this point or at least lack refinement, that is, the number of replicas
that need to be simulated in a conventional REMD PSP simulation is greater
than the ideal number, or at least does not contribute significantly in terms of
satisfactory predictions. This idea will be brought back posteriorly in chapter
6.

Lastly, the vast majority of related works, reaching almost half the studies
cited, were classified within the “Simulation Convergence Efficiency” category.
This optimization approach is defined by slight modifications of the REMD or
regular MD methods aiming to increase the convergence of the system. The
computational gain in these approaches rely solely on reducing the total steps
(simulation time) of the system without significantly affecting the quality of the
resulting ensembles. This real computational gains of these approaches,
however, ultimately dependent on protein being simulated, as a protein fold
that does not converge easily will still have a high computational cost. On the
other side, running the simulation more rapidly, even its only a nanosecond,
result in a significant computational gain, especially in the REMD method (see
EQ. 8). These approaches, therefore, have the most significant impact of the 3
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categories. Figure 18 shows the exact distribution of the assigned categories
to the related works found.

Figure 18 - Pie chart of the optimization categories assigned to related works.
Plot created using the online Chart Tool [Zyg17].

Apart from these 3 categories, only a single study was found, marked as
“Special” in Optimization Category field of Table 6. This work uses the
approach of mimicking the REMD PSP simulation process in order to find
optimal configurations, as well as other useful information, for later real
simulations.

It is worth noticing that the cited works, except for 3 studies, were
published 10 years ago, and more than half of them just 5 years ago. That
means the problem of REMD simulations optimization is still a topic of great
interest in the research community and also a strong indicator that the
method still has room for more improvements.
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5. METHODOLOGY

This chapter will describe the methodology applied in this work regarding
the REMD PSP simulations test datasets used, software resources employed
and the how the relative quality metrics were calculated.

5.1. REMD PSP Simulations Test Dataset

In order to analyze possible ways to filters out unsatisfactory protein
structures predictions on REMD PSP simulations, a dataset of such
simulations was needed. Colleagues Lipinksi-Paes and Norberto de Souza
kindly granted part of the dataset used in their latest work [Lip17] (denoted as
F protocols) through personal communication, which contained REMD PSP
simulations of 9 different proteins.

The dataset of REMD PSP simulations contained proteins of α, β and αβ
conformations, all simulated using the pairwise generalized Born solvation
model proposed by Hawkins, Cramer and Truhlar in 1995 [Haw95, Haw96].
This solvation model is an implicit solvation models that significantly reduces
the computational costs of the simulations. The MD software used to simulate
the test dataset was the AMBER 14 [Cas14] with the PMEMD module, which
is an extensively-modified program provided by the AMBER package. This
module enables the use of Graphics Processing Units (or GPUs) to massively
accelerate MD simulations that use the generalized Born solvation model or
other specific explicit solvent models.

All the simulations of the test dataset started with the extended proteins’
structures constructed with the tleap module of AMBER, a basic preparation
programs for AMBER simulations. An initial step of energy minimization,
necessary to avoid errors during the protein fold, was also executed. The
simulations were then performed under 50 nanoseconds each, with a
snapshot frequency of 1 picosecond. The cutoff radius for calculating the
potential energy of the structures was defined as the fixed value of 8.0 Å and
the exchange attempt frequency of the REMD simulations were defined as
0,020 ps-1. Table 7 summarizes the information about the proteins simulated
in the test dataset.

Table 7 - Proteins Simulated in the REMD Dataset

PDB
ID

Amino Acids Sequence Number of
Residues

Class Reference

1L2Y NLYIQWLKDGGPSSGRPPPS 20 α [Nei02]
1RIJ ALQELLGQWLKDGGPSSGRPP

PS
23 α [Liu04]

1VII MLSDEDFKAVFGMTRSAFANL
PLWKQQNLKKEKGLF

36 α [Mck97]

2WXC GSQNNDALSPAIRRLLAEWNL
DASAIKGTGVGGRLTREDVEKH

47 α [Neu09]



74

LAKA
1UAO GYDPETGTWG 10 β [Hon04]
1LE1 SWTWENGKWTWKX 13 β [Coc01]
1E0L GATAVSEWTEYKTADGKTYYY

NNRTLESTWEKPQELK
37 (26) β [Mac00]

1FME EQYTAKYKGRTFRNEKELRDFI
EKFKGR

28 αβ [Sar01]

1PSV KPYTARIKGRTFSNEKELRDFLE
TFTGR

28 αβ [Dah97]

The protein 1E0L is composed of 37 amino acid residues, however a great
part of those residues only constitute random coils. Because of that, this
protein was simulated using only 26 residues that compose the secondary
structures of the protein (three β sheets), ranging from the 6th residue to the
31th residue.

Each REMD PSP simulations of the test dataset used up to 16 different
temperatures (or replicas) ranging from 269.50 Kelvins to 537.54 Kelvins.
Although 537.54 Kelvins is a temperature notably higher than those found on
living beings, it is necessary to break local minima as described in chapter 2.7.
At such high temperatures, however, unwanted rotations around the peptide
bond might occur leading to non-physical chiralities [Roe01]. Chirality
restraint on the backbone were then applied to the simulation through the use
of the “makeCHIR_RST” script provided with the AMBER 14 package.

The exact number of temperatures (or replicas) chosen for each REMD
PSP simulation can be observed in Table 8 and were defined according to the
number of atoms and the degrees of freedom of the system. The
temperatures were obtained using the temperature predictor web server
created by Patriksson and Spoel in 2008 [Pat08], which yields an array of
temperatures capable of achieving the desired exchange probability for any
given system.

Table 8 - Number of Replicas for Each Protein

PDB ID Number of Residues Number of Replicas Total Number of
Structures Predicted

1UAO 10 8 400,000
1LE1 13 10 500,000
1L2Y 20 12 600,000
1RIJ 23 12 600,000
1FME 28 14 699,650*
1PSV 28 14 700,000
1VII 36 14 700,000
1E0L 37 (26) 14 700,000
2WXC 47 16 800,000
* It is still unclear as what caused this particular simulation to result in less
predictions, but nevertheless the amount of missing structures represent only
0.05% of the desired total amount of 700.000 and therefore shouldn’t
significantly impact the subsequent analysis.
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The SHAKE algorithm [Ryc77] was also applied to restraint bonds
involving hydrogen atoms [Liu07] in the simulations. Typically these bonds
can be neglected to improve the computational efficiency of the simulation
without significantly impacting its final quality. Finally, the force field used in
the simulations was the ff12SB force field present in the AMBER 14 package,
recommended by the developers of AMBER at the time for simulating
proteins and nucleic acids. This force field is a continuation of the previous
ff99SB force field [Hor06].

5.2. Case Study of a REMD PSP Simulation: Protein 1UNC

Aiming to test a series of initial hypothesis and answer preliminary
questions, the 3D structure of the Human Villin C-Terminal Headpiece
Subdomain, PDB ID 1UNC [Ver04], was chosen for a case of study. This small
protein is composed of only 35 amino acid residues that form 3 different alpha
helices joined together by a tightly packed hydrophobic nucleus [Lip17]. It
was chosen for the case study for two main reason: (i) it was the first protein
simulated from the test dataset and thus was readily available at the time and
(ii) the protein is one of the smallest proteins to posses such large amount of
secondary structure elements. While its small size contribute for quickly
calculating absolute quality metrics, the amount of secondary structures
elements present in its structure is a valuable asset to evaluate their efficacy
in assessing the predicted structures obtained from the REMD PSP
simulations.

This protein was simulated under the same conditions as the other 9
described in chapter 5.1, with the only difference that the simulation was
performed in triplicates with different random seeds. A total of 14 different
temperatures were used in these simulations. This generated a total of
700.000 structure predictions.

Per request of colleague Thiago Lipinski Paes, this protein was also used
to test a few hypothesis outside the proposed work spectrum of this
dissertation. Although only marginally related to the work here described, the
results found are believed to be sufficiently valuable and worth reporting to
future colleagues interested in further studying it. This part of the work was
labeled as additional hypothesis for clearer distinction.

In order to test these additional hypothesis, an auxiliary test dataset was
also granted by colleagues Lipinksi-Paes and Norberto de Souza. In this
auxiliary test dataset, the protein 1UNC was simulated using 8 different
simulations protocols, also performed in triplicates. Among the methods used,
the CuT-REMD proposed by Lipinski-Paes and Noberto de Souza in 2017
[Lip17] was employed along Cutoff Molecular Dynamics, conventional REMD
and conventional MD. The Cutoff Molecular Dynamics (denoted Cu-MD in this
study) is a modification of conventional MD methods that use increasingly
cutoff radius for energy calculations, until a maximum value is reached. The
CuT-REMD has the same strategy, but is a modification of REMD simulations
instead of conventional MD simulations. Both methods use a permanence
time that denotes the simulation time spent on a determined cutoff radius.
After such time passes, the cutoff radius is increased. The standard value of 1
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Å was used. Table 9 shows a summary of the protocols used, along with a
identification label to facilitate posterior analysis.

Table 9 - Simulations Protocols Used for Testing the Additional Hypothesis

Label Simulation
Method

Initial
Cutoff
Radius

Max.
Cutoff
Radius

Permanence
Time

Exchange
Attempt

Frequency
A CuT-REMD 4.0 Å 8.0 Å 1 ns 1.000 ps-1

B CuT-REMD 4.0 Å 8.0 Å 1 ns 0.020 ps-1

C CuT-REMD 4.0 Å 8.0 Å 2 ns 1.000 ps-1

D CuT-REMD 4.0 Å 8.0 Å 2 ns 0.025 ps-1

E Cu-MD 4.0 Å 8.0 Å 1 ns -
F Cu-MD 4.0 Å 8.0 Å 2 ns -
G REMD 8.0 Å 8.0 Å - 1.000 ps-1

H MD 8.0 Å 8.0 Å - -

The results were clustered using common methods of the literature
[Lip17]. Only the structures obtained in the first 4 temperatures of the REMD
PSP simulation were used for this clustering. The clusters were computed
using the cpptraj [Pea95] module of AMBER and more specifically the
average-linkage algorithm [Sha07b]. This algorithm works the following way:

1. All the predicted structures given as input to the algorithm compose a
pool of non-clustered structures.

2. For each structure in the pool of non-clustered structures, the RMSD
of all other structures in the pool is calculated using the selected one as
model.

3. Structures with RMSD equal or lower than ε Ångströms are
considered neighbors. The value of epsilon (ε) is defined by the user. The
standard value of 2.0 Å was used in this work [Lin11, Dau99].

4. The structure with the highest number of neighbors is established as
the centroid of a cluster containing all its neighbors. The structures of this
cluster are eliminated from the pool of non-clustered structures.

5. This process is repeated from step 2 until the pool of non-clustered
structures is empty.

Using this algorithm, a series of non-overlapping clusters of structures are
obtained [Dau99]. The cluster-to-cluster distance is defined as the average of
all distances between individual points of the two clusters. The clustering
algorithm was also configured to only use the Cα carbons of residues present
in the secondary structures of the experimental structure. This procedure is
commonly used when clustering structures predicted by MD simulations and
is used to avoid situations of loops and termini disrupting the clusters [Per15].
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5.3. Relative Metrics Calculation

Aiming to better assess the quality of the predicted structures from the
REMD PSP simulations, the RMSD and GDT_TS relative quality metrics were
chosen as the main forms of evaluation. While the GDT_TS is capable of
restricting the influence of random loops (or coils) in its formula, the RMSD is
highly sensitive to these irregular conformations that, for the most part, can be
safely ignored from the quality assessment for not contributing much to the
structure function.

For calculating the GDT_TS relative quality metric, all residues of the
proteins were considered. For the RMSD calculation, on the other hand, only
an intervals of the residues were considered. In summary, the first and last
few residues were discarded wherever possible, that is, when a secondary
structure was not present. These first and last residues generally configure
random coils. Extended regions of random coils were also discarded, which
happened only in the largest 2WXC protein of the test dataset. The interval of
residues used to calculate the RMSD of each protein can be seen in Table 10.

Table 10 - RMSD Calculation Intervals for Each Protein

PDB ID Total Number of Residues Residue Interval Used to
Calculate RMSD

1UAO 10 1-10
1LE1 13 1-12
1L2Y 20 3-18
1RIJ 23 2-22
1FME 28 2-28
1PSV 28 2-27
1VII 36 3-32
1E0L 37 (26) 1-26
2WXC 47 10-28 & 36-47

For most part, the GDT_TS relative quality metric was given preference
over the RMSD score for 2 reasons: (i) the GDT_TS provides a higher quality
assessment than the simple RMSD, and (ii) while the RMSD score ranges
between 0 and infinite, the GDT_TS results in a fixed interval ranging between
0 and 1, which facilitates further analysis and the creation of smaller and
clearer graphics.
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6. DISCUSSION AND RESULTS

In this chapter the SnapFi tool will be presented along the proposed
filtering methodology. Firstly, the analytical data filtering process being
proposed in this study will be presented. The SnapFi tool and its development
process will then be discussed. After that, the case study of the protein 1UNC
will be analyzed, followed by the study of the entire test dataset. Lastly a
proposed filtering method that can be easily applied with the SnapFi tool will
be presented.

6.1. Analytical Data Filtering Methodology

Based on the optimization categories presented in Chapter 4, the current
workflow of optimizing and running a REMD PSP simulation can be seen in
Figure 19.

Figure 19 - Current workflow diagram of optimizing and running a REMD PSP
simulation. Diagram created using the online Lucidchart tool [Luc17].

Out of the 3 different optimizations approaches, only the simulation
convergence efficiency and number of replicas efficiency categories may
affect the final number of structure predicted of the REMD PSP simulation.
Since the proposed optimization approach of using absolute quality metrics
to filter the structure prediction ensemble generated at the end of the REMD
PSP simulation does not change the simulation process itself, it can, therefore,
be used in parallel with the other cited optimization methods, further
optimizing REMD PSP simulations. This process was labeled as Analytical
Data Filtering.
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This optimization approach proposed has the potential to improve even
further the efficiency of REMD PSP simulations by targeting an area still
untouched at large by optimization advancements. It would, therefore,
introduce a fourth optimization approach, and an intermediary third step in the
workflow, in additional to those already presented. This can be better seen in
the workflow diagram of Figure 20.

Figure 20 - Proposed workflow diagram of optimizing and running a REMD
PSP simulation. Diagram created using the online Lucidchart tool [Luc17].

The proposed SnapFi tool aims to fill this gap by creating an algorithm
that is able to filter part of the resulting data, eliminating unsatisfactory protein
structure predictions from the predicted structures ensemble, and thus
optimizing the posterior analysis of the simulation results. Furthermore, per
helpful advice of professor Dr. Duncan Dubugras Ruiz during the progress
review seminar, the tool was designed in a modular fashion so that it could
not only be used in parallel with the cited optimization approaches, but also
accommodate novel absolute quality metrics yet to be developed that may
become part of new filtering approaches devised by other research
colleagues. Such studies are greatly encouraged by the authors, as the
present investigation couldn’t test all the possible filtering conformations. This
will be further discussed in chapter 6.5.

6.2. Introducing the SnapFi Tool

The SnapFi tool is composed by 11 quality metric extraction scripts, 8
“module” scripts that include utilities and filtering algorithms, and a main
iteration script that controls the flow of the program. They were all
programmed using version 3.6.1 of the Python programming language [Pyt17].
The Python is a powerful programming language easy to code and is
supported by various operational systems.

The 11 metric extraction scripts extract the absolute and relative quality
metrics described in chapter 2.11. They take as input a text file containing a
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list of structures’ IDs. These IDs are assigned to each structure inside an
ensemble of predicted structures (resulted of a REMD PSP simulation) by
another utility script, which loads such ensembles and extract each predicted
structure as a separate pdb file (necessary for extracting the quality metrics).
The quality metric extraction scripts therefore load these separate pdb files
and assign them a respective quality score. The final output generated is a
text file containing a mapping of the structures’ IDs and their assigned scores.
Some quality metrics also have additional auxiliary files necessary for their
execution that are not worth mentioning in this dissertation, but are explained
in depth on their respective softwares. In summary, the quality metric
extraction scripts are:

 dDFIRE.py script,
 DFIRE.py script,
 DOPE.py script,
 GFactor.py script,
 GOAP script,
 OPUS_PSP.py script,
 Probscore.py script,
 RW_Plus.py script,
 Energy.py script,
 GDT.py script and,
 RMSD.py script.

It is worth mentioning that some of the quality metric extraction scripts
provided in the SnapFi tool will require slight adjustments by the user
(generally just an environment setting line) due to different installation
locations of the tools involved in calculating the quality metrics.

Regarding the modules scripts, they have different functions such as
extracting the individual predicted structures from ensembles of predictions
and filtering unsatisfactory predictions based on a given algorithm. They are:

 Filter_Number.py
Receives a quality metric mapping text file generated by a quality metric
extraction script, sorts the list according to the quality metric scores and
returns the first x number of entries, where x is a number received as input
and specified by the user.

 Filter_Percent.py
Same as the Filter_Number.py script, except that instead of returning a
fixed x number of entries, it returns a percentage of first entries received
as input and specified by the user.

 Load_PDB.py
Retrieve all predicted structures from one or multiple ensembles of
predictions. Each predicted structure is saved into a separate pdb file
with an assigning ID. This script iteratively call the Retrieve_Model.py
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script, which effectively retrieve a single given structure from an ensemble
of structures in a efficient way.

 Retrieve_Metric.py
Filters a quality metric mapping text file based on another file containing a
list of IDs. Useful to eliminate certain structures in the mapping when
running filtering scripts that read all the IDs in the mapping file to filter
unsatisfactory predictions.

 Retrieve_Model.py
Retrieve a single given predicted structure from an ensemble of predicted
structures into a single separate pdb file in a efficient way using the sed
command of Linux. This command is able to read a text file at any given
line without having to read the preceding lines. In order to further optimize
this process, based on the structure of the ensemble file, an index file is
created containing the starting line where each structure is saved. Thus
when retrieving a structure, the index file is used to determine exactly
where the sed command must read.

 Threshold_Fixed.py
Filters a given quality metric mapping text file based on a threshold value
provided by the user. The user must also specify which type of
comparison is used (i.e., greater or equal than, greater than, lower than or
lower or equal than).

 Threshold_Dynamic.py
This script generates a threshold based on the quality metric scores
contained in the quality metric mapping text file provided as input and
filter the structures contained in the file using it. Firstly the mapping file is
sorted according to the scores of the quality metric. A position given by
the user as input is then used to extract the base value of the threshold. A
threshold margin value, also provided by the user, is then applied to this
base value. As an example, if using the 1º ranked score, that is equal to
10, as the base position and applying a threshold margin of -0.2 (negative
20%), the final threshold obtained is 8. The user must also specify which
type of comparison is used (i.e., greater or equal than, greater than, lower
than or lower or equal than). In the cited example, using the greater than
comparison type, all structures with its assigned quality metric score
bellow 8 would be filtered. The user can also specify if the mapping file is
sorted ascending or descending.

 Voting.py
This script receives two or more text files containing a list of IDs. It can be
a quality metric mapping text file for instance. The script then assign a
number of “votes” for each structure ID contained on a input file. In
summary, the final number of “votes” for each structure is defined by the
amount of times that structure appears in one of the given input files.
Based on the number of “votes” required, specified by the user as input,



82

the structures with enough “votes” are written in the final output file. The
output file, therefore, contains a list of structure IDs.

Finally, the main iteration script that control the flow of the program is
labeled as SnapFi.py. This script simply set environment variables and
execute modules based on the filtering configuration file received as input.
The filtering configuration file was designed to work similarly as a
programming language. The “#” symbol denotes a commentary, which
exclude posterior text from execution. Each execution step is denoted by the
structure: STEP Name = Module(Parameters), where Name is the name
assigned by the user to the step, Module is the path to the module to be
executed and Parameters are the parameters required by the module. An
example of a filtering configuration file can be seen in Figure 21.

Figure 21 - Example of a filtering configuration file. In this example, the
absolute quality metrics dDFIRE and GFactor are extracted from an ensemble,
the best 25% scores for each metric are extracted and the union of their
results (acquired by the use of the Voting.py module) is performed, generating
a list of filtered structures IDs.

The modules scripts were also created in a way to facilitate writing the
filtering configuration file, where the quality metric mapping text file or text
files containing a list of structures IDs can be passed by parameter by simply
specifying their respective STEP name. This can also be seen in all steps
subsequent to the first one in the example filtering configuration file showed in
Figure 21. For a clear example, the “dDFIRE” step use the list of structures
IDs generated by the “Data” step as input.

As already cited, the tool was modeled with the specific intent of working
together with other optimization techniques to the REMD method, proposed
by several different authors. More importantly, its modular structures not only
support a myriad of different filtering configurations but also easily support
the development of new modules and the integration of new quality metrics.
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The overall SnapFi filtration process can be seen in the workflow diagram in
Figure 22.

Figure 22 - Workflow diagram of the SnapFi filtration process. The definition
of filtering configuration file must be made manually by the user, while the rest
of the process is executed automatically by the SnapFi.py script.

Currently, the SnapFi tool only supports the Linux operational system.
Although making the tool available for other operational system would not be
significantly demanding in terms of time and difficulty, most programs related
to the quality metrics and MD softwares are built exclusively to the Linux
operational system. Thus making the developed SnapFi as a multiplatform
tool was deemed unnecessary for the time being.

The SnapFi suite (and all related scripts) is distributed under the version 3
of the GNU General Public License, published by the Free Software
Foundation [Fre17]. For more details, the GNU General Public License must
be consulted (https://www.gnu.org/licenses/). It is possible to redistribute and
modify all files included in the SnapFi tool, provided they respect the license
terms. The SnapFi tool suite is freely available online in:
https://github.com/Racaoma/SnapFi to all user in the hope that it will be
useful.

The quality metric calculation softwares couldn’t be provided along with
the SnapFi scripts due to copyright terms, but for each quality metric a
Readme text file was included containing instruction and links to download
the required programs.

6.3. Discussion & Results: Case Study of the Protein 1UNC

This section will present the case study of the protein 1UNC regarding
several formulated hypothesis about REMD PSP simulations and the
efficiency of the quality metrics chosen.
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6.3.1. First Formulated Hypothesis

The first formulated hypothesis to be tested was:

The high temperatures of REMD PSP simulations are important for
simulation aspects, but can be safely discarded for post-simulation
analysis.

This hypothesis was made based on several observations of common
practices on different studies found in the literature and also analyzing the
physical aspects of the REMD process itself. These observations are:

 During a REMD PSP simulation, replicas can break local minimums in
high temperatures, but can’t easily converge on them. Given enough
simulation time, they will eventually exchange temperatures until
reaching colder temperatures with easier convergence. While a high
temperature may capture a single or few snapshots of the native-like
structure, colder temperatures have a much higher chance of
converging such structure and captures many snapshots. High
temperatures in such cases are at least redundant for post-simulation
analysis.

 Studies in the literature, such as [Zhe11, Roe14, Dau99], which
analyzed REMD PSP simulations through the use of clustering
algorithms, employed the method of retrieving only a few replicas (all
with low temperatures) to reduced the amount of data to be analyzed.

 Personal reports of colleagues in the LABIO group who used the
REMD PSP simulation method stated that native-state like structures
were generally found at lower temperatures and seldom found at the
elevated temperature ranges.

In order to test this, using each of the absolute quality metrics presented
(except for the energy minimization, which were not included in this study so
far), for each REMD PSP simulation of the triplicates, the 700,000 predicted
structures were ranked. From this, the top 1% ranked structures were
selected and compared to its respective GDT_TS, using the experimentally
obtained structure as model. Additionally, it was also observed in which
temperature the structures were extracted. Figure 23 depicts this analysis.
Structures extracted from the same temperature were clustered together to
facilitate visualization.

It is possible to observe that the vast majority of the top 1% scores
structures are found within the lowest temperatures of the REMD PSP
simulation. This pattern is also observable on all triplicates simulations of the
protein 1UNC. In order to verify the impact of the high temperatures, the same
analysis was performed, but instead using the 1% worst scored structures.
This can be seen in Figure 24.
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Figure 23 - Top 1% scored structures clustered by temperature (x axis)
according to each absolute quality metric versus GDT_TS (y axis). Data
relative to the first REMD PSP simulation of the protein 1UNC. The dotted line
represent the real best GDT_TS found within the entire REMD PSP simulation,
while the delta (Δ) depicts the difference between this value and the best
GDT_TS found within each quality metric ensemble of top scored structures.
A value of 0.0 indicates that the quality metric was capable of extracting the
best predicted structure using only 1% top scored structures.

By comparing both analysis from Figure 23 and Figure 24, it becomes
clear that, while the top scored structures lies within the lowest temperatures,
the worst scored structures are found in the highest temperatures. Although it
may be possible that this pattern is related to the absolute quality metrics
chosen, this hypothesis was discarded by the author due to the pattern
appearing in all chosen quality metrics and their highly different method of
scoring the structures.

This pattern found supports the hypothesis that the highest temperatures
of a REMD PSP simulation can be safely ignored from posterior analysis
without significantly affecting the quality of the results. It is also worth noticing
that the Probscore metric showed little variance regarding the ∆ GDT_TS
between the top 1% best predicted structures and the top 1% worst
predicted structures. Posterior studies, which will be presented further on this
dissertation, proved that this metric (along a few others) were unsuitable to
filter good predicted structures from unsatisfactory predicted structures. This
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same analysis was performed using 2% and 3% of the top predicted
structures without significant changes.

Figure 24 - Worst 1% scored structures clustered by temperature (x axis)
according to each absolute quality metric versus GDT_TS (y axis). Data
relative to the first REMD PSP simulation of the protein 1UNC. The dotted line
represent the real best GDT_TS found within the entire REMD PSP simulation,
while the delta (Δ) depicts the difference between this value and the best
GDT_TS found within each quality metric ensemble of top scored structures.
A greater delta value indicate a higher disparity in the retrieved ensemble to
the best structure predicted in the entire REMD PSP simulation.

6.3.2. Second Formulated Hypothesis

The second formulated hypothesis to be tested was:

Analyzing only the first few temperatures of REMD PSP simulations is
enough for capturing the best predicted structures.

This hypothesis is similar to the first formulated hypothesis, but its focus
is on the number of temperatures that must be included in post-simulation
analysis. In order to test this, a cumulative distribution analysis was performed
that evaluated the distribution of the predicted structures according to their
GDT_TS scores and the temperature in which they were extracted. The
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GDT_TS scores were clustered together in bands to facilitate the analysis.
Each band contained scores ranging from its base value (e.g. 0.5) until its
base value plus 0.099 (e.g. 0.599). Only values above 0.5 were considered for
this analysis for clearer visualization. Figure 25, 26 and 27 depict this analysis
for the each triplicate simulation of the protein 1UNC.

Figure 25 - Cumulative distribution of the top scored structures predicted
according to GDT_TS versus the temperature in which they were extracted.
Data relative to the 1st REMD PSP simulation of the protein 1UNC (labeled
R1).

Figure 26 - Cumulative distribution of the top scored structures predicted
according to GDT_TS versus the temperature in which they were extracted.
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Data relative to the 2nd REMD PSP simulation of the protein 1UNC (labeled
R2).

Figure 27 - Cumulative distribution of the top scored structures predicted
according to GDT_TS versus the temperature in which they were extracted.
Data relative to the 3rd REMD PSP simulation of the protein 1UNC (labeled
R3).

It is important to observe that each temperature excluded from
post-simulation analysis has the potential to significantly reduce the amount
of data that need to be analyzed, but may also discard native-like structure
predictions. Achieving a balance between efficiency and quality is therefore
vital. In order to achieve this balance, the number of temperatures in which
80% of the best GDT_TS band converge was established as the desired
amount of temperatures to be analyzed. This values is believed to contain the
vast majority of predictions while still reducing significantly the amount of data
that needs to be analyzed posteriorly.

In Figures 25, 26 and 27, it is possible to see that the convergence of
results heavily depend on the simulation itself, whereas the last triplicate
simulation converged 80% of the best GDT_TS band merely on the first
temperature and the second simulation converged only at the sixth
temperature. Further data was then deemed necessary to safely established
what number of temperatures was required to achieve the desired balance
between quality and efficiency.

6.3.3. Third Formulated Hypothesis

The third formulated hypothesis to be tested was:
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In terms of the quality of the results produced, some absolute quality
metrics are able to outperform others, potentially enabling the exclusion
of some of them for further analysis.

To test this hypothesis, using each of the absolute quality metrics
presented (except for the energy minimization, which were not included in this
study so far), for each of the REMD PSP simulation of the triplicates, and for
each temperature of these simulations, the predicted structures were ranked.
From this, the top 1% ranked structures were selected and compared to its
respective GDT_TS, using the experimentally obtained structure as model.
For each temperature, a different quartile distribution plot was created. This
analysis can be observed in Figures 28, 29 and 30.

Although some quality metrics did appear to yield better results than
some more often, this pattern was at least irregular. Further analysis on the
entire test dataset, which will be presented in chapter 6.6.2, confirmed this.
This same analysis was performed using 2% and 3% of the top predicted
structures without significant changes. A valuable information that could be
extracted from this analysis, however, was that the best predicted structure
from REMD PSP simulations were outliers to the distribution. This observation
will be very helpful when analyzing the additional hypothesis in chapter 6.4.

It is also worth noticing that the presented results also reinforce the first
formulated hypothesis as the quartiles tend to have a much higher GDT_TS
score at lower temperatures.

Figure 28 - Quartile distribution of GDT_TS (y axis) plot for the top 1% best
scored structures according to each absolute quality metrics (x axis) and for
each temperature of the simulation. Data relative to the 1st REMD PSP
simulation of the protein 1UNC (labeled R1).
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Figure 29 - Quartile distribution of GDT_TS (y axis) plot for the top 1% best
scored structures according to each absolute quality metrics (x axis) and for
each temperature of the simulation. Data relative to the 2nd REMD PSP
simulation of the protein 1UNC (labeled R2).

Figure 30 - Quartile distribution of GDT_TS (y axis) plot for the top 1% best
scored structures according to each absolute quality metrics (x axis) and for
each temperature of the simulation. Data relative to the 3rd REMD PSP
simulation of the protein 1UNC (labeled R3).
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6.4. Testing Additional Hypothesis Using the Protein 1UNC

This section will present the additional hypothesis formulated to test and
question the clustering methods used in the literature per request of colleague
Thiago Lipinski Paes. It is worth mentioning again that these hypothesis are
only marginally related to the work here described, yet the results found are
believed to be sufficiently valuable and worth reporting to future colleagues
interested in further studying it.

6.4.1. First Additional Formulated Hypothesis

The first additional formulated hypothesis to be tested was:

Using the 5 most populated clusters resulted from clustering algorithms
performed on protein structure prediction simulations is an acceptable
strategy to reduce the amount of data that need to be analyzed
posteriorly.

The strategy of using the most populated clusters, or the single most
populated one, was adopted on a few studies found in the literature [Lip17,
Kan11, Dau99, Chu13]. It is based on the assumption that the most populated
cluster will contain the most diversity of structures, and therefore will have a
higher chance of containing the best or a set of best predictions of the
simulation. In a study performed in 2009 by researchers Lin and Shell [Lin09b],
it was also found that spikes in population of the most populated cluster may
be a reasonable signal of convergence in a REMD PSP simulation.

In order to verify the formulated hypothesis, the auxiliary test dataset was
analyzed according to the RMSD values obtained from the centroid of the
clusters, which represents the structures contained in them. This analysis can
be seen in Table 11.

Table 11 - Analysis of Clusters’ Centroids According to RMSD & Population

Simulation
Protocol &
Triplicate
Number

Population & RMSD of the 5 Most Populated
Clusters

Top Scored
Cluster by
RMSD & its
Population1st 2nd 3rd 4th 5th

A1 - Pop.
A1 - RMSD

14,239 12,622 12,386 11,626 10,157 462
8.00 8.57 5.47 7.62 4.52 1.58

A2 - Pop.
A2 - RMSD

31,123 14,044 10,740 10,679 8,660 64
7.16 7.47 7.16 6.06 6.64 3.23

A3 - Pop.
A3 - RMSD

36,089 27,331 20,582 15,199 6,976 80
4.17 6.66 6.21 6.50 6.44 3.08

B1 - Pop.
B1 - RMSD

26,866 20,707 20,098 11,713 10,845 11,713
6.17 6.75 3.57 2.77 3.58 2.77

B2 - Pop.
B2 - RMSD

30,969 20,700 17,053 11,816 10,208 20,700
5.95 2.77 6.79 6.13 6.02 2.77
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B3 - Pop.
B3 - RMSD

44,365 31,982 18,406 6,713 6,085 7
7.35 6.5 7.07 7.20 6.54 4.16

C1 - Pop.
C1 - RMSD

22,471 22,418 17,139 17,080 8,706 397
7.86 7.09 7.11 6.24 6.95 2.03

C2 - Pop.
C2 - RMSD

35,919 35,276 16,055 13,442 12,306 3,873
7.40 4.24 7.28 5.82 6.00 2.40

C3 - Pop.
C3 - RMSD

40,353 37,907 18,102 15,108 12,925 80
4.06 6.22 6.26 7.20 6.07 3.12

D1 - Pop.
D1 - RMSD

27,443 19,315 17,327 10,400 9,254 6,131
2.43 6.07 5.49 4.62 5.89 2.07

D2 - Pop.
D2 - RMSD

21,382 20,570 15,037 12,593 12,504 58
7.84 6.38 5.12 6.48 8.22 2.22

D3 - Pop.
D3 - RMSD

22,784 16,550 12,413 11,630 11,036 1,540
3.70 7.22 6.40 4.30 3.73 3.00

E1 - Pop.
E1 - RMSD

18,529 17,662 16,365 14,934 10,466 7
8.75 6.54 9.06 6.15 6.18 3.09

E2 - Pop.
E2 - RMSD

36,047 26,727 26,187 15,471 7,794 35
6.81 6.79 7.27 8.23 8.45 4.96

E3 - Pop.
E3 - RMSD

23,244 19,376 16,144 8,522 3,871 175
6.30 6.34 5.88 6.63 7.18 4.45

F1 - Pop.
F1 - RMSD

22,795 18,093 16,359 16,338 15,579 11
7.24 7.16 7.73 7.48 6.98 5.67

F2 - Pop.
F2 - RMSD

34,501 30,775 14,570 14,160 9,498 12
6.94 8.89 5.70 7.18 6.9 3.90

F3 - Pop.
F3 - RMSD

29,002 28,599 24,803 9,166 7,970 16
8.32 8.70 3.43 7.31 8.11 2.82

G1 - Pop.
G1 - RMSD

23,888 20,841 17,793 15,675 7,574 41
3.40 7.24 7.60 4.97 6.71 3.08

G2 - Pop.
G2 - RMSD

28,582 26,099 21,119 18,271 17,448 9
6.97 7.04 6.53 7.53 6.00 2.72

G3 - Pop.
G3 - RMSD

34,980 20,716 20,628 14,507 9,889 4
3.45 5.77 6.81 4.51 7.11 2.97

H1 - Pop.
H1 - RMSD

45,988 43,895 23,844 21,039 17,054 84
7.52 7.63 4.51 7.21 7.40 3.51

H2 - Pop.
H2 - RMSD

29,940 29,058 15,093 8,666 7,562 663
5.33 6.42 5.39 7.60 7.38 4.94

H3 - Pop.
H3 - RMSD

36,558 19,126 18,348 14,151 8,531 377
7.52 7.18 7.46 7.66 8.79 4.56

It is possible to observe in Table 11 that rarely the most populated
clusters were, indeed, the best scored ones in terms of RMSD. This patterns
was also observed using the GDT_TS relative score. In most cases, the
cluster with few structures were the best scored ones. It is worth noticing that
they weren’t, however, within the least populated clusters.

An hypothesis to describe this phenomenon is that, by observing the
results obtained from the analysis of the third formulated hypothesis
described in chapter 6.3.2, the best predicted structures were outliers to their
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distribution. Thus attempting to cluster such structures with others is not a
good strategy. As for the fact that they weren’t within the least populated
clusters, it is hypothesized that due to the rough energy landscape
conformation of proteins and the folding funnel theory described in chapter
2.4, there is a strong tendency for the simulations to converge at local or
global minimums. Thus even outlier structures, but close to the native
structure of the target protein, may have similar ones to be clustered with.

Unfortunately only 1 protein could be tested in this form (the protein
1UNC), so it would be hasty to completely reject the formulated hypothesis.
An extended study regarding this subject would, however, be of great value to
the scientific community. Due to the limited time frame for this work, such
study couldn’t be done by the author.

6.4.2. Second Additional Formulated Hypothesis

The second additional formulated hypothesis to be tested was:

By using absolute quality metrics and the population of the clusters, a
way to filter unsatisfactory clusters can be found.

To test this hypothesis, several different filtering configurations were
tested. Overall, the efficiency of the quality metrics vary considerably between
different protein structure prediction simulations. This can be seen in Table 12.
The population of the cluster also varied significantly. As an example, for the
first and second execution of the B protocol, which can be seen in Table 11,
the most populated clusters indeed captured the best scored structures
considering only the centroid of the clusters. For the rest of the simulations,
the opposite happened where only low populated cluster were the top scored
ones. Due to this variance and the time dedicated to test the additional
hypothesis, a filter couldn’t be found.

Table 12 - RMSD Scores (Rounded to Float-Point Precision of 2 Digits)
According to Top Scored Structure of Each Absolute Quality Metric
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6.5. Preliminary Filtering Configuration Proposed

Based on the results obtained in the case study of the protein 1UNC, a
preliminary filtering configuration was proposed. Based on the assumption
that the third simulation of the protein 1UNC represents a worst-case
scenario and that the first 6 temperatures are needed to efficiently retrieve the
best predictions without significantly impacting the final quality of the
ensemble, this represents a cutoff of at least 40% of the original data volume
(the greater the number of temperatures in the REMD PSP simulation, the
greater this value becomes).

It is a fact that a single absolute quality metric isn’t capable of retrieving
the best predicted structure among an ensemble of predictions a 100% of the
time. Otherwise a whole section of the CASP would be unnecessary as well
as this, and other similar, studies. Utilizing more than just a single absolute
quality metric is desirable to guarantee the quality of the structures. If,
however, instead of applying all quality metrics on the entire resulting
ensemble, a pipeline of different quality metrics is established where each
extract the top 10% predicted structures from the previous resulting
ensemble (where the first ensemble is the original predicted structures
ensemble), the volume of data can be significantly reduced.

As an example, the computational cost of analyzing the entire predicted
structures ensembles of a REMD PSP simulation with all chosen quality
metrics would be equal to EQ. 15, where n is the size of the ensemble and x is
the number of quality metrics chosen. The Big-Theta notation is commonly in
computer science to determine the computational costs of algorithms. As
algorithms usually have different execution times according to the input
received, the Big-Theta notation asymptotically bound the growth of the
running time of a given algorithm according to the function inside its
parenthesis. In short, given EQ. 15, it means that the running time of the
algorithm is (asymptotically) at least xnk 1 and at most xnk 2 , for any
constants k1 and k2.

 nxΘ (EQ. 15)

This cost can be reduced by eliminating the high temperatures as
proposed. Considering a scenario where only the first 6 temperatures out of
the original 10 are selected for running the predefined quality metrics, the
analysis would then have a computational cost equal to EQ. 16.

 0.6nx (EQ. 16)

Applying the proposed pipeline over this filtered ensemble would,
therefore, result in the computational cost of EQ. 17.
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Such formula will result in a recurring decimal as more metrics are used,
which can be seen in EQ. 18.

 n60. (EQ. 18)

It is possible to see a significant complexity reduction when comparing
the initial cost in EQ. 15 to the final cost presented in EQ. 18. This proposed
process thus represents a cutoff of at least 33% computational cost when
compared to the standard approach.

An extensive search for such a filtering configuration was then performed.
Unfortunately, the amount of possible filtering configuration is massive, as
this filtering approach configures a permutation without repetition. The
number of possible filtering configurations is then given by EQ. 19, where n
denotes the number of possible absolute quality metrics that can be used in
the filter and r denotes the final number of quality metrics that indeed will be
incorporated in the filter.

)!(
!
rn

n
 (EQ. 19)

Using only the cited 8 absolute quality metrics plus the energy
minimization value, this would result in 362,880 unique filtering configurations.
A value unduly large to be tested. Several heuristics were then used to test
the different filtering conformations. Unfortunately, none was able to reach the
desirable quality. Whereas they failed to filter a substantial amount of
structures, failed to uphold a minimum quality level or had inferior quality over
applying a single quality metric to filter the structures. A larger test dataset
was then needed to detect possible patterns in the quality metrics. The test
dataset described in chapter 5.1 was the used to continue this study.

6.6. Discussion & Results: REMD PSP Simulations Test Dataset

The first goal when analyzing the test dataset was to verify the pending
hypothesis presented in chapter 6.3 that couldn’t be concluded due to the
lack of data.
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6.6.1. Verification of the Second Formulated Hypothesis

In order to test the number of temperatures that must be analyzed
posterior to a REMD PSP simulation without impacting the quality of the
results, a cumulative distribution analysis of the GDT_TS bands was again
performed on each protein REMD PSP simulation. Two analysis were
performed: one for discovering in which temperature (first temperature,
second temperature, and so on) 50% of convergence of the top GDT_TS
bands is attained (Table 13), and the other attaining 80% of convergence
(Table 14). The position of the temperature was used instead of the
temperature itself because the temperatures employed in REMD PSP
simulations vary according to each target protein. The tables are a summary
of the results found in the cumulative distribution plots, which can be seen at
Appendix A.

Table 13 - Temperatures in which 50% Convergence of the Top GDT_TS
Bands are Attained.

Protein
Temperature in Which GDT_TS Bands Attain 50% Convergence
GDT_TS

0.5
GDT_TS

0.6
GDT_TS

0.7
GDT_TS

0.8
GDT_TS

0.9
GDT_TS

1.0
1UAO 6th 6th 1st 1st 1st 2nd
1LE1 8th 3rd 4th 8th - -
1L2Y 5th 6th 4th 3rd 4th 4th
1RIJ 5th 1st 4th 4th 4th -
1FME 5th 9th - - - -
1PSV 4th 7th - - - -
1VII 4th 6th - - - -
1E0L 9th - - - - -
2WXC 9th - - - - -

Table 14 - Temperatures in which 80% Convergence of the Top GDT_TS
Bands are Attained.

Protein
Temperature in Which GDT_TS Bands Attain 80% Convergence
GDT_TS

0.5
GDT_TS

0.6
GDT_TS

0.7
GDT_TS

0.8
GDT_TS

0.9
GDT_TS

1.0
1UAO 8th 7th 5th 4th 3rd 4th
1LE1 9th 7th 7th 9th - -
1L2Y 9th 8th 6th 5th 5th 4th
1RIJ 8th 5th 6th 5th 5th -
1FME 8th 10th - - - -
1PSV 7th 10th - - - -
1VII 6th 7th - - - -
1E0L 10th - - - - -
2WXC 10th - - - - -
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It was observed in this analysis that two REMD PSP simulations could
successfully predict the native state of their target protein according to the
GDT_TS relative quality metric. The proteins that were successfully predicted
were the 1L2Y and 1UAO. Figure 31 and 32, respectively, depicts the cartoon
drawings of the predicted structure versus their experimentally determined
structure.

Figure 31 - Overlapping cartoon drawings of the main chain of the top
predicted structure of protein 1L2Y (green) versus the experimentally
determined structure (red) [Nei02]. Figure obtained using the PyMOL program
[Sch17].

Figure 32 - Overlapping cartoon drawings of the main chain on the top
predicted structure of protein 1UAO (green) versus the experimentally
determined structure (red) [Hon04]. Figure obtained using the PyMOL
program [Sch17].
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It is worth noticing that the top predicted structure of the protein 1UAO
couldn’t successfully predict the β sheets of the native state structure. Both
the RMSD and GDT_TS relative quality metrics, however, do not use the
secondary structures in their scoring function, as described in section 2.11.1,
but rather use the distance between the same atoms of the model structure
and the predicted structure. Regarding atoms positioning, the predicted
structure of protein 1UAO is (almost) the same as the experimentally
determined structure.

Regarding the results presented in tables 13 and 14, it was observed that
the better the quality of the REMD PSP simulation, the more rapidly the top
GDT_TS bands converge in terms of temperature. It is possible to see that the
highest GDT_TS band always converge at low temperatures, once again
reinforcing the hypothesis that high temperatures can be safely discarded
from post-simulation analysis.

It is hypothesized that this effect may be due low simulation time in which
the proteins were simulated (only 50ns). When a simulation successfully
achieve predicting the native state or a native-like state of the target protein, it
will converge at low temperatures as high temperatures provide too much
energy for the conformation to stabilize properly. These predicted structures
will then remain stable on the low temperatures, while escaping to other local
minimums on the energy landscape when exchanging to higher ones, thus
reducing its GDT_TS score. This effect cause the low temperatures to contain
the best GDT_TS scores and higher temperatures to contain less ideal
structure conformations, but still with reasonable quality.

On the other hand, REMD PSP simulations that couldn’t reach the highest
GDT_TS scores are in the process of converging those high quality
predictions, and thus will converge their best prediction only at higher
temperature ranges (in which they are being created). Figure 33 depicts the
cumulative distribution analysis created for the protein 1UAO, where the top 4
GDT_TS bands can be seen converging clearly faster than the others.

This hypothesis, however, result in both good and bad factors. Although
the observation that the top predicted structures converge at low
temperatures in excellent for filtering the unsatisfactory predicted structures
from the ensemble generated at the end of a REMD PSP simulation, the
observation that middle to low GDT_TS bands take longer to converge may
imply in the volatility of this filtering technique. That is, without beforehand the
resulted quality of the simulation, filtering more or less temperatures may have
a significant impact on the quality or not. The obtained results, therefore,
imply that the exact optimal number of temperatures which can be filtered
depend on the final quality of REMD PSP simulation performed.

6.6.2. Verification of the Third Formulated Hypothesis

In order to test the overall efficiency of the cited absolute quality metrics,
an histogram of the top GDT_TS bands was created for each protein REMD
PSP simulation. The first observation made was that, while the 1UNC REMD
PSP simulation could extract the top predicted structures using only the top
1% scored structures from the absolute quality metrics with reasonable
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success, most of the others REMD PSP simulations couldn’t achieve the
same feat. After a series of test, it was observed that retrieving 20% of the top
scored structured according to the absolute quality metrics retrieved an
acceptable balance between quality and efficiency.

While most absolute quality metrics performed well in the REMD PSP
simulations that produced the best results, some did not achieve the desired
quality on the REMD PSP simulations that resulted in poorer predictions.
Among those metrics is the Probscore, GFactor and OPUS-PSP. The
minimized energy of the predicted structures also did not perform well in such
cases, contrary to what was expected. Table 15, 16 and 17 shows the number
of structures within the achieved GDT_TS bands of the 1PSV, 1VII and 1LE1
protein structure prediction simulations respectively, extracted using the top
20% scored structures by each absolute quality metric. It is worth noticing
that while the 1PSV protein has an αβ conformation and 1LE1 has a β
conformation (β sheets are more difficult to be predicted), the 1VII protein has
an α conformation (generally easier to predict).

Figure 33 - Cumulative distribution plot of the top GDT_TS bands for the
protein 1UAO REMD PSP simulation.

Table 15 - Number of Predicted Structures Within the Achieved GDT_TS
Bands of the 1PSV PSP Simulation, Filtered Using the Top 20% Scored

Structures According to Each Absolute Quality Metrics.

Quality
Metric

GDT_TS Bands Extracted from the 20% Scored Structures
0.1 0.2 0.3 0.4 0.5 0.6 0.7

dDFIRE 0 0 167 90,418 49,334 81 0
DFIRE 0 0 852 102,702 36,363 83 0
DOPE 0 0 427 100,252 39,235 86 0
GFactor 0 104 11,341 97,473 31,069 13 0
GOAP 0 0 2,005 106,742 31,148 105 0
M. Energy 0 0 6,839 105,387 27,773 1 0
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OPUS-PSP 0 0 4,356 106,446 29,139 59 0
Probscore 0 4093 74,984 54,939 5,971 13 0
RWPlus 0 0 305 100,083 39,530 82 0
Simulation
Total 0 10,308 258,427 362,373 68,779 113 0

Table 16 - Number of Predicted Structures Within the Achieved GDT_TS
Bands of the 1VII PSP Simulation, Filtered Using the Top 20% Scored

Structures According to Each Absolute Quality Metrics.

Quality
Metric

GDT_TS Bands Extracted from the 20% Scored Structures
0.1 0.2 0.3 0.4 0.5 0.6 0.7

dDFIRE 0 0 2,703 93,054 43,139 1,104 0
DFIRE 0 0 6,307 95,889 37,093 711 0
DOPE 0 0 5,480 94,644 38,935 941 0
GFactor 87 282 5,944 97,292 36,179 219 0
GOAP 0 12 10,633 88,831 39,209 1,315 0
M. Energy 0 0 3,947 99,960 36,020 73 0
OPUS-PSP 0 12 8,411 108,242 23,015 320 0
Probscore 2 26,358 79,798 28,000 5,638 204 0
RWPlus 0 0 5,051 97,033 37,162 754 0
Simulation
Total 102 59,908 270,537 289,788 77,860 1,805 0

Table 17 - Number of Predicted Structures Within the Achieved GDT_TS
Bands of the 1LE1 PSP Simulation, Filtered Using the Top 20% Scored

Structures According to Each Absolute Quality Metrics.

Quality
Metric

GDT_TS Bands Extracted from the 20% Scored Structures
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

dDFIRE 0 0 126 26,442 66,340 6,817 275 0
DFIRE 0 0 105 22,403 66,023 11,156 312 1
DOPE 0 0 106 23,435 66,445 9,773 240 1
GFactor 0 0 65 17,251 59,376 22,595 713 0
GOAP 0 0 123 24,319 70,066 5,451 41 0
M. Energy 0 0 76 23,105 50,436 25,945 438 0
OPUS-PSP 0 0 64 20,857 62,237 16,456 386 0
Probscore 0 0 91 18,359 68,281 12,931 335 3
RWPlus 0 0 107 24,545 65,605 9,421 321 1
Simulation
Total 0 0 352 81,785 344,467 71,134 2,249 13

Although the Probscore absolute quality metric performed well in the
1LE1 simulation, it did not achieve the same quality results on virtually all
others PSP simulations. As discussed in chapter 6.3.1, this metric tends to be
volatile. The GFactor, OPUS-PSP and the minimized energy also show the
same volatility, which can be seen in the presented tables, where GFactor
retained low GDT_TS bands on the 1PSV and 1VII PSP simulation after
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filtering, the OPUS-PSP retained mostly of the middle bands (0.4 or 0.5)
instead of retaining the higher ones, and finally the minimized energy was
unable to retain the higher GDT_TS bands on the all of them. This lack of
reliability is not something desired on a filtering method. Based on these
results, the 3 absolute quality metrics and the energy minimization were then
excluded for posterior analysis.

As the energy minimization achieved undesired results running with 1000
cycles of energy minimization, as described in section 2.11.2.9, the proposal
of testing the quality of the results with less minimization cycles (also
described in that section) became irrelevant. Due to the larger size of the
protein 2WXC (thus implying in a much higher computational cost) and the
observed inefficiency of the energy minimization to assess the quality of
predicted structures, this scoring method was not tested on that protein.

It is still worth noticing that the efficiency (in term of quality) of the others
absolute quality metrics also varied significantly between different proteins,
where the GOAP absolute quality metric presented the very best results in
proteins 1PSV and 1VII, and yet the very worst results in protein 1LE1.
Moreover, not only between REMD PSP simulations of different proteins, but
also different REMD PSP simulations of the same protein presented a
considerably variance between the quality of the absolute quality metrics.
This can be seen in Table 12 presented in section 6.4.2. Although varying
considerably, the remaining absolute quality metrics, except for a few isolate
cases such as the GOAP case of protein 1LE1, showed a reasonable stable
quality in filtering the unsatisfactory predictions. This can be seen in Table 18.

Table 18 - Top RMSD Score From the Entire REMD PSP Simulation of Each
Protein Versus the RMSD Score Extracted by the Top Scored Structure

According to Each Absolute Quality Metric

It is important to observe in Table 18 that the efficiency of the absolute
quality metrics vary considerably between different REMD PSP simulations
and a “generally best” absolute quality metric cannot be pinpointed, nor any
discernable pattern could be found regarding a possible relation between the

Absolute
Quality
Metric

RMSD Scores (Rounded to Float-Point Precision of 2 Digits)
1E0L 1FME 1L2Y 1LE1 1PSV 1RIJ 1UAO 1VII 2WXC

dDFIRE 6.40 5.29 1.00 6.95 6.20 4.16 1.34 6.83 9.07
DFIRE 6.57 5.23 1.22 5.58 6.21 3.56 1.93 6.86 9.31
DOPE 6.67 5.46 1.34 5.86 6.19 2.32 1.93 6.39 9.45
GFactor 8.53 6.01 4.55 4.72 6.42 3.08 3.50 4.52 12.92
GOAP 6.68 5.47 3.29 5.98 6.29 4.22 1.26 6.86 8.84
M. Energy 6.42 5.89 5.58 5.52 6.34 3.69 2.79 6.26 -
OPUS-PSP 6.38 5.98 3.12 4.44 7.15 5.36 3.77 4.80 9.47
Probscore 6.75 8.03 5.25 7.37 7.93 6.81 5.17 7.27 8.25
RWPlus 6.52 5.51 0.97 5.75 6.21 3.14 1.93 6.86 9.31
Real Best
RMSD 4.78 2.85 0.34 1.40 3.09 0.82 0.36 2.55 3.96
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quality metrics’ efficiency and the protein conformation (α, β or αβ), size,
amino acid composition, etc.

Moreover, the percentage of top scored structures (20%) can also be
decreased substantially if the simulation produced good results (close to the
native state of the target protein) and could need a slight increment if the
simulation performed poorly. It was observed that in the 1L2Y and 1UAO PSP
simulations (which produced the best results), the same quality in its filtering
could be achieved, that is, successfully maintaining a high proportion of the
higher GDT_TS bands while effectively filtering the lower GDT_TS bands, by
using only the top 10% or fewer of the predicted structures according to the
absolute quality metrics. This effect can be seen in Figures 34 and 35.

The 1E0L PSP simulation, which produced the worst results on the other
hand, could achieve significantly better results, in terms of the distribution of
GDT_TS bands, if 25% of the top scored structures are used for the filtering.
This effect can be seen in Figures 36 and 37.

Figure 34 - GDT_TS histograms of the REMD PSP simulation of protein 1L2Y.
The red bars are the GDT_TS histogram attained using the top 20% scored
structures according to the dDFIRE absolute quality metric. The green bars
are the overall GDT_TS histogram of the entire REMD simulation.

6.7. Final Filtering Configuration Proposed

Based on the results obtained from the case study of the protein 1UNC
and the test dataset containing 9 different proteins, a series of filters were
tested. Unfortunately, not all conformation could be tested, as described in
chapter 6.5. Based on the variance observed in the absolute quality metrics, a
priority was given to filters which could maintain a certain level of quality
between different REMD PSP simulations.

The best filtering configuration found used the following steps:
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1. Extract the structures predicted at the first 6 temperatures from the
ensemble of predicted structures resulted from the target REMD PSP
simulation.

2. Extract the dDFIRE, DFIRE, DOPE, GOAP and RWPlus absolute
quality metrics from the resulting ensemble of step 1.

3. Apply the Dynamic Threshold script (described in section 6.2) present
in the SnapFi tool to each of these quality metrics. The threshold base was
defined as the top scored structure (position 0), the threshold margin is
defined as negative 20% (-0.20) and the comparison type used was set as
less or equal (LE). In summary, this will generate a threshold value relative to
the top scored structure with a discount of 20%. All the structures that are
above this value are filtered.

4. Apply the Voting script (described in section 6.2) present in the
SnapFi tool to all the the results of step 3. The number of votes is defined as 2.
In summary, this step will ensure that each structure in the filtered ensembles
generated by step 3 must be considered as “satisfactory” (i.e., not filtered) by
at least 2 different absolute quality metrics from the possible total of 5
absolute quality metrics.

This filtering method can be easily performed using the filtering
configuration input file presented in Figure 38. The results obtained using the
proposed filter, for each protein in the test dataset of REMD PSP simulations,
can be observed in Figures 39 to 47.

Figure 35 - GDT_TS histograms of the REMD PSP simulation of protein 1L2Y.
The red bars are the GDT_TS histogram attained using the top 10% scored
structures according to the dDFIRE absolute quality metric. The green bars
are the overall GDT_TS histogram of the entire REMD simulation.
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Figure 36 - GDT_TS histograms of the REMD PSP simulation of protein 1E0L.
The red bars are the GDT_TS histogram attained using the top 20% scored
structures according to the dDFIRE absolute quality metric. The green bars
are the overall GDT_TS histogram of the entire REMD simulation.

Figure 37 - GDT_TS histograms of the REMD PSP simulation of protein 1E0L.
The red bars are the GDT_TS histogram attained using the top 25% scored
structures according to the dDFIRE absolute quality metric. The green bars
are the overall GDT_TS histogram of the entire REMD simulation.
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Figure 38 - Filtering configuration input file for the SnapFi tool which execute
the filtering method described in section 6.7. The exclusion of the higher
temperatures (step 1) can be easily done by either the cpptraj module of
AMBER 14 or by ignoring the respective temperature ensembles when using
the Load_PDB.py script.
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Figure 39 - GDT_TS histograms of all predicted structures generated by the
REMD PSP simulation of the protein 1E0L (green bars) and the remaining
structures after the proposed filtering method is applied (red bars).

Figure 40 - GDT_TS histograms of all predicted structures generated by the
REMD PSP simulation of the protein 1FME (green bars) and the remaining
structures after the proposed filtering method is applied (red bars).
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Figure 41 - GDT_TS histograms of all predicted structures generated by the
REMD PSP simulation of the protein 1L2Y (green bars) and the remaining
structures after the proposed filtering method is applied (red bars).

Figure 42 - TGDT_TS histograms of all predicted structures generated by the
REMD PSP simulation of the protein 1LE1 (green bars) and the remaining
structures after the proposed filtering method is applied (red bars).
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Figure 43 - GDT_TS histograms of all predicted structures generated by the
REMD PSP simulation of the protein 1PSV (green bars) and the remaining
structures after the proposed filtering method is applied (red bars).

Figure 44 - GDT_TS histograms of all predicted structures generated by the
REMD PSP simulation of the protein 1RIJ (green bars) and the remaining
structures after the proposed filtering method is applied (red bars).
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Figure 45 - GDT_TS histograms of all predicted structures generated by the
REMD PSP simulation of the protein 1UAO (green bars) and the remaining
structures after the proposed filtering method is applied (red bars).

Figure 46 - GDT_TS histograms of all predicted structures generated by the
REMD PSP simulation of the protein 1VII (green bars) and the remaining
structures after the proposed filtering method is applied (red bars).
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Figure 47 - GDT_TS histograms of all predicted structures generated by the
REMD PSP simulation of the protein 2WXC (green bars) and the remaining
structures after the proposed filtering method is applied (red bars).

Unfortunately, the proposed filter was unable to achieve positive results
on all REMD PSP simulations. Namely, the PSP simulation of the proteins
1LE1 and 1E0L achieves a inferior distribution of the GDT_TS compared to
the original ensemble of predicted structures. Moreover, the number of
structures filtered also varied significantly, which can be seen in Table 19.

Table 19 - Number of Structures Contained in the Initial and Filtered
Ensembles of Predicted Structures for Each Simulation

Protein ID Initial Ensemble
Size

Filtered
Ensemble Size

Percentage of
Structures Filtered

1E0L 700,000 42,307 ~94%
1FME 699,650 175,746 ~75%
1L2Y 600,000 46,560 ~92%
1LE1 500,000 25,286 ~95%
1PSV 700,000 63,320 ~91%
1RIJ 600,000 101,564 ~83%
1UAO 400,000 40,687 ~90%
1VII 700,000 171,352 ~76%

2WXC 800,000 215,458 ~73%

Nonetheless, the proposed filtering method successfully filtered more
than two thirds the initial volume of predicted structures on all simulations
with significant quality gains on most cases. It is also important to notice that
the filtering methodology can be adjusted to achieve a better quality
distribution at the expense of reducing its filtering capability by increasing the
threshold margin applied to the dynamic threshold script or increasing the
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amount of temperatures used. As previously cited, the modular architecture of
the SnapFi tool is capable of handling adjustments in its filtering
configurations in an easy manner.

Unfortunately, there is no clear indicator whereas the proposed filter must
be further adjusted or not by the user when using it on a new simulation. The
proposed filtering methodology was found to be a good middle term between
safe filtering, i.e. not filtering out the best predictions, and total volume of
structures filtered. If the user desires so, the threshold values can be
increased, or the number of temperatures limited even further, to filter out
more structures at the expense of risking filtering good predictions. As
already cited, if the simulation retrieved several structures close to the native
structure of the target protein, this increase shouldn’t significantly impact the
final quality of the results. It is worth noticing that the largest computational
cost of the proposed filtering methodology resides in calculating the quality
metrics (step 2 of the filter) and once this process is done, the threshold
values can be adjusted and rerun in a short time.

Regarding the efficiency of the proposed filtering method, the use of the 5
different absolute quality metrics on the entire ensemble generated at the end
of a REMD PSP simulation diminish its capability of reducing the
computational cost of analyzing such simulations. Unfortunately, no other
filtering configuration tested that used less absolute quality metrics could be
found. However, the proposed filtering configuration, although not as efficient
as desired, is capable of generating more reliable results than just applying a
single absolute quality metrics to filter unsatisfactory structures. This is due to
the unreliable efficiency, in term of quality, of the absolute quality metrics
explained in section 6.6.2.
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7. CONCLUSIONS

In this chapter the conclusions extracted from the performed study are
described. Firstly, the conclusions regarding the developed tool are presented,
followed by the conclusions extracted from the tests performed to clarify the
formulated hypothesis of this work. The conclusions of the proposed filtering
methodology are then described along with its limitations and advantages.
Finally, the final considerations are presented.

7.1. SnapFi Tool

In this study a new optimization area still untouched at large by the
scientific community was proposed, that is the Analytical Data Filtering
optimization. This approach rely on filtering the resulted predicted protein
structure at the end of a MD simulation (with heavy emphasis in the REMD
method). Due to that, it can be coupled with other optimization approaches to
further optimize such simulations. As no other such method was found in the
literature that aims to reduce the amount of data posterior to a REMD PSP
simulation, a comparison between results of the different methods, which was
a specific objective of this study, became unnecessary.

The SnapFi tool was then presented, which aims to cover this proposed
optimization area. The tool, although rather simple, is capable of executing its
designed objective remarkably well. Moreover, its modular architecture
enables the SnapFi to be easily upgraded with new features and support for
novel quality metrics. Despite being designed to filter the ensemble of
predictions generated at the end of a REMD PSP simulation, it can also be
used on conventional MD methods and variants, given it also generates
such .pdb ensembles files.

7.2. Formulated Hypothesis

The greatest find in this study lies in the confirmation of the hypothesis
that high temperatures of REMD PSP simulation can be safely discarded from
posterior analysis as all the performed tests confirmed this. The exact number
of temperatures that can be discarded may vary from simulation to simulation
however. Simulations that produced good results (i.e. many predictions close
to the native state of the protein) can be filtered more and simulations that
produced inferior results may take advantage of more temperatures (i.e., a
weaker filter). The data obtained from the performed tests point that in worst
case scenarios, only the lower 10 temperatures can be used for further
analysis without significantly impacting the quality of the results. It is believed
that in REMD PSP simulations that must use more temperatures, the
simulation itself didn’t achieved a minimum quality level that justifies the effort
to further analyze the results, that is, the highest GDT_TS values found were
lower than 0.5. In other words, the predicted structures are so far from the
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native state of the target protein that further analysis might be deemed
unnecessary.

It was also found that the cited absolute quality metrics show a heavy
variance between different REMD PSP simulation, even if the simulation
targets the same protein. This variance made the discovery of an universal
filter method (i.e. without any form of adjustment) impossible, as well as the
formulation of a novel quality metric based on other quality metrics, which
was one of the specific objective of this study. This finding, nonetheless, is an
important remark, proving that using just a single absolute quality metric as a
mean of retrieving the best predicted structures is a flawed process prone to
errors.

It was also discovered that using the top populated clusters, presented in
the additional hypothesis of this study, is also a flawed process and thus
should be avoided. A deeper study may be required in this part, but observed
results point that the top predicted structures of a REMD PSP simulation are
generally outliers to the distribution and thus often do not form big clusters.

Regarding the quality of the absolute quality metrics, contrary to what
was expected, the minimized energy proved to be an inefficient way of
filtering predicted structures. This goes against the Anfinsen’s thermodynamic
hypothesis [Anf73], considering that predicted structures with higher
minimized energy were closer to the native state of the target protein than
predicted structures with lower minimized energy. It is hypothesized two
reasons for this finding: (i) the way relative quality metrics are calculated,
based solely on atom positioning, does not correctly represent the energy
landscape of the protein folding, thus a structure with less potential energy
may generate a worst score than a structure with their atoms closer to the
native state of the protein, and (ii) the force field used in this work (the ff12SB)
produce incorrect results. As force fields are being updated on a regular basis
to correct flaws on their evaluations, the second hypothesis is more likely the
reason behind this.

7.3. Proposed Filtering Methodology

The filtering method presented in chapter 6.7 was able to significantly
filter the amount of structures in the ensemble of predicted structures of a
REMD PSP simulation. The best results managed to bring the total number of
structures predicted down to less than 10% of its original number, while also
increasing the proportion of structures with high GDT_TS. Unfortunately, the
proposed filter still carries on the variance of the absolute quality metrics
which it is composed of. On a few occasions it produces significantly inferior
results, in terms of quality, than the total ensemble of predicted structures.

Notably, the filter achieves the best results when applied to a simulation
that could successfully predict the native state or native-like state of the
target protein. In such occasions, the amount of structures that can be filter is
also vastly superior. The proposed filter, therefore, vary its efficiency (in terms
of computational time) and quality (in terms of filtering out unsatisfactory
predictions) depending on the quality of the simulation.
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Nonetheless, it is believed that the proposed filter managed to maintain a
reasonable distribution of the top GDT_TS bands even if producing an inferior
one compared to the total ensemble. The reduced effort of analyzing the
filtered ensemble may, in some cases, compensate its loss of quality. Based
on the study being performed, small adjustments in the proposed filter can be
made to better fit the balance between efficiency and quality.

In summary, the limitations of the proposed filtering methodology are as
following:

1. The efficiency of the proposed filter vary its efficiency according to the
simulation it is applied;

2. Due to needing to compute several absolute quality metrics, the
proposed filter might still have a high computational cost;

3. There is no clear indicator whereas the proposed filter must be further
adjusted or not by the user when using it on a new simulation.

Whereas the advantages of the proposed filter are as following:

1. As the high temperatures are always excluded, the larger the simulation is
(regarding number of replicas), the more predicted structures are able to
be filtered out at the very first step;

2. When compared to using a single absolute quality metric, the proposed
filter, due to using several of them, does not vary its efficiency so much;

3. The proposed filter is able to filter out more than two thirds the initial
volume of predicted structures, even when producing a worse proportion
of high GDT_TS bands compared to the initial ensemble. This reduction
on the volume of data alone might be enough to justify its loss of overall
quality.

7.4. Final Considerations

Due to the limited time frame for this study, some valuable tests couldn’t
be performed. The impact of the different thermostats in REMD PSP
simulations regarding the amount of temperatures that can be filtered is an
important example. Such further studies could improve our understanding of
the impact of the temperatures in a REMD PSP simulation or even limit the
results found on this study to simulations that use specific thermostats.

Moreover, it is also believed that the proposed tool is capable of working
together with several other REMD optimization techniques and also with
conventional MD methods, given that it is properly configurated first. Due to
the amount of optimization approaches available in the literature this could
not be tested in full.

Overall, even though there are some limitations to the presented method,
the amount of unsatisfactory structures filtered and the final quality of the
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filtered ensemble is very encouraging. It is important to notice that novel
filtering methodologies can be formulated with ease using the SnapFi tool,
some of which might even solve some of the limitations found. Finally, the
conclusions extracted from the formulated hypothesis is also of great
significance to the scientific community and might be the target of new
correlated studies.
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APPENDIX A - CUMULATIVE DISTRIBUTION PLOTS OF THE TOP GDT_TS

BANDS FOR EACH REMD SIMULATION OF TEST DATASET

Figure A.1 - Cumulative distribution of the top scored structures predicted
according to GDT_TS versus the temperature in which they were extracted.
Data relative to the REMD PSP simulation of the protein 1E0L.

Figure A.2 - Cumulative distribution of the top scored structures predicted
according to GDT_TS versus the temperature in which they were extracted.
Data relative to the REMD PSP simulation of the protein 1FME.
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Figure A.3 - Cumulative distribution of the top scored structures predicted
according to GDT_TS versus the temperature in which they were extracted.
Data relative to the REMD PSP simulation of the protein 1L2Y.

Figure A.4 - Cumulative distribution of the top scored structures predicted
according to GDT_TS versus the temperature in which they were extracted.
Data relative to the REMD PSP simulation of the protein 1LE1.
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Figure A.5 - Cumulative distribution of the top scored structures predicted
according to GDT_TS versus the temperature in which they were extracted.
Data relative to the REMD PSP simulation of the protein 1PSV.

Figure A.6 - Cumulative distribution of the top scored structures predicted
according to GDT_TS versus the temperature in which they were extracted.
Data relative to the REMD PSP simulation of the protein 1RIJ.
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Figure A.7 - Cumulative distribution of the top scored structures predicted
according to GDT_TS versus the temperature in which they were extracted.
Data relative to the REMD PSP simulation of the protein 1UAO.

Figure A.8 - Cumulative distribution of the top scored structures predicted
according to GDT_TS versus the temperature in which they were extracted.
Data relative to the REMD PSP simulation of the protein 1VII.
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Figure A.9 - Cumulative distribution of the top scored structures predicted
according to GDT_TS versus the temperature in which they were extracted.
Data relative to the REMD PSP simulation of the protein 2WXC.



 

 

 


