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GIVING EMOTION CONTAGION ABILITY
TO VIRTUAL AGENTS IN CROWDS

RESUMO

Modelos de simulação de multidões têm tido um papel importante em ciências da computa-
ção já há algumas décadas desde os trabalhos pioneiros. No início, agentes simulados em multidões
comportavam-se todos da mesma maneira, e tal comportamento era controlado pelas mesmas regras
em todos os agentes. Com o tempo, os modelos de simulação evoluiram, e começaram a agregar
uma maior variedade de comportamentos nos agentes. Modelos de simulação de multidões que
implementam diferentes comportamentos nos agentes são chamados modelos de Multidões Hetero-
gêneas, em oposição aos modelos de Multidões Homogêneas precedentes. Modelos de simulação de
multidões que buscam criar agentes com comportamentos humanos realistas exploram heterogenei-
dade nos comportamentos dos agentes, na tentativa de atingir tal realismo. Em geral, estudos em
psicologia e comportamento humano são usados como conhecimento de base, e os comportamentos
observados nestes estudos são simulados em agentes virtuais. Nesta direção, trabalhos recentes
em simulação de multidões exploram características de personalidade e modelos de emoções. No
campo de emoções em agentes virtuais, pesquisadores estão tentando recriar fenômenos de contágio
de emoções em pequenos grupos de agentes, ou mesmo estudar o impacto de contágio de emo-
ção entre agentes virtuais e participantes humanos. Sob a crença de que contágio de emoção em
agentes virtuais possa levar a comportamentos mais realistas em multiões, este trabalho foca em
recriar modelos computacionais de contágio de emoções destinados a pequenos grupos de agentes,
adaptando estes modelos para um contexto de simulação de multidões.

Palavras-chave: modelos de simulação de multidões, modelos de personalidade, modelos de emo-
ções, modelos de comportamento.



GIVING EMOTION CONTAGION ABILITY
TO VIRTUAL AGENTS IN CROWDS

ABSTRACT

Crowd simulation models have been playing an important role in computer sciences for a few
decades now, since pioneer works. At the beginning, agents simulated on crowds behaved all the
same way, such behaviour being controlled by the same set of rules. In time, simulation models
evolved and began to incorporate greater variety of behaviours. Crowd simulation models that
implement different agent behaviours are so-called Heterogeneous Crowd models, opposing to former
Homogeneous Crowd models. Advances in crowd simulation models that attempt to make agents
with more realistic human-like behaviours explore heterogeneity of agent behaviours in order to
achieve overall simulation realism. In general, human behavioural and psychological studies are
used as base of knowledge to simulate observed human behaviours within virtual agents. Toward
this direction, later crowd simulation works explore personality traits and emotion models. Some
other work in the field of emotional virtual agents, researchers are attempting to recreate emotion
contagion phenomena in small groups of agents, and even studying emotion contagion impact
between virtual agents and human participants. Under the belief that emotion contagion in virtual
agents might lead to more realistic behaviours on crowds, this work is focused on recreating emotion
contagion computational models designed for small groups of agents, and adapting it for crowd
simulation context.

Keywords: crowd simulation models, personality models, emotion models, behavioural models.
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1. INTRODUCTION

Models of crowd simulation have been used for applications in films and video games, architec-
ture, security and contingency plans. Films and video games usually present crowds for visual effects,
generating great number of actors for epic war tales or cheering crowd background. Applications for
architecture and contingency plan are usually meant to measure the security of a building project
in terms of evacuation routes, corridor and stairway width, doors and passages that might result
in bottlenecks. But, whatever the application is, it is always desirable to have the most realistic
simulation possible, to obtain reliable results that support serious decision making.

Since pioneer approaches in crowd simulation, more effective mathematical models were develo-
ped by scientific community. At the same time, machines’ computational power have significantly
improved. These advances have allowed creation of even more complex crowd simulation models.
Naturally, agents began to behave differently from each other, not only in terms of basic parameters,
such as goal and speed, but in terms of decision-making, many times influenced by surrounding en-
vironment and agents’ status. Crowd simulation models that implement different agent behaviours
are so-called Heterogeneous Crowds. Also, agents have gained many abilities: they interact with
each other and the environment, they react to environment events and even user triggered events.
In recent works, agents of a crowd are actually programmed to live and evolve in the environment,
and they decide on their own what the next task will be, based on their own needs or desires. This
opposes to former crowd simulation models where agents, instead, just perform a well defined task
such as finding the closest exit. These models are also known as Homogeneous Crowd models.

The problem of crowd simulation have been approached by different manners. Many hypothesis
have been explored in order to achieve realism in agents’ behaviour, movement and appearance.
Some of those rely on personality models from psychology literature. Others use well defined roles
to drive agents behaviour in each given situation. Those are also referred as rule-based approaches
[54][48]. Results from computer vision systems and motion capture approaches have been used
as well to estimate crowd behaviours. Those approaches are called data-driven approaches. Many
aspects of crowd simulation using videos of real crowds are depicted in the works of Jacques Junior et.
al [39], Bandini et. al[4] and Lerner et. al [45]. Surveillance videos and video databases are analysed
to estimate people’s trajectories and velocities. Latter, a proper adjustment of parameters in crowd
simulator is performed to make simulated agents match estimated velocities and trajectories present
in the analysed videos. On the other way around, videos generated by crowd simulation models are
used to validate computer video systems designed to estimate crowd aspects. The advantage in
those techniques is that, in simulated crowds, the numbers, velocities and densities of agents are
known, so there is ground-truth to validate surveillance computer vision systems output.

Ultimately, psychosocial studies in personality, emotions and emotion contagion are taking place
in computer based crowd simulation. The human behaviour is object of study for many years
in human sciences, such as sociology and psychology. Psychology researchers, such as Goldberg
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[30] and Eysenck & Eysenck [27], have mapped traits of human personality that rule individual
behaviour and decision-making in many daily situations. Computer science groups have mapped
these human studies to computer system parameters in order to simulate more realistic and complex
crowd behaviours. We can name th work of Durupinar et. al [25] and Guy et. al [31] that uses the
models of Goldberg and Eysenck & Eysenck, respectively. Usually, the goal is to achieve high level
lexical input, such as adjectives or well specified characteristics, and use them to make automatic
fine agent parameter adjustment. This allows simulation of very diverse agent behaviours within
the same scenario using minimum input. This way, agents can be described by their personality
profile such as “shy” or “tense”[31], or by their role such as “protester” or “police”[24]. The fine
tuning of parameters lies under each profile or trait, which makes easier to configure (or procedurally
generate) great number of agents within a crowd with realistic parameters. Since the development
of emotional agents into the crowds, one interesting aspect is how such agents interact among them
and change their own emotional parameters. This can be considered as a function of an emotional
contagion method.

The present work focuses on the introducing an emotional contagion model in the context of
crowd simulation. The BioCrowds steering model proposed by Bicho et. al [18][19] is extended to
accommodate the emotion contagion model proposed by Bosse et. al[11]. With an emotion conta-
gion model, we expect to observe a change of behaviour in crowd agents. As change of behaviour,
in the context of BioCrowds, we understand to be changes in agent’ trajectories. We propose to
develop mechanisms to promote an impact in agents’ behaviour due to agents’ current emotional
state. Also, by means of contagion, we expect to observe a spreading of such a behaviour in the
crowd, emerging behaviours similar to those observed in real crowds, as described by LeBon[9]. The
challenge of introducing an emotional contagion model in crowd context must consider characte-
ristics of crowds such as i) great number of agents (hundreds to thousands), ii) crowds composed
of multiple groups and individuals, iii) spatio-temporal information of agents, and iv) agents’ goals
and trajectories.

1.1 Objectives of the present work

This work’s main objective is to introduce emotional contagion feature in crowd simulation
context, more specifically in BioCrowds [18][19]. The model proposed by Bosse et. al[11] reveals
to have flexibility to control important aspects of emotion contagion, which are: i) the individual
susceptibility, or disposition to catch others emotions; ii) the individual expressiveness, or ability
to express their own emotions to others; iii) the strength of the contagion channel, or contagion
influence existent between two persons which allows them to have strong contagion experience of
low emotional levels, or weak contagion experience of high emotional levels; and iv) it also has
means for generating both positive and negative energy in emotions. The model proposed by Bosse
and colleagues is designed for one unspecified emotion within one group. Some limitations in the
model must be addressed to enable its use within crowds with many groups and individuals, as well
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as enabling work with multiple emotions at the same time.
With the ability to feel and promote contagion of emotions, we propose to create mechanisms

to impact agents’ behaviour according to their emotional state. By means of contagion, we expect
to have agents changing their emotional state during simulation scenarios, to match surrounding
emotional tendency. By changing agents’ emotional state, we also expect to observe changing of
behaviour in agents, potentially resulting in realistic emergent behaviours in the crowd.

1.1.1 Specific Objectives

Specifically, the objectives of the present work are:

• Integrate an emotional contagion model with a crowd simulation model, with the ability to
promote emotional contagion between crowd agents;

• Integrate mechanisms to enable agents’ reaction for emotional contagion, promoting emerging
behavioural outcomes;

• Experiment with model’s parameters to analyse the impact of parameter changes in agents’
behaviour;

• Analyse emotional contagion in agents both quantitatively, using graphical and numerical
results, and qualitatively, by commenting emergent behaviours in agents; and

• Improve BioCrowds to increase flexibility for agents’ behaviour and enrich the possibilities of
simulation scenarios.

1.2 Work Organization

This section explains the general organization of this work. It is organized in six chapters:
Chapter 1, this chapter; Chapter 2, where the theory from psychology is approached; Chapter 3,
where related work on crowd simulation using models of emotions and emotional contagion are
depicted; Chapter 4, where we explain the model we are proposing; Chapter 5, where we present
the results obtained; and Chapter 6, where we point out some conclusions and possible directions
for the research field.

In Chapter 2 emotions and emotional contagion are defined according to the works of Ekman
[26] and Hatfield, Cacioppo & Rapson [33] . Section 2.1 presents the definition of emotions and
some their physiological aspects. Section 2.2 presents the model developed by Hatfield, Cacioppo
& Rapson, and Section 2.2 explains the process of emotional contagion[33]. In Section 2.3 the
OCEAN and PEN models of personality are depicted to cover better understanding of related works
on crowd simulation, like the work of Durupinar[23], that uses such personality traits. Finally, Section
2.4 depicts some psychological aspects of crowds according to LeBon [9] findings.
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In Chapter 3 relevant precedent works are depicted, starting by related work on crowd simulation
models depicted in Section 3.2. Then, Section 3.1 discusses some work on emotions and emotional
contagion both in crowds [14] and interactive agents [55]. Reminding that we have chosen specifically
to adopt the BioCrowds [18][19] model and elected the emotional contagion model proposed by
Bosse et. al[11] to introduce in its context, we dedicate one section for each one of those particular
models, i.e. Section 3.3 is dedicated to explain the BioCrowds model and Section 3.4 depicts the
emotion contagion model proposed by Bosse et. al.

In Chapter 4, the model proposed by this work is presented, showing how a contagion model
for small groups can fit crowd simulation context. In Section 4.2.1 we explain how agents’ position
information is used to impact emotional contagion. Section 4.2.2 shows a major simplification for the
model of Bosse et. al to work using only dyadic interaction (i.e., interaction between two persons).
In Section 4.2.3 we show how we extended Bosse’s model so it can handle multiple emotions in one
scenario. This is useful to create more emotional state options in agents, thus increasing simulation
possibilities. Finally, Section 4.2.4 describes how goals are associated with emotions to create a
behavioural impact in agents due to emotion contagion.

Chapter 5 explains the performed tests and their objectives, showing scenarios and model pa-
rameters chosen for each experiment. We propose three distinct experiments: one with standing
agents (i.e, agents do not move) explained in Section 5.1. One experiment with agents moving in
opposite directions, described In Section 5.2. And Chapter 5 ends with the experiment with agents
moving in the same direction, explained in Section 5.3. Finally, in Chapter 6 directions for the
continuity of the research are given.



23

2. Theoretical foundation

This chapter will cover some theoretical foundation needed to fully understand the concepts
that guided our methodology, by reviewing information originated from psychology on emotional
contagion and personality. In Section 2.1 we define emotions according to the work of Ekman [26].
In Section 2.2 human emotional contagion process is defined and briefly explained according to
Hatfield, Caioppo & Rapson[33]. In Section 2.3 a review on human personality traits is made, more
specifically, the OCEAN model (Big-Five) is defined and briefly explained [30]. Personality models
are used in works from literature to estimate parameters for heterogeneous behaviour of the agents
in the crowd [23][31]. Finally, we make a brief review on crowd behaviour as defined by Le Bon [9].

2.1 Models of Emotions

Emotions are viewed as having adaptive value and thus evolved in dealing with fundamental life
tasks. Each emotion has unique features. They can signal eminent life danger (fear) or poisoning
danger (disgust). They also have social interaction purposes like love, or anger that might approach
people or drive them appart. Each emotion, according to Ekman [26], also has characteristics in
common with other emotions: rapid onset, short duration, unbidden occurrence, automatic appraisal,
and coherence among responses. These shared and unique characteristics are the product of human
evolution, and distinguish emotions from other phenomena.

According to Ekman [26] one of the strongest evidence to distinguish one emotion to another
comes from research on facial expression. The author states that there is strong, consistent evidence
of a distinctive, universal facial expression for five basic emotions: anger, fear, enjoyment, sadness
and disgust. This evidence is not based just on high agreement across literate and preliterate
cultures in the labelling of these expressions meanings, but also from studies on actual expression
of emotions, both deliberate and spontaneous, and the association of the expressions with social
interactive context. In the physiological level, there is evidence for distinctive patterns of automatic
nervous system (ANS) activity for anger, fear and disgust, and, according to Ekman, it appears that
there may also be distinctive pattern for sadness [26].

A number of separate, discrete, emotional states, such as fear, anger and enjoyment can be
identified, which differ not only in expression but probably in other important aspects, such as
appraisal, antecedent events, probable behavioural response, physiology, among other. The nine (9)
characteristics that distinguish basic emotions from one another, and from other affective phenomena
are[26]:

• Distinctive universal signals;

• Presence in other primates;

• Distinctive physiology;
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• Distinctive universals in antecedent events;

• Coherence among emotional response;

• Quick onset;

• Brief duration;

• Automatic appraisal;

• Unbidden occurrence.

Ekman [26] describes this nine characteristics of the emotions of anger, fear, sadness, enjoyment,
disgust and surprise. He also discuss the possibility that contempt, shame, guilt, embarrassment, and
awe may also be found to share these nine characteristics. There are also other models of emotions
like the OCC model [56], which threats emotions in the cognitive perspective. The authors believe
that all emotions are related to cognitive aspects that are responsible for triggering such emotions.
They also believe that physiological, behavioural and expressive aspects of emotions presuppose that
first, the cognitive experience have taken place.

2.2 Emotion Contagion: Theoretical Psychology background

Many works can be found in psychology field regarding emotions and emotional contagion. The
process known as emotion contagion is a phenomenon observed in some groups of people. This
process deals with human affective experience. According to Barsade [5], the three most basic types
of affective experience are emotions, moods and dispositional affect. Although those terms are
used to describe how people feel, they differ in intensity and duration. Emotions refers to intense,
relatively short-term affective reactions to a specific environmental event, while moods, as compared
to emotions, are weaker, more diffuse affective reactions to general environmental stimuli, leading to
relatively unstable short-term intra-individual changes, and can change readily. Lazarus [44] describes
moods as “a transient reaction to specific encounters with the environment, one that comes and
goes depending on particular transitions”. Finally, dispositional affect is a stable, long-term variable
[70] which is, by definition, not prone to emotion contagion but can influence it.

The work of Hatfield and Cacioppo [33] provides evidence to support Primitive Emotional Conta-
gion as a strong contributor for emotional contagion. This is an automatic mechanism that promotes
emotional contagion in an unconscious level, where people are influenced without even realizing it.
The authors define Primitive Emotion Contagion as: “the tendency to automatically mimic and
synchronize expressions, vocalizations, postures and movements with those of another person’s and,
consequently, converge emotionally.” This statement is supported by three psychological mecha-
nisms: i) mimicry, which is the tendency to synchronize vocalizations, postures and movements,
ii) feedback, which affects subjective emotional experience from such mimicry, and iii) contagion,
which makes people “catch” others emotions from moment to moment. These mechanisms are
mostly primitive in the sense that they are unconsciously controlled.
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2.2.1 Emotional Contagion Process

According to Hatfield, Caioppo & Rapson [33], one’s emotional contagion may be experienced by
a continuous process of mimicry, emotional feedback and self-perception, which drives the emotion
in the affected subject. Those three processes are visceral, automatic, unconscious psychological
mechanisms, and are defined as follows.

• Mimicry: is the process of mimicking and synchronizing interlocutors expressed emotions.
This process is mainly induced by facial expression interpretation, but is also influenced by
voice pitch and posture. This synchrony is automatic and almost instantaneous. During this
process, interlocutor unconsciously imitates posture and facial expressions.

• Emotional Feedback: addresses the fact that, as proven by subject studies, one tends to have
visceral feedback on expressed emotions. Studies designed to prove this hypothesis tested
human subjects while watching a comedy video. Some subjects were forced to hold a pencil
with their teeth in a way the mouth is kept open like a smile, thus the smiley-group. Other
group was asked to hold the pencil with their lips, like a straw, making the subject almost
unable to smile, thus no-smile group. The third group was given a pencil, but no instructions
were given regarding the pencil, so they mostly just held the pencil in their hands, and this
is the neutral or control group. The subjects were then asked to answer a questionnaire to
evaluate how funny they perceived the movie. The results of this study showed significant
higher fun perception in the smiley group scoring much higher (funnier) than the no-smile
group. And yet a difference between the smiley-group with significant higher score than the
control group, which in turn scored higher than the no-smile group. This and other studies
proof evidence that forcing a facial expression of certain emotion may actually drive such
emotion.

• Self-perception: is the process of perceiving one’s own self. This means that individuals draw
inferences about their own emotional states based on the emotional expressions and behaviours
evoked in them by the emotional states of others. In other words, by perceiving their own
facial expression and posture, individuals tend to catch those emotions moment to moment.

Another observed phenomenon is emotion amplification, or emotion spirals [28]. In these cases,
other group members are affected by the emotions of one particular sender, and start expressing
the same emotion themselves. That results in the first person to be further contaged by his/her
own emotion. It is also noticed that this spiral or amplification can have, both positive or negative,
influence on the group and its goals [59]. Studies that support those claims can also be found on
the work by Hatfield & Cacioppo [33].

According to Dezecache et. al [20], there is evidence of emotional contagion beyond dyads. A
dyadic interaction refers to interaction between two people, thus dyads. This means that a person
A might experience emotional contagion by observing a person B, which in turn is experiencing
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emotional contagion by observing a third person C. For their experiments, Dezecache and colleagues
chose female participants to represent individuals B in the transmission chain because, as they point
out based on numerous studies, women are facially more expressive than men. It is important to
remark that this study supports contagion of a third party. This means that, once one person has
suffered contagion, she/he is now also a promoter of contagion too, spreading that emotional energy
through the members of the crowd. This contributes for homogeneity of crowds, as posted by Le
Bon [9] (see Section 2.4).

Beyond the individual inherent susceptibility, external factors such as interpersonal relationship,
and the level in which the emotion is expressed by others influence emotional contagion process.
Given the definitions of mimicry, emotional feedback and self-perception, the emotional contagion
process is defined by i) one subject, either a person or virtual agent, expressing one particular
emotion, on a given level of expressiveness, to another subject or group of subjects, ii) the group
of subjects exposed to the emotion, each one perceives the emotion at its own perception level,
and start mimicking and to synchronize with the perceived emotion, and iii) self-awareness on the
influenced subjects drives visceral emotion into them. This process happens continuously each
moment of a social interaction.

2.2.2 Some important consequences of emotions and emotion contagion on individual and group
behaviour

In order to properly simulate emotional contagion, it is also important to understand the con-
ditions that may strengthen or weaken the contagion process, as well as expected behaviour of a
person or a group regarding their emotional state. In order to give basic background and organize a
(small) literature review on the subject, this section presents some theories on psychology that deals
with emotions and behaviour.

Primitive emotional contagion as defined by Hatfield & Cacioppo [33] leads to convergence in
mood and emotions across group members. Emotions and moods helps to coordinate an individual’s
behaviour and responses [16]. Spoor & Kelly [65] suggests that emotions may play a similar role
in a group, through their ability to coordinate group members’ activities and actions. In particular,
shared affect may facilitate a group’s activity by helping group members to work together in the
pursuit of shared desired outcomes or goals. Furthermore, shared affect may also serve to prevent
group dissolution by facilitating the development of bonds between group members.

Emotions, in particular, operate to quickly signal to oneself important information about the
environment, including general valence information regarding whether the environment is relatively
safe or potentially dangerous. At the group level, according to Spoor & Kelly[65], this means
that group members would have benefited from the development of a mechanism for the rapid
transmission of emotional states throughout the group, and emotional contagion may have evolved
to serve this communicative function. Groups may also have benefited from the use of mechanisms
for controlling the moods and emotions of specific group members, as well as the emotional tone of
the group as a whole. By emotional tone we mean emotional harmony (or monotonicity) that can
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collaborate to strengthen group bonding. In terms of group formation, there is evidence that groups
are likely to form when individuals develop shared feelings. Additionally, there is extensive evidence
that positively toned affective ties serve several positive functions for the group, including binding
group members to one another, to operate in a more group centered manner, to better coordinate
efforts, and to better enforce group norms and procedures. Similarly, Turner [69] suggested that
human emotions may have evolved in order to facilitate the development of affective ties between
individuals, and thus increase group solidarity. The vast majority of research demonstrating these
effects has focused on the constructs of group cohesiveness [53] and group rapport [67].

Heerdink et. al [34] propose that deviant individuals (i.e., the ones with tendency to be isolated
from the group or feel rejected by the group) interpret the majority’s emotional reaction to their
behaviour (i.e., emotion expressions of disapproval against one’s behaviour) to estimate their position
in the group, which may motivate them to change their behaviour. More specifically, Heerdink and
colleagues argue that happiness and anger, if expressed toward a deviant individual in a group, may
be interpreted as information about the deviant individual’s inclusionary status. In other words,
these emotional expressions influence the degree to which the deviant individual feel accepted or
rejected by the group.

Feelings of rejection may drive the member away from the group, and she/he may not be part of
the group anymore. On the other hand, feelings of acceptance may include, or maintain a member
inside the group. This claim is supported by studies that relate emotional states, specially concerning
positive emotions, as a natural way for people to socialize, and thus group with others. Barsade [5]
makes experiments on positive emotions and positive emotional contagion, that is, an increase in
positive mood. She concludes that this will lead to greater cooperativeness on both an individual
and group level. Positive emotional contagion will also lead to less group conflict and will lead
people to rate their own task performance and that of others in the group more highly. Fredrickson
[28] also presents a study supporting that positive emotions trigger upward spirals toward emotional
well-being.

According to Kessler & Hollbach [42] group-based emotions play an important role in intergroup
behaviour. Positive emotions, like joy, directed towards a member of the group makes him/her
feel more accepted by the group. Also, negative emotions, such as anger, makes the member feels
rejected. Moreover, emotions include motivating components that may lead to specific intergroup
behaviours[12]. If one feels he/she is a part of the group (i.e., identifies him/herself with the group)
there is an impact on group overall cooperation while performing some task.

Besides performing tasks, interpersonal relatioships are also linked to group emotional experien-
ces. Emotions provide a more differentiated evaluation of a salient intergroup relation than the single
dimension of positive and negative affect [62]. Not only emotions directed toward an ingroup may
influence identification but also emotions directed toward an outgroup. For instance, Mackie, Devos
& Smith [49] showed the mediating role of group-based emotions between intergroup perception
and action tendencies. In particular, the action tendency to move against an outgroup is mediated
by group-based anger. Group members that engage aggressive behaviour along with the group tend
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to fell more accepted by the group, strengthening interpersonal bonds with other group members.
In addition, these studies demonstrate a positive relation between ingroup identification and

group-based emotions (e.g., anger about a relative disadvantage) suggesting that higher identifica-
tion with a group leads to more intense group-based emotions. Although it is known that personal
identification with the group is related with group-based emotions, it is impossible to determine
causal priority of one variable over another. Hence, ingroup identification may not only be a deter-
minant but also a consequence of group-based emotions. In particular, ingroup identification may
be enhanced or reduced depending on which group-based emotion an individual experienced. If
group-based emotions affected ingroup identification then this might provide an explanation for the
processes of approaching or distancing oneself from a social group.

Generally, certain emotions may tend to increase ingroup identification whereas others may
decrease identification with an ingroup. There are two interesting phenomenon that exemplifyes
clrearly this statement. They are: BIRGing and CORFing. BIRG stands for Basking in Reflected
Glory and refers to behaviour where someone that identifies him/herself as a member of a particular
group recognizes the victory of a group as being his/her own achievement, even if the individual in
evidence has taken no part in the execution of such deed. CORF stands for Cutting off Reflected
Failure and refers to behaviour where someone tends to lose identification with a group one is a
member when the group is somehow defeated, even if the individual is not to blame on the failure. An
example to illustrate both behaviours is a supporter of a sports team. There are people who played
no role in the sports match that they happen to be celebrating the victory as if they have scored the
decisive goal. On an opposite scenario, some supporters may repress demonstrations of affiliation
once his team has been defeated. Research on BIRGing showed that a positive performance of a
group with which one identifies leads to an enhanced identification and, in particular, an increased
public demonstration of group membership[15]. In addition, this finding was complemented by
research showing that after group failure individuals distance themselves from an ingroup (cutting
off reflected failure, CORFing)[63].

2.3 Personality Traits: Theoretical Psychology background

Although we do not apply personality traits in this work, relevant work in the area does. Persona-
lity traits are related to a individual disposition affect, which is the most time invariable characteristic
of emotions and emotional contagion. There is more than one personality model in psychology li-
terature. Just to name a few that has already being used in computer sciences works we can cite
the PEN personality model proposed by Eysenck & Eysenck [27], and there is also the OCEAN
personality model (also known as Big-Five) proposed by Goldberg[30], both originated in psycho-
logy and adopted in computer sciences as basis for creating heterogenous crowd behaviour. Works
like Durupinar [23], using OCEAN, and Guy [31], using Eysenck’s PEN, are examples of computer
sciences works that adopts psychological models. The model PEN proposed by Eysenck & Eysenck
maps human personality in three dymensions being:



29

• Psychoticism, measuring the tendency to act impulsively. It is associated not only with the
liability to have a psychotic episode (or break with reality), but also with aggression. The rese-
arch that has been done has indicated that Psychoticism too has a biological basis: increased
testosterone levels.

• Extraversion is based on cortical arousal, which can be measured by skin conductance, brain
waves, or sweating. While theoretically introverts are chronically overaroused and jittery,
theoretically extraverts are chronically underaroused and bored. The theory presupposes that
there is an optimal level of arousal, and that performance deteriorates as one becomes more
or less aroused than this optimal level. The finding that arousal is related to performance as
an inverted U-shaped curve is called the Yerkes-Dodson Law. Extraversion is related to social
interest and positive affect.

• Neuroticism is based on activation thresholds in the sympathetic nervous system or visceral
brain. This is the part of the brain that is responsible for the fight-or-flight response in the face
of danger. Activation can be measured by heart rate, blood pressure, cold hands, sweating,
and muscular tension (especially in the forehead). Neurotic people, who have a low activation
threshold, experience negative affect (fight-or-flight) in the face of very minor stressors. They
are easily upset. Emotionally stable people, who have a high activation threshold, experience
negative affect only in the face of very major stressors. They are calm under pressure.

It is interesting to note that measures of activation are not highly correlated. That is, people
differ in which responses are influenced by stress: some sweat, others get headaches. This is called
individual response specificity. It is also interesting to note that stressors differ in the responses they
elicit. This is called stimulus response specificity.

Through the parameters given by those models, one can estimate different instant decision
making, such as taking right or left in order to avoid collision. Another possible triggered behaviour
is the act of pushing other agents to open way [57]. Those decisions are usually based on agents
tendency to follow rules, or being assertive to others, which in turn are mapped by personality
characteristics.

2.3.1 OCEAN Personality Model: The Big-Five

Also known as The Big-Five, this model claims that human personality can be mapped into
5-dimensions. One can find the history of OCEAN personality traits on the work of John and
Srivastava [40]. This document starts from the early efforts of lexical approaches, in which personality
researchers turned to the natural language as a source of attributes for a scientific taxonomy, and
finishes by presenting an instrument for measuring ones OCEAN personality scores based on a 44-
item self-reporting characteristics. Here, we focus on giving a brief introduction to the lexical origin
of the OCEAN personality trait model, and the definitions of the five dimensions.
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The lexical hypothesis posits that most of the socially relevant and salient personality characte-
ristics have become encoded in the natural language[2]. Thus, the personality vocabulary contained
in the dictionaries of a natural language provides an extensive, yet finite, set of attributes that the
people speaking that language have found important and useful in their daily interactions [29].

Rather than replacing all previous systems, the Big Five taxonomy serves an integra-
tive function because it can represent the various and diverse systems of personality
description in a common framework.

The acronym OCEAN stands for the description of each one of the five dimensions: Openness,
Conscientiousness, Extraversion, Agreeableness, Neuroticism, defined as follows.

• Openness to Experience (vs. closed-mindedness) describes the breadth, depth, originality, and
complexity of an individual’s mental and experiential life. It is also commonly associated with
intellect.

• Conscientiousness describes socially prescribed impulse control that facilitates task- and goal-
directed behaviour, such as thinking before acting, delaying gratification, following norms and
rules, and planning, organizing, and prioritizing tasks.

• Extraversion implies an energetic approach toward the social and material world and includes
traits such as sociability, activity, assertiveness, and positive emotionality.

• Agreeableness contrasts a pro-social and communal orientation towards others with antago-
nism and includes traits such as altruism, tender-mindedness, trust, and modesty.

• Neuroticism: Neuroticism contrasts emotional stability and even-temperedness with negative
emotionality, such as feeling anxious, nervous, sad, and tense.

2.4 The Psychology of Crowds

Gustave Le Bon was a pioneer in the study of crowds [9]. He defines crowds as a gathering
of individuals of whatever nationality, profession, or sex, and whatever be the chances that have
brought them together. Under certain given circumstances, and only under those circumstances, a
crowd presents new characteristics very different from those of the individuals composing it. There
he defines a psychological crowd, which is not just an agglomerate of people, but rather a single
being, subjected to the law of the mental unity of the crowd. Under these circumstances, the
sentiments and ideas of all the persons in the gathering take one and the same direction, and their
conscious personality vanishes.

Different causes determine the appearance of these characteristics peculiar to crowds, and not
possessed by isolated individuals. The first is that the individual forming part of a crowd acquires,
solely from numerical considerations, a sentiment of invincible power which allows him to be carried



31

away by instincts which, had he been alone, he would have kept under restraint. He will be less
disposed to check him/herself from the considerations as the sentiment of responsibility, which always
controls individuals, disappears entirely. This results from the fact of a crowd being anonymous,
and in consequence irresponsible for its actions.

The second cause, which is contagion, also intervenes to determine the manifestation of special
characteristics in crowds. Contagion is a phenomenon of which it is easy to establish the presence, but
that it is not easy to explain. This is sometimes related to the concept of Social Contagion, which
in turn is divided in Behavioural Contagion, referring contagion of actions (hysterical contagion,
contagion of aggressive behaviour, rule violation contagion) and Emotional Contagion[50]. We
defined emotional contagion as Hatfield & Cacioppo proposed [33], and emotions indeed spread
through the crowd. Perhaps mimicking plays an important role in the contagion mentioned by Le
Bon, but he classes it among those phenomena of a hypnotic order. In a crowd every sentiment and
act is contagious, not only emotions. And those are contagious to such a degree that an individual
readily sacrifices his personal interest to the collective interest. This is an aptitude very contrary to
his nature, and of which a man is hardly capable, except when he makes part of a crowd.

A third cause, and by far the most important, determines special characteristics in the individuals
of a crowd which are quite contrary at times to those presented by the isolated individual. Le Bon
refers to that suggestibility of which the contagion mentioned before is neither more nor less than
an effect, according to him. To understand this phenomenon it is necessary to have in mind certain
physiological discoveries. It is known today that an individual may be brought into such a condition
that, having entirely lost his conscious personality, he obeys all the suggestions of the hypnotist,
and commits acts in contradiction with his character and habits. The most careful observations
seem to prove that an individual immersed for enough time in a crowd in action soon finds himself
in a special state, which much resembles the state of fascination in which the hypnotized individual
finds himself in the hands of the hypnotist. The conscious personality has entirely vanished, will and
discernment are lost.

Such also is approximately the state of the individual forming part of a psychological crowd.
He is no longer conscious of his acts. In his case, as in the case of the hypnotised subject, at the
same time that certain faculties are destroyed, others may be brought to a high degree of exaltation.
Under the influence of a suggestion, he will undertake the accomplishment of certain acts with
irresistible impetuosity. This impetuosity is more irresistible in the case of crowds than in that of
the hypnotised subject, from the fact that, the suggestion being the same for all the individuals of
the crowd, it gains in strength by reciprocity. Some experiments performed in Chapter 5 shows that
as the number of agents rises, it will take longer time to change the emotional state of the group.
This is noticeable in simulation scenarios presented on Section 5.2, as the number of agents in the
group rises, the time it takes to change their states to escaping also rises.

We see, then, that the disappearance of the conscious personality, the predominance of the
unconscious personality, the turning by means of suggestion and contagion of feelings and ideas in
an identical direction, the tendency to immediately transform the suggested ideas into acts are the
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principal characteristics of the individual forming part of a crowd. He is no longer himself, but has
become an automaton who has ceased to be guided by his will. In the next chapter we present some
works on crowd simulation and virtual agents, developed by computer sciences research groups, that
aims to simulate some of the psychological aspects presented here.
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3. Related work

This chapter focuses on related works in computer sciences area. In Section 3.1 we discuss some
recent important works that attempt to simulate emotion, emotion contagion and personality traits
in virtual agents. Some of those models were not yet applied to crowds, but rather to single agents
interacting with humans or small groups of agents. Those models aim to enable emotional expression
in agents in a way that a human observer is able to correctly perceive the emotions. To accomplish
emotional expression, some models focus on gestures [7], or facial animation characteristic of emo-
tions (such as a smile with hand gestures commonly used to express joy). Those gestures and faces
are driven by the emotional state of the agent with the objective to express agent’s emotions. In
Section 3.2, we discuss pioneer and recent works on Crowd Simulation Models, and since the core
of this work is emotional contagion applied to crowds, we dedicated Section 3.2.1 to discuss works
on emotional contagion in crowds.

With the objective of highlighting both models (model of crowds and model of emotion con-
tagion) used in this work for integrating crowd simulation and emotion contagion, we depict the
details of each model in separated sections. With that in mind, in Section 3.3 we present the crowd
simulation model, proposed by Bicho et. al [18][19]. We use this crowd simulation model as star-
ting point for introducing emotional contagion. And finally, in Section 3.4 we depict the emotional
contagion model adopted, proposed by Bosse et. al [11].

3.1 Related Work on Computational Models of Emotion and Emotion Contagion

Out of crowd context, psychological models are also being used to compute the emotion that is
defined by nonverbal behaviour, such as facial expressions and gestures, and also verbal behaviour
such as voice pitch (used in voice synthesis) of interactive agents. The objective of this section is to
present computational models of emotion designed to cope with virtual agents. Costa & Feijó [17]
published pioneer work in the area where the reactive nature of emotion is explored and a Reactive
Emotional Response Architecture is proposed. In this work, the authors start by considering that the
question of emotion in computer animation can be tackled from two points of view: (i) the reactive
nature of the virtual environment and (ii) the cognitive aspects of the mental models of emotion.
By focusing on the first viewpoint, the principles underlying the Reactive Agent Model proposed
by the authors are the following: cognition, emergence, situatedness, recursion and cooperation.In
this context, the emotional state is generated by procedures rather than by logical deductions
from a formal representation of the world. These straightforward procedures render computational
efficiency to the implementation of the proposed model. It is important to notice that Costa &
Feijï¿1

2 [17] mentions that a formal model of emotion is not within their scope and, in fact, a very
simple mechanism for emotion generation is used. However, the architecture permits one to plug an
emotion generator or procedures to the agents in order to test more complete models of emotion.
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Bispo & Paiva [8] propose a model of emotion contagion based on the Emotion Contagion Scale
(ECS)[21], which measures individual susceptibility to emotional contagion, across five different
basic emotions (Love, Happiness, Fear, Anger, and Sadness). The model presented by Bispo &
Paiva focuses on unconscious aspects of emotion contagion, and uses the NetLogo environment for
implementation. Each agent is modelled by a set of variables to record the current score for each
emotion. The higher the score, the more likely will be the emotion to be expressed. This set of
variables is labelled by the authors as “Current Mood”. Each time an agent is influenced by one
emotion, the value of this emotion’s variable rises, while the value on the other emotions lowers. As
the emotion with highest score is chosen, when two or more emotions are tied in the same value, the
emotion which comes first is chosen in the order: Happiness, Love, Anger, Fear, an Sadness. The
variables in the “Current Mood” are arranged so that the sum of all values of all Current Emotions
will always be 0. Finally, there is a limit for the highest values of an emotion variable, but there is
no limit for how low it can be.

The work conducted by Lhommet et. al [47] is designed to simulate crisis situation that shows
the emergence of crowd behaviour from individual behaviour, based on the emotion contagion
phenomenon. A key contribution of this work is mapping OCEAN personality traits into the strength
and susceptibility of emotional contagion. Each individual in the crowd is represented by a cognitive,
emotive and social agent. They are modelled with a personality given by PA = [PO, PC , PE, PA, PN ]
and the authors proposes a formulation to calculate agent’s Contagion Power (CP) and Susceptibility
to Contagion (SC) from those parameters. Later, CP and SC are used to calculate the amount of
contagion in a given time window, according to surrounding agents’ parameters.

Pereira & Dimas [58] proposes a computational model designed for emotional contagion simula-
tion for multiple agents. The level of emotion contagion is biased by agent relationship and emotional
expression and susceptibility. The work is based on the model proposed by Bispo & Paiva [8]. In
this work, the authors model the emotional contagion process in individual agent level, and group
emotional contagion behaviour emerge from interactions between agents. The agent can capture
en “Emotional Expression” (EE) from the environment, and filter it on the “Contagion Filter” to
create a “Received Emotion” (RE) that is used to update agents’ “Current Mood” (CM) by the
“Mood Updater”. When given a chance to express, the agent decides on it with its “Emotional
Expression Filter” and uses its “Current Emotion” to create a new “Emotional Expression” (EE).
An emotional expression is the way the agents interact with others in the same environment, and is
the basis of the model’s dynamics. It is represented by a tuple < t, io > where t represents a type
of emotion and can be one of the five emotions used by the model (love, happiness, sadness, fear
and anger), i represents the intensity of the associated emotions and is a positive real value, and o
identifies the transmitter of the expression. In the “Contagion Filter”, a captured EE is transformed
into a RE using two kinds of perception bias: susceptibility and contagion. The “Susceptibility Bias”
probabilistically determines, based on agents “Emotion Contagion Scale” (ECS) score and type of
EE, if the agent is affected or not. Each agent has its own ECS score for each emotion given by the
probabilistic function ECS(t), where t is an emotion type. The Susceptibility process is represented
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by the function Suscept(t), where t is an emotion type and the value returned is a real number in
the range [0, 1]. If Suscept(t) < ECS(t), contagion occurs.

Bevacqua et. al [7] presents a computational model that generates listening behaviour for an
Embodied Conversational Agents (ECA). It triggers backchannel signals according to the user’s
visual and acoustic behaviour. The authors understand as possible backchannels gestures like head
movements or wavening. Actions can be a mix of several backchannels if there are no conflicts on
the same modality. Only one action can be displayed by the ECA at a given time and the Action
Selection module receives continuously candidate backchannels. The backchannel algorithm has
been evaluated by naive participants using an user-agent scenario of storytelling. The participants
judged the algorithm-ruled timing of backchannels more positively than a random timing. The
system can generate different types of backchannels. The choice of the type and the frequency of the
backchannels to be displayed is performed considering the agent’s personality traits. The personality
of the agent is defined in terms of two dimensions: extraversion and neuroticism. The authors link
agents with a higher level of extraversion to a higher tendency to perform more backchannels than
introverted ones, and they link neuroticism to less mimicry production and more response and reactive
signals sent. A perception study to test these relations in agent-user interactions was conducted by
the authors. It was found that the selection of the frequency of backchannels performed by their
algorithm contributes to the correct interpretation of the agent’s behaviour in terms of personality
traits.

There are also works that focuses on studing emotional contagion in the interaction between
human users and virtual agents as in the work conducted by Tsai and collegues [68]. Since studies
are being conducted in psychotherapy and military training using virtual agents in simulations, the
impact of such emotional interactions must be considered in order to avoid undesirable repercussions.
According to the authors, while many works addresses the subject of emotional contagion, few
addresses the subject regarding the interaction between human and virtual agents. The effects are
assumed to either be non-existent, and therefore overlooked entirely, or to mimic human-to-human
emotional influences. However, the authors shows those are both poor assumptions and most likely
to be harmful to users in sensitive domains. In order to attempt the confirmation of those statements,
three sets of studies are conducted by the authors in this work[68]. The first study examines pure
contagion case, by simply showing a still image of a virtual agent either showing happy or neutral
expression, and afterwards, assessing the subjects mood. The second study adds the presentation
of game-theoretic situation known as a Stag-Hunt along with the character image to assess both
the contagion and the behavioural impact of the virtual character in a strategic setting. Although
the authors always tell subjects to be trusting, for example, this may not result in any meaningful
impact on behaviour in a strategic situation. So, it is attempted to examine whether behavioural
impacts arise in strategic situation from agent-human contagion. Finally, the third study examines
the post-hoc hypothesis that the presentation of a decision to the user dampens the emotional
contagion effect. Specifically, the same strategic situation in the second study is presented to the
subject, but with the decision already made.
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Seeking to achieve socially aware virtual characters, Ochs & Pelachaud proposes the study of
the smile in the context of social signals[55]. Meaningful gestures like facial expressions showing
emotions, head nod showing agreement, and other verbal and non-verbal body and facial expressions
are considered as social signals. To respond in a social manner, in synchrony with the user, a virtual
character should be able to display, in a timely manner, social signals that can be perceived by the
user. For instance, to communicate disagreement, a raise of eyebrows may be shown. In this context,
Ochs & Pelachaud study the social signal of a smile. A smile may convey totally different meanings
– such as amusement, embarrassment, or politeness – depending on subtle characteristics of the
face. Moreover, one’s smiling behaviour may affect the another’s perception, his/her motivation,
enthusiasm, and even the realization of a task. Also, a virtual character should be aware of the
impact that its social signals have on the users, thus they must have a repertoire of expressions
with their corresponding meaning. They focused their efforts on three types of a smile: an amused
smile (or genuine smile), a polite smile (also called false, social, masking, or controlled smile) and
an embarrassed smile. As result, the authors create socially aware virtual characters, a repertoire
of smiles with different meanings that has been produced starting from a user-created corpus of
virtual smiles. The latter has been integrated in virtual characters and evaluated at different levels
of interaction.

The model proposed by Soleimani & Kobti [64] uses fuzzy apprisal approach to analyze the in-
fluence of applying different regulation strategies as direct pro-regulation intervention to the system.
The model is based on Emotional Response Level (ERL) and Neutral-Emotional-Neutral (NEN)
approach, which in turn is similar to disease contagion Susceptible-Infected-Susceptible (SIS) model
[1]. The emotional contagion is function of ERL on each agent and the emotional value that is
transmitted in the contagion process. In the process, neutral agents transit to emotional agents and
vice-versa.

3.2 Related Work on Crowd Simulation Models

In pioneer approaches, agents behave the same way: they all shared the same decision-making
algorithm. Usually, the only behaviour of agents used to be goal seeking. Different approaches for
navigation or collision avoidance were proposed, but all agents basically did the same thing: navigate
in the scenario in a collision free manner, and seek a predefined goal. The differences relied only
on agents’ speeds and goals, but no other significant difference between agents occurred. With
different behavioural algorithms, agents gain flexibility to behave differently from each other when
facing the same situation. An example of this different behaviour is taking right decision to avoid
potential collision. Depending on cultural plurality, people might agree to walk to their right to
deviate from another person coming in the opposite direction in order to avoid bumping into them.
But, although this might be the common sense, thus the rule in some crowd simulation models, it
might not be applicable to everyone in real life. Somebody may take the left side instead for some
personal reason. To have this kind of behaviour emerging in the crowd, agents must be able to
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make different decisions, so more specific decision-making algorithms are required. For the given
example, the algorithm should be able to make some agents take right, others take left, depending
on simulation state (i.e., internal agent’s parameters or surrounding environment). The objective
of this chapter is to picture the evolution of crowd simulation models, from pioneer works to later
state-of-the-art, some of which make use of psychology models to improve realism.

The pioneer work in crowd simulation is Reynolds’ flocks, herds and schools [60]. Based on
a particle approach, all agents have attraction (velocity matching) and repulsion forces (collision
avoidance), combined with a goal force (flock centring). This gives the observer a sense of group,
since all the individuals move together. The model was applied to flocks of birds, schools of fishes
and herds of land animals (by constraining the third dimension). The agents are all bird-oids,
most commonly called boids. Attractive forces drive the individuals to the average position of their
neighbours, keeping the group together. Each boid feels forces to align their velocity with their
neighbours’ velocity. To avoid collision, repulsive forces are used to drive individuals apart from
their neighbours. The combination of those three forces (attraction, alignment and repulsion forces)
results in desired velocity for each individual at each simulation frame. The emergent behaviour
from this simulation resembles the movement of flocks and herds. Despite the fact that there is a
sense of group in Reynolds’ simulations, according to the authors, the agents do not behave in a
human-like form, and thus they do not suggest simulation of human agents. Human-like behaviour
can be defined as the emergence of crowd behaviours consistent with real observed human crowds.
Reynolds’ crowds behaviour resembles schools of fishes or flocks of birds, but not human crowds.

Another classic pioneer work is Helbing empirical Social Force Model [37]. In his work, Helbing
defines that agents should respond to three basic forces: (i) desire to reach a specific location or
goal in the environment pulling the agent towards it, (ii) presence of other pedestrians in their
surroundings forcing the agent to keep minimal distance, and (iii) attraction to other correlated
pedestrians (family and friends) or interest points in the environment. This references previous other
Helbing’s works which implement a pedestrian specific gas-kinetic (Boltzman-like) model[36][35].
The authors make use of social forces concept, which was first introduced by Lewin [46]. In Lewin’s
idea, behavioural changes are guided by social forces or social fields. According to the proposed
process, a sensory stimulus causes a behavioural reaction that depends on the personal aims and
interests, but also on the perception of the situation and the environment. Proper reactions are
chosen from a set of behavioural alternatives with the objective of utility maximization. Social forces
must not be confused with forces originating from the environment applied over the pedestrian body.
Rather, they are quantities that describe motivation to act. Also, social forces are mathematically
modelled as monotonic increasing potential lines, and can be modelled as attraction forces, pulling
the individual toward an objective or a friend, or they can be modelled as repulsion forces, which drive
the individual away from obstacles, walls or other unknown individuals that may cause discomfort
due to physical proximity.

Later, Musse and Thallman [54] developed an approach based on group hierarchy. The agents
behaviours are defined in three basic ways: (i) by using innate scrip behaviour; (ii) by defining
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behavioural rules through a script; and (iii) by defining external control to guide crowd behaviours in
real time. Although agents in the same group are programmed to follow a leader, the group does not
behave as a unique flow. Instead, they have individual behaviour inherited by the script behaviour
set for that particular group. Thus, this approach is based on group hierarchy. The complexity of
scripts may define different decision making and interaction behaviours on most complex scenarios.

Pelechano et. al proposes an approach for controlling individual agents in high density crowds
(HiDAC)[57]. The model focuses on the problem of simulating the local motion and global path
finding behaviours of crowds moving in a natural manner within dynamically changing virtual environ-
ments. The solution to the problem of realistically simulating local motion under different situations
and agent personalities uses psychological, physiological and geometrical rules combined with physi-
cal forces. Since applying the same rules to all agents leads to homogeneous behaviour, the authors
gave agents different psychological (e.g., impatience, panic, personality attributes) and physiological
(e.g., locomotion, energy level) traits that trigger individual heterogeneous behaviour. Each agent is
also endowed with perception and reacts to static and dynamic objects and other agents within the
nearby space. Agents’ behaviour is determined by a high-level algorithm (including: navigation in
complex virtual environments, learning, communicating and decision making) and low-level motion
controllers. The model was used to simulate a situation of evacuation, modifying agent behaviour
based on personality and perception of other agents’ level of panic.

There are many ways to explore different agent behaviours within a crowd. Some works explore
Personality Models found on psychology literature[23][31]. Some other works like Li [48] use role
playing to determine agents’ behaviour in the crowd. In those cases, a number of different roles
to be played by each agent is programmed. At run time, those roles are attributed to each agent,
according to a schedule or an expected behaviour in a given situation. The agents usually change
more than one time their role during a simulation.

Some research groups have been trying to model pedestrian behaviours in crowds by making
use of computer vision models. A lot of information on video techniques to model and analyze
crowds can be found in the work of Jacques Junior et. al [39]. To model virtual crowds based on
video data, computer vision techniques are used to extract from video images the trajectories of real
life pedestrians. The parameters of the crowd model (agents’ velocity, goals and paths) are then
adjusted to make simulated agents take trajectories that resembles the ones captured in video. To
validate crowd simulation models, an inverse process is taken, i.e. first the model’s parameters are
set, later, data captured from video is used to validate agent’s trajectories.

3.2.1 Emotional Contagion in Models of Crowds

Later works on crowd simulation have integrated models derived from psychology studies to
imitate human social interaction outcomes. Mathematical models that imitate phenomena related
to personality, moods and emotions are being developed and integrated on virtual agents to drive
their interaction, both with humans and other virtual agents. Behaviours like group formation, fight
picking, goal and/or speed changing are all being mapped to some psychological state of the virtual
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agents in crowds[23][24]. These approaches aim to achieve crowd behaviour specification in more
automatic manner. They map high level personality trait parameter, such as shy or extroverted
into lower level computational model parameters. The user does not have everything in control,
and agent’s behaviour arise from their personality’s parameters as a function of agent’s status,
surrounding environment and interaction with other agents. Personality models are relevant to
this work because they can be related to the agent’s emotional tendency. The difference between
emotion and personality is that emotion is a temporary status and personality is a concept much
more constant, i.e., invariant in time.

Durupinar et. al presented an approach [23]to incorporate OCEAN personality model into HiDAC
simulation system[57]. The objective of this work is to easily create different personalities. To do
so, the parameters of the HiDAC simulation system were mapped into individual OCEAN traits and
its polarities. Also, simple adjectives such as "leadership", "impatience", "panic", among others, are
mapped to the same traits. This way, agents’ behaviours are easily specified through adjectives,
which in turn are translated to OCEAN traits, and then to lower level HiDAC parameters. The model
enables simulation of heterogeneous crowds, where each subgroup is composed of individuals with
similar personality traits. The model also frees the user from understanding underlying methodologies
of HiDAC, and allows the use of higher-level concepts related to human psychology. Later, Durupinar
et. al evaluated their model within a user study[25]. According to authors results, the traits designed
were perceived by the participants as expected.

Another personality model used in crowd simulation models and originated from psychology stu-
dies is Eysenck’s PEN [27]. Guy et. al conducts a work that applies PEN on crowd simulation
scenario [31]. The authors conduct two user studies: one to correlate simulation parameters with
personality model parameters, and the other to validate the correlations found. To perform the
study, two videos were presented to participants by the authors: one presenting a scenario configu-
red with the parameter setting to be tested, and the other with default parameters to be used as
control reference. The work presents linear regression matrices for mapping PEN personality model
into simulation parameters. As input to QR decomposition with column pivoting, the authors use
difference between the given agent’s parameters and those of the agents in reference video. This
removes the need to compute an offset as part of the regression. The input is also normalized to
increase numerical stability of the linear regression. After defining appropriate regression matrices,
the authors subject their result to a behaviour perception user study, where they validate the pa-
rameter mapping found. Finally, by performing Principal Component Analysis (PCA), and because
the PEN factor dimensions are not completely orthogonal, the authors summarize their data analysis
into two Principal Components, leading to a bi-dimensional personality mapping. By the end, the
authors accomplish a high level parameter choice, based on PEN personality trait adjectives, and
are able to remap those high level parameter into lower level agent parameters.

In the work by Carretero et. al[14] a simple emotion model is developed and applied in crowd
simulation context. Opposing to personality models, which makes agents personalities constant,
emotions can vary during simulation. Emotions are driven basically by the agent’s mood, which
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is an emotion tendency for every agent. Moods have very slow variation in time, taking hours or
even days to change, in opposing to emotions that lasts from few minutes to hours. Here we make
notice that emotional models might implement decay functions that adjust agent’s emotional state
to match its inner mood tendency while in absence of external events. This way, even when an agent
has a sad mood, is it possible for this agent to become happy for a short period of time, when he or
she meets a friend with good news, for example. To enable this, an emotion contagion model is also
created, and agents are given the ability to express their moods (or emotions). On the other end,
agents are also able to perceive other agents’ emotions. To decide what agent infects the others,
a power on agents relationships is modelled in a way that agents with more emotional contagion
power over the others will have their counterparts infected with their own emotion. When the
interaction between agents cease, agents tend to return to their initial moods. The authors models
three moods: sadness, happiness and neutral. The model of contagion is still too simple, but rather
the work focuses on body animation and body expression of the moods to be very convincing. The
body expression gives the ability for the agents not only to express their moods towards one another,
but to express their moods towards a human observer.

Much has been done so far to achieve realistic crowd behaviour, and state-of-the-art approaches
makes use of psychological models, including personality and emotions, to estimate agents’ behavi-
ours. Situations of panic and fight picking were simulated on HiDAC[57]. Personalities were applied
to the same model to easily configure agents’ variations on behaviour, and emotion contagion has
been made avaliable [23][24], applying a contagion model derived form spreading of diseases. It uses
a threshold model, which means that contagion only occurs after a certain threshold if contagion is
achieved. Furthermore, work by Tsai et. al [68] performs a comparison of the model proposed by
Bosse et. al [10] (to be further explained in Section 3.4) with the model proposed by Durupiar [22]
(which used the same contagion model as in [24]) and shows slightly better performance of the first
over the later, according to Tsai et al. metrics. The authors suggests that the primary cause of the
statistically significantly worse performance found with the epidemiological/social contagion model
of [22] is in the mechanism of contagion itself, which is probabilistic and uses a binary representation
of the effect. Other models like [14] also shows emotion contagion in crowds, but both their emotion
and contagion model are far too simple to address different aspects of contagion such as stronger
or weaker contagion and emotional spirals.

3.3 The BioCrowds

Inspired in algorithms for simulating plant growth, the BioCrowds model [18][19] incorporates an
interesting collision avoidance methodology. The authors adapted an algorithm for space competition
applied to vegetal growth simulation on the work by Runions et. al [61]. On the later, the authors
objective is to create leaves and branches of trees. For that, they fill the space with auxins – or, as
they call, attraction points – that will stimulate branches to grow their way. They also initialize tree
nodes. Directional vectors are calculated from each node that has attraction points close enough to
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it. Those nodes will grow to the resulting directional vector by creating new nodes in the pointed
direction. Finally, the algorithm removes every attraction point that has tree nodes too close to it.
By changing parameter setting (i.e., marker’s positions and density, initial tree nodes, distances for
activating attraction of nodes and triggering deletion of markers) different shapes of trees and bushes
are generated by Runions algorithm. But, what is the relationship between plants and crowds?

The key idea of BioCrowds for crowd simulation is to use markers in the scenario to represent
free spaces, just like Runions’s attraction points. Those markers are threated as resources for which
agents in crowd compete. Agents will take ownership of free markers close to it. As the agent
moves in the scenario, it will release ownership of markers that are left behind and got far from
it. The distance where markers should be taken or released by the agent is based on its social
space, as defined by Edward Hall [32]. This way, in the model proposed by Bicho, the evaluation
of agent’s neighbourhood is possible through the quantity of markers associated to the agent at a
given moment. In other words, the agents are blind, and they only see the environment through
markers. A perception area that surrounds the agent is then marked as owned, allowing the agent
to recognize its proxemics.

The BioCrowds approach preserves most of the space competition algorithm characteristics.
The key elements adopted by Bicho et. al to support the original algorithm modifications to crowd
simulation problem are:

• Markers space restriction: In the geometric model for generation of tree branches, a tree
node can be influenced by any attraction point marker (or auxin) present in the leave/tree
space. At each simulation iteration, each marker is associated to the closest node. On the
crowd simulation model, just markers that are present in the personal space of the agent (or its
proxemics) are able to influence it, rather than being influenced by all markers in the scenario.

• Markers Persistence: As the tree branches grows and occupy the space, the attraction point
markers are removed from the space. The condition to remove is that there must be nodes
close enough to the marker in order to trigger deletion. In the crowd simulation model the
markers are never removed, so they keep in the virtual environment during all simulation.
Instead of being removed, they are just marked as taken, or owned by some agent. Agents
claim ownership of markers inside its personal space. Once an agent claims ownership of a set
of markers, those markers are available only for that agent. The only way for the agent to move
is claiming new markers for its own personal space. At the same time, markers left behind
are released by the agent. Those markers, now released, are discrete representation of free
space and can be disputed by other agents so they can also move in the virtual environment
by occupying free space.

• Goal Seeking: The growth of tree branches is guided simply by space availability, represented
by the existence of attraction point markers. However, in crowd simulation, people movement
is guided not only by availability of space, but also by the intention of reaching a destiny. The
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navigation, in terms of goal seeking, is also computed through markers in the environment.
The ones that leads to positions closer to the objective are strongly weighted. The weighting
function has mainly three properties: (i) reach its maximum when the angle θ between ori-
entation vector and goal is θ = 0◦ (ii) reach its minimum when θ = 180◦, and (iii) decrease
monotonically while θ increases from 0◦ to 180◦. This way, agents can reach their goal, while
respecting obstacles and other agents’ spaces.

• Velocity Adjustment: In the space colonization algorithm, trees branches grows in constant
rate, which implies constant speed. In the crowd simulation context, agents vary their velocity
according to space availability. The desired speed for each agent is an input to the model.

To initialize the crowd simulation model, some considerations were taken in order to incorporate
crowd related parameters and features. For starters, a scenario must be described. This is done using
an input file with the coordiantes describing a set of blocks representing obstacles, or unwalkable
area. The number of agents and its initial positions are also inputs for the model. Also, the
goals for agents are defined in a group hierarchy, i.e., agents inherit group’s goal. To initialize the
scenario, the density of markers must also be set. The more markers in the scenario the better is
the resolution of discrete free space description and results in smoother agent’s trajectories. On the
other hand, too much markers can increase significantly the algorithm’s computational cost. Another
input parameter is the agents proxemics, or, in other words, the ray (R) of agents personal space.
Finally, every agent must have the module of desired speed initialized to smax. This is the maximum
movement speed of the agent input parameter. To compute agent’s translation an instantaneous
speed is computed as s′max = smax/FPS, where FPS is a given number of frames-per-second
(time resolution) of the output.

3.3.1 Computing Agent’s Velocity

In order to make agents evolve in the scenario towards their goals, the movement of each agent
i is calculated iteratively. In each iteraction cycle, both agent’s position p(t) and and the objective
vector g(t) indicating agent’s destination are updated. A set of markers Si(t) is generated containing
all markers in agent’s i personal space, which are closer to agent i than to any other agent in the
scenario. Implicitly, this division of space represents a decomposition of space according to the
distance relative to preset points, those points being agents’ positions. This decomposition is also
known as Voronoi diagram [3].

Considering an instant t = t0 and omitting the variable t, given a size N set of markers associated
to agent i denoted by Si = {a1, a2, ..., aN}, to compute the agent’s position in time t = t0 + 1,
firstly a set of vectors must be calculated in the form:

S ′i = {d1, d2, ..., dN}, where dk = ak − p, (3.1)

given that p represents the current position of the agent. Put in words, dk are vectors starting in
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the agent’s position, and pointing to each marker in S. Having computed this set of vectors, the
algorithm for plant growth would simply calculate the resultant vector and grow the plant in the
given direction. For crowd simulation, the agent’s goal must be considered. For that, the vectors in
S ′ must be weighted, in order to guide the agent towards its goal. As explained before, the weight
of those vectors are dependent on the angle θ between the agent’s goal vector g and each vector dk

in S ′. Considering this aspect, the movement vector m can be written as follows:

m =
N∑

k=1
ωkdk, (3.2)

where the coefficients ωk are given by

ωk = f(g, dk)
N∑

l=1
f(g, dl)

. (3.3)

Finally function f(g, d) must be defined. In order to accomplish its goal, function f(g, d) must
have the following characteristics:

1. Output its maximum value when angle θ between goal vector g and marker vector d equals
0◦.

2. Output its minimum value when angle θ between goal vector g and marker vector d equals
180◦.

3. Monotonically decrease as angle θ rises from 0◦ to 180◦.

4. Output values equal or higher than zero.

Another aspect considered by Bicho et. al [18][19] is the distance of markers from the agent.
Markers with smaller distances ||dk|| are considered more relevant than markers farther away. Thus,
a possible choice for function f could be:

f(g, dk) =


1 + cosθ

1+ ‖ dk ‖
= 1

1+ ‖ dk ‖

(
1 + 〈g, dk〉
‖ g ‖‖ dk ‖

)
, if ‖ dk ‖> 0

0 , if ‖ dk ‖= 0
(3.4)

where 〈·, ·〉 denotes internal product.
With f function defined, it is possible to solve Equation 3.2 and calculate movement directionm.

If there is enough space, the agent should be able to navigate in the virtual environment with smax

velocity. However, in dense crowds, available space is sometimes scarce, reducing agent’s speed.
On the model proposed by Bicho, availability of space can be estimated through available markers
in the agent’s surrounding. The model adjusts agent’s velocity according to vector m module and
smax. The solution proposed by Bicho et. al to calculate the instant movement vector v is given by
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v = smin
m

‖ m ‖
, where smin = min{‖ m ‖, smax}. (3.5)

Equation 3.5 implies that, if ||m|| > smax, maximum agent’s translation is limited by smax.
Otherwise, movement is given by ||m||. It must be noted that there must exist markers in the
agent’s proxemics (i.e., S is not empty), and some of those markers lead to the goal’s direction.
Otherwise, markers with θ = 180◦ and an empty set S both result in f(g, dk) = 0), implying in a
zero denominator in Equation 3.3.

Further details on tests and results of the BioCrowds model can be found in the work of Bicho
et. al [18][19]. There, the author shows some limitations of the model, such as in cases where
obstacles are too thin and valid markers beyond the obstacle gets inside agent’s proxemics. In those
cases, the agents ignored the obstacle, "jumping"over it. Hocevar [38] created group organization
features for the model. On this work, Hocevar implements social behaviour on walking groups so
that groups up to three agents are able to walk side-by-side, using v-formation or in a straight
line[52]. Commonly behaviours observed in real crowds, like lane formation and arc formation,
can be observed in BioCrowds simulation results. Those results are not programmed, but rather
emergent due to the model’s conception.

3.4 Emotion Contagion Computational Model

The work adopted as starting point for integrating emotion contagion in the BioCrowds model
is the one proposed by Bosse et. al [11], where the authors proposes a mathematical model for
emotional contagion process. It focuses on the contagion of emotion itself, therefore Bosse’s agents
do not have the need for spacial coordinates of position. The model does not consider agents mood
or emotional personality. Instead, it only models agent’s emotional influence over the group it is
inserted, and also the influence of the group over the agent. This implies that agents do not change
their behaviour concerning emotional contagion during the simulation. In other words, one agent
that begins the simulation being very susceptible to contagion, will remain susceptible during all
simulation. To change that it would be necessary a model of emotions that controls dynamically
such parameters. Also, such model could cope with decay functions to change agent’s emotional
state according to individual mood or some other cognitive reason, which is not in the scope of the
work by Bosse et. al presented in this Section.

To model emotional contagion, some aspects that might control level of emotion and intensity
of contagion are defined within the model. One characteristic that influences strength of contagion
is the relationship between people. For instance, two strangers might have much less emotional
contagion experience than a mother playing with her son. Also, there are people who are more
expressive than others, resulting in more clear and sometimes exagerated emotional expression [43]
which, in turn, can promote stronger contagion than shy or repressed expressions of emotions.
It is also known that there are people more susceptible to emotional contagion than others [21].
These people tend to catch much easier emotions of others and, by primitive empathy, they tend to
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experience the same feelings much easier. This may be related not only to primitive empathy, but
also to a more cognitive, sophisticated and socially beneficial process of empathy or sympathy[33].
Finally, there is a personal emotional tendency, driven by one’s mood. Considering this, Bosse and
colleagues developed two basic models within their model: an absorption model, responsible for
contagion through (primitive) empathy imitating the average group emotion; and an amplification
model, responsible for strengthening emotional spirals both upwards and downwards, depending on
agent’s personal bias. This enables the model to simulate oberved emotional contagion spirals,
where emotions tend to increase, or decrease, in intensity due to diadic interaction. One limitation
of the model addressed herein is that it treats only one non-specifyed emotion. This could be any
emotion, like those proposed by Ekman [26], which distinguishes anger, disgust, fear, joy, sadness
and surprise, according to facial expressions. Results shows that upward and downward spiral can
be simulated, as well as agents emotional influences over each other. The strength of contagion can
also be balanced, making agents very susceptible and/or very expressive. It is also possible to turn
of expression or susceptibility by setting the parameters to zero. This is useful to make one or more
agents immune to contagion, but able to promote contagion on other, or vice-versa.

Mathematically, Bosse defines the emotion of an agent as a value q in the range [0, 1], that
represents the intensity of an unspecified emotion. The only restriction about emotional specification
is that it should be the same emotion for all agents in the simulation. Each agent expresses its own
emotional level to the group at a given expression level ε also in the range [0, 1]. This way extroverted,
expressive, active persons will induce stronger contagion of emotion than a shy person would. On the
other side, another agent will have to be able to perceive emotional expressions. The authors propose
to represent the susceptibility of catching the emotions of others by the variable δ, which also lies
in the range [0, 1], and defines how much a person allows other people’s emotions to affect his own
emotional state. Finally, the relationship between agents is taken under consideration. Depending
on people’s relational links, emotional contagion may be stronger or weaker. This interpersonal
relationship link is represented in this model by a variable αkl, which represents the relationship
between agents k and l. Notice that αkl can be different from αlk, as the influence of the mother
over the son may be different from the influence of the son over the mother during a particular
emotional contagion experience. This leads to a matrix containing all αkl parameters, with k and l
in the range [1, G] where G is the number of agents in the group. The dimension of this matrix is
NxN where N is the number of agents in the group.

In order to address emotional spirals, two variables where proposed by the authors: i) a bias
represented by the variable η to define the agents tendency to either absorb, meaning that group
members converge to some average emotional level, or amplify emotions, meaning that group mem-
bers catch others emotion in a way they generate higher or lower overall emotional level; and ii) a
bias represented by the variable β to decide whether the amplification model tendency is upwards
or downwards. Considering a group of two agents: S being the agents sending a particular emotion,
and R being the agent receiving such emotion, all those definitions can be summarized in the Table
3.1.



46

Tabela 3.1 – Variables to be considered on the emotional contagion process
Variable Purpose
qj Represents instantaneous emotion level of agent j.
εS Represents the S agents expressiveness.
δR Represents R agents emotional susceptibility.
αSR Represents the influence S has over R,

notice that αRS can be different from αSR.
ηj Bias to determine the models tendency to amplify

or absorb emotions on agent j.
βj Bias tendency to amplify emotions upward or

downward on agent j.
Bosse et. al[11]

To compute the variation of emotion in each agent at each simulation frame, first it is needed
to compute the strength in which a particular emotion is transferred from agent S to agent R. The
strength of emotional contagion from agent S to agent R is given by γSR and calculated as the
product:

γSR = εSαSRδR. (3.6)

With all γSR is possible to compute the overall strength by which emotions from all other agents
in the group are received by R in group G, indicated by γR, and defined as:

γR =
∑

S∈G\{R}
γSR. (3.7)

That represents the sum of γ(SR) for all S ∈ G except for the case when S = R.

As stated before, the model can simulate upwards and downwards emotional spirals, starting
from an initial given qA for every agent A in the scenario. Through spirals mechanisms, not only
individual agents, but the whole group can get to a higher or lower level of emotion, even enabling
the group to create an overall higher (or lower) emotional energy that was not there before. Each
agent will reach its own emotional equilibrium within the group. Suppose A is an agent in group
G, being G defined as the set G = {A1, A2, ..., AG}, the dynamic of A’s emotion level is given by:

dqA/dt = γA [ηA (βAPI + (1− βA)NI) + (1− ηA) q∗A − qA] . (3.8)

The overall group’s emotional influence over agent A is denoted by q∗A. This represents an
emotional average of the group and can be computed by:

q∗A =
∑

S∈G\{A}
ωSAqS. (3.9)

A weighted sum with weights ωSA computed by:
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ωSA = εSαSA∑
C∈G\{A} εCαCA

. (3.10)

Equation 3.10 considers the strength of contagion of each agent S over agent A and that depends
on senders’ expressiveness εS and their attachment with agent A denoted by αSA. Each weight ωSA

represents the influence of agent S over agent A, normalized to the total group influence. Or, in
other words, the fraction of the group emotional impact over A relative to agent S. This product
is normalized by the sum of the total contagion strength of the group, excluding agent A.

The group emotion q∗A is in fact the reference level to which the absorption model tries to reach.
It represents a sort of group emotional average, and in a pure absorption situation (ηA = 0) the
agents emotion will try to follow this reference. Notice that it varies in time as the emotions qS in the
agents also changes every iteration. Values of ηA in between 0 and 1 combines both amplification
and absorption phenomena. For the pure amplification scenario (ηA = 1), the model brings an
upward and a downward factor, represented respectively by PI, standing for Positive Influence and
NI, standing for Negative Influence. Basically the positive influence normalizes q∗A to fit the range
[qA, 1], and the negative influence normalizes it to fit in the range [0, qA]. This way, the higher the
emotion level of the group, the higher will be PI and the lower will be NI, and vice-versa. The
formulation of both influences is given by:

PI = 1− (1− q∗A)(1− qA). (3.11)

NI = q∗AqA. (3.12)

This summaries the formulation on work of Bosse et. al. The results published by the authors
confirm the ability of the model in simulating desired emotional behaviours, such as spirals[11]. For
such reasons, it was adopted to continue in the crowd simulation scenario.
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4. Methodology of Proposed Model

This Chapter presents the current proposed model for the integration of emotional contagion in
crowd simulation context. It is based on a series of modifications on the model of Bosse et. al[11],
with the objective to adhere this emotional contagion model in crowd context, most specifically the
BioCrowds model[18][19]. A main challenge in this fusion is related to contextualizing agents in a
virtual environment. As opposed to the model of Bosse et. al, we propose now to endow agents
with a position in space and the ability to navigate in the scenario, as a function of time. This
should be able to somehow impact the emotional contagion model.

The process of adapting an emotional contagion model in crowd context must aim to benefit from
both models. The model of emotional contagion carries emotion related information and also the
ability to spread this information (e.g., instantaneous emotional levels, expressiveness, susceptibility,
etc.) in other agents. Since it is known that emotions have impact on peoples behaviour, it should
be natural to use this information to impact on agents’ behaviour as well. The model of crowd
simulation carries spatio-temporal information, since agents are instantiated in a virtual environment,
and navigate in this environment as a function of time. The BioCrowds model also brings agent’s
goal information. The agent’s goal determines its trajectory (considering obstacles and other agents
in the scenario), and since navigation is the observable behaviour of agents in BioCrowds, we
propose that emotional information should impact on agents’ goals. Also, the process of emotional
contagion between agents can be designed to be impacted by agents’ positions. We propose that the
strength of contagion can be impacted with distance, since it might be harder to identify people’s
facial, gestural and vocal expressions with increasing distance. It is expected to observe emergent
behaviour in crowd agents in function of emotion information exchange between agents and the
impact of that information in their goals.

Beyond the challenge to integrate the model of Bosse et. al[11] and BioCrowds[18][19] in an
extended version, some aspects of original model of Bosse et. al should be adapted in order to work
in crowds. The model proposed by Bosse et. al is designed to deal with one emotion in the context
of one group of agents. In crowds there are many groups and also individual agents. And they all,
at some point, must have the ability to trigger emotional contagion from any other agent in the
crowd, independently of their group status (i.e., whether they belong to the same group or not). It
is desired that the contagion is possible to occur with ungrouped agents, as well as within one group
and in between groups. In Chapter 3 we discussed about some of the many emotions aspects and
its behavioural outcomes individually and in groups. Since Bosse et. al only deals with one emotion,
it would be desirable that one agent have the ability to feel more than one emotion at a time. An
extension to the model of Bosse et. al was made to accommodate more than one emotion in each
agent.

In Section 4.1, we present the re-definition of agents in our extended version of Bosse-BioCrowds.
This is important because agents in extended version incorporates parameters needed to contagion
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model. Section 4.2 details all modifications proposed in the extension concerning specifically the
model proposed by Bosse et. al to be integrated with BioCrowds. Notice that the modifications
presented could apply to another steering model.

4.1 Agent parameter definition

This section defines the parameters of an agent integrating both BioCrowds and emotional
contagion model in our proposed extension Bosse-BioCrowds. Consider a crowd C with two or
more agents where C = {A0, A1, ..., AN−1}, being N the number of agents in the crowd. Each
agent An, where n = [0;N − 1] and An ∈ C, in a given simulation instant t, is defined by the
parameters An(t) =< qAn(t), εAn , δAn , ηAn , βAn , ogAn , ~xAn , pAn , ~gAn(t) >. The parameter qAn(t)
is the instantaneous emotional level of agent An in time t. Some parameters are not denoted in
function of t because they are constants. Parameter εAn is the expressiveness of agent An, δAn

is the susceptibility, ηAn is the bias of amplification and absorption model in agent An, and βAn

is the bias between positive impact PI and negative impact NI on the amplification model. The
parameter ogAn denotes the disposition of agent An to be emotionally influenced by agents who does
not belong to agent’s An group. This parameter lies in range [0;1] and is multiplied by α to obtain
α′ according to Equation 4.7. When ogAn < 1 this will result in smaller values of α attenuating
contagion channel. The position of the agent An at time t is given by parameters ~xAn(t), which
represent world coordinates in the virtual environment. The proxemics pAn is the minimum distance
required for two agents to be able to interact with each other. Finally, ~gAn(t) is a position in the
environment where the agent is supposed to reach, as long as it has space to navigate. The goal is
a function of t because it can change anytime according to agents’ emotional state.

Considering that one of the proposed extensions to perform in Bosse-BioCrowds method is to
include multiple emotions, we define a set of emotions as Ψ = {e0, e1, ...eM−1}, where M is the
number of emotions defined for a specific scenario, and em ∈ Ψ is the label of a specific emotion
which can be any unspecified emotion. For each emotion, it is possible to define one emotion profile,
denoted by Eem

An
and defined in Equation 4.1

Eem
An

=< qem
An
, εem

An
, δem

An
, ηem

An
, βem

An
, ogem

An
, ~gem

An
> . (4.1)

Where each parameter related to the contagion model is defined for emotion em, and the variable
t is omitted to simplify reading. This is motivated by the fact that emotions are different in nature,
and so may have different parameters depending on emotion’s nature. For a scenario with multiple
emotions, the set of all emotion profiles in one agent An, denoted by EAn , can be defined as in
Equation 4.2.

EAn = {Ee0
An
, Ee1

An
, ..., E

eM−1
An
}. (4.2)

Finally, the current emotional state of agent An, denoted by ψAn , can be defined as in Equation
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Tabela 4.1 – Variables of the extended model
Variable Purpose
qAn(t) is the instantaneous emotional level of

agent An in time frame t.
εAn is the expressiveness of the agent An.

It strengthen the contagion channel when
An is the sender of emotion.

δAn Is the susceptibility of agent An. It strengthen
the contagion channel when An is the receiver of emotion.

ηAn Is the bias that controls the amplification model
and the absorption model in agent An, according to Equation 4.15.

βAn Bias the positive impact (PI) and negative impact (NI)
in the amplification model in An defined in Equation 4.15.

ogAn determines the attenuation in the emotion
contagion channel promoted by that fact that An

does not belong to the same group as the sender.
~xAn(t) determines the position of agent An in instant t.
~gAn Denote the direction pointing to agent’s An goal.

4.3.

ψAn = em =⇒ qem
An

= max(qe0
An
, qe1

An
, ..., q

eM−1
An

). (4.3)

The emotional state ψAn is the label of the emotion denoted by em which has higher emotional level
qem

An
than any other emotion in Ψ. So, the emotion that the agent actually behaves according to

(the goal he/she pursuits) is the one pointed by ψAn . The priority is given by declaration order (e0

has priority over e1 and so forth).
Now agent An can be re-defined for multiple emotions as in Equation 4.4.

An =< EAn , ~xAn , pAn , ~gAn > . (4.4)

Notice that the parameter ~gAn seems redundant with the parameters ~gem
An

contained within each
Eem

An
∈ EAn (see Equation 4.1), but that is on purpose. The objective with apparent redundancy is

to allow the agent to overwrite its original goal with the goal defined by its current emotional state
ψAn . This way, agents can change goals as they change emotional state. Also, goals associated to
emotions are optional. If one particular emotion profile Eek

An
does not have a goal defined, whenever

ψAn = ek the original agent’s goal ~gAn is used. The new variables used in the model for contagion
in crowds are listed in Table 4.1.

4.2 Adapting emotion contagion model to crowd simulation context

This section describes the changing made in Bosse’s model to achieve emotional contagion in
crowd context. Here we aim to present, motivate and justify the decisions that resulted in the
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formulation presented in Section 4.1. Section 4.2.1 explains in further details how spatial and
group information is used to resolve emotional contagion strength, most specifically referred to the
relationship attachment between agents, denoted by α. Following, in Section 4.2.2, a simplification
in the model is proposed, with the justification of removing matrices overhead and simplifying
contagion between groups and between individual agents. In Section 4.2.3, the extension made in
Bosse’s model to accommodate more than one emotion is explained. And finally, in Section 4.2.4
we explain how emotions impact agents behavioural outcomes. With the proposed modifications it
is expected that the emotion contagion model enables emotion contagion in crowd context. Using
the advantages of an emotion contagion model already proven efficient in controlling aspects of
emotion contagion such as contagion levels, contagion strength in a continuous contagion process.
On top of that, the disposition of agents in the virtual scenario and their trajectories also influences
the contagion of emotions.

4.2.1 Replacing Relationship Matrix with Space and Group Information

Interpersonal relationship refers to bonds that people create with each other. Family bonds, like
mother and son, love affections, friendship bonds, colleagues, neighbours, those are all examples of
social bonds people may want to create and maintain in their lives. Some of those relations might
strengthen emotional contagion experience, while others might weaken it. But, these relationships
can be linked to emotional contagion, and, just as in the model of Bosse et. al, this must be
somehow present in the current model. As described in Section 3.4, the model of Bosse et. al
designs this feature with the variable αSR, denoting the impact of the relationship, or social bond,
existent between agents S (the sender of emotions) and R (the receiver of emotion), and translates
it to a number in the interval [0, 1]. So, a matrix must be declared as input data, containing all αij

where Ai and Aj are agents. Considering that {Ai, Aj} ∈ G, and G is a group of N agents, this
matrix must have dimensions N ×N to accommodate all αij terms.

The relationship between people is an information that can not be calculated, it is known a priori.
In crowd context, agents have no information about parenthood or friendship bonds. Although these
information could be added, there is the problem of initializing such data. For numerous crowds
(hundreds or thousands of agents), it is interesting that the relationship of agents could be estimated,
or entering these data manually might lead to unnecessary overload of work.

One feature that the context of crowd has over the approach of Bosse et. al it that agents
are placed in a virtual space. Taking advantage of spatiality now enabled on agents, we propose
to estimate αSR simply by measuring the distance between agents. Actually, we speculate that
contagion should decrease while distance increases. That assumptions lies in the fact that, with
increasing distance, it becomes harder to listen to someone’s speech, or to correctly visualize and
interpret gestures and facial expressions. Also, Bosse et. al [11] [10] states that αSR must be
function of attachment and distance. Furthermore, for our experiments, we decided to create a
cut-off distance, i.e., a distance beyond which contagion becomes impossible. Here we introduce
agent’s proxemics, defined by pAi

, where Ai ∈ G. If the distance between Ai and Aj is greater
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than the receiver’s pAi
, then it is considered that agents are two far away to perceive gestures, facial

expressions or voice pitch, and contagion will not occur. Also, since in our model it is the receiver
agent that trigger contagion, it is the receiver’s proxemics that decides whether other agents are
within range. Equation 4.5 shows how to compute alpha in the present scenario.

αAjAi
=

 min(1, 1/d) d ≤ pAi

0 d > pAi

. (4.5)

Where d is the Euclidean distance between agents Ai and Aj, defined by equation 4.6.

d =
√

(xAi
− xAj

)2 + (yAi
− yAj

)2 + (zAi
− zAj

)2. (4.6)

In Equation 4.5 there are two conditions. If the distance d, computed by Equation 4.6, is smaller
or equal to the proxemics of agent Ai, denoted by pAi

, then αAjAi
equals the inverse of the distance

d, which is 1/d, because contagion strength must decay if distance increases. Also, if the distance
d is smaller than 1m (since distances in BioCrowds are given in metric standard), this could lead
to αAjAi

greater than 1, which is illegal according to the model of Bosse et. al. So, the function
min(1, 1/d) ensures that αAjAi

remains in the range [0,1]. Finally, according to Equation 4.5, if
the distance between the two agents is greater than agent’s Ai proxemics, then the contagion must
stop so, αAjAi

= 0.
By calculating αAjAi

with equation 4.5, we remove the need for a matrix containing all αAjAi

for all agents Ai and Aj belonging to group G. This matrix is now replaced by the module of the
distance between agents that are interacting with each other. The advantage of doing this is that
makes input data easier to be computed, since it is not necessary to initialize agents’ relationships.
But this also implies a limitation in our model. In Bosse’s model it is possible to have any αAjAi

different from αAiAj
, reflecting the fact that the contagion influence of Ai over Aj can be different

of the contagion influence of agent Aj over agent Ai. In other words, the contagion channel strength
of a mother over a son might be different of the contagion strength of the son over the mother.
Since our model is simply the distance, and physically the distance of Aj to Ai is obviously the
same of Ai to Aj, the result is that we can not model this difference in contagion channel. Some
possibilities have been considered here e.g. use the distance together with other parameter (for
example the expressiveness εA) to provide different values for α, however we chosen to do not
provide any other change in α computation since for contagion model, εA and other parameters are
already considered. Another option is to control agents’ interactions in a frame-by-frame basis. By
doing so, one can skip some interactions of one agent, weakening the contagion strength of such
agent in relation to others that interact every frame. This approach has the advantage to introduce
unbalanced contagion strength between two agents, even if they belong to the same group. The
disadvantage is that it is only possible to weaken contagion strength, one can not strengthen the
contagion channel using this approach.

A crowd is usually composed by many groups of agents and also by individual agents. Further-
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more, crowd groups can contain many agents. At the same time, contagion must occur between all
agents independently of their group status. To accommodate group information in an interaction, we
focused on intra-group contagion, i.e., contagion between agents of different groups, or individuals.
Moreover, we assume that agents from the same group will have full contagion, and agents from
different groups may have full contagion, but they may also have the contagion strength reduced by
some factor. This factor, denoted by ogAn (which stands for Out Group of agent An) and lying in the
range [0, 1], measures the openness of agent An to exchange emotional contagion experience with
members of other groups. To produce impact on contagion channel, ogAn is multiplied by αAjAi

,
reducing contagion strength if ogAi

< 1, as in Equation 4.7, resulting in α′AjAi
. In the case where

the agents in a dyadic interaction are from the same group, the parameter ogAi
will be overwritten

by its maximum value 1, so that contagion strength depends only on the value of αAjAi
.

α′AjAi
= ogAi

αAjAi
. (4.7)

This parameter also permits to disable contagion of a given emotion beyond the group. This can
be done for any agents that require such limitation, and also this can be different from one emotion
to another. For example, fear is very likely to spread beyond groups, but joy is most likely to remain
within one particular group.

4.2.2 Simplifying for dyadic interactions

One issue in the model proposed by Bosse et. al that might potentially increases the model’s
complexity, when integrating it into crowd context, is that it predicts interaction within only one
group of agents. Crowds usually contains a number of groups and individuals, and all of them should
be able to suffer and promote contagion with each other. By instantiating a number of groups using
replication of Bosse’s model it could be achieved a scenario with a crowd and its many groups, but
contagion would be limited to the boundaries of each group. Those boundaries would be resultant
of the fact that one instance of the model (or group) cannot interchange messages with the other.
A mechanism could be created to communicate the emotion of one group to the other, but this
represents an increase on model’s complexity, and thus misleading to computationally costly model.

Now, consider a group G with N agents. For this group, the model of Bosse et. al demands
an input matrix that we denote matrix A from now on, containing all αAjAi

that represents the
impact of agents’ relationship status (are they friends, family or strangers?) in the strength of the
contagion channel between them1. More specifically, αAjAi

represents the impact of the relationship
status existent between agents Aj and Ai over the contagion strength of Aj over Ai. The Equation
3.6 permits to calculate all γSR for every two agents {S,R} ∈ G, where, at this instant, S is the
sender of emotion and R is the receiver of emotion. The set of all γSR can also be seen as a matrix,
that we call Γ from now on, with dimensions N ×N , where N is the number of agents in G. And
finally there is also the computation of ωSR in Equation 3.10 that generates another matrix, that

1See table 3.1 for details on Bosse’s parameters.
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we call Ω from now on, also with dimensions N ×N .
Resolving both Γ and Ω matrices results in an algorithm 2Θ(N2) for calculating the weights

that will be latter used for resolving dqA/dt in Equation 3.8. In Bosse’s model this is not an issue,
because αSR does not change during simulation, so, matrices Γ and Ω can be calculated during
initialization, and stored for later use. But, since we adopted αSR as the distance between agents
(according to Section 4.2.1), matrices A , Γ and Ω must be recalculated frame-by-frame. For small
groups this is not a problem in terms of memory cost or processing time. But within a crowd of
100 (one hundred) agents, matrices A , Γ and Ω ends up with 10, 000 (ten thousand) calculations
each frame, since now αSR might vary from one iteration to another because it is dependant on
positions of moving agents. Although creating real-time simulations is not our goal, we believe it
is a good practice to keep the model simple and efficient to result in easier implementation and
increase application possibilities.

Now, lets further analyse the particular case in the model of Bosse et. al where there is a group
with only two agents, thus characterizing a dyadic interaction. Consider a group G′ composed
of just two agents G′ = {Ai, Aj}. Both Ai and Aj will be sender and receiver of emotions, in
turns, during each simulation frame. That is the reason why, from now on, we are using terms Ai

and Aj, which denotes generic agents, instead of S and R which denotes the sender and receiver
respectively.

In the model of Bosse et. al, when dqAi
/dt is calculated for agent Ai using Equation 3.8, at

this instant, it is assumed that agent Ai is the receiver (R) and the impact of the senders (S or, in
this case Aj) is given by q∗Ai

, defined in Equation 3.9. Also, the strength of the contagion channel
in this case is given by γAi

, defined in Equation 3.7 and used to resolve Equation 3.8. To compute
γAi

, first it must be calculated γAiAj
using Equation 3.6. It is possible to rewrite Equation 3.6 as

in Equation 4.8, replacing R for Ai and S for Aj, reminding those are now the only two agents in
group G, and replacing αAjAi

by α′AjAi
, according to Equation 4.7.

γSR = εSαSRδR = εAj
α′AjAi

δAi
, when Ai = R and Aj = S. (4.8)

So far there is nothing new compared to the approach proposed by Bosse and colleagues, but
when one analyses Equation 3.7 to compute γR (or, in this case, γAi

), it can be rewritten as in
Equation 4.9

γR = γAi
=
∑
Aj

γAjAi
, when Ai = R and Aj = S. (4.9)

And since Aj is the only agent in the sum, this results in Equation 4.10

γAi
= γAjAi

= εAj
α′AjAi

δAi
. (4.10)

The interpretation of Equation 4.10 is that, since the only agent in group G′ (that is not Ai, the
receiver) is agent Aj, the contagion strength of the group over Ai equals the contagion strength of
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Aj over Ai. In other words, the group is represented by just Aj, from the point of view of agent Ai.
That claim turns out to be also true when calculating the weights ωSA, as shows Equation 4.11.
Reminding that ωSR represents the fraction of the group impact promoted by agent S over agent
R when the group has more than one agent, as pictured in Equation 3.10. But, in the case where
the group has only two agents and denoting ωAjAi

for agents Ai and Aj, it is possible to rewrite
Equation 3.10 as in Equation 4.11.

ωSA = εSαSA∑
C∈G\{A} εCαCA

= ωAjAi
=

εAj
α′AjAi∑

Aj
εAj

α′AjAi

=
εAj

α′AjAi

εAj
α′AjAi

= 1, (4.11)

when Ai = R and Aj = S. In Equation 4.11 we start comparing with the weights on the original
model as proposed by Bosse et. al and defined by Equation 3.10, and denotes the weights of all
group senders (S) over the contagion of a specific agent A in the group G, thus ωSA. The weight
ωSA is normalized by a sum over all agents in G, excluding agent A, in the original model by Bosse
et. al. In our case, the fact that ωAjAi

is always 1 means that agent Aj always holds full impact
of the group over agent Ai. It also means that there is no need to compute any ωAjAi

for the case
where G has only two agents. That makes sense, since agent Ai cannot impact himself through this
model, remaining only agent Aj responsible to promote contagion over Ai. This property also has
an impact on the solution of Equation 3.9, that defines q∗A, which can be rewritten as in Equation
4.12.

q∗Ai
=

∑
S∈G\{Ai}

ωSAi
qS =

∑
Aj

ωAjAi
qAj

= qAj
, (4.12)

because all weights ωAjAi
= 1 in the case of two agents in the group.

So, it is not necessary to calculate ωSA, as stated before, because it is always 1. Is it also not
necessary to compute q∗R since it will be always equal to sender’s emotional level q∗R = qS when
there is only two agents in the group, thus q∗Ai

= qAj
. Finally, for the positive impact PI and the

negative impact NI in the amplification model, they can be simply rewritten as in Equations 4.13
and 4.14.

PI = 1− (1− qAj
)(1− qAi

). (4.13)

NI = qAj
qAi

. (4.14)

Reminding Equation 3.8, it is now possible to solve for dqAi
/dt as in Equation 4.15.

dqAi
/dt = γAi

[
ηAi

(βAi
PI + (1− βAi

)NI) + (1− ηAi
) qAj

− qAi

]
, (4.15)

where ηAi
and βAi

are both parameters of agent Ai, γAjAi
is given by Equation 4.10, qAi

and qAj

are the current emotional level for agents Ai and Aj respectively. Also, the Positive Impact PI and
the Negative Impact NI are computed by Equations 4.13 and 4.14 respectively.
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Now that the model of contagion for dyads is defined, it must be applied in a way that promotes
contagion for all agents in a crowd, and not only two of them. To do so, we propose to trigger many
dyadic interactions each frame (or iteration), promoting contagion in each of the agents, from all
the others in the crowd, in a dyadic manner. To illustrate how all agents of a crowd (grouped or not)
can suffer and promote contagion with each other in a dyadic manner, lets consider a group G with
two or more agents where G = {A0, A1, ..., AN−1}, being N the number of agents in the group.
Also, each agent Ai, is defined by the Equation 4.4, in Section 4.1. The Algorithm 1 illustrates the
procedure applied to promote contagion in all members of G in a dyadic manner.

C(t) = {A0(t), A1(t), ..., AN(t)}. (4.16)

The Algorithm 1 operates over the data structure called C(t) which contains the crowd state at
time instant t, measured in frames or iterations. This means that each algorithm iteration represents
one simulation frame. The definition of data structure C(t) is given in Equation 4.16 and equals the
set of agents present in the crowd {A0(t), A1(t), AN(t)} and their status at instant t. Reminding
the definition of agent from Section 4.1, written in Equation 4.4, the Algorithm 1 updates only
EAn , which contains the emotional parameters of agent An, according to Equation 4.2. Also, EAn

is defined as the set of all Eem
An

, defined in Equation 4.1. For the present case, EAn = {Ee0
An
} and

so we can rewrite EAn according to Equation 4.17.

EAn =< qAn , εAn , δAn , ηAn , βAn , ogAn , ~gAn > . (4.17)

And since qAn is the only term variant in time (we omit the goal during estimation of emotional
level), Algorithm 1 focuses on updating this value according to contagion process for one emotion.
The updated value of qAn for every agent An results in the updated emotional state of the crowd
(i.e., the emotional state of agents contained in the crowd) for the next time instant t + 1. To do
so, the algorithm sweeps all agents in the crowd varying index i, making every agent Ai a receiver
of emotion. Then, for every agent Ai, it sweeps the crowd again varying index j. The condition in
line 3 ensures that no agent will ever interact with himself.

In line 4 we introduce a variable ∆ that simply stores the result of Function Interaction (A,
B), in line 8, which in turn returns dqA/dt for time t having agent A as emotion receiver and agent
B as emotion sender. This is how much the emotion level of agent A, denoted by qA, must vary due
to contagion. So, in line 5 the emotional level for the current receiver of emotion agent Ai, denoted
by qAi

, has its value updated by ∆. This algorithm must be called each instant t to compute the
next one, until the simulation ends.

Finally, the Function Interaction (A, B) describes the model discussed so far, with the sim-
plifications proposed. To incorporate spacial information existent in crowd context, the distance
between the two agents, passed as parameters to Function Interaction (A, B), is calculated
using the Euclidean distance, defined in Equation 4.6. This distance is stored in d for later access.
In line 10, if distance is greater then agent’s A proxemics, this means that contagion will not occur.
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So the function returns zero, implying in no variation to agent’s Ai emotional level qAi
. If d is lesser

or equal to pA, the algorithm continues in line 11 by estimating αBA as the inverse of distance d.
And in line 12 we ensure that αBA stays in the range [0,1] even if the distance d is lesser than 1m.

The remaining of Function Interaction in Algorithm 1 processes the contagion of emotion,
by computing dqA/dt. First it computes γA, PIA and NIA according to Equations 4.10, 4.13 and
4.14 respectively. In line 16, the recently computed values γA, PIA and NIA, along with agent’s
A parameters qA, ηA and βA, as well as sender’s emotional level denoted by qB are used to resolve
dqA/dt, which is then returned as result.

Algoritmo 1: Applying dyadic approach to crowds.
Data: crowd C(t) = {A0(t), A1(t), ..., AN(t)}
Result: crowd C(t+ 1) = {A0(t+ 1), A1(t+ 1), ..., AN(t+ 1)}
for i← 0 to N − 1 do1

for j ← 0 to N − 1 do2

if j = i then next j;3

∆←− Interaction(Ai(t), Aj(t));4

qAi
(t+ 1)←− qAi

(t) + ∆;5

end6

end7

Function Interaction(A, B) begin8

d←−EuclideanDistance(A, B);9

if d > pA then return 0;10

αBA ←− 1/d;11

if αBA > 1 then αBA ←− 1;12

γA ←− εB ∗ αBA ∗ δA;13

PIA ←− 1− (1− qA) ∗ (1− qB);14

NIA ←− qA ∗ qB;15

dqA/dt←− γA ∗ [ηA ∗ (βA ∗ PI + (1− βA) ∗NI) + (1− ηA) ∗ qB − qA];16

return dqA/dt;17

end18

4.2.3 Extending for multiple emotions

In this section we propose to extrapolate the model proposed by Bosse et. al [11] to enable it
to simulate a given number of emotions, denoted by M , being M an integer and M ≥ 1. Having
multiple emotions is an important feature because people are able to feel many emotions, and there
are many emotional models in the psychology literature, all of them suggesting more than one
emotion. Also, it is known that emotions may have impact on people’s behaviours and actions. So,
we propose that actions of crowd agents can be driven, or motivated, by agent’s emotional status.

Consider a crowd C where C = {A0, A1, AN−1}, being N the number of agents in C. According
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to the original model proposed by Bosse and colleagues, it is possible to define the emotional profile
of an agent An ∈ C at a given simulation instant t according to Equation 4.17 for one emotion,
as the set EAn(t) =< qAn(t), εAn , δAn , ηAn , βAn , ogAn > (the parameters that are not presented in
function of t are constants). The descriptions of the variables that compose EAn(t) are described
in Table 4.1.

Once it is considered more than one emotion in the model, the emotional contagion must
be remodelled in order to deal with this variety of emotions. Now consider a set of emotions
Ψ =< e0, e1, ..., eM−1 > where M is the number of emotions. It is possible to define a vector Eem

An

as the emotional profile of agent An, regarding emotion em, being em ∈ Ψ, as in Equation 4.18.
Each element addressing one of the scenario’s possible emotional profiles in each agent. Emotional
profiles describe the way each agent will respond, in term of contagion, for each particular emotion.
Factors that impact this parameter are related to agents’ personalities, i.e. whether they are shy or
expressive. It can also be impacted by emotion nature, since some emotions may spread faster than
others.

Eem
An

=< qem
An
, εem

An
, δem

An
, ηem

An
, βem

An
, ogem

An
> . (4.18)

Since agents are now able to “feel” more than one emotion, we can also define the emotional
state of an agent as the emotion with higher emotional level at a given simulation instant. Suppose
an agent An, where An ∈ C in a scenario with a set of emotions Ψ = {e0, e1, ..., eM−1}, and M
being the number of existing emotions in the current scenario. The emotional level for each emotion
on agent An is given by the vector qAn =< qe0

An
, qe1

An
, ..., q

eM−1
An

>, where qem
An

is the instantaneous
emotional level in the range [0, 1] of a given emotion em in agent An. The emotional state of agent
An, denoted by ψAn can be defined as the emotion with maximum emotional level given by Equation
4.19.

ψAn = em =⇒ qem
An

= max(qe0
An
, qe1

An
, ..., q

eM−1
An

). (4.19)

With emotion profiles, each agent is able to express its own emotions to the group at a given
expression level ε. Depending on the agents personality traits, he or she might express every emotion
in different ways. A person with a high expressiveness should present stronger expressions of emotions
than a shy person with low expressiveness. Also, negative emotions, like fear, tend to spread faster
than positive emotions, like joy. This implies that ε can vary from one emotion to another, depending
on emotion’s nature. From the point of view of the receiver agent, a person has the susceptibility of
catching the emotions represented in the model by the variable δ, which also lies in the range [0, 1].
Similarly to the expressiveness ε, the susceptibility δ regulates the disposition of an agent to catch
one emotion. Using emotion profiles, the susceptibility of agents can vary from one emotion to
the other, depending on emotion’s nature and agent’s personality, analogous to the expressiveness.
Same with η and β, which bias the amplification model. Since it is meant to generate emotional
both positive and negative energy, the amplification model can force an emotional state in the agent.
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The energy one agent presents for a given emotion is related to the situation in a simulation that
might trigger such emotion, and depends on emotion nature and the context the agent presents
him/herself.

Finally, the relationship between the agents αAjAi
is calculated in function of distance and group

information, as explained in Section 4.2.1. So, there is no need to vectorize αAjAi
for every emotion,

since it will be calculated in a frame-by-frame basis.

4.2.4 Enabling emotions impact on agents’ behaviour

Considering one random agent An, since qAn lies in the range [0, 1], agents with only one emotion
are able to feel a given level of such emotion every time t instant. With the ability to perceive more
than one emotion (according to Section 4.2.3), agents now can change their emotional state. By
emotional state, we propose to be the stronger emotion agent feels at a given time instant t,
denoted by ψAn and defined in Equation 4.3. We propose that, although agents can feel more than
one emotion at a time, and are able to promote and suffer contagion from all its emotions, the
current emotional state ψAn of the agent An is the only one that impacts agents’ behaviour.

The variable ψAn equals the index (or label) that identifies the emotion with higher level qem
An

.
We propose to endow the agents with the option to associate a goal, denoted by ~gem

An
, to each

emotional profile Eem
An

, according to Equation 4.1. Each goal ~gem
An

represents coordinates in the
virtual environment where the goal is placed. The index ψAn is then used to identify if there is a
goal associated to respective emotion profile Eem

An
. If there is, it will take priority over the original

agent’s goal ~gAn , associated to them during BioCrowds initialization. This way, according to agent’s
emotional state, the goal of agents can change, allowing the emotional contagion model to impact
on the outcomes of BioCrowds. This information can be also used to other purposes. In our case,
we change agents’ colour to identify each agent’s emotional state in the scenario. Other application
may use this information within totally different contexts like urban signs application, where signs
can be static (meaning they won’t move in the scenario) expressive-only agents, and pedestrians
would be susceptible-only agents looking for directions. We remark that associating a goal to an
emotional state Eem

An
is an optional feature, i.e., there might be one or more emotions with no goals

associated to it. In those cases, the original goal of the agent will not be overwritten, and no
behavioural changes will occur when the emotion pointed by ψAn has no goals.

With this extension we expect to have behavioural outcomes originated from emotional state
changing in agents. As their states changes, their goals might change as well, altering their trajec-
tories, potentially leading them to interact with other agents in the scenario. This can result in a
chain-reaction, impacting both emotional state and trajectories of crowd agents.
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5. Simulation Experiments and Results

This chapter explains the scenarios used for testing the emotional contagion model in crowd
simulation context. In order to explore the many aspects of emotional contagion processes in the
ambience of a crowd, a carefull choice of scenarios must be made. At first, it is important to explore
spatio temporal impact on the emotional contagion model. This is a key diference between the
present work and the work of Bosse et. al [11]. A dyadic situation with standing agents (not
moving) in our model is identical to a situation in Bosse’s model when αij = αji. So, a scenario with
standing agents in the context of a crowd (dozens of agents) is elected to make a first comparison
of our model with the model proposed by Bosse et. al.

As depicted in Chapter 4, the strength of contagion between agents Ai and Aj is defined by
variable αij, and decreases as the distance between agents Ai and Aj increases. This is a result
of contextualization of agents in a virtual space. If agent’s trajectories approach them to each
other, it will result in strengthening of contagion, or weakening of contagion, if they wander away
from each other, to the point where they cease contagion of emotion due to distance. The distance
threshold, as explained in Chapter 4, is defined by agent’s proxemics. Having in mind that contagion
strength vary during simulation, and that this variation is ruled by agent’s movements, it is correct to
speculate that agent’s mobility is another aspect for testing scenarios design. So two scenarios with
moving agents are elected: one scenario where agents move in the same direction; and another
with counterflow, where agents move against each other. The variation of contagion strength is
another characteristic that differs this model from the model by Bosse et. al.

Finally, emotions are known to drive actions. Furthermore, emotional monotonicity is known to
strengthen group bonds if they are positive emotions (such as joy) increasing feelings of acceptance in
group members. Knowing this, behavioural aspects should be measured in the scenarios. Moreover,
as explained in Chapter 4, behavioural changes in the present model are translated into changes in
agents’ goals. So, to experiment behavioural changes, goals are associated with emotions in both
moving agents scenarios. Further details on this implementation are given in the following sections
of this chapter. In the scenario with standing agents it makes no sense on changing agents’ goals,
since they are not supposed to move. So, for that scenario, no behavioural outcomes are expected
regarding agents’ movements. However, in standing agents scenario we expect to observe some
outcomes concerning emotional level of agents and emotional spreading though the crowd, such as
third party contagion and emotional monotonicity over the crowd.

In all scenarios, we make some conventions about colors of agents and markers in the scenario
area, which are now briefly explained. For starters, all scenarios have a collection of dots randomly
spread in all the scenario area respecting a given density of markers. Those markers, as explained in
Section 3.3, stand for walkable area. Agents will compete for space through the ownership taking
of those markers. In our experiments, we conventionally used yellow dots to denote walkable area,
and red dots to denote obstacles. In Figure 5.1, we can see the representation of a room with two
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Figura 5.1 – Simulation scenario example with two entrances/exits: one in the top, and another in
the bottom.

Simulation screenshot.

exits, one in the bottom, and the other in the top. Indeed, in BioCrowds computation process,
only markers present in walkable areas (yellow ones) are used to calculate agents motion. Red
dots, as illustrated in Figure 5.1, are used to visually illustrate walls and obstacles. Also, in the top
entrance, we can see one agent represented by a green circle and it is labeled with a 0 on its top right
corner, meant to identify it as agent A0. The black line represents agent’s intended trajectory, and
every red dot in this line is one checkpoint in the trajectory. Those checkpoints are calculated via
A* algorithm, starting in agent’s current position and ending in agent’s final goal, considering any
physical obstacles. Since there are no obstacles in this example along agent’s trajectory (represented
by red markers) the trajectory is simply a straight line. Finally, the grid shows scenario size. In the
example of Figure 5.1, the scenario size is 17 × 20. This grid is usually hidden for visualization
purposes.

The agents appear as coloured circles and their identity number is placed on their top right corner
as shown in Figure 5.1. But there are more details about agent’s visual representation, and we give
further examples. The colors of the agents represent their actual emotional state. Additionally, in
some pictures, there might appear a ring containing an instantaneous measure of each emotion and,
as convention, the values grows as the coloured slices of the ring fills in counter-clockwise sense.
For example, in Figure 5.2 there are three agents depicted. The first two agents, from left to right,
have three non-specified emotions each: RED, GREEN , and BLUE. Observing agent 1, we see
GREEN at half-way (0.5), BLUE is almost empty, but not equal zero, and RED is at maximum,
thus the agent’s color is red. By observing agent 2 we see that there is no GREEN , since it is
equal zero (notice they occupy the same portion of the ring), RED is at half-way, and BLUE is
at its maximum, thus the agent’s color is blue. Agent 3 is represented without the emotional ring.
Although he has all three emotions they can be hidden for visualization purposes. The only thing
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Figura 5.2 – Agent representation example. Agents have three unspecified emotions: RED,
GREEN , and BLUE. Agents are labelled with an identification number. Agent A1, shows
emotion RED at full, emotion GREEN halfway full and emotion BLUE nearly empty (or weak).
Agent A2 presents emotion RED halfway full, emotion GREEN equals zero, and thus it remains
blank, and finally emotion BLUE in agent A2 is completely full. Agent A3 is represented without
the emotional ring, and it can only be inferred that his/her emotion GREEN has higher value than
RED and BLUE, since the agent is coloured green. This picture is just an example of possible
agents’ status and their visual representation.

Simulation screenshot

that can be inferred by observing agent 3, in this visualization mode, is that emotion GREEN has
higher value compared to RED and BLUE, since the agent is coloured green.

The remainder of this Chapter is organized as follows: in Section 5.1 a scenario to measure
the impact of spatio temporal context over the emotional contagion model is proposed. This
experiment takes away agents’ movements, so the emotional spread depends only on agents initial
position, agents distance from the Expressive agent, time and the contagion process itself. The
scenario depicted in Section 5.2 experiments emotional contagion with agents in movement, with
one group moving towards the emotional spreading agent. Finally, in Section 5.3, the impact of an
agent spreading emotion moving through a standing crowd is experimented. In this scenario, the
contagion also impacts agents’ behaviour by making standing agents decide to follow (or not to
follow) the emergent leader.

5.1 Standing Agents scenario

As explained before, the trajectories of agents may drive them closest to each other, or away
from each other, depending on each situation, during the simulation. In both cases, the variation
in agents’ distances to each other also impacts in the strength of contagion due to the model
explained in Chapter 4. In order to isolate this variable and make a first comparison with the
outcomes from the model proposed by Bosse et. al, this experiment takes away agents’ movement,
so the emotional spread depends only on agents’ initial position, agents’ distance from each other
(that never changes), time and the contagion process itself. We propose a scenario populated by
agents in three arbitrary cases: one with 50 agents, one with 80 agents and one with 110 agents.
These numbers are chosen based on scenario size. What really matters here is the density of agents,
because the distances between agents depends on that, and, in turn, the strength of contagion
depends on agents’ distance from each other. So, the aim here is to control density of agents, by
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Figura 5.3 – Standing Agents experiment with 50 agents in the crowd. One can observe that agent
A0 is not close enough to any other agent in the crowd so, he will not trigger contagion. The
red circumferences around agents A0, A6 and A47 denotes agents’ interaction space, beyond which
there is no contagion. Those are the closest agents to A0.

Simulation screenshot

changing absolute agent number and keeping the space area unchanged. In Figure 5.1 it is possible
to visualize the map grid, which determines world dimensions in BioCrowds. The present scenario
uses the same configuration of 17× 20 (columns vs. lines) map cells, where each cell has 1m2.

Now consider a crowd denoted by C where C = {A0, A1, ..., AN−1} is a set of N agents Ai

being i = [0..N − 1]. To measure the contagion in crowd C, one agent is arbitrarily elected to
be the emotional leader, or, in other words, the one that generates emotional energy and promotes
change of emotional state in others. By convention, the emotional leader is always agent A0. To
create the experiment, the scenario must be set with two emotions. One emotion to be tested,
represented in Figures 5.3, 5.4 and 5.5 in red, that represents one unspecified emotion (i.e., an
emotion of unspecified nature), and labelled as RED, from now on. The other emotion serve as
control variable on the experiment, represented in the Figures 5.3, 5.4 and 5.5 in blue, and we will
reference this emotion as BLUE, from now on. This does not spread in the crowd and its values
does not vary in time. Figures 5.3, 5.4 and 5.5 omits the emotion ring for visualization purposes
so, in these figures, agents painted in red have the condition qRED

i > qBLUE
i , and agents painted in

blue, otherwise.
The emotion under study is RED, and thus must be different in agent A0 compared to all other

agents in the scenario. This is because the emotional leader agent A0 must constantly generate
RED energy in order to promote contagion in the surrounding crowd. The other agents must remain
neutral, meaning they must not generate additional emotional energy, they should only follow the
surrounding agents’ emotional influence by (primitive) empathy. For the agent A0 to be able to
generate emotional energy, it is necessary to activate the amplification model in A0 (Section 3.4).
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Figura 5.4 – Standing Agents experiment with 80 agents in the crowd: In Figure 5.4(a) one can
observe the first frame of the simulation experiment. There, only agent A0 is in RED, and all other
agents are coloured blue because they have emotion RED level under threshold BLUE. In Figure
5.4(b) it is pictured an intermediary frame in the middle of the simulation, showing a number of
agents already changed their emotional state from BLUE to RED. In Figure 5.4(c) is pictured
the final frame of the simulation. The red circumferences around on agents A0, A18, A22, A47 and
A60 denotes agents’ interaction ray, beyond which there is no contagion.

(a) First simulation frame (b) One minute time elapse (c) Last simulation frame

This agent must also suffer influence from the crowd, so the absorption model must also be activated,
in order to allow agent A0 to catch and follow other emotions too. To do so, parameter η0 in agent
A0 must be η0 = 0.5, that will balance absorption and amplification model bias, resulting in half
strength of contagion in amplification model, and half strength of contagion in absorption model.
This way agent A0 have both amplification and absorption models active with the same bias during
the experiment. Also, to ensure that amplification is positive for emotion RED in agent A0, the
amplification bias β0 (see Equation 3.8) is set to its maximum β0 = 1 for agent A0, promoting full
positive bias in amplification model. It is important to notice that this choice results in agent A0

also suffering contagion by the crowd as desired. The remaining agents Ak (where Ak ∈ C, k 6= 0)
must have ηk = 0, eliminating influence of the amplification model in those agents, remaining only
the absorption model. This way they are not generating any additional emotional energy, and will
follow crowd tendency. Since ηk = 0 for all Ak where k 6= 0, the bias βk does not matter for those
agents (see Equation 3.8) and is set to βk = 0 for all agent Ak.

The objective is to observe how the emotional energy of A0 will spread through the crowd.
So, agents must be able to express their emotions, in order to promote contagion in others. They
also must suffer contagion, since we want to experiment the impact of the crowd over agent’s A0

emotion as well as agent’s A0 influence over the crowd. For the present experiment, it was decided
that εi = 0.5 and δi = 0.5 for all agents Ai ∈ C where i = [0..N−1]. This choice makes both
expressiveness and susceptibility of agents active, but not so strong, and not so weak.

Finally, the BLUE emotion is used as control so, we do not want it to vary, and must be the
same for all agents Ai ∈ C. Moreover, it must be initialized with the same level for all agents, so
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Figura 5.5 – Standing Agents experiment with 110 agents in the crowd: In Figure 5.5(a) one can
observe the first frame of the simulation experiment. There, only agent A0 is in RED, and all other
agents have emotion RED level under threshold BLUE. The circle around agent A0 denotes its
interaction space, inside which there are only agents A60 and A83. In Figure 5.5(b) it is pictured
the 125th frame showing a number of agents that form a chain reaction to spread emotion to the
remaining agents of the crowd. In Figure 5.5(c) it is pictured frame 700 in the simulation. The
circles denotes agents’ A14 and A72 interaction spaces. The distance between agents in this area
block the emotion RED to promote contagion in lower left agents, so the contagion spreads to the
upper right corner of the scenario. In Figure 5.5(d) it is pictured the final frame of the simulation.
Agent A45 is the only remaining agent that has not suffered contagion. This is because it is isolated
and no other agent is inside its interaction space, denoted by the red circumference around it.

(a) First simulation frame (b) Frame 125 from the start of simulation.

(c) Frame 700 from the start of simulation. (d) Last simulation frame
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Figura 5.6 – Standing Agents emotion levels.

that it is possible to compare the emotion state changes in all agents. Emotion BLUE can also be
seen as a threshold rather than an emotion, since it does not change. For the present experiment,
this threshold is set to qBLUEinitial

i = 0.8 for all agents Ai where i = [0..N − 1]. While the agent
is coloured blue, it means that RED is below threshold. When emotion RED is above threshold,
the agent changes its emotional state from BLUE to RED, changing also its colour. When this
happens, it is signal that a change of emotional state in the agent has occured.

In summary, the parameter setting for agent A0 is εRED
0 = 0.5, δRED

0 = 0.5, ηRED
0 = 0.5 and

βRED
0 = 1, with initial emotion level qREDinitial

0 = 1, to ensure agent A0 starts with maximum RED

emotion level. And for the remaining Ak agents, we have εRED
k = 0.5, δRED

k = 0.5, ηRED
k = 0 and

βRED
k = 0, with initial emotion level qREDinitial

k = 0.5, to ensure all agents Ak starts in BLUE
emotional state, since qBLUEinitial

i = 0.8.
As mentioned before, we propose three situations in this scenario with standing agents: one with

the emotional leader plus 50 agents in the crowd; one with the emotional leader plus 80 agents in
the crowd, and one last experiment with one emotional leader plus 110 agents in the crowd. This
will change agents density in the scenario, since for all cases the scenario size is kept unchanged
with measures 17×20. Figure 5.3 shows the first frame of the scenario with 51 agents total and the
emotional leader is identified as agent A0. The circles around agents A0 and its closest neighbours
A47 and A6 represents the interaction space of the agents, beyond which the contagion is zero. In
the Figure 5.3 it is possible to see that no agent lies inside agent’s A0 interaction circle. In this
case, A0 won’t be able to promote any contagion to the crowd. This happens because the density is
too low and agents got to sparse in the scenario. In other words, the pseudo-random function used
to generate agents’ initial positions did not place any agent nearby agent A0 with the seed used
here (we initialized the pseudo-random function with seed 321). If the seed of the pseudo-random
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function were changed, it could eventually result in a configuration where one or more agents would
lie nearby A0, inside its interaction space. But the goal here is to test the impact of densities in
contagion, so we decided to further increase number of agents in the scenario instead of using other
seed. Also, this results shows that, if one agent is sufficiently isolated from the crowd it will not
interact with it, and thus should not be able to suffer or promote contagion, which is the case of
agent A0 for the current scenario. In this case, the time factor also does not promote any contagion
change in the emotional state of the agents, since they do not move and will not approach each
other entering interaction space.

An experiment with 81 agents was then executed with the objective of increasing agents’ density,
and check if there is contagion. Some frames of this experiment are pictured in Figure 5.4. Compa-
ring 5.4(a) and 5.4(c) it is possible to observe that the emotion RED spreads through the crowd,
since a number of agents changed their colours, signalling they have changed emotional state. In
Figure 5.4(b), the interaction space is highlighted for the agents A0, A74 and A76 in a particular
instant of the simulation. By examining the interaction space of agent A0, only agent A60 is able
to suffer contagion from A0. Also, agent A76 has suffered RED contagion from agent A6, since
it is the only agent inside agent’s A76 interaction space that presents RED state. For the same
reason, as the simulation elapses, agent A74 will turn red, see Figure 5.4(c), because of agent’s A76

influence over him. Actually, all those agents are suffering influence of agent’s A0 emotional state
(generating emotional with ηRED

0 = 0.5 and βRED
0 = 1) directly, or indirectly in a chain reaction.

In other words, agent A0 can only influence agent A74 by first influencing agent A60, then agents
A6 and A76 in a chain reaction. Finally, in Figure 5.4(c), it is possible to see the interaction circle
of some key agents that we enlist: A0, A18, A22, A47, A60. By looking carefully at those agents,
the first thing to notice is that agent A0 can only reach agent A60 directly, because this is the only
agent inside agent’s A0 interaction space. And since agent A0 is the only one capable to promote
energy on emotion RED, the obvious conclusion is that A0 is promoting third party contagion.
By looking at the interaction circles of agents A18, A22 and A47, it is right to conclude that the
spread of emotion RED has stopped because remaining agents are outside the interaction area of
the group of agents that now share RED emotional state. Beyond this circle, emotional contagion
does not happen because of the distance between the agents. That is why the remaining agents
will never catch emotion RED. At this point, the scenario is stable meaning that emotional states
will not change anyfurther.

It is noted that by increasing the number of agents from 50 to 80 there was an increase of agents
who has suffered a change in emotional state, due to contagion from 0 agents in the first case to
15 agents in the second case. But yet many agents are kept excluded from this process, because
they are isolated from the source of emotional energy, the agent A0. At the same time, agent A0 is
creating an area of emotional influence around itself, its neighbours, and their neighbours in a chain
reaction. A further increase in agents number is then promoted, expecting to increase density and,
as a result, include more agents in the emotional influence area created by agent A0.

In Figure 5.5 we picture yet some frames of the experiment with 111 agents in the crowd, the
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emotional leader agent A0 plus a crowd of 110 agents. In Figure 5.5(a) we picture the first frame of
the simulation experiment with only agent A0 in red state, and the remaining agents in blue state,
denoting their initial status, as in the previous cases. It is also pictured the space of interaction
of agent A0, and it is possible to identify agents A60 and A83 as the only two agents inside A0

interaction space. These are the only two agents that will suffer contagion directly from agent
A0. In Figure 5.5(b) the 125th simulation frame is pictured. There is also pictured the space of
interaction of agents A59, A62, A74 and A76. Notice that the only red agent inside this area is agent
A6, and it is also important to notice that agent A0 is outside this area. From this point on, agent
A0 can only influence emotionally the remainder agents of the crowd through a chain reaction effect
by promoting contagion on agents A76, A74, A52 and A59. The frame 700 of this experiment is
depicted in Figure 5.5(c). The interaction space of agents A14 and A72 are shown to illustrate a
gap that exists in the area between these two agents. This gap blocks emotion contagion from the
lower left part of the scenario to the lower right part of the scenario. This is why RED emotion, at
this simulation instant, is spreading to the top left corner of the scenario instead of growing equally
in all directions. Finally, Figure 5.5(d) shows the last simulation frame. The space of interaction
of agent A45 shows that this agent is isolated from the crowd, and thus it will never change its
emotional state. But all other agents have converge to the same emotion as A0, resulting in all
remaining agents with the same emotional state.

This last scenario illustrates how one single agent generating emotional energy can promote
contagion in a whole crowd of agents, depending on space and time. And since agent A0 proved
able to promote indirect contagion, even to far away agents, further investigation is needed to
determine how strong this chain reaction can be. In the Figure 5.6 the instantaneous values of
emotions are plotted in the graphic for agents A0, A32 and A36, for the experiment with 111 agents.
It is also plotted the threshold line (a constant equals to 0.8). The vertical axis measures emotional
level, and the horizontal axis measures time in frames. Although agent A36 is far from agent A0

relative to the scenario size, it is possible to see in the graphic that the emotional level in agent A36

begins to rise very early in the simulation. Actually, at frame 16 it already presents minor numeric
change on the emotion level (it changes from 0.5 to 0.500001). This data suggests that the referred
chain reaction is not just present, but seems to be rather fast. Agent A32 is close to agent A0,
and as expected, it suffered much stronger contagion if compared with agent A36. By comparing
the curves of both agents A32 and A36 in the graphic it is possible to observe that the curve of
the first rises much faster, because contagion is much stronger. Another important information in
the graphic is in the curve of agent A0. In the beginning of the experiments (both with 80 and
110 agents in the crowd) it was noticed that agent A0 changes to blue, before returning to red in
the first frames of simulation. In the graphic of Figure 5.6, the curve of agent A0 drops below the
threshold at frame 6 and returns at frame 30, and then it keep ascending. That is happening because
parameter ηRED

0 = 0.5, which balances both absorption and amplification models. The absorption
model is responsible to allow agent A0 to suffer contagion from the crowd, as it promotes contagion
on the crowd at the same time. Since all agents in the crowd are initialized with qREDinitial

0 = 0.5,
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they influence agent A0 with this emotional level in a chain reaction. And they also influence each
other promoting some kind of inertia, or resistance of the crowd changing emotional state.

The scenarios experimented showed that, with enough emotional energy, enough proximity
between agents, and enought time to accomplish the method, it is possible to promote conta-
gion in all agents of a crowd. Also, if one agent gets isolated it will not be able to suffer contagion,
neither promote contagion on its neighbours. We could also observe the phenomena of contagion
beyond dyads, which is a phenomena observed in real groups of people according to Dezecache et.
al [20]. Furthermore, the crowd achieved the same emotional state, a monotonicity predicted by
LeBon [9]. The crowd followed its leader, at least regarding to its emotional state.

5.2 Counterflow scenario

Since the proposal of this work is to integrate emotional contagion in crowd context, it is now
time to allow agents to move in the virtual scenario according to the steering model. And since they
are moving, they must have a goal associated to them, so that agents know where they are supposed
to move to. Also, it was discussed in Chapter 2 that emotions have impact on peoples actions. With
that in mind, In Chapter 4 we proposed to introduce in the model the option of defining a goal
associated to each emotion. So, a goal is defined to each one of the possible emotional states in
the agents. The same way as in the standing agents experiment described in Section 5.1, this
scenario is configured with two possible emotional states for the agents. The emotion under study is
an unspecified emotion represented in RED, and the threshold represented in BLUE is a constant
equals to 0.8.

Figure 5.7 pictures the scenario used for the current experiment. Since the agents are moving
they need a goal to pursue. We propose a scenario with two entrances/exits, one in the top, the
other in the bottom, each of which represents the goals in the scenario. We then associate one goal
for each emotion and, by convention, we determine that agents in state BLUE aim to the top exit,
and agents in state RED aim the bottom exit. We also propose to consider one agent A0 moving
from top to bottom, and one group of agents G, moving from bottom to the top. In the example
of Figure 5.7 one can observe agent A0 coloured in red at the top of the scenario, and three other
agents members of group G (A1, A2 and A3) at the bottom of the scenario, coloured in blue. By
its colours it is conventionally known that agent A0 is going to the bottom exits, and the remaining
agents are going to the top exit. With this configuration, their paths are making them cross with
each other. While they are close enough, it is expected to observe emotional contagion in agents.

Also, in all cases presented in this section, agent A0 is elected as the emotional leader, or,
in other words, the agent that generates emotional energy through the amplification model. We
propose to simulate a number of cases here, varying agents’ expressiveness, susceptibility, and the
number of agents in the group G that is encountering agent A0. Consider group G as being the
set G = {A1, A2, ..., AN}, where N is the number of agents in G. Notice that agent A0 does not
belong to G, so the total crowd number in this case would be N + 1, or the N agents in G plus
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Figura 5.7 – Counter flow Scenario example.

A0. This group will be simulated with N varying from 1 (one) to 10 (ten) agents. We propose
varying the expressiveness (ε) and the susceptibility (δ) of the agents in group G by four manners:
i) εk = 0.1 and δk = 0.9, ii) εk = 0.1 and δk = 0.1, iii) εk = 0.9 and δk = 0.9, and iv) εk = 0.9
and δk = 0.1. These four cases simulates extreme emotional profiles, respectively as follows: i) low
expressiveness (or shy, introspective) and high susceptibility (or open to contagion, sociable), ii) low
expressiveness and low susceptibility (or closed to contagion), iii) high expressiveness (expressive)
and high susceptibility, and iv) high expressiveness and low susceptibility. And for every case, we
want to measure the speed in which the emotion spreads in the crowd, by comparing the curves
of emotions of some agents in the crowd. All agents in group G initializes its emotional level
with qREDt0

An
= 0.5 to begin under the threshold, thus in BLUE emotional state. The remainder

parameters of the agents belonging to the group G, η and β, are set to zero, so that agents in G
have only absorption model active.

Agent A0 initializes in time t = t0 with maximum emotion level qREDt0
A0 = 1, maximum ex-

pressiveness εREDt0
A0 = 1 to enhance agent’s strength of emotion contagion, δREDt0

A0 = 0.1 for low
susceptibility, making it harder for the group G to promote contagion on A0. Also, to enable am-
plification model in agent A0, its parameter ηA0 = 0.1 creating a weaker amplification than agent
A0 in the standing agents experiment, but in the present experiment the number of agents to
interact with A0 is smaller. Furthermore, since agents are moving, the time window for contagion
is shorter than in the previous experiment (i.e., while the group G is passing near agent A0). In
this experiment we expect to observe emotional state changing in A0. That is why agent A0 has a
smaller parameter setting for ηA0 than the experiment presented in Section 5.1. Agent’s A0 choices
for ε and δ were made to make faster contagion of A0 over G, and lower contagion in the opposite
direction. We expect to see variation of responses as we change the number of agents in G and
vary the parameter of agents in G.
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Figura 5.8 – Counterflow experiment with 3 agents in the groupG: Figure 5.8(a) shows the beginning
of the simulation. Agent A0 is in RED, and moving from top to bottom. All other agents are
coloured blue, and move from bottom to the top. In Figure 5.8(b) it is pictured an instant where
agents have already reached contagion distance. Only the contagion space of agent A0 is pictured,
but at this moment almost all agents are inside agent’s A0 interaction space, represented by the red
circle around the agent. Agent A5 already changed its emotional state from BLUE to RED. In
Figure 5.8(c) is pictured the end of the simulation, where agents are almost reaching the bottom
exit. In this case, all agents exits by the bottom door by the end of the simulation.

(a) Beginning of simulation. (b) Moment of encounter. (c) Agents reaching bottom exit.

So, for this experiment, there are 4 different emotional profiles EAn for the scenarios, according
to Section 4.1, varying expressiveness and susceptibility parameters of group’s G agents, all those
scenarios simulated with 1 to 10 agents in the group, adding a total of 40 scenarios. Also, we
mentioned that the window of contagion is due to the time agents walk side-by-side, in the moment
they are passing by. The time they keep together depends on the length of the path, and agent’s
speed. So, we decided to experiment with two different scenario sizes: i) a short scenario measuring
17× 20, ii) and a long scenario measuring 17× 40. This adds up to 80 simulations in total.

In Figure 5.8 it is pictured some frames of the case where the number of members in the group G
is N = 3, and the agents are set with the emotional profile susceptible (meaning that susceptibility
is set to a high level δAn = 0.9) and shy (meaning that expressiveness is set to low level εAn = 0.1).
Figure 5.8(a) shows the beginning of the simulation. Agent A0 is in the top, coloured in RED, and
moving from top to bottom, due to the goal associated to emotion RED, and the fact that agent’s
A0 emotional level initialized as qRED

A0 = 1 is higher than the threshold defined as qBLUE
A0 = 0.8. All

other agents are coloured blue, and move from bottom to the top. In Figure 5.8(b) it is pictured an
instant where agents have already reached contagion distance. Only the contagion space of agent
A0 is pictured, but at this moment almost all agents are inside agent’s A0 interaction space and
all agents are able to interact with each other. Agent A3 already changed its emotional state from
BLUE to RED, and all other agents will be changing their emotional states in the next frames. In
Figure 5.8(c) it is pictured the end of the simulation, where agents are almost reaching the bottom
exit. This is not the last frame, because agents are still in the scenario. In this case, all agents have
exited through the bottom door by the end of the simulation. This experiment shows a group of
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Figura 5.9 – Counterflow scenario graphic picturing instantaneous emotion level of agents plus the
threshold line (0.8).

Simulation screenshot

agents (G) changing their goal in function of their emotional status. A similar behaviour may be
observed in dangerous situations, where one person warn others about potential danger, and they
all run away in fear.

In Figure 5.9, a graphic is pictured showing curves of instantaneous emotional levels of all agents
in the simulation. The line at emotional level 0.8 is the threshold above which agents turn their
emotional status from BLUE to RED. The threshold is qBLUE

Ai
= 0.8 for all agents in the crowd,

including agent A0. The other curves represent emotional state RED for all agents in the scenario,
including agent A0. For agent A0, the emotional level is initialized as qRED

A0 = 1, and when agents
get close to each other, around frame 170, qA0 tends to drop a little. That is expected since the
susceptibility δA0

RED 6= 0. Notice that before agents get closer, the curves do not change. The
agents inside G do interact with each other, but since all are initialized with qRED

An
= 0.5 (where

n = [1, 3]) they do not change their status. There is already a monotonicity of emotion in the group.
In other words, they all match group’s average emotional level. For the group G there is a fast rise
of emotional level around frame 170, when agents get closer. That is because the susceptibility of
the group was made high. So, as expected, the agents on the group follows the emotional influence
of A0 in this case. When the emotional level of agents in G pass higher 0.8, agents change their
goals. Finally, the emotional level of all agents, according to generated data, stabilizes around 0.98.

Now that we pictured one particular case, we compare the many variations of the scenario
explained so far. To make easier to read the graphics, from now on, we will plot the arithmetic
average of the emotional level of all agents in the group G, instead of plotting each agent’s emotional
levels individually. In Figure 5.10 there are four graphics showing emotional level curves for different
group G sizes, using shy (εAn = 0.1 for An ∈ G) and susceptible (δAn = 0.9 for An ∈ G) setting
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Figura 5.10 – Counterflow experiment varying number of agents in the group G: Figure 5.10(a)
shows the emotion level curves of A0 and A1, since the group G has only one agent in this case.
Figure 5.10(b) shows the emotion level curves of A0 and the average emotion level of the 3 agents
in group G. Figure 5.10(c) shows the emotion level curves of A0 and the average emotion level
of the 6 agents in group G. Figure 5.10(d) shows the emotion level curves of A0 and the average
emotion level of the 10 agents in group G. All figures pictures the threshold line in 0.8 above which
agent’s are in RED emotional state, moving from top to bottom in this case scenario.

(a) 1 agent in group G. (b) 3 agents in group G.

(c) 6 agents in group G. (d) 10 agents in group G.

for emotional contagion profile of the agents in group G. Since the agents in group G have low
expressiveness, they cannot impact strongly agent A0 (or each other). That’s why the emotional level
curve for agent A0 never drops below threshold. Also, they are very susceptible, so the emotional
level of agents in group G rises fast. With this parameter setting the emotional average of the crowd
converges to a high emotional level of emotional state RED. Also, it is possible to notice that A0

emotional level also drops due to contact with agents in group G. Furthermore, as the number of
agents in the group G increases, the drop in agent’s A0 curve increases. This suggests that, the
more agents in the group, the more resistance (or some sort of emotional inertia) the group presents.

To further explore the results, we now compare the four emotional profiles studied: i) shy/susceptible
with parameters set to εk = 0.1 and δk = 0.9, ii) shy/closed with parameters set to εk = 0.1 and
δk = 0.1, iii) expressive/susceptible with parameters set to εk = 0.9 and δk = 0.9, and iv) ex-
pressive/closed with parameters set to εk = 0.9 and δk = 0.1. Also, it was elected to use the
case with 5 agents in the group to illustrate the differences on each parameter setting. Figure 5.11
shows the four curves resultant from this parameter setting, each one for each emotional profile.
In Figure 5.11(a), the emotional profile with agents shy (low expressiveness) and susceptible (high
susceptibility) tends to achieve emotional equilibrium above threshold, meaning that the group tends
to follow the influence of A0, which is expected according to previous experiments, and due to the
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fact that the susceptibility is set high. But Figures 5.11(b) and 5.11(c) suggests that susceptibility
does not handle alone the impact of A0 over the group and vice-versa. Figure 5.11(b) shows the ex-
pressive susceptible configuration and, although the susceptibility of group agents have not changed
compared to Figure 5.11(a), there is some force that inhibits group G contagion at first, making
A0 drop much below threshold around frame 206. Although the curve rises after frame 206, the
simulation ends before emotional level in all agents reach the threshold, so all agents (including A0)
exits by the top exit in BLUE emotional state, in the expressive susceptible case. Despite agent A0

is generating some emotional energy through its amplification model (agent’s ηRED
A0 = 0.1), it is not

enough to revert agents’ emotional state back to RED. Maybe a longer scenario would give time for
agents to change emotional state again and exit through the bottom. In Figure 5.11(c) the curves
for the shy/closed setting are pictured. Although it is not clear in the graphic, simulation results and
data generated shows that agent A0 lowers its emotional level downto 0.795536 but stabilizes it at
0.803074, which is close to 0.8, but above it. So, agent A0 briefly changes emotional state during
the simulation, but ends the simulation in the bottom exit. The remaining group agents never reach
the threshold level, so they keep moving from bottom to top until they exits in the top. In this
case scenario, agents just pass through each other, and does not definitely change their emotional
status remaining with their original goals. Maybe if agents move slower, they would spend more
time in range for contagion and the results could change. Finally, in Figure 5.11(d) the emotion
level curves for the expressive/closed are pictured. The emotional level of agent A0 drops quickly
around frame 198 and the group does not change much compared with cases in Figures 5.11(a)
and 5.11(c). Actually, in both cases where group expressiveness is high the resistance of the group
in changing emotional status rises. Supposedly because group agent’s expressiveness is high, giving
them more strength to influence each other and A0.

Consider now the case where agents are expressive and susceptible with 5 agents in group G,
as showed in Figure 5.11(b). We speculate that a longer scenario might give agents in group G
the chance to spend more time close to agent A0, and potentially result in agent A0 changing
its emotional state back to RED, influencing agents on group G. This hypothesis rises because,
although the graphic in Figure 5.11(b) shows that agents’ emotional level converge to a value
near 0.6 when agent A0 encounters the group around frame 206, the curve keeps rising. Now we
present the same experiment comparing two scenario sizes: 17× 20, as in the previous experiment;
and 17 × 40 with twice the length of previous experiment. Figure 5.12 shows three frames of the
simulation with in a scenario 17× 20 which results are presented graphically in Figure 5.11(b).

In Figure 5.12(a) it is pictured the beginning of the simulation. Agent A0 is not in contagion
range of any agent in group G, that is why in Figure5.11(b) agents’ emotional levels does not vary
until frame 172. In frame 176, pictured in Figure 5.12(b), agent A0 changes emotional state from
RED to BLUE, and also changes moving direction to aim the top exit, just like the other agents.
Figure 5.12(c) pictures frame 409 of this experiment, which is the moment agent A0 is removed
from the scenario, since it has reached the top exit. At this instant, agent A0 stops generating
emotional energy, because its contagion model has been disconnected from the scenario when A0



76

Figura 5.11 – Counterflow experiment with 5 agents in G, varying emotion contagion profile in
agents of group G: Figure 5.11(a) shows the emotion level curves of A0 and the average emotion
level of the 5 agents in group G for Shy/Susceptible emotion contagion profile. Figure 5.11(b)
shows the emotion level curves of A0 and the average emotion level of the 5 agents in group G for
Expressive/Susceptible emotion contagion profile. Figure 5.11(c) shows the emotion level curves of
A0 and the average emotion level of the 5 agents in group G for Shy/Closed emotion contagion
profile. Figure 5.11(d) shows the emotion level curves of A0 and the average emotion level of the 5
agents in group G for Expressive/Closed emotion contagion profile.

(a) Shy/Susceptible. (b) Expressive/Susceptible.

(c) Shy/Closed. (d) Expressive/Closed.

was removed. That is why agents’ emotional levels does not vary after frame 409 in the graphic
presented in Figure 5.11(b). The same thing happens in Figure 5.11(d) after agent A0 is removed
(around frame 422 for this case).

Figure 5.13 shows the last experiment but in a scenario with dimensions 17× 40, which is twice
the length of the last scenario. In Figure 5.13(a) it is pictured the beginning of the simulation, with
agent A0 in the top, aiming the bottom exit, and the remaining agents in the bottom, aiming the
top exit. In Figure 5.13(b), it is pictured the frame 365 when agent A0 changes its emotional state
from RED to BLUE due to the influence of the agents in group G. Since agents in G have high
expressiveness and outnumber A0 (they are five “against” one), their influence is strong enough to
pull agent’s A0 emotional energy below threshold. Figure 5.13(c) pictures the frame 452 of the
simulation, when agents A0 have changed its emotional state back to RED, and also the other five
agents in group G. At this point, all agents are seeking the bottom exit. Finally, Figure 5.13(d)
shows one of the final frames of the simulation, when only agent A0 has not yet reached the exit
and is not removed. Since agent A0 is the last out, he is able to generate emotional energy until
the last instant. Figure 5.14 pictures the numeric emotional level output in a graphic containing the
curves for agent’s A0 emotional level, and the average emotional level of the five agents in group
G, and also the threshold line in 0.8.
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Figura 5.12 – Counterflow experiment with 5 agents in G, with emotion profile expressive susceptible
in a 17× 20 scenario size: Figure 5.12(a) shows the beginning of the simulation, when group G is
not inside agent’s A0 contagion space. Figure 5.12(b) shows the moment when, in frame 176 agent
A0 changes emotional state from RED to BLUE. Figure 5.12(c) shows the frame 409 in the end
of the simulation when agent A0 is removed from the scenario. From this instant on no emotion
energy is generated, so agent’s emotion levels does not vary.

(a) Beginning of simulation. (b) Frame 176. (c) Frame 409.

Figura 5.13 – Counterflow experiment with 5 agents in G, with emotion profile expressive susceptible
in a 17× 40 scenario size: Figure 5.13(a) shows the beginning of the simulation, when group G is
not inside agent’s A0 contagion space. Figure 5.13(b) shows the moment when, in frame 365 agent
A0 changes emotional state from RED to BLUE. Figure 5.13(c) shows the moment when, in
frame 452 agent A0, and all other agents in group G, changes their emotional state from BLUE to
RED due to emotional energy created by agent’s A0 amplification. Figure 5.13(d) shows the end
of the simulation, when only agent A0 remains in the scenario. All other agents have been removed
since they reached their bottom exit goal.

(a) Beginning of simulation. (b) Frame 365. (b) Frame 452. (c) Simulation end.
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Figura 5.14 – The curves for emotional level of agent A0, the arithmetic average of group G
emotional level and the threshold line (0.8).

Beginning of simulation.

5.3 Same direction scenario

In this section we propose an experiment similar to the standing agents, presented in Section
5.1, with the difference that, in the present case, the leader has a goal to pursue. The remaining
agents will be standing in the same position, as long as they keep their original emotional state.
Analogous to previous experiments, we propose two emotional states: RED and BLUE, and we
will test the outcomes in emotion state RED. Emotional state BLUE is set as a threshold with
constant value 0.8. Since emotional state BLUE is being set as a threshold, all agents have
their BLUE emotional state initialized as: qBLUE

Ai
= 0.8, εBLUE

Ai
= 0, δBLUE

Ai
= 0, ηBLUE

Ai
= 0,

βBLUE
Ai

= 0, ogBLUE
Ai

= 0, and since there is no goal associated to it, agents in emotional state
BLUE tend to remain in (or move back to) their initial position.

The emotional state RED must have two different profiles, one for the crowd, and another
for the leader. In the elected leader agent A0 the emotional state RED is initialized with the
objective of generating emotional energy, so the amplification model in A0 must be active. The
parameters for emotional profile RED in A0 are initialized as follows: qRED

A0 = 1, εRED
A0 = 0.5,

δRED
A0 = 0.5, ηRED

A0 = 0.5, βRED
A0 = 1, ogRED

A0 = 1. Also, the top exit is the goal associated to all
agents in emotional state RED. Notice that, since qRED

A0 > 0.8, the motional state of agent A0 is
ψA0 = RED when the simulation starts.

For the remaining agents in the crowd, the emotional state RED has a different profile compared
to agent A0, because those agents are not supposed to generate emotional energy. The values that
initializes remaining agents’ parameters are: qRED

An
= 0.5, εRED

An
= 0.1, δRED

An
= 1, ηRED

An
= 0,

βRED
An

= 0, ogRED
An

= 1, where An ∈ C. Notice that the RED emotional level, denoted by
qRED

An
must be initialized with a value lower that 0.8 to set all agents except A0 to emotional state

ψAn = BLUE when the simulation starts. The objective is to observe how many agents turn
their emotional states from ψAn = BLUE to ψAn = RED as a result of the impact of agent A0

emotional influence over the remaining agents.
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Figura 5.15 – Agents walking in the same direction: In Figure 5.15(a) one can observe the first
frame of the simulation experiment. There, only agent A0 is in RED, and all other agents are
coloured blue. In Figure 5.15(b) it is pictured frame 250 of the simulation, showing a number of
agents already changed their emotional state from BLUE to RED and moving to the top exit. In
Figure 5.15(c) is pictured the final frame of the simulation.

(a) First simulation frame (b) Frame 250. (c) Last simulation frame

We propose to experiment this emotional configuration with agent A0 plus 110 agents in the
scenario. The scenario measures 17 × 20, and has two exits. In Figure 5.15 some frames of this
scenario are pictured. Figure 5.15(a) pictures the first frame of the simulation. There it is possible to
observe agent A0 in red in the bottom entrance of the scenario, and the red circle around it denotes
its interaction space. Since A0 is coloured red, indicating emotional state ψA0 = RED, its current
goal is the top exit, according to the goal associated to emotional state RED. The remaining
agents have emotional state ψAn = BLUE, indicated by their colour. No goals are associated to
emotional state BLUE, so, when each agent is initialized, a goal to its current position is defined
automatically. This results in agents seeking to stand in their original position as long as their
emotional state is BLUE. The vertical line with red dots in the middle of the figure denotes the
path planning of agent A0, tracing the path agent A0 will follow to get to its goal, which is the top
exit. Finally, although there are some agents inside agent’s A0 interaction space, since the simulation
is not yet started, they are yet to interact with A0 to promote and suffer emotional contagion.

Figure 5.15(b) depicts simulation frame 250. In this picture it is possible to observe that many
agents have changed their emotional state and have now ψAn = RED. All those agents are moving
towards the top exit, accompanying agent A0. In their original positions there are red dots, denoting
each agent’s original starting position, and original goal, which is now being overwritten as a result
of agents’ emotional state changing. Also, notice agents A110 and A39 in the bottom, coloured red,
are being left behind. This is due to a small random variation in agents’ speeds present in BioCrowds
model. It has three possible speeds: fast, defined as 3.3m/s; medium, defined as 2.4m/s; and slow,
defined as 1.2m/s. Simulation data shows that both agents A39 and A110 had slow velocity setting
selected.
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In Figure 5.15(c), the last frame of the simulation is pictured. Notice that agents A39 and
A110 have been left behind, eventually changing their emotional state back to ψA39 = BLUE and
ψA110 = BLUE. This results in both agents returning to their original positions. The same happend
with agents A12 and A42. At the same time, many other agents have changed their emotion state
to RED and moved to the top. It is also important to observe that many of the agents that turned
RED were never inside agent’s A0 interaction space, but instead had suffered contagion indirectly
from other agents, as a result of contagion beyond dyads.

In this experiment, it was possible to observe the emergence of a group leader. Although the
scenario is configured with 111 individuals (110 plus A0) with no group predefined, as agents interact
and converge emotionally, they also approach each other as they converge to common objective.

5.4 Performed Experiments Summary

In Section 5.1 we experimented varying the density of agents in the scenario. It was observed
that the higher the density the more agents suffer contagion. Some agents do not suffer contagion
because, in low densities, groups of agents get isolated from each other. That happens because
we restrained the distance of contagion to 2m, considering agents’ proxemics. Nevertheless, some
situations might require different approaches. If we consider big manifestations such as parades,
strikes, protests or even sports events or music shows, there might be room to increase this distance
limitation.

In the experiment presented in Section 5.2, the agents move against each other. The result is
that, since their path cross, they do not spend much time inside their interaction space. That is
one of the reasons why in the graphic presented in Figure 5.11(c) agent A0 is not able to change
emotional state in other agents. Other reasons are related to the expressiveness and susceptibility
of agents. In this sense, it was observed that great number of agents, with no amplification model,
creates a chain reaction, or some sort of inertia to succumb to the emotional energy generated
by the one. Also, a crowd with higher expressiveness presented behaviour in a way that increased
this inertia, since the curves presented on Figures 5.11(b) and 5.11(d) (on the right side) shows a
significant drop in the emotion level of A0, by the time agents meet, if compared to the figures on
the left side. In Figure 5.11(a) the emotional level of agent A0 is always qA0 > 0.8 (even greater
than 0.9 according to data), and in Figure 5.11(c) the emotion level qA0 drops slightly below 0.8,
as commented in Section 5.2, but stabilizes above threshold. Increasing susceptibility, on the other
hand, appears to lower the crowd inertia emergent in this model. By comparing Figure 5.11(a)
with Figure 5.11(c), and Figure 5.11(b) with Figure 5.11(d) it is possible to observe that, as the
susceptibility rises, the stabilizing point also rises as one would expect.

In Section 5.3 we experimented with one agent generating emotional energy (A0) and 110 agents,
configured with only absorption model, responding to this generated energy. As agents changed their
emotional state, they also began to share the same goal of A0, which resulted in agents moving
closer to each other, since their trajectories converge to the same location in the scenario. At the
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same time, some slower agents were left behind and, by interacting with other agents (not A0)
which have their qRED

An
< 0.8, they changed their state back to its original state (BLUE) and,

because of that, marched back to their original positions. By the end of this simulation, only 37
of the 110 agents remained in the scenario, while all others gathered around the goal point in the
top exit. Since agents are not removed from this scenario when they reach their goal, they form a
semi-circle around it, as an emergent outcome of BioCrowds.

As a result of emotional contagion, it was possible to observe agents changing their emotional
state during simulations. Also, this have impact over agents’ trajectories, since we associated goals
to emotions. This illustrates the impact of emotional contagion over the flow of agents in the
crowd. At the same time, while agents navigate in the scenario, they enter interaction space of
other agents, changing their emotional status (and goal) as well. This illustrates the impact that
agents’ movements has over the emotional contagion model. As agents evolve in the scenario, as
a function of time, they are also changing their distances and, with that, changing the contagion
channel strength with its neighbours. Both impacts from emotional contagion model over crowd
trajectories, and the movement of the crowd impact over emotional contagion are desired. The
results where agents synchronize their emotional state resemble statements of LeBon [9], who
claims that individuals in a crowd tend to have an identity with the crowd, if he or she is immerse in
such a crowd for enough time. Also, the emergent behaviour where agents get closer to each other
due to a synchrony of their emotional state, as in the experiment showed in Section 5.3, resembles
studies of Barsade & Gibson [6], where the authors claims that positive emotions can approach
group members, by increasing feelings of acceptance. Although agents in the experiment presented
in Section 5.3 are not in the same group (they are actually all individuals), they approach each other
due to the fact they share the same goal.
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6. Final Considerations

This work presented an emotional contagion model adapted for crowd simulation context. Our
main objective was to endow agents in a crowd simulation model with emotional contagion ability.
This gave origin to a new Bosse-Biocrowds extension which benefits from both models. The con-
tribution of the crowd simulation model is the ability to instantiate agents in a virtual environment,
and allow those agents to navigate towards a goal. The contribution of the emotional contagion
model is to carry the emotional information, and endow the agents to exchange this information by
means of contagion. To implement those features, the parameters had to be integrated into a new
set of parameters, keeping information about agent movement and goal (BioCrowds) along with
information related to agents’ emotional profiles (parameters derived from the model proposed by
Bosse et. al). Also, the algorithm was adjusted to enable full contagion of individual agents in the
crowd, as well as contagion between different groups in the same crowd.

In Section 1.1 we presented specific goals to be achieved in this work. We believe we have
successfully integrate the model of Bosse et. al in BioCrowds. To support this claim we presented
simulations in Chapter 5 where it is possible to observe agents changing their emotional status
through contagion. In Section 5.1 we measured the impact of density of agents over contagion.
It was observed that, due to a limitation in contagion distance imposed by our parameter setting,
some groups of agents are isolated, and thus they do not suffer contagion from the leader agent.
Furthermore, by associating goals with emotions, it was possible to observe agents changing their
goals as they changed emotional state, and sometimes it was possible to observe agents switching
back to their original goals, as in the experiment presented in Section 5.2. Finally, Section 5.3
pictures agents changing their emotional state and sharing goal with the leader. As a result, agents
that suffer emotional state changing due to contagion tend to converge to the same goal, getting
physically close to each other. The proximity of agents can be further explored for coping with group
formation and group dissolution. This way, group of agents can be dynamically assigned according to
the simulation scenario, agents’ emotional states and affinities, instead of being determined by input
data. The advantage is not only minimizing input data overhead, but mainly increasing possibilities
for simulation scenarios. Yet, this allows to create scenarios with emergent leaders both in groups
and in the crowd. All this emergent behaviours are result of the emotional energy generated by one
single agent, the position and trajectories of remaining agents in the crowd, and the time window
agents keep inside each other interaction space.

By integrating an emotion contagion feature in BioCrowds we believe the model gained many
possibilities. Now, agents are able to carry information about emotions and emotional state, and
transmit this information to other agents. Based on this information, it is possible to determine
new goals for agents. In this sense, the emotional information can be treated as other nature of
information, such as willing to go shopping, or eating. Following this idea, a parallel project was
developed using emotion information as direction signs in a city. The signs were designed as agents
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with expressiveness proportional to the appeal (or size) of the signal and, obviously, signals do not
suffer contagion, so their susceptibility was set to zero. Also, signals do not move, their are just
objects in the scenario (outdoors, posters or traffic signs giving directions). The agents in the
scenario suffer contagion from the signs, depending on their will to pursue the directions the sign
point to. The willing to go to a restaurant, or a computer store is given by agents’ susceptibility to
rise that particular “emotion”, or will. For example, if an agent is hungry, and not at all interested
in buying computers, its susceptibility to go to a restaurant is high, while the susceptibility go to
go a computer store is low (or zero). Reminding that, in this parallel project, emotions became the
disposition to go to one of the possible scenario goals.

Beyond improving possibilities in BioCrowds, we also extended the emotional contagion model.
Besides creating contagion in a crowd of agents based only in dyadic interactions, perhaps the most
significant advance in the model by Bosse et. al is the extension for multiple emotions. This allows
more realistic simulation of emotions, since real people are able to feel more than one emotion.
An important result of this is the ability of changing emotional state that emerges on agents. By
changing agents’ emotional state it is also possible to change their behaviour, which impact the
crowd flow. Also, the contagion of emotions is now function not just of time, but also is function
of space, translated to the distances between agents and their trajectories. The model still lacks
verification of obstacles for emotion contagion. At the present moment emotions can spread through
obstacles, like walls, and a mechanism to control this behaviour is desirable. One possible approach
is to use a cone of perception that restricts agents’ perception to their sensory space, both visual
and/or auditive.

Considering the contagion of multiple emotions, in the work of Hatfield and collegues [33] the
authors states that emotional contagion phenomena can occur by one particular emotion driving the
same emotion in other subject, in a process known as (primitive) empathy. For example, if someone
gets angry at some event or interest object, others, by empathy, might get anger as well at the same
event. On the other hand, emotional contagion may occur under counter-contagion mechanism
which means, for example, that if someone gets angry at another subject, that subject might have
fear of an aggression. In this second scenario, we have a counter-contagion phenomena, where one
expressed emotion drives a different emotion in the perceiver.

To model this characteristic of emotional contagion, a Perception matrix denoted by P is pro-
posed as future work, with dimensionM×M , whereM is the number of emotions. Its elements ρij

where i and j indicates emotional perception between emotions i and j. Consider a vector contai-
ning the emotional level of all emotions em in an agent An, defined by ~QAn = [qe0

An
, qe1

An
, ..., q

eM−1
An

].
Also, consider that the resultant perception vector of emotions is denoted by ~Q′An

. By performing
a matrix product as in Equation 6.1 with the emotional level vector of the sender, it is possible
to rearrange vector QAn in Q′An

to promote counter-contagion. The resulting vector, denoted as
perception vector, serves as input for agents emotional model. As a default value for this matrix
an identity matrix can be used to model the simple case of direct contagion of emotion, i.e. when
fear promotes contagion of fear, and joy promotes contagion of joy. Also, fractions of emotions can
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be configured by only one stimulus, as in a case where anger triggers a fraction of fear, but also a
fraction of anger as well.

Filling the perception matrix P with realistic values is a challenge. Counter-contagion may
happen in many ways, and is deeply dependent on the scenario. On behalf of that, a plausible
hypothesis is that the values of matrix P are dynamic, and change from time to time. This means
that in one situation a person may respond to a threatening anger expression with fear, but in
other situation the response might be also anger. Many factors such as the level of threat and
emotional condition of the receiver may impact this phenomenon. Another concern is that the
nature of emotions matters in this process, in other words, counter-contagion mechanisms for joy
driving emotions of other nature may work in a different manner than counter-contagion mechanism
for anger driving emotions of other nature.

~Q′An
= ~QAn · PAn (6.1)


q′e0

An

q′e1
An

...
q′

eM−1
An

 =
(
qe0

An
qe1

An
· · · q

eM−1
An

)
·


ρ0,0

An
ρ0,1

An
· · · ρ0,M−1

An

ρ1,0
An

ρ1,1
An

· · · ρ1,M−1
An

... ... . . . ...
ρM−1,0

An
ρM−1,1

An
· · · ρM−1,M−1

An

 (6.2)

Some works like Kapadia et. al [41] have mapped emotional traits and linked them to simulation
parameters. For future work, we suggest efforts to translate emotional traits to emotional tendency
parameters. The susceptibility of agents can be estimated by Emotion Contagion Scale measure for
people [21]. The expressiveness can be calculated by the Emotion Expressivity Scale [43]. There is
also the PANAS scale [70], that measures Positive and Negative affection and could determine the
variable β controlling upward and downward spirals Finally, measures of empathy or neuroticism can
estimate η. Furthermore, we believe that β should be dynamically controlled. Sometimes people
have reason to be in a particular emotional state, due to cognitive experience or recent events,
generating visceral, inner, emotional energy that result in emotional spirals. Sometimes, people
change their emotional state. By doing that, they can change their emotional behaviour regardless
of a contagion process. By controlling β dynamically, it is possible to keep β = 0.5, balancing
positive and negative impact, resulting in a contagion process similar to η = 0. An emotion model
should be designed to apprise and count for recent events or cognitive reasoning that may drive
emotion spiral in the agents. This emotional model then takes control of β rising it above 0.5 for
positive emotional spirals, and lowering it below 0.5 for negative emotional spirals. The strength
and speed of the spirals are given by β (the farther from 0.5 the stronger the spiral) and also by η.
Lower values of η (near zero) results in weaker spirals and higher values of η (near one) results in
stronger spirals.

There are still many aspects of emotions to explore in this work. Anyhow, we believe that
impacting agents’ behaviour by their emotional state, and changing this emotional state by means of
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contagion create many possibilities to generate more realistic and complex simulation scenarios. It is
expected that correct use of such features contribute to more reliable simulation results, improving
decision making based on this results. Also, in the field of animation, agents with more flexible
behaviour programming (i.e., since now they can decide among more than one goal) can enable
creation of more realistic situations.
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