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Resumo 

 

Atualmente são reconhecidos sete estoques reprodutivos (A-G) de baleias jubarte (Megaptera 

novaeangliae) no hemisfério sul.  O estoque reprodutivo ‘A’ estende-se ao longo costa brasileira 

(entre 5° e 23° S) sendo o Banco de Abrolhos-BA a principal área de reprodução do oceano 

atlântico sul para a espécie.  Durante o período de caça baleeira comercial (início do século XX) 

sugere-se que esse estoque tenha sofrido um grande impacto populacional chegando a 

aproximadamente 2% do seu tamanho original. Pesquisas recentes, utilizando diferentes técnicas 

para estudo da história demográfica, têm apresentado controvérsias acerca dos valores de 

abundância recente e histórico para essa população. Para o delineamento de estratégias de 

conservação é de grande importância o conhecimento a diversidade genética e as possíveis 

flutuações populacionais ao longo do tempo e em determinados períodos. No presente estudo fez-se 

o sequenciamento de 25 amostras de DNA extraídas de tecido de indivíduos da população Brasileira 

de baleias jubarte, através da construção de bibliotecas de ddRADseq e sequenciamento de nova 

geração. Os dados evidenciam a ausência de estruturação populacional na população. A análise com 

5145 locos com o migrate-n estimou a diversidade genética desta população em 0.00237 por sítio, 

que indica um tamanho efetivo de aproximadamente 40.000 e tamanho censitário de  ~140.000. A 

abordagem de ABC (Approximate Bayesian Computation), usando ~mil locos nucleares, aplicada 

para testar diferentes cenários demográficos relacionados ao período de caça apontou para um 

cenário de população recente (<10 gerações) constante (contra cenários com alterações 

populacionais neste período) corroborando estudos prévios utilizando microssatélites e poucos loci 

nucleares. A estimativa para o Ne no cenário constante foi semelhante ao obtido com o migrate-n. 

Por fim, o skyline plot obtido com o migrate-n sugere um aumento do tamanho efetivo de mais de 

uma ordem de magnitude se estendendo por centenas de milhares de geração, o que sugere que esta 

estimativa pode na verdade refletir o tamanho populacional de uma da metapopulação abrangendo 

todo o hemisfério sul ou mesmo toda a espécie, hipótese que precisa ser testada com a adição de 

outras populações e cenários demográficos apropriados. 
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Abstract 

 

A genomic approach to the study of the demographic history of the Southwestern Atlantic 

humpback whale (Megaptera novaeangliae) population 

 

Currently there are seven recognized reproductive stocks (A-G) of humpback whales (Megaptera 

novaeangliae) in the southern hemisphere. The breeding stock 'A' spreads along the Brazilian coast 

(between 5 ° and 23 ° S) and the Abrolhos Bank- BA is the main breeding area of the Southwest 

Atlantic Ocean. During the commercial whaling period (early 20th century) the breeding stock ‘A’ 

had reached nearly of 2% of its historical size. Recent researches, using different techniques to 

study the demographic history, have found different values for recent and historical abundance for 

this population. The knowledge about population size at specific times and its dynamics during time 

is very important to draw conservations strategies. Here we sequenced a ddRADseq library of 25 

DNA samples extracted from tissues of individuals from the Brazilian humpback whales 

population. The data suggests absence of population structure in the population. The analysis with 

5145 locus with migrate-n estimated the genetic diversity of the population as 0.00237 in per site, 

indicating an effective size of approximately 40,000 and a census size ~140,000. The ABC 

approach (Approximate Bayesian Computation), used to test different demographic scenarios 

related to the commercial whaling period, supported a constant population scenario (<10 

generations) (against scenarios with population changes in this period) corroborating previous 

studies using microsatellites and a few nuclear loci. The Ne estimated in the constant scenario was 

similar to that obtained with the migrate-n method. Finally, the skyline plot obtained with the 

migrate-n suggests an increase in the effective size of more than an order of magnitude extending 

for hundreds of thousands of generation in the past. This very long time frame suggests that this 

estimate may actually reflects the population size of a metapopulation covering the entire Southern 

Hemisphere or even entire species, a hypothesis that needs to be tested with the addition of other 

populations and appropriate demographic scenarios. 

.  
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Apresentação 

 

A presente dissertação foi desenvolvida como parte dos requisitos para obtenção do título 

de Mestre pelo Programa de Pós-Graduação em Zoologia, da Faculdade de Biociências da 

Pontifícia Universidade Católica do Rio Grande do Sul. 

Nesta pretendeu-se inferir a história demográfica da população Brasileira de baleias jubarte 

(Megaptera novaeangliae Borowski, 1871) baseado em analises genômicas de 25 indivíduos do 

Banco de Abrolhos, BA. A baleia jubarte, espécie cosmopolita (Dawbin 1966), pertence à família 

Balaenopteridae (Johnson and Wolman 1984). Essas têm hábito migratório, percorrem extensas 

distancias desde as regiões polares e sub-polares até o Equador (Dawbin 1966). No hemisfério sul 

as áreas de alimentação podem ser divididas em seis (I - VI), e as áreas de reprodução, também 

chamadas de estoques, em sete (A-G) (IWC – International Whaling Commission, 2005). A 

população em estudo configura o estoque reprodutivo A, e alimenta-se na porção leste da área II 

perto das ilhas Geórgias do Sul e Sanduiche do Sul (Engel et al. 2008, Engel and Martin 2009, 

Stevick et al. 2006, Zerbini et al. 2006a,). 

O começo do século XX foi marco do início da caça baleeira comercial, logo, da ampliação 

das atividades das estações baleeiras (Clapham and Baker 2002, Findlay 2001), e considera-se 

motivo da diminuição da população mundial de baleias jubarte. Em 1982 a Comissão Internacional 

Baleeira (CIB) previu uma pausa da caça comercial de baleias em todos os estoques a partir das 

temporadas de 1985/1986, ainda em vigor visto que a população mundial de jubartes em 1966 já 

apresentava uma redução para menos de 10% da original (Tonnessen and Johnsen 1982). Estima-se, 

por registro de capturas, que o tamanho populacional da espécie na costa ocidental da América do 

Sul antes da caça comercial baleeira era de aproximadamente 24.700 indivíduos (Zerbini et al. 

2006b). Em contraste, estudos mais recentes indicam valores de abundância histórica pré-caça de 4 

a 6 vezes maior, esses utilizando estimativas SMM (stepwise mutation model) (Cypriano-Souza et 

al. 2014) e multi-locus (Cypriano-Souza 2013). 

A baleia jubarte é uma espécie de grande importância para a conservação da biodiversidade, 

no entanto ainda existe muito desconhecimento e controvérsias científicas acerca de parâmetros 

fundamentais para o desenho de estratégias de conservação, tais como o tamanho populacional nos 

diferentes estoques reprodutivos antes do início da caça. O desconhecimento é ainda maior sobre a 

história evolutiva, incluindo a dinâmica demográfica histórica.  
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O genoma M. novaeangliae apresenta alta diversidade em diversos loci nucleares 

(Cypriano-Souza et al. 2014), logo contém, muita informação genética que pode ser utilizada para a 

reconstrução demográfica da espécie (Jackson et al. 2008), incluindo eventos bem antigos. 

Para a descoberta de variabilidade molecular em populações naturais têm sido 

desenvolvidas várias estratégias de NGS, podendo-se citar as “reduced representation libraries” 

(RRLs) como uma das principais, a qual vem sendo utilizada com eficiência em espécies com 

genomas desconhecidos (ex. Garvin et al. 2010, Maughan et al. 2009). Nesse contexto utilizou-se 

uma técnica conhecida como Double Digest Restriction Associated DNA (ddRAD) Sequencing, 

seguindo o protocolo descrito por DaCosta and Sorenson (2014), com a qual conseguiu-se obter um 

grande volume de marcadores. 

Os dados apresentados foram gerados a partir de amostras de tecido coletadas no ano de 

2012 da população brasileira de baleias jubarte, fornecidas pelo Instituto Baleia Jubarte. As 

bibliotecas genômicas de ddRADseq foram construídas no Laboratório de Biologia Genômica e 

Molecular (Faculdade de Biociências da PUCRS) bem como as análises subsequentes, após 

sequenciamento na plataforma Illumina. 

A dissertação será apresentada no formato de artigo científico a ser submetido à revista 

Journal of Heredity, respeitando as normas de submissão da mesma, disponíveis em: 

http://jhered.oxfordjournals.org/.
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Abstract 

 

Currently there are seven recognized reproductive stocks (A-G) of humpback whales (Megaptera 

novaeangliae) in the southern hemisphere. The breeding stock 'A' spreads along the Brazilian coast 

(between 5 ° and 23 ° S) and the Abrolhos Bank- BA is the main breeding area of the Southwest 

Atlantic Ocean. During the commercial whaling period (early 20th century) the breeding stock ‘A’ 

had reached nearly of 2% of its historical size. Recent researches, using different techniques to 

study the demographic history, have found different values for recent and historical abundance for 

this population. The knowledge about population size at specific times and its dynamics during time 

is very important to draw conservations strategies. Here we sequenced a ddRADseq library of 25 

DNA samples extracted from tissues of individuals from the Brazilian humpback whales 

population. The data suggests absence of population structure in the population. The analysis with 

5145 locus with migrate-n estimated the genetic diversity of the population as 0.00237 in per site, 

indicating an effective size of approximately 40,000 and a census size ~140,000. The ABC 

approach (Approximate Bayesian Computation), used to test different demographic scenarios 

related to the commercial whaling period, supported a constant population scenario (<10 

generations) (against scenarios with population changes in this period) corroborating previous 

studies using microsatellites and a few nuclear loci. The Ne estimated in the constant scenario was 

similar to that obtained with the migrate-n method. Finally, the skyline plot obtained with the 

migrate-n suggests an increase in the effective size of more than an order of magnitude extending 

for hundreds of thousands of generation in the past. This very long time frame suggests that this 

estimate may actually reflects the population size of a metapopulation covering the entire Southern 

Hemisphere or even entire species, a hypothesis that needs to be tested with the addition of other 

populations and appropriate demographic scenarios. 

Keywords: BSA, commercial whaling, demography, NGS, nuclear loci  
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Introduction 

 

Humpback whales (Megaptera novaeangliae Borowski, 1781) have a seasonal migratory 

habit, travelling long distances from tropical waters to polar regions (Dawbin 1966). In winter they 

migrate to warm waters, in low latitudes, to  conserve energy, calving and feed (Dawbin 1996, 

IUCN), the lower abundance of predators could explain why they migrate to these areas too 

(Corkeron and Connor 1999, Payne 1995). In summer, they migrate to higher latitudes, to their 

feeding areas, where there is abundance of krill (main component of their diet) (Brodie 1975). In the 

Southern Hemisphere, there are seven (termed A-G) breeding areas, also called stocks, and six (I-

VI) feeding areas (International Whaling Commission -IWC). The breeding stock A (BSA), the 

main ground in western South Atlantic for breeding and calving for the species is situated specially 

around the Abrolhos Bank, Brazil (16°40’- 19°30’ S and 37°25’- 39°45’ W) (Engel 1996). The 

Brazilian humpback whale population has their feeding area in the eastern part of the area II, near 

South Georgia and South Sandwich (see Engel et al. 2008), that was also one of the main area of 

industrial modern whaling in Southern Hemisphere (Tonnessen and Johnsen 1982).  

Commercial whaling initiated around the early 20th century and the expansion of the 

activities of the whaling stations resulted in the killing of thousands of whales. Over six decades 

about 2,000,000 large whales were killed throughout the Southern Hemisphere in general and 

around Antarctica feeding areas about 200,000 humpback whales were killed (Clapham and Baker 

2002, Findlay 2001). A facilitating factor for the modern whaling methods is the coastal habit of 

this species, making it more easy to catch (e.g. Best 1994, Chittleborough 1965, Gambell 1973, 

Tonnessen and Johnsen 1982, Williamson 1975). Around the decade of 1950, the BSA had reached 

as low as 2% of its historical size, about 500 individuals (Zerbini et al. 2006).  The IWC suspended 

the commercial whaling since 1985/1986 seasons in all stocks, considering the overexploitation of 

these populations, and in Brazil, the whaling is prohibited ever since 1987.  
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After the commercial whaling moratorium, the humpback whale population has increased 

steadily in the majority of the breeding areas, so that in 2008 the IUCN (International Union for the 

Conservation of Nature and Natural Resources) reclassified the species, updating its status to "least 

concern". According to Ward et al. (2011) the Brazilian humpback whale population has shown a 

growth of 7.4% per year between 1995 and 1998. The most recent studies of contemporary 

abundance of this population based on aerial surveys, estimated a number of individuals ranging 

between 6,404 (Andriolo et al. 2010) and 10,160 (Julião 2013). Estimates of the historical size of 

this population before whaling show a large discrepancy depending on the method used. Estimates 

using catch records suggested the population size was around 24,700 individuals (Zerbini et al. 

2006). However, population size estimates based on genetic diversity reported for some baleen 

whale species (e.g. Alter et al. 2007, 2012, Roman and Palumbi 2003, Ruegg et al. 2010, 2013) are 

much higher than abundance estimates from catch records (Punt et al. 2006, Wade and Perryman 

2002). Bad estimates from both kinds of methods does not seems to explain these consistent 

differences, as both approaches have highly improved their methods and the different persists. On 

the other hand, as previous genetic data provided long-term mean estimates (over hundreds or 

thousands of generations) rather than the estimate for the population right before the beginning of 

the whaling (Palsbøll et al. 2013), it is possible that the population sizes of whales just before 

whaling have been lower than their long-term sizes (Alter et al. 2007, 2012, Ruegg et al. 2013). 

Therefore, it would be necessary to better estimate the population size fluctuation over time, in 

special the recent effective size, if different from the long-term size. For these it would be important 

to increase significantly the number of genetic markers and use methods that could estimate the 

dynamics of the size of a population. Here we used the ddRAD sequencing approach (DaCosta and 

Sorenson 2014) to obtain sequence information of thousands of loci for the Southwestern Atlantic 

humpback whale population aiming to better estimate the genetic diversity of the population over 

the whole genome as well as to investigate its effective population size history. As for our 

knowledge, this is the first study of this kind in a true whale species. 
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Material and Methods  

 

Sampling and DNA extraction 

 Tissue samples were collected using biopsy dart procedure (Lambertsen 1987) by a 

research team of the Humpback Whale Institute in the year 2012 at BSA breeding area in Brazil. 

DNA was extracted from these samples using DNeasy Blood and Tissue Kit (QIAGEN) and 

conserved in alcohol 70% at -20ºC. We selected 30 samples which had previously presented good 

genotyping results and are not closely related (Cypriano-Souza et al.  2010). DNA Quality was 

checked in 1% agarose gel and quantification using Quibit. 

 

Selection of enzymes and fragment size range 

 We used DaCosta and Serenson et al. (2014) python script (Digital_RADs.py; available 

at https://github.com/BU-RAD-seq) to simulate the digestion process using a reference genome. 

The script looks for enzyme cutting sites and counts the number of fragments generated for a 

previously established size range and return the amount fragments with cutting sites (start – end): 

enzyme 1 – enzyme 2, enzyme 2 – enzyme 1, enzyme 1 – enzyme 1, enzyme 2 – enzyme 2, total  

enzyme 1 and total and enzyme 2. Given the absence of a humpback whale genome, to simulate the 

cleavage process we used the unmasked genome of Balaenoptera acutorostrata (BalAcu1.0 

available at ncbi.nlm.nih.gov). Different enzyme combinations and fragment size range were tested 

in order to generate a given quantity and size of ddRAD loci. We choose the combination of 

enzymes that according with the simulation described above would generate around 30,000 

fragments in a size range between 278 - 458bp, which ideally would allow a covering  >100x 

considering the sample size. 

 

 

https://github.com/BU-RAD-seq
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 RADseq Library Preparation and size selection 

 We used the ddRAD-seq protocol described by DaCosta and Sorenson (2014) for the 

library preparation. This consists of a single digestion reaction with two restriction enzymes (RE). 

The digestion was prepared with SphI and EcoRI (New England Biolabs) restriction enzymes at a 

concentration of 20U/µl and incubated overnight (16h) in the thermocycler at a constant 

temperature of 37ºC.  Following digestion, were made barcoded (P1) and index (P2) adapters 

ligation. As in the protocol the P1 and P2 adapters include amplification and sequencing primer 

sequences besides six base pair barcodes and four more nucleotides (CATG for P1 and AATT for 

P2) overhang that match with the sticky-end left by SphI and EcoRI, respectively. We used three 

different P1 and ten P2 for do different arrangements for each sample. The proportion of these 

adapters was calculated as suggested Petersen et al. (2012), and the final concentration adjusted to 

50 pmol/µl. 

 Samples were pooled and run on twelve lanes in a 2% low-melt agarose gel. We added 

internal size standards of 400 - 580bp (278-458bp fragments + 122bp adapter) to each lane to 

accurate the size selection. After, we extracted a slice from the gel correspondent to the size range 

doing a tapered cut, gradually reducing the area of the smaller fragments to approximately half the 

area of the larger fragments, because in some circumstances smaller fragments could be 

preferentially amplified in PCR (Walsh et al. 1992; DaCosta and Sorenson 2014). The extraction 

was made following the manufacturer’s protocol using PureLink® Quick Gel Extraction Kit. Then 

we used the Phusion High-Fidelity PCR Master Mix (Thermo Scientific™) for twenty PCR cycles 

and purified with AMPure SPRI Beads (Beckman Coulter, Inc.). The samples were pooled, 

concentrated using SpeedVac™ and eluted in 40μl ultrapure water. Pool concentration was 

estimated with quantitative PCR (qPCR) checking different dilutions using a KAPA Biosystems kit. 

In the last step a new pool was made adjusting the concentration and amount of samples. This 

library was sequenced in a single lane at The Center for Applied Genomics, Hospital for Sick 
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Childern, Canada, with Illumina sequencing technology on a Hiseq 2000 system generating single-

end sequences with 101 base pairs. 

 

Bioinformatics 

 The sequence reads in fastq format were previously separate by index identification. We 

used ten different indexes (P2) which means that our files had three samples each, identify by 

barcodes at the P1 adapter. To pass samples into individuals files demultiplex was necessary, which 

was done with the program process_radtags provided with software STACKS (Catchen et al. 2011, 

2013). Process_radtags also allows setting some parameters that we used to drop low quality scores 

reads and rescue barcodes and RAD-tags (catalog loci in STACKS). Individual samples were 

checked with FastQC tool, design for high throughput sequence data, which assess the overall 

quality and quantity of data per sample. Based on this evaluation two samples which did not have 

good sequencing results were discarded. 

The remaining samples were aligned to masked Minke Whale (B. acutorostrata) genome in 

Bowtie2 (Langmead and Salzberg 2012). For this step, we used the masked genome in order to 

avoid repetitive regions. After, we used STACKS software that provided some pipes options to 

analyze and filter reads. We used four of these, pstacks, cstacks, sstacks and populations 

respectively. On cstacks we set the parameter of mismatches allowed between sample tags (n=3) 

and in pstacks two parameters were set, minimum coverage (m=35) and SNP (single nucleotide 

polymorphism) calling model with upper bound for epsilon 0.05. At the end of these steps we use 

the VCFtools software (Danecek et al. 2011) with a vcf output format from populations pipe to 

check the generated catalog. Thus we saw that were three samples with much less data than others, 

so these samples were discarded and we repeated the analysis from the first STACKS pipe with the 

remaining 25 samples. The last pipe, populations, output the filtered results with different formats 

and options that were set according to the following analyses. 
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Fasta_strict and vcf outputs of STACKS were used to check the amount of loci and SNPs 

obtained after filter the data. Bedtools software (Quinlan et al. 2010) and vcfR (Knaus and 

Grünwald 2016) package for R were used to check the range coverage through samples and loci, 

and the SNP distribution.  

 

Demographic history 

ADMIXTURE 1.3 (Alexander et al. 2009) with default parameters and the final set of 

polymorphic loci was used to test a possible population structure in our sample. 

 A custom python script (available at https://github.com/mgharvey/misc_python) was 

used to convert the fasta_strict format output from populations, into individual locus fasta files. For 

our first analysis, we selected only loci that are present in at least 70% of the individuals. Bayesian 

approach were employed with Migrate-n v.3.6.11 (Beerli, 2006) to estimate the theta parameter 

(4Neμ, μ is the mutation rate per generation) and the demographic history. The prior of the theta 

parameter was set to an exponential distribution with mean 0.005, minimum of 0 and maximum 0.1, 

after some tests runs. The final run of a single long chain, with 10,000 recorded steps saved every 

25 steps and the 20,000 samples discarded as burn-in. We also used the skyline plot approach in 

migrate-n to estimate the demographic history of the populations. To estimate the absolute Ne 

values from the theta values we have to use a mutation rate. Previous studies based on intron 

sequences suggested the mutation rate for humpback whales is μ = 4.4 x 10
-10

 (95% CI: 3.66 x 10
-10

 

- 5.29 x 10
-10

) per site per year (Jackson et al. 2009; Ruegg et al. 2013). We used a generation time 

of 18 (Chittleborough 1965, Roman and Palumbi 2003). We converted the Ne estimates to census 

size (Nc) by multiplying the former by 3.6, which has been used in previous studies (Roman and 

Palumbi 2003; Alter et al. 2007, 2012; Ruegg et al. 2010, 2013). 

To test different scenarios for the recent demographic history of Brazilian humpback whale 

related to the whaling period we used the Approximate Bayesian Computation (ABC) approach 



18 
 

(Beaumont et al. 2002). As this is a computationally intensive method, to reduce the number of loci 

we increased the percentage of loci that must be present per individual to 85%. We also maintained 

only the polymorphic loci. Summary statistics were calculated using the msABC program (Pavlidis 

2010), and the conversion of individual locus fasta files to the msABC input was made with 

fas2ms.pl script provided.  We tested four demographic scenarios for the whaling period (Figure 1, 

Table 1). The first one is a constant population scenario (no size change), scenario 2 is a population 

that has been expanding since the last 2-10 generations, scenario 3 is a population that has been 

reducing since the last 2-10 generations and scenario 4 consisted of a population that has suffered a 

bottleneck between 2 and 10 generations and has been expanding ever since. The ranges of the 

priors were based on available information about commercial whaling (see introduction) and results 

of test runs (10,000 simulations) with different ranges. The prior parameters were random variables 

drawn from uniform distributions. Final results were based on 10
6
 simulations for each scenario. 

We used the  mutation rate and generation times as described above. 

Principal components analysis (PCA) was used to verify the summary statistics prior 

distribution using randomly taken 10
4 

summary statistics simulations of each scenario. We used the 

prcomp function in R 3.3.1 (R Core Team 2016) and the scatterplot generated by the ggbiplot R 

package (available at https://github.com/vqv/ggbiplot) to visualize the differences between 

scenarios and to compare them with the observed summary statistics. Posterior probability was 

calculated for each scenario using the abc R package (Csilléry et al. 2012) in using two selection 

methods with four threshold tolerance values (10%, 5%, 1% and 0.1%). Cross validation for ABC 

was performed with the same package to evaluate the effect of the different tolerance rates on the 

quality of the estimations and choose the more adequate. The selection methods were the 

multinomial logistic regression method (‘mnlogistic’) and the neural network approach 

(‘neuralnet’). Posterior parameters were calculated for the model with the highest posterior 

probability using ‘abc’ function of the abc R package. Based on ‘neuralnet’ method we did post 
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rejection adjustments and we also did logit transformations within the prior parameter values (Blum 

and François 2010).  

 

Results 

 

Sequencing and Alignment 

The individualization of samples and removal of barcodes with process_radtags pipe at 

STACKS resulted in a total of 76,717,317 reads with 95pb, ranging between 373,541 and 

15,680,891 reads per sample. The two samples that did not have good sequencing results, with 

373,541 and 522,070 reads, were removed, resulting in a minimum of 798,065 reads per sample and 

a total of 75,821,706 reads (Supplementary Table S1). Of these, an average of 15.18% did not align 

to Minke masked genome,  72.35% aligned exactly 1 time and 12.45% aligned more than once, 

resulting in an overall alignment rate of 84.81%. 

Catalog and SNP-callig 

An initial catalog in STACKS was generated with the aligned reads of the 28 samples, but 

three samples presented too much missing data (> 30%) and, therefore, they were discarded and a 

new catalog were generated with the remaining twenty-five samples. We obtained 5,145 loci 

through these samples based on minke whale reference genome, and a total of 2,249 SNPs in our M. 

novaeangliae sample. The average read coverage of the loci was of 107.78 reads (Figure 2) and the 

SNPs frequency on these ranged from 1 to 11 (Supplementary Figure S1). The SNPs coverage was 

similar through the samples ranging from 23 to 234  except for one sample that had a upper range 

coverage from  344 to 571 (Figure 3).  
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Demographic history 

 ADMIXTURE software results showed no indication of population structure, since cross-

Validation error indicates K values minimum and maximum of 0.6 and 1.2 respectively (Figure 4).  

We used migrate-n with the final set of 5,145 loci to estimate the current nucleotide 

diversity (theta parameter). Migrate-n estimate of theta per site was 0.00237 (95% CI = 0.00067 – 

0.004), which translated to a long-term effective population size (Ne) of ~75,000 (CI = 21,000-

126,000) and a census population size (Nc) point estimate as high as ~270,000 (CI=76,000-

450,000). The skyline method suggests the population size was much higher (by more than an order 

of magnitude) in the distant past, pointing for a long-term size decline for hundreds of thousands of 

years (Figure 5).  

For the ABC approach, we selected a reduced set of loci consisting of polymorphic loci 

presented in at least 85% of the individuals, which resulted in 984 loci with a total of 1,187 SNPs. 

The theta per site for this dataset was 0.00282. In our posterior probability analyses (Figure 6) the 

tolerance values lower than 1% was not supported for any of the two selection method tested. 

According to the cross validation test that evaluate the effect of the different tolerance values on 

estimation quality, the three used here (1%, 5%, 10%) have equal effect. The most supported 

scenario seems the constant population although the recent expansion is also supported in some 

situations (see Figure 6). However, the value estimated in the recent expansion scenario for the ratio 

between the present and ancestral populations converge to one, converging the expansion scenario 

in the constant size scenario (see supplementary figures 2 and 3), suggesting the constant population 

size scenario as the most supported by this data set. The posterior distribution of the Ne on the 

constant size scenario, using ‘neuralnet’ method with tolerance of 5%, resulted a mean 124,002 

(95% CI = 115,765 – 131,556 individuals) (Supplementary Figure 3).  

 

 



21 
 

Discussion 

 

In this study, we used the RADseq approach to sequence thousands of loci on 25 biopsies 

of the Southwestern Atlantic humpback whales, corroborating other studies that applied similar 

approaches in non-model species (e.g. Garvin et al. 2010, Maughan et al. 2009).  

Here we did not find evidence of any substructure within this population, corroborating 

previous studies (Cypriano-Souza et al. 2010; in press), suggesting that this high diversity is not 

caused by substructure or any significant gene flow in recent times. Our data set showed a high 

nuclear diversity for this humpback population agreeing with other studies with other markers in the 

same population (Cypriano-Souza et al. 2010), and other southern humpback stocks (e.g.  Garrigue 

et al. 2004, Olavarria et al. 2007, Pomilla and Rosenbaum 2006, Rosenbaum et al. 2009, Valsecchi 

et al. 2002). Although there is no similar study (RADseq) to compare our results, the nucleotide 

diversity per site (theta) of ~0.237% is higher than theta found in the genome of a fin whale (0.15%) 

and three minke whales (0.06%) (Yim et al.  2014). However, this value is comparable with our 

previous study that sequenced 39 introns in the same population that found a theta of 0.13% 

(Cypriano-Souza et al 2014). The nucleotide diversity from the RADseq results is higher than that 

found with intron sequences since likely intron regions have lower substitution rates than RAD loci 

that are mostly located on non-functional intergenic regions (not shown).  

The theta estimated with 5,145 loci with migrate-n translates, using Ruegg et al. (2013) 

mutation rate, to a point estimate of the effective population size of ~75,000 and an Nc ~270,000. 

However, as pointed above it is likely that our RAD loci may have a higher mutation rate than the 

loci used by Ruegg et al. (2013): comparing the nucleotide diversity of the two sets of markers in 

the same population suggests our RAD loci mutation rate may be ~1.8 times higher than the intron 

rate used before. Using this rate adjustment, BSA Ne point estimate would be around ~40,000 and 

the Nc ~140,000 (CI = ~41,000 - 250,000). In addition, the Ne estimated using the ABC approach 

with the stationary scenario using the intron mutation rate was ~124,000. However, if we adjust the 
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mutation rate the same way we did above (by the rate between the theta estimated from the intron 

and the RAD loci used in the ABC analyses) the posterior distribution for the Ne of the BSA 

population is now 57,000 (CI = ~53,000 – 60,000) with a respective Nc around 200,000.  

The above estimates of humpback whale abundance, in special the estimated using the 

5,145 loci, are very similar to our previous estimate for this population (Cypriano-Souza2013). 

Previous genetic estimates of abundance of other breeding stocks of the humpback whale were also 

in general very high. For example, point estimates for the North Atlantic populations based on 

mtDNA suggested between ~250,000 and ~150,000 individuals (Roman and Palumbi 2003; Alter 

and Palumbi 2009) and for the nuclear intron data set ~110,000 individuals (Ruegg et al. 2013). 

Besides, previous estimates suggested that humpback whale abundance is higher in the Southern 

Hemisphere than in the Northern (e.g. Ruegg et al. 2013; Cypriano-Souza 2013). Finally, genetic 

abundance point estimates of other baleen whales based on nuclear introns also found very high 

number, such as ~100,000 for North Pacific Ocean gray whales (Alter et al. 2012) and as high as a 

670,000 for the smaller size Antarctic minke whale (Ruegg et al. 2010).  

However, although we did not find evidence of population substructure in our sample, we 

could not discard the effect of past gene flow of BSA with other breeding stocks, which would have 

increased its long-term genetic diversity. Actually, previous studies based on mtDNA shown that 

several Southern Hemisphere stocks, although retaining their identity, present low to very low 

genetic differentiation with evidence of limited gene flow, in especially from South Atlantic and 

Indian Ocean (Rosenbaum et al. 2009; Rosenbaum et al. in press). In addition, the skyline plot 

result suggest an increasing population size for hundreds of thousands of years in the past (Fig. 5), 

that most likely extend to before the divergence of most Southern Hemisphere breeding stocks or 

even before the diversification of most humpback whale lineages (Jackson et al. 2009). Considering 

these evidences, it is likely that most of the increased population size in the distant past observed 

here represents the size of a metapopulation over the whole Southern Hemisphere or even the whole 
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species. However, this hypothesis should be tested with the addition of other populations and 

appropriate demographic scenarios. 

Concerning the intense anthropogenic population bottleneck during the industrial whaling 

period, we could not detect any significant evidence of a genetic bottleneck using our data with the 

ABC approach (Figure 6). The intensity of the bottleneck (and therefore the likelihood to leave a 

significant signal) is a product of the number of generations and the absolute population size during 

the bottleneck (Amos 1996; Frankham et al. 2002). Given its large generation time and longevity, 

that the period of very reduced population size last at most only a few generation and the minimum 

size was around 500 individuals, it is not unexpected the absence of significant signal of an 

anthropogenic bottleneck. This is in agreement with previous studies on this population with 

mtDNA and microsatellite data (Cypriano-Souza et al. 2010, in preparation, Engel et al. 2008). On 

the other hand, Alter et al. 2012 in their study using mitochondrial control region sequences and an 

ABC approach detected a recent bottleneck (approximately 6 generations) in eastern Pacific gray 

whales. Although this species have similar generation time than the humpback whale they included 

ancient samples from pre-commercial whaling in the analyses that may have allowed them to detect 

this significant signal. 
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Figure 1. Demographic scenarios tested with the ABC approach: (1) constant population, (2) 

expanding population, (3) shrinking population and (4) bottleneck followed by expanding 

population. Parameters: effective size (Ne), ancestral size (Na), bottleneck size (Nb), time (t, t1, t2). 

Prior parameter distribution was in table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Sequencing coverage for each ddRAD loci. Coverage over 300 (1.38% of data) not appear 

on graphic to better visualization.  
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 Figure 3. SNP coverage per sample. 

 

Figure 4. K values for Cross-Validation Error in Admixture software.  
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Figure 5. Skyline plot depicting the effective population size fluctuation over time estimated with 

migrate-n with 5145 loci. Blue solid line represents the median estimates and the yellow area 

denotes the 95% highest posterior densities (HPDs) for the estimates. Both axis are in the log scale. 
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Figure 6. Posterior probabilities for the four scenarios in Multinomial logistic regression and Neural 

networks approaches with three threshold values. 
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Table 1. Priors for the parameters of the demographic scenarios (Fig. 1) used in msABC.  Effective 

sizes (Ne) are in number of diploid individuals, ancestral size (Na) and bottleneck size (Nb) are 

proportions of the Ne. Times (t, t1 and t2) are in number of generations (generation time of 18 

years). All used the uniform distribution. 

 

Scenario parameter Minimum Maximum 

Scenario 1 - constant 
  

Ne 80000 200000 

Scenario 2 - expansion 
  

Ne 80000 200000 

Na 0.01 1 

t 2 10 

Scenario 3 - shrink 
  

Ne 80000 200000 

Na 2 10 

t 2 10 

Scenario 4 - bottleneck 
  

Ne 80000 200000 

Nb 0.05 0.2 

Na 2 10 

t1 2 10 

t2 t1+1 11 
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Figure Supplementary S1. SNPs frequency per loci. A total of 3,456 loci have no SNPs. 

 



 

  

Figure Supplementary S2. Result of estimations for prior parameters: (1) Growth rate, (2) Change of the 

growth rate in the past, (3) Effective size, (4) Time the population start to expand and (5) Size ratio in relation 

to present size. Rates are given by N(t) = N0 exp 
–αt

, t is time before the present and N0 is present population 

size. All times are measures in units of 4N0 generation. 
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Figure Supplementary S3. Result of estimations for prior parameter Ne (current effective size) to 

constant population scenario using ‘neuralnet’ method with tolerance of 0.05 (5%). 
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Supplementary Table S1. Number of sequenced, discarded (not aligned) and retained reads after filtering by proccess_radtags.pl. 

 

 

 

 

 Meg_01 % Meg_02 % Meg_03 % Meg_04 % Meg_05 % Meg_06 % Meg_07 % 

Total 
Reads 

2093924  2684033  1385448  1386188  2161040  2229732  2586464  

Not 
Aligned 

344199 16.44% 431364 16.07% 238075 17.18% 236008 17.03% 339997 15.73% 325213 14.59% 420250 16.25% 

Aligned  
1 Time 

1506423 71.94% 1901604 70.85% 977892 70.58% 992482 71.60% 1564402 72.39% 1627099 72.97% 1847416 71.43% 

Aligned 
> 1 Time 

243302 11.62% 351065 13.08% 169481 12.23% 157698 11.38% 256641 11.88% 277420 12.44% 318798 12.33% 

Retained 
Reads 

1749725 83.56% 2252669 83.93% 1147373 82.82% 1150180 82.97% 1821043 84.27% 1904519 85.41% 2166214 83.75% 

 Meg_08 % Meg_09 % Meg_10 % Meg_11 % Meg_12 % Meg_13 % Meg_14 % 

Total 
Reads 

1178420  1856265  2649605  1199843  2395243  1294876  798065  

Not 
Aligned 

391967 33.26% 289208 15.58% 438528 16.55% 173198 14.44% 394145 16.46% 185392 14.32% 124477 15.60% 

Aligned  
1 Time 

671454 56.98% 1346585 72.54% 1891183 71.38% 882943 73.59% 1661585 69.37% 945723 73.04% 574473 71.98% 

Aligned 
> 1 Time 

114999 9.76% 220472 11.88% 319894 12.07% 143702 11.98% 339513 14.17% 163761 12.65% 99115 12.42% 

Retaine
d Reads 

786453 66.74% 1567057 84.42% 2211077 83.45% 1026645 85.56% 2001098 83.54% 1109484 85.68% 673588 84.40% 
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Cont. Supplementary Table S1. 

 

 

 

 

 Meg_15 % Meg_16 % Meg_17 % Meg_18 % Meg_19 % Meg_20 % Meg_21 % 

Total 
Reads 

5503950  7275458  4401163  15680891  5342512  2312942  2973542  

Not 
Aligned 

903280 16.41% 1149023 15.79% 628927 14.29% 1952679 12.45% 789481 14.78% 310267 13.41% 402509 13.54% 

Aligned  
1 Time 

3938897 71.56% 5168756 71.04% 3125697 71.02% 11900195 75.89% 3884300 72.71% 1729356 74.77% 2178572 73.27% 

Aligned 
> 1 Time 

661773 12.02% 957679 13.16% 646539 14.69% 1828017 11.66% 668731 12.52% 273319 11.82% 392461 13.20% 

Retained 
Reads 

4600670 83.59% 6126435 84.21% 3772236 85.71% 13728212 87.55% 4553031 85.22% 2002675 86.59% 2571033 86.46% 

 Meg_22 % Meg_23 % Meg_24 % Meg_25 % Meg_26 % Meg_27 % Meg_28 % 

Total 
Reads 

1271512  1517861  2896955  2659506  2311585  3236693  3166986  

Not 
Aligned 

196058 15.42% 257943 16.99% 486984 16.81%  440800 16.57% 316910 13.71% 463309 14.31% 498430 15.74% 

Aligned  
1 Time 

924573 72.71% 1067744 70.35% 2051671 70.82% 1852631 69.66% 1692676 73.23% 2362405 72.99% 2283668 72.11% 

Aligned 
> 1 Time 

150881 11.87% 192174 12.66% 358300 12.37%  366075 13.76% 301999 13.06% 410979 12.70% 384888 12.15% 

Retained 
Reads 

1075454 84.58% 1259918 83.01% 2409971 83.19% 2218706 83.43% 1994675 86.29% 2773384 85.69% 2668556 84.26% 
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