PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ADMINISTRAÇÃO, CONTABILIDADE E ECONOMIA PROGRAMA DE PÓS-GRADUAÇÃO EM ECONOMIA

ALEXANDRE RODRIGUES LOURES

EFICIÊNCIA ECONÔMICA DA AGROPECUÁRIA NOS MUNICÍPIOS MINEIROS, 1996 E 2006, MEDIDA PELA ANÁLISE DA FRONTEIRA ESTOCÁSTICA (SFA) E PELA ANÁLISE ENVOLTÓRIA DE DADOS (DEA)

ALEXANDRE RODRIGUES LOURES

EFICIÊNCIA ECONÔMICA DA AGROPECUÁRIA NOS MUNICÍPIOS MINEIROS, 1996 E 2006, MEDIDA PELA ANÁLISE DA FRONTEIRA ESTOCÁSTICA (SFA) E PELA ANÁLISE ENVOLTÓRIA DE DADOS (DEA)

Dissertação apresentada como requisito para a obtenção do grau de Mestre pelo Programa de Pós-Graduação da Faculdade de Administração, Contabilidade e Economia da Pontifícia Universidade Católica do Rio Grande do Sul.

Orientador: Prof. Dr. Gustavo Inácio de Moraes

Dados Internacionais de Catalogação na Publicação (CIP)

L892e Loures, Alexandre Rodrigues.

Eficiência econômica da agropecuária nos municípios mineiros, 1996 e 2006, medida pela análise da fronteira estocástica (SFA) e pela análise envoltória de dados (DEA). / Alexandre Rodrigues Loures. — Porto Alegre, 2012.

217 f.; il

Dissertação (Mestrado) Programa de Pós-Graduação em Economia – Faculdade de Administração, Contabilidade e Economia, PUCRS.

Orientador: Prof. Dr. Gustavo Inácio de Moraes

1. Economia. 2. Desenvolvimento Econômico – Minas Gerais. 3. Agropecuária – Minas Gerais – Produção. 4. Análise Envoltória de Dados. 5. Análise da Fronteira Estocástica. I. Moraes, Gustavo Inácio de. II. Título.

CDD 338.1098151

Bibliotecária Responsável: Anamaria Ferreira CRB 10/1494

Alexandre Rodrigues Loures

"Eficiência Econômica da Agropecuária nos Municípios Mineiros, 1996 e 2006, Medida Pela Análise da Fronteira Estocástica (Sfa) e Pela Análise Envoltória de Dados (Dea) "

Dissertação apresentada como requisito parcial para a obtenção do grau de Mestre em Economia do Desenvolvimento, pelo Programa de Pós—Graduação em Economia, da Faculdade de Administração, Contabilidade e Economia, da Pontifícia Universidade Católica do Rio Grande do Sul.

Aprovado em 27 de fevereiro de 2013.

BANCA EXAMINADORA:

Prof. Dr. Gustavo Inácio de Moraes

Presidente da Sessão

Prof. Dr. Valter José Stülp

Prof. Dr. Paulo de Andrade Jacinto

Prof. Dr. Hudson Torrent

Hudson Forsen

Porto Alegre 2013

Dedico esta dissertação ao meu pai Newton Costa Loures, *in memoriam*, à minha mãe Ireny Maria Rodrigues Loures, à minha esposa Sabrina Galli da Costa Loures e à minha filha Maria Carolina da Costa Loures que tanto apoiam e incentivam o meu crescimento profissional.

AGRADECIMENTOS

À Deus, pela concretização de mais esta etapa e por tudo que sempre me concedeu.

A minha querida esposa Sabrina Galli da Costa Loures e a minha querida filha Maria Carolina da Costa Loures por entenderem as minhas ausências, pelo apoio, companheirismo e estímulo nos momentos de desânimo.

Aos meus familiares, em especial minha mãe Ireny Maria Rodrigues Loures, meu irmão, minha irmã, cunhado, cunhada e sobrinhos, por aguentarem meu *stress* durante estes dois anos.

À Pontifícia Universidade Católica do Rio Grande do Sul pela excelência na qualidade do ensino.

Ao Professor Gustavo Inácio de Moraes por confiar e apoiar o desenvolvimento deste trabalho.

A todos os professores do Programa de Pós-Graduação em Economia do Desenvolvimento pelos valiosos e sábios ensinamentos.

Aos professores Ívis Bento de Lima e Luiz Eduardo de Vasconcelos Rocha, da Universidade Federal de São João del-Rei, pelo incentivo e apoio nesta jornada.

Às amigas e aos amigos Alessandra Chung, Diego Raoni Almeida Paiva, Douglas Mesquita Carneiro, Guilherme de Oliveira, Izabelita Oliveira Barboza, Kayline da Silva Gomes Moreira, Laura Desirée Silva Vernier, Lilian das Graças Ramos, Silvana Longo Moraes, Viviane Freitas Santos e Wilibaldo Josué Gruner Scherer pela agradável convivência no dia a dia dos estudos.

Aos colegas do curso de Economia do Desenvolvimento da PUCRS pela convivência e estímulo.

A todas as pessoas que colaboraram direta e indiretamente para a realização deste trabalho.

Quase todos os homens são capazes de suportar adversidades, mas se quiser por à prova o caráter de um homem, dê-lhe poder. Abraham Lincoln.

RESUMO

O presente trabalho analisa o nível de eficiência econômica dos produtores rurais de Minas Gerais, a nível municipal, nos anos de 1996 e 2006. Esse intervalo temporal caracteriza-se por um incremento tecnológico seja através de novos equipamentos agrícolas ou por pesquisas que desenvolveram espécies de plantas mais adaptadas às características físicas-químicas das regiões. Os métodos utilizados foram a Análise Envoltória de Dados (DEA) e a Análise da Fronteira Estocástica (SFA), considerando-se 750 municípios para 1996 e 842 para 2006. Para o método não-paramétrico considerou-se uma tecnologia com Retornos Constantes de Escala enquanto para o paramétrico admitiu-se as distribuições do erro assimétrico meia-normal e normal-truncada. Após essa estimação utilizou-se de um modelo de regressão censurada (TOBIT) para tentar identificar quais variáveis minimizaram os escores de eficiência. Nota-se que a grande maioria dos municípios, em ambas as metodologias, obteve um índice de eficiência maior que 0,50 e menor ou igual a 0,70. Somente para a fronteira estocástica 2006, sob o pressuposto de uma distribuição meianormal, o nível de eficiência no qual se concentrou a maioria dos municípios ficou abaixo de 0,50. No modelo não-paramétrico dois municípios alcançaram a eficiência máxima enquanto para a fronteira de produção estocástica nenhum município foi classificado como economicamente eficiente. Com relação aos condicionantes dos escores, percebe-se que todas as vezes em que as variáveis adubos e corretivos do solo e média dos anos de estudo foram estatisticamente significantes essas melhoraram o nível de eficiência, por sua vez, técnica de irrigação e lavouras em descanso eram inversamente proporcionais a variável explicada, logo, minimizaram a eficiência econômica. Os resultados encontrados neste trabalho indicam haver a necessidade de uma política de fomento que oriente, capacite, e estimule a adoção de novas técnicas pelos produtores, melhorando assim o nível de eficiência.

Palavras-chave: Agropecuária, Análise Envoltória de Dados – DEA, Análise da Fronteira Estocástica – SFA, modelo Tobit, Minas Gerais.

ABSTRACT

This dissertation evaluates economic efficiency level of Minas Gerais's farmers, at municipalities, in 1996 and 2006. This period is characterized for an increase technology through new equipment and agricultural research, by plant species in connection with physical chemical properties, as well. The methodologies were applied Data Envelopment Analysis – DEA and Stochastic Frontier Analysis – SFA, in 750 municipalities and 842 municipalities, for 1996 and 2006, separately. For the non-parametric method a Scale Constant Returns technology was useful, despite in the parametric technology a half-normal asymmetric and truncated distributions were adopted. In connection with our results, a censored regression, Tobit methodology, was functional for identifying variables that explain efficiency ranks across municipalities. The major part of municipalities, in both measures, develops an efficiency level between 0.50 and 0.70, in a scale until 1.0. Only in half-normal error distributuion in SFA, for the 2006 year, the efficiency level was worst and observation distribution was below 0.50. In the SFA analysis any municipality was totally efficient despite two municipalities in DEA analysis becomes totally efficient. In relationship with efficiency level, a Tobit exercise demonstrates that fertilizers, soils chemicals and average of study yeares are statistically significant and, in consequence, contributes to better efficiency levels. In oppose indication, irrigation and soil rotation were variables that produces worst results for efficiencies levels. The results indicates the obligation to have a private and public policies, that encourage the adoption of new techniques by farmers, that would be resulting in improvement of efficiency levels.

Keywords: Agricultural, Data Envelopment Analysis – DEA, Stochastic Frontier Analysis – SFA, Tobit model, Minas Gerais state.

LISTA DE ILUSTRAÇÕES

Figura 1 - Mesorregiões geográficas mineiras	23
Figura 2 – Balanço hídrico Triângulo Mineiro/Alto Paranaíba	28
Figura 3 – Extrato da mesorregião Sul/Sudoeste de Minas	30
Figura 4 – Balanço hídrico normal mensal Noroeste de Minas	33
Figura 5 – Extrato do balanço hídrico mensal para o Norte de Minas	36
Figura 6 – Extrato do balanço hídrico da mesorregião Vale do Rio Doce	39
Figura 7 – Balanço hídrico normal da Metropolitana de Belo Horizonte	42
Figura 8 – Extrato do balanço hídrico da Metropolitana de Belo Horizonte	42
Figura 9 – Balanço hídrico normal mensal Campo das Vertentes	47
Figura 10 – Conjunto de possibilidades de produção e fronteira de produção $y = f(x)$	55
Figura 11 - Eficiências técnica e alocativa	56
Figura 12 – Medida de eficiência e folga de insumos	73
Figura 13 - Eficiência técnica e eficiência de escala	75
Gráfico 1 – Participação por atividade no total estadual	29

LISTA DE TABELAS

Tabela 1 – Produto Interno Bruto (PIB) agropecuário mineiro e nacional (R\$ mil)	21
Tabela 2 – Receita monetária agropecuária do Noroeste de Minas (R\$ 1.000,00)	32
Tabela 3 – Intensidade tecnológica das mesorregiões mineiras	51
Tabela 4 – Estatísticas descritivas para as eficiências econômicas (1996)	84
Tabela 5 – Percentis para as eficiências econômicas (1996)	85
Tabela 6 – Intervalo de classe para as eficiências econômicas (1996)	85
Tabela 7 – Teste de normalidade para as distribuições das eficiências econômicas (1996)	86
Tabela 8 – Estatísticas descritivas para as eficiências econômicas (2006)	86
Tabela 9 – Percentis para as eficiências econômicas (2006)	87
Tabela 10 – Intervalo de classe para as eficiências econômicas (2006)	87
Tabela 11 – Teste de normalidade para as distribuições das eficiências econômicas (2006)	88
Tabela 12 – Estatísticas descritivas para as eficiências econômicas (1996)	89
Tabela 13 – Percentis para as eficiências econômicas (1996)	89
Tabela 14 – Intervalo de classe para as eficiências econômicas (1996)	89
Tabela 15 – Teste de normalidade para as distribuições das eficiências econômicas (1996)	90
Tabela 16 – Estatísticas descritivas para as eficiências econômicas (2006)	90
Tabela 17 – Percentis para as eficiências econômicas (2006)	91
Tabela 18 – Intervalo de classe para as eficiências econômicas (2006)	91
Tabela 19 – Teste de normalidade para as distribuições das eficiências econômicas (2006)	92
Tabela 20 – Intervalo de classes para as eficiências econômicas – DEA (1996)	93
Tabela 21 – Intervalo de classes para as eficiências econômicas – DEA (2006)	94
Tabela 22 – Intervalo de classes para as eficiências econômicas – SFA (1996)	94
Tabela 23 – Intervalo de classes para as eficiências econômicas – SFA (1996)	95
Tabela 24 – Intervalo de classes para as eficiências econômicas – SFA (2006)	96
Tabela 25 – Intervalo de classes para as eficiências econômicas – SFA (2006)	96
Tabela 26 – Condicionantes da eficiência econômica (Modelo Tobit)	97
Tabela 27 – Condicionantes da eficiência econômica (Modelo Tobit)	98
Tabela 28 – Condicionantes da eficiência econômica (Modelo Tobit)	98
Tabela 29 – Eficiências da mesorregião Triângulo Mineiro/Alto Paranaíba – DEA (1996)	110
Tabela 30 – Eficiências da mesorregião Triângulo Mineiro/Alto Paranaíba – SFA (1996)	112
Tabela 31 – Eficiências da mesorregião Sul/Sudoeste de Minas – DEA (1996)	114

Tabela 32 – Eficiências da mesorregião Sul/Sudoeste de Minas – SFA (1996)	118
Tabela 33 – Eficiências da mesorregião Noroeste de Minas – DEA (1996)	122
Tabela 34 – Eficiências da mesorregião Noroeste de Minas – SFA (1996)	123
Tabela 35 – Eficiências da mesorregião Zona da Mata – DEA (1996)	124
Tabela 36 – Eficiências da mesorregião Zona da Mata – SFA (1996)	128
Tabela 37 – Eficiências da mesorregião Norte de Minas – DEA (1996)	132
Tabela 38 – Eficiências da mesorregião Norte de Minas – SFA (1996)	134
Tabela 39 – Eficiências da mesorregião Oeste de Minas – DEA (1996)	136
Tabela 40 – Eficiências da mesorregião Oeste de Minas – SFA (1996)	138
Tabela 41 – Eficiências da mesorregião Vale do Rio Doce – DEA (1996)	140
Tabela 42 – Eficiências da mesorregião Vale do Rio Doce – SFA (1996)	143
Tabela 43 – Eficiências da mesorregião Metropolitana de Belo Horizonte – DEA (1996)	146
Tabela 44 – Eficiências da mesorregião Metropolitana de Belo Horizonte – SFA (1996)	149
Tabela 45 – Eficiências da mesorregião Central Mineira – DEA (1996)	152
Tabela 46 – Eficiências da mesorregião Central Mineira – SFA (1996)	153
Tabela 47 – Eficiências da mesorregião Campo das Vertentes – SFA (1996)	154
Tabela 48 – Eficiências da mesorregião Campo das Vertentes – SFA (1996)	156
Tabela 49 – Eficiências da mesorregião Jequitinhonha – DEA (1996)	158
Tabela 50 – Eficiências da mesorregião Jequitinhonha – SFA (1996)	160
Tabela 51 – Eficiências da mesorregião Vale do Mucuri – DEA (1996)	162
Tabela 52 – Eficiências da mesorregião Vale do Mucuri – SFA (1996)	163
Tabela 53 – Eficiências da mesorregião Triângulo Mineiro/Alto Paranaíba – DEA (2006)	164
Tabela 54 – Eficiências da mesorregião Triângulo Mineiro/Alto Paranaíba – SFA (2006)	166
Tabela 55 – Eficiências da mesorregião Sul/Sudoeste de Minas – DEA (2006)	168
Tabela 56 – Eficiências da mesorregião Sul/Sudoeste de Minas – SFA (2006)	172
Tabela 57 – Eficiências da mesorregião Noroeste de Minas – DEA (2006)	176
Tabela 58 – Eficiências da mesorregião Noroeste de Minas – SFA (2006)	177
Tabela 59 – Eficiências da mesorregião Zona da Mata – DEA (2006)	178
Tabela 60 – Eficiências da mesorregião Zona da Mata – SFA (2006)	182
Tabela 61 – Eficiências da mesorregião Norte de Minas – DEA (2006)	186
Tabela 62 – Eficiências da mesorregião Norte de Minas – SFA (2006)	189
Tabela 63 – Eficiências da mesorregião Oeste de Minas – DEA (2006)	192
Tabela 64 – Eficiências da mesorregião Oeste de Minas – SFA (2006)	194
Tabela 65 – Eficiências da mesorregião Vale do Rio Doce – DEA (2006)	196
Tabela 66 – Eficiências da mesorregião Vale do Rio Doce – SFA (2006)	199

Tabela 67 – Eficiências da mesorregião Metropolitana de Belo Horizonte – DEA (2006) 20)2
Tabela 68 – Eficiências da meosrregião Metropolitana de Belo Horizonte – SFA (2006) 20) 5
Tabela 69 – Eficiências da mesorregião Central Mineira – DEA (2006)	38
Tabela 70 – Eficiências da mesorregião Central Mineira – SFA (2006)) 9
Tabela 71 – Eficiências da mesorregião Campo das Vertentes – DEA (2006)	10
Tabela 72 – Eficiências da mesorregião Campo das Vertentes – SFA (2006)	11
Tabela 73 – Eficiências da mesorregião Jequitinhonha – DEA (2006)	13
Tabela 74 – Eficiências da mesorregião Jequitinhonha – SFA (2006)	15
Tabela 75 – Eficiências da mesorregião Vale do Mucuri – DEA (2006)	17
Tabela 76 – Eficiências da mesorregião Vale do Mucuri – SFA (2006)	18

SUMÁRIO

RESUMO	8
ABSTRACT	9
1 INTRODUÇÃO	16
1.1 OBJETIVOS	18
1.1.1 Geral	18
1.1.2 Específico	18
2 CONDICIONANTES REGIONAIS PARA O DESENVOLVIMENTO A	
DE MINAS GERAIS	
2.1 CARACTERIZAÇÃO DO TERRITÓRIO	
2.2 MESORREGIÕES E SUAS CARACTERÍSTICAS	
2.2.1 Triângulo Mineiro/Alto Paranaíba	
2.2.2 Sul/Sudoeste de Minas	
2.2.3 Noroeste de Minas	
2.2.4 Zona da Mata	
2.2.5 Norte de Minas	
2.2.6 Oeste de Minas	
2.2.7 Vale do Rio Doce	
2.2.8 Metropolitana de Belo Horizonte	
2.2.9 Central Mineira	
2.2.10 Campo das Vertentes	
2.2.11 Jequitinhonha	
2.2.12 Vale do Mucuri	
3 REVISÃO BIBLIOGRÁFICA	
3.1 CONCEITOS DE EFICIÊNCIA	
3.2 MODELOS DE FRONTEIRA DE PRODUÇÃO ESTOCÁSTICA	
3.2.1 Distribuição Meia-normal	
3.2.2 Distribuição Exponencial	
3.2.3 Distribuição Normal-truncada	
3.2.4 Distribuição Normal-gama	
3.3 MODELOS DE FRONTEIRA DE PRODUÇÃO DETERMINÍSTICA	
3.3.1 Modelos com Retornos Constantes de Escala	71
3 3 2 Modelos com Retornos Variáveis de Escala	73

3.3.3 Eficiência Econômica e Eficiência Alocativa	77
3.4 MODELO TOBIT	78
4 RESULTADOS	81
4.1 METODOLOGIA	81
4.2 FRONTEIRA DE PRODUÇÃO DETERMINÍSTICA	83
4.2.1 Análise envoltória de dados (DEA) para o ano 1996	84
4.2.3 Análise envoltória de dados (DEA) para o ano de 2006	86
4.3 FRONTEIRA DE PRODUÇÃO ESTOCÁSTICA	88
4.3.1 Análise da fronteira estocástica (SFA) para o ano de 1996	88
4.3.2 Análise da fronteira estocástica (SFA) para o ano 2006	90
4.4 DISCUSSÃO DOS RESULTADOS	92
5 CONCLUSÃO	100
BIBLIOGRAFIA	103
ANEXO	109

1 INTRODUÇÃO

Nos últimos anos, a balança comercial brasileira tem "batido" sucessivos superávits, sendo que a agropecuária é o setor que tem contribuído para esse bom resultado do comércio internacional brasileiro. Com a commodity da soja sendo o carro-chefe desse setor, o complexo dessa oleaginosa avançou muito em anos recentes e atualmente ocupa uma ampla área de cultura no Brasil. Em Minas Gerais, devido às condições de relevo favoráveis a uma intensiva mecanização, as culturas da soja concentram-se na mesorregião do Triângulo Mineiro/Alto Paranaíba cuja área plantada dessa região representou, em 2006, 56,93% de toda a área do estado dedicada à sojicultura (IBGE 2006). Contudo, essa participação tende num futuro próximo a cair uma vez que nas mesorregiões Sul/Sudoeste de Minas, Zona da Mata e Norte de Minas já começaram a surgir as primeiras lavouras dessa cultura. Outro segmento que tem contribuído para que cada vez mais as atividades agrícolas e pecuárias se consolidem como um importante setor da economia nacional são os complexos agroindustriais, mais notoriamente os de suínos e aves, que com os sistemas de integração ou redes tem propiciado o crescimento das áreas rurais. Assim como na sojicultura, as agroindústrias mineiras concentram-se na região Triângulo Mineiro/Alto Paranaíba onde também está a maior produção mineira da pecuária de corte, ambas as atividades tem como objetivo o comércio internacional.

Por sua vez, como atividades voltadas para a demanda interna destaca-se a bovinocultura leiteira que está concentrada na mesorregião Sul/Sudoeste de Minas. Contudo, importante destacar que Minas Gerais é a maior bacia leiteira do Brasil e que essa atividade é praticamente realizada em todas as regiões do estado. Tanto é assim que, numa iniciativa do governo estadual, por meio do Instituto Mineiro de Agropecuária (IMA), em certificar os produtores rurais que produzem o típico queijo artesanal, foi implantado o Programa Queijo Minas Artesanal e que já certificou muitos produtores em diversas regiões (Araxá, Canastra, Cerrado, Serro e Campo das Vertentes). Considerando que as agroindústrias têm como objetivo principal a exportação e, sendo assim, adotam práticas de padronização de produtos e, desse modo, caracteriza-se como sendo um crescimento exógeno. O programa do governo estadual de Minas Gerais se diferencia desse crescimento na medida em que valoriza as habilidades, o conhecimento intrínseco dos indivíduos de uma dada região na produção de um bem, caracterizando como um crescimento endógeno.

Dentre as doze mesorregiões de Minas Gerais, a Zona da Mata é a que possui um dos solos mais favoráveis à agricultura. Porém, com uma formação montanhosa, o relevo dessa

região não favorece a uma mecanização intensiva e por isso mesmo as hortaliças são uma das principais atividades dos agricultores da Zona da Mata. Pois essas lavouras, desde o processo do preparo da terra para plantio até a colheita, demandam equipamentos agrícolas de pequeno e médio porte cuja motorização não supera aos 100 cv. Mas o carro-chefe do setor agropecuário da Zona da Mata, em 2006, foram os cafezais uma vez que esses ocuparam 56,34% de toda a área agrícola da região (IBGE 2006). Por sua vez, diferentemente dessa região, a Norte de Minas caracteriza-se por apresentar tanto um relevo quanto um clima não favorável à agropecuária. Mas que, entretanto, com os novos avanços tecnológicos que têm introduzido plantas mais adaptadas a climas e solos desfavoráveis bem como novas técnicas de conservação das lavouras (por exemplo, irrigação por meio de gotejamento), têm aguçado o tino comercial de alguns agricultores que tem enxergado um potencial de ganho de produção nessa região. Uma vez que o número de dias com a presença da luz solar ser maior, favorecendo o desenvolvimento das lavouras.

Sendo assim, independente do crescimento ser endógeno ou exógeno, o setor agropecuário tem se destacado como uma importante fonte de emprego e renda para a economia de Minas Gerais bem como, a nível nacional, tem contribuído para a entrada de divisas e, consequentemente, para aumentar o nível de reservas internacionais brasileiras e, assim, evitando que o Brasil volte a enfrentar ataques especulativos sobre a depreciação do real. Considerando que, pela teoria econômica, a firma é vista como uma função de produção que objetiva maximizar a utilização dos fatores de produção obtendo assim algum bem ou serviço (Cabral, 2011), logo, conhecer os fatores que têm provocado a ineficiência no setor rural será uma importante contribuição para melhorar o resultado econômico das atividades agropecuárias.

Portanto, torna-se importante analisar, através dos dados que constam nos Censos Agropecuários de 1996 e 2006, do Instituto Brasileiro de Geografia e Estatística (IBGE), as atividades agrícolas e pecuárias determinando assim o nível de eficiência econômica dos produtores rurais. Possibilitando subsidiar tanto políticas públicas bem como programas de fomento ao meio rural que busquem captar recursos para estimular o crescimento e desenvolvimento regional através do setor agropecuário.

1.1 OBJETIVOS

1.1.1 Geral

Avaliar o nível de eficiência econômica da produção agropecuária mineira.

1.1.2 Específico

- a) mensurar a ineficiência técnica e alocativa na agropecuária dos municípios de Minas Gerais a partir da Análise Envoltória de Dados (DEA) e da Análise da Fronteira Estocástica (SFA);
- b) avaliar como a ineficiência técnica e/ou alocativa do setor agropecuário mineiro pode estar influenciando a trajetória do desenvolvimento local desse setor bem como do desenvolvimento regional; e
- c) pesquisar quais fatores socioeconômicos estariam condicionando o nível de eficiência dos agropecuaristas de Minas Gerais.

Para atingir esses objetivos optou-se por dividir o trabalho em cinco capítulos além dessa introdução. No capítulo 2 são apresentadas informações gerais sobre a economia brasileira e mineira bem como sobre as características climáticas e de solos objetivando determinar quais são os condicionantes regionais para o desenvolvimento agrícola de Minas Gerais. No próximo capítulo, realiza-se uma revisão da literatura existente sobre o tema, com especial ênfase no setor agropecuário. No capítulo 4, aborda-se a metodologia e, através de um modelo de regressão censurada, pretende-se identificar quais são os determinantes da ineficiência dos agropecuaristas mineiros. No capítulo 5, apresentam-se os resultados e se faz uma breve discussão confrontando os resultados entre as mesorregiões mineiras objetivando inferir se os condicionantes regionais apresentados no capítulo dois estariam impactando no nível de eficiência. No último capítulo conclui-se o trabalho discutindo os resultados gerais encontrados.

2 CONDICIONANTES REGIONAIS PARA O DESENVOLVIMENTO AGRÍCOLA DE MINAS GERAIS

A proposta desta seção é apresentar informações gerais referentes à economia mineira e brasileira, tais como: valor adicionado por setor, população rural e urbana, renda *per capita*, etc., mas também apresentar tanto as características referentes aos tipos de solos encontrados em Minas Gerais bem como características referentes aos climas de cada uma das mesorregiões mineiras. Pois segundo o Centro Nacional de Pesquisa de Solos (CNPS), da Empresa Brasileira de Pesquisa Agropecuária (Embrapa), a produção agropecuária é uma atividade econômica fortemente dependente do meio físico (solo) quanto do clima e que esse último é um dos fatores que mais influencia na formação do solo, além é claro sobre a própria produção agropecuária. Ou seja, há uma "retroalimentação" do clima sobre o produto final agropecuário, pois além de afetar diretamente as culturas esse também constitui um dos mais importantes fatores de formação do solo.

Esses aspectos (solo e clima) são importantes no processo de produção agropecuário, pois possibilita classificar as terras de acordo com as aptidões dessas para diversos tipos de uso inclusive identificar os diferentes manejos possíveis viabilizando o melhoramento dessas por meio de novas tecnologias. Sendo assim, o objetivo desta seção é demonstrar que apesar de considerar uma única Unidade Federativa do Brasil essa não é homogênea quanto ao solo e clima e por isso mesmo a eficiência econômica dos produtores rurais depende de fatores necessitem de algum tipo de intervenção humana.

2.1 CARACTERIZAÇÃO DO TERRITÓRIO

Minas Gerais possui 586.528,293 mil km² de área, sendo a quarta maior extensão territorial brasileira¹, o que perfaz 58.652.829,3 hectares (ha). Segundo o Perfil do Agronegócio Mineiro, de dezembro de 2011, da Secretaria de Estado de Agricultura, Pecuária e Abastecimento de Minas Gerais – SEAPA/MG: 2,8 milhões de ha (4,8%) são dedicados ao plantio de grãos (algodão, amendoim, arroz, feijão, mamona, milho, soja, sorgo e trigo), 18,0 milhões de ha (30,6%) são utilizados para pastagens (naturais e plantadas), 109 mil ha (0,2%) para cultivo de olerícolas (alho, batata, cebola, tomate e mandioca), 85 mil ha (0,1%) para atividades de fruticultura (abacaxi, banana, coco-da-baía, laranja e uva), 999 mil ha (1,7%) na

¹ Somente menor que os estados do Amazonas, Pará e Mato Grosso, o que faz do estado de Minas Gerais o maior fora da Amazônia Legal.

cultura de café, 831 mil ha (1,4%) na cultura de cana-de-açúcar, 1,5 milhão de ha (2,6%) de florestas plantadas, 19,5 milhões de floresta nativa (33,3%) e de área com outros usos são 14,8 milhões de ha (25,3).

Destaca-se a expressiva participação da pecuária no Estado uma vez que 30,6% do território mineiro são utilizados com pastagens naturais e plantados. Essa diversidade de atividades agrícolas justifica-se devido à extensão do território mineiro, ocasionando uma diferença climática expressiva entre as diversas regiões mineiras e, consequentemente, uma heterogeneidade na produção agrícola. Ou seja, cada região se especializa na produção dos produtos que melhores se adaptam ao clima, solo e recursos econômicos locais. Reproduzindo um padrão nacional, estatísticas de 2005 do Instituto Nacional de Colonização e Reforma Agrária (INCRA) *apud* Perfil do Agronegócio Mineiro (dezembro de 2011) indicam que 13.133 imóveis rurais de Minas Gerais são grande propriedade (área acima de 15 hectares), 60.451 são média propriedade (área acima de 4 e abaixo de 15 hectares), 181.706 são pequena propriedade (área entre 1 e 4 hectares) e 443.871 (abaixo de 1 hectare), ou seja, a maioria, são minifúndios.

O Produto Interno Produto (PIB) do agronegócio mineiro, calculado pelo Centro de Estatística e Informações da Fundação João Pinheiro — CEI/FJP — do Governo de Minas Gerais, na década compreendida entre 1999 e 2009 cresceu 156,2%, pois naquele ano o valor adicionado da agropecuária foi de R\$ 8,8 bilhões enquanto nesse atingiu valor de R\$ 22,7 bilhões. Para efeitos de comparação, no mesmo período, segundo o Instituto Brasileiro de Geografia e Estatística — IBGE, o PIB agropecuário brasileiro partiu de uma base de R\$ 50,7 bilhões em 1999 e uma década mais tarde alcançou a marca de R\$ 157,2 bilhões, isto é, obteve expansão de 209,6%.

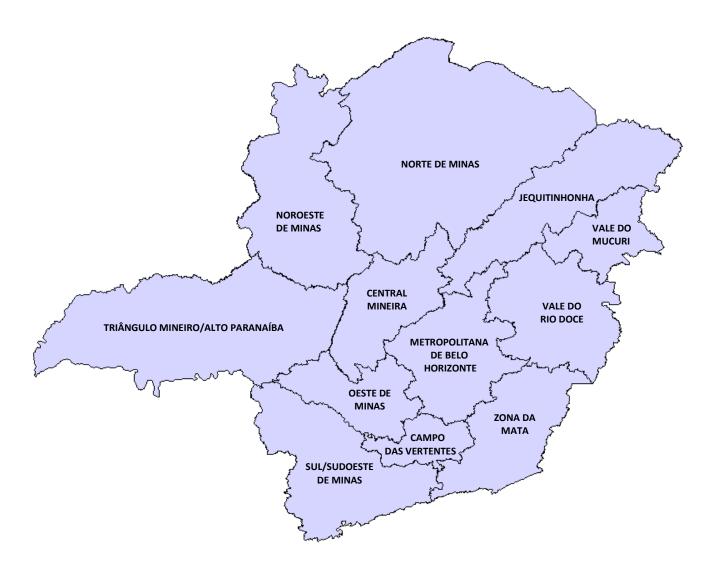
Como se observa na Tabela 1, todas as mesorregiões mineiras apresentaram crescimento na década em estudo, sendo que o maior crescimento percentual foi no Noroeste de Minas, com 228,8% de expansão. Com esse resultado, essa mesorregião obteve um crescimento do PIB agropecuário 6,2% superior ao verificado no mesmo período a nível nacional. Por sua vez, a menor expansão foi da mesorregião Metropolitana de Belo Horizonte (128,9%). A participação do PIB do agronegócio mineiro no nacional para o ano de 2009 foi de 14,4% o que representou uma queda de aproximadamente 2,6% haja visto que em 1999 essa participação havia sido de 17,5%. Triângulo Mineiro/Alto Paranaíba é a mesorregião com a maior participação no PIB agropecuário mineiro, 29,3% e, Vale do Mucuri, a menor (1,52%).

Ainda segundo o CEI/FJP, o valor adicionado (VA) a preços correntes decompostos por setores em Minas Gerais para o ano de 2009 são os seguintes: agropecuário R\$ 22,7 bilhões, industrial R\$ 75,8 bilhões, administração pública R\$ 35,8 bilhões, serviços R\$ 153,8 bilhões, perfazendo um VA total de R\$ 288,1 bilhões. Sendo assim, a participação percentual de cada setor na composição do PIB mineiro é respectivamente: 7,9%, 26,3%, 12,4% e 53,4%. Considerando que a população rural em Minas Gerais em 2009 era de 2.872.605 pessoas (IBGE 2010, C), então, o PIB per capita rural foi de R\$ 7.907,75, inferior ao total observado naquele mesmo ano para o conjunto da economia, estabelecido em R\$ 14.328,62 (CEI/FJP). Por outro lado, ainda de acordo com a SEAPA/MG, as exportações mineiras no ano de 2008 totalizaram US\$ 24,4 bilhões, sendo que o total exportado pelo setor agropecuário foi de US\$ 5,9 bilhões, o que representou 24,2% das exportações mineiras.

Tabela 1 – Produto Interno Bruto (PIB) agropecuário mineiro e nacional (R\$ mil)

		· / C]	L.		` '
Região	1999	2003	2007	2009	Variação 1999-2009
Brasil	50.782.029	108.618.999	127.266.999	157.232.000	209,6%
Minas Gerais	8.866.261	13.487.660	16.854.735	22.715.843	156,2%
Vertentes	286.544	424.603	515.689	672.506	239,4%
Central	307.112	527.092	690.644	968.120	215,2%
Jequitinhonha	208.408	380.115	446.943	582.033	179,3%
Metropolitana	486.165	782.984	900.476	1.112.746	128,9%
Noroeste	619.130	1.153.193	1.245.593	2.035.916	228,8%
Norte	535.426	856.592	1.154.692	1.665.036	211,0%
Oeste	581.025	828.312	1.134.787	1.343.272	131,2%
Sul/Sudoeste	2.011.010	2.539.181	3.331.693	4.296.676	113,7%
Triângulo/Paranaíba	2.438.554	3.948.832	4.762.374	6.665.836	173,4%
Vale do Mucuri	124.952	209.611	279.125	346.501	177,3%
Vale do Rio Doce	489.854	684.221	907.589	1.186.572	142,2%
Zona da Mata	778.080	1.152.923	1.485.131	1.840.631	136,6%

Fonte: CEI/FJP (2009) e IBGE (2010).


Segundo o Centro de Estatística e Informações (CEI) e o Centro de Estudos de Políticas Públicas (CEPP), ambos pertencentes à Fundação João Pinheiro (FJP), a população ocupada em Minas Gerais, em 2008, era de 10,193 milhões pessoas. O setor agropecuário absorvia 1,952 milhão trabalhadores, o equivalente a 19,1%, ao passo que os demais encontravam-se ocupados em atividades dos serviços e indústria. O interessante é que enquanto 19,1% da força de trabalho atuava no setor agropecuário, apenas 14,4% da

população total residia em áreas rurais, reforçando a impressão de Veiga (2004) sobre a penetração das atividades agrícolas no espaço urbano.

Com o intuito de facilitar a divulgação das estatísticas brasileiras o IBGE, desde 1941, vem trabalhando na organização de uma divisão regional única do território brasileiro em regiões onde as características econômicas, sociais e políticas sejam semelhantes. Para o IBGE, a aplicabilidade dessa metodologia se daria na elaboração de políticas públicas; subsidiar o sistema de decisões quanto à localização de atividades econômicas, sociais e tributárias; subsidiar o planejamento, estudo e identificação das estruturas espaciais de regiões metropolitanas e outras formas de aglomerações urbanas e rurais. Uma dessas formas de divisão regional do Brasil é a mesorregião, que segundo o IBGE, partindo de determinações mais amplas a nível conjuntural, buscou identificar áreas individualizadas em cada uma das Unidades Federadas, tomadas como universo de análise e definiu as mesorregiões com base nas seguintes dimensões: o processo social como determinante, o quadro natural como condicionante e a rede de comunicação e de lugares como elemento da articulação espacial. Conforme a Figura 1, Minas Gerais possui 12 (doze) mesorregiões²: Campo das Vertentes (Lavras e Barbacena), Central Mineira (Curvelo), Jequitinhonha (Almenara), Metropolitana de Belo Horizonte (Belo Horizonte, Contagem e Betim), Noroeste de Minas (Unaí e Paracatu), Norte de Minas (Janaúba e Montes Claros), Oeste de Minas (Lagoa da Prata, Itaúna e Divinópolis), Sul/Sudoeste de Minas (Varginha, Poços de Caldas e Pouso Alegre), Triângulo Mineiro/Alto Paranaíba (Uberlândia e Uberaba), Vale Mucuri (Teófilo Otoni e Nanuque), Vale do Rio Doce (Governador Valadares e Ipatinga) e Zona da Mata (Juiz de Fora, Muriaé e Ubá).

_

² Os municípios entre parênteses são os mais populosos por mesorregião.

Figura 1 - Mesorregiões geográficas mineiras Fonte: IBGE (2006).

Essas 12 (doze) mesorregiões são compostas por 66 microrregiões, que, por sua vez, se compõem por 853 municípios. Ressalta-se que para fins administrativos o governo estadual de Minas Gerais, desde 1985, faz uma divisão do território mineiro diferente da do IBGE, sendo que nessa divisão o estado é formado por 10 (dez) regiões que são denominadas de Regiões de Planejamento (RP) e que não guardam correspondência com as mesorregiões estabelecidas pelo IBGE.

Segundo IBGE (2006), a evolução no número de tratores utilizados nas propriedades rurais em Minas Gerais foi de 803,52% no período 1970-2006 uma vez que em 1970 havia 10.187 unidades de tratores e em 2006 esse número era de 92.042 unidades. Porém, pode-se

apontar uma desaceleração na taxa de crescimento em período recente, uma vez que o crescimento médio anual para o período foi de 55,3% sendo que a maior expansão foi no quinquênio 1970-1975 (122,7%) e a menor na década 1995-2006 (2,6%).

Ainda de acordo com IBGE (2006), com relação a variável pessoal ocupado, a expansão para o período todo foi negativa, pois em 1970 o número de pessoas que trabalhavam na área rural era de 1.979.847 e, em 2006, de 1.896.924 (variação -4,2%). Todavia, ressalte-se que ao contrário da evolução dos tratores este não foi um processo linear e pode-se dividi-lo em dois momentos, posto que no período 1970-1985 a variação foi positiva em 34,4%, pois em 1985 havia 2.660.130 trabalhadores no campo, para desde então declinar permanentemente. A maior expansão ocorreu em 1980-1985 (16,4%) e a maior redução foi em 1985-1995 (24,8%). Esse resultado guarda relação com o acréscimo de maquinário, já que o processo de modernização indica a intensificação na utilização de tratores.

Das seis variáveis sobre utilização das terras (em ha) para as quais o IBGE apresenta estatística descritiva apenas pastagens naturais apresentou queda no período 1970-2006, as demais, tiveram variação positiva. Para lavouras permanentes, cujo piso era 548.556 ha, houve uma evolução de 212,4% e, em 2006, havia 1.713.511 hectares com lavouras permanentes. O crescimento médio foi de 25,6% e o ápice dessa variável foi em 1985 em que havia 1.288.913 ha sendo ocupados com lavouras permanentes.

Na sequência discutiremos algumas das características básicas de cada uma das mesorregiões, com o objetivo de particularizar e demarcar as características de cada uma dentro do grande território mineiro.

2.2 MESORREGIÕES E SUAS CARACTERÍSTICAS

Nessa seção serão apresentados dados referentes aos resultados agrícola e pecuário bem como se calculará a intensidade tecnológica, razão entre a área utilizada na agropecuária e o número de trabalhadores e o de tratores, em cada uma das dozes mesorregiões mineiras objetivando gerar uma base analítica.

2.2.1 Triângulo Mineiro/Alto Paranaíba³

Das doze mesorregiões que compõem o estado de Minas Gerais, a Triângulo Mineiro/Alto Paranaíba foi a que obteve a maior receita no setor agropecuário em 2010. Os resultados para aquele ano, segundo IBGE (2010, A) e IBGE (2010, B) foram R\$ 6,3 bilhões na atividade agrícola e R\$ 1,4 bilhão na atividade pecuária. Com esses valores, a participação percentual dessa região no total do estado foi de 35,21% na agricultura e de 24,95% na pecuária. Importante salientar que a Pesquisa Pecuária Municipal apenas reporta valores para a bovinocultura leiteira, isto é, essa pesquisa não incluiu os resultados monetários da atividade pecuária de corte. Conforme IBGE (2010, C), a região em análise possuía uma população total (urbana e rural) de 2.144.482 cidadãos e, por sua vez, a unidade federativa de Minas Gerais tinha 19.597.330 habitantes. Logo, pode-se verificar que aproximadamente 10,94% da população mineira detinham, em 2010, pouco mais do que um terço (1/3) de toda renda financeira proveniente da produção agrícola do estado e pouco menos do que um quarto (1/4) de toda receita monetária resultante da produção da atividade leiteira.

Conforme IBGE (2006), na mesorregião Triângulo Mineiro/Alto Paranaíba a área utilizada com agricultura abrangeu 1.608.774 hectares. Sendo que desses, 1.506.913 ha foram de culturas temporárias e 101.861 ha de lavouras permanentes, ou seja, 93,67% das terras dessa região foram plantações temporárias. Com 36,10% de toda área agrícola, isto é, 580.705 ha, a cultura de soja foi a que ocupou a maior porção de terras (IBGE 2010, A). Esse resultado refere-se ao percentual da cultura supracitada em relação à própria mesorregião. Por sua vez, os percentuais em termos estaduais foram como se segue: cana-de-açúcar 66,21%; soja 56,93%; milho 26,76%; café 14,82%; feijão 10,73% e mandioca 8,09%. Esses resultados referem-se às participações de cada cultura no total da área estadual que foi utilizada especificamente com a referida cultura⁴.

Para a pecuária o total de hectares abrangido com essa atividade foi de 3.801.857 (IBGE 2006), ou seja, aproximadamente 136,32% superior a área agrícola. O rebanho da mesorregião Triângulo Mineiro/Alto Paranaíba era composto por 4.377.463 cabeças. Sendo 709.092 animais para corte (matrizes/reprodutores e engorda) e 3.668.371 bovinos leiteiros.

-

³ As microrregiões que estão inseridas na região Triângulo Mineiro/Alto Paranaíba são: Araxá, Frutal, Ituiutaba, Patos de Minas, Patrocínio, Uberaba e Uberlândia. Ou seja, são sete as microrregiões. Por sua vez, o total de municipalidades que formam a mesorregião em análise é de 66 (sessenta e seis) municípios.

⁴ Para as microrregiões, também em relação ao total de área ocupada no estado com cada cultura, têm-se os seguintes resultados: Araxá – soja 10,14%; Frutal – cana-de-açúcar 22,08%; Ituiutaba – cana-de-açúcar 9,42%; Patos de Minas – milho 3,86%; Patrocínio – soja 7,67%; Uberaba – cana-de-açúcar 20,45% e Uberlândia – soja 17,05%.

Os resultados para o número de animais abatidos e de vacas ordenhadas foram 68.881 e 628.288, respectivamente, e cujas participações estaduais foram 21,29% e 19,75%⁵.

Com relação à identificação da intensidade tecnológica da mesorregião em questão optou-se por um indicador que é a razão entre área utilizada na agropecuária pelo número de trabalhadores e de tratores da mesorregião, ou seja, as razões área/trabalhadores (ha/l) e área/trator (ha/t). Desse modo, conforme IBGE (2006), os resultados obtidos para o Triângulo Mineiro/Alto Paranaíba foram os seguintes: 31,71 ha/l e 235,87 ha/t⁶.

Segundo o Centro Nacional de Pesquisa de Solos (CNPS) da Embrapa, Embrapa Solos, na mesorregião há seis tipos distintos de solos: latossolo variação una⁷ (latossolo amarelo ou vermelho-amarelo acriférrico), latossolo vermelho-escuro⁸ (latossolo vermelho), latossolo roxo⁹ (latossolo vermelho distroférrico ou acriférrico ou eutroférrico), terra roxa estruturada¹⁰ (nitossolo vermelho), brunizém avermelhado¹¹ (chernossolo argilúvico) e cambissolo¹² (cambissolo). Vale destacar que ao longo desta dissertação, todas as vezes que se tratar de solos, os nomes dentro dos parênteses correspondem ao novo Sistema Brasileiro de Classificação de Solos da Embrapa Solos. Outro ponto que se deve mencionar é que quando se fala em condições de aproveitamento agrícola do solo não se considera apenas as características ambientais e propriedades físicas e químicas, mas também a possibilidade de por meio da intervenção humana tornar possível o uso para agricultura. Ou seja, limitações tais como: fertilidade natural, excesso de água, deficiência de água, susceptibilidade à erosão e impedimentos ao uso de implementos agrícolas serem passíveis de correção através da ação do homem.

O latossolo variação una, com maior ocorrência no Alto Paranaíba, caracteriza-se por possuir uma baixa fertilidade e por isso dificultando o aproveitamento agrícola desse. O latossolo vermelho-escuro, que ocorre mais no Triângulo Mineiro, é um solo conhecido por ser profundo, com uma boa drenagem, elevada permeabilidade, por sempre requerer correção

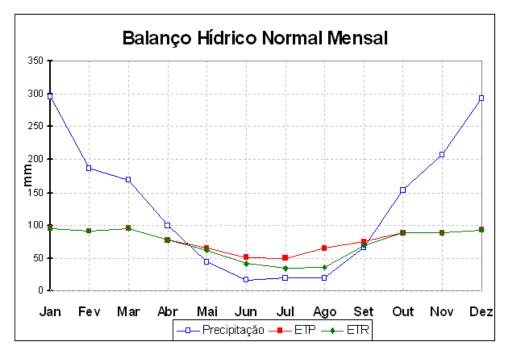
⁵ Por sua vez, os resultados em nível microrregional, em relação ao total do estado, foram respectivamente os seguintes: Araxá – 2,05% e 2,87%; Frutal – 7,03% e 4,04%; Ituiutaba – 3,68% e 1,79%; Patos de Minas – 1,63% e 3,85%; Patrocínio – 2,26% e 3,20%; Uberaba – 0,71% e 1,08% e Uberlândia – 3,95% e 2,91%.

⁶ Para as microrregiões têm-se os seguintes resultados: Ituiutaba – 56,21 ha/l e 283,69 ha/t; Uberlândia – 39,00 ha/l e 222,07 ha/t; Patrocínio – 18,05 ha/l e 196,38 ha/t; Patos de Minas – 17,34 ha/l e 278,78 ha/t; Frutal – 49,32 ha/l e 275,60 ha/t; Uberaba – 52,88 ha/l e 201,88 ha/t e Araxá – 38,75 ha/l e 222,65 ha/t.

⁷ Ocupa 147.598 ha do estado mineiro o que equivale a aproximadamente 0,25% da superfície de Minas Gerais.

⁸ Ocorre em 10.595.543 ha de todo o território de Minas Gerais correspondendo a 18,06% da área do estado.

⁹ Com um percentual de 2,81% de todo o espaço físico mineiro esse tipo de solo aparece em 1.649.442 ha do estado.

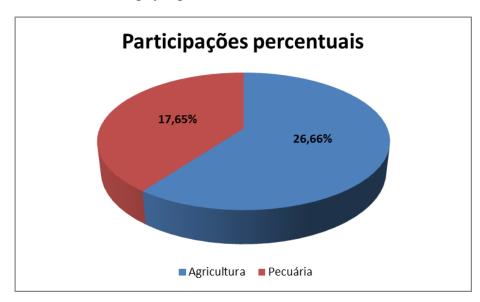

¹⁰ Com uma área de 240.499 ha equivalentes a aproximadamente 0,41% do território do estado de Minas Gerais.

¹¹ Abrange 5.980 ha das terras de Minas Gerais perfazendo 0,01% da superfície do estado mineiro.

¹² Com 10.464.438 ha de ocorrência em Minas Gerais equivalentes a aproximadamente 17,48% dos solos mineiros.

de acidez e fertilização e por serem resistentes à erosão da superfície. A porção latossolo roxo, com frequência maior no Triângulo Mineiro, geralmente possui baixa fertilidade, mas que é muito bem aproveitada com calagem e adubação uma vez que o relevo dessa área permite, facilmente, uma mecanização intensa. Os solos terra roxa estruturada, que aparecem mais na região do Triângulo Mineiro, possuem boas características físicas e uma alta fertilidade natural facilitando uso agrícola desses. Os brunizém avermelhado são terras que necessitam uma atenção especial em relação à mecanização e controle de erosão, mas que possui como fator facilitante do uso agrícola dessas a alta fertilidade natural. Por fim, é sabido que o cambissolo é um solo com pouca profundidade, com fase cascalhenta ou pedregosa e que possui uma fertilidade natural baixa.

O Banco de Dados Climáticos do Brasil, da Empresa Brasileira de Pesquisa Agropecuária (Embrapa), Embrapa Clima, reporta valores para a evapotranspiração. Essa consiste em dois processos distintos: 1°) na evaporação da água presente no solo e 2°) na transpiração das plantas. Destarte, ambos os processos caracterizam-se como sendo perda de água do solo uma vez que a água presente nas plantas foi extraída da terra através das raízes dessas. Nota-se pela Figura 2 que, na mesorregião em estudo, os períodos em que há deficiência no balanço hídrico mensal (duração de cinco meses, de maio a setembro) são justamente os meses em que a evapotranspiração é superior à precipitação. Isto é, a perda de água presente no solo é maior do que a reposição. Vale destacar que para o Triângulo Mineiro/Alto Paranaíba a taxa anual de evapotranspiração potencial é de 937 mm enquanto a de precipitação é de 1.574 mm.


Figura 2 – Balanço hídrico Triângulo Mineiro/Alto Paranaíba **Fonte:** http://www.bdclima.cnpm.embrapa.br.

2.2.2 Sul/Sudoeste de Minas¹³

Conforme IBGE (2010, A) e IBGE (2010, B), o PIB agropecuário da mesorregião Sul/Sudoeste de Minas somou para o ano de 2010 valores de R\$ 4,8 bilhões e R\$ 1,0 bilhão, respectivamente. Sendo assim, essa região obteve a segunda maior receita monetária advinda do setor agropecuário em Minas Gerais, R\$ 5,8 bilhões. Porém, vale destacar que os resultados financeiros do setor agrícola foram 360,45% superiores aos obtidos no setor pecuário leiteiro. Nota-se pelo Gráfico 1 que as participações em percentuais da região em análise, no total estadual, para cada uma das atividades foram 26,66% na agrícola e 17,65% na pecuária. Somando-se esses resultados aos obtidas na mesorregião Triângulo Mineiro/Alto Paranaíba a participação conjunta dessas regiões no total de Minas Gerais foi de 61,87% na agricultura e 42,60% na bovinocultura leiteira. Infere-se, uma vez que o somatório dos habitantes das regiões Triângulo Mineiro/Alto Paranaíba e Sul/Sudoeste de Minas era igual a 4.583.093 cidadãos (IBGE 2010, C), ou seja, representava 23,39% da população total do estado, que uma boa parte das receitas da agropecuária mineira em 2010 estava concentrada em menos de um quarto da população mineira.

_

Região formada pela união de 146 municípios e que estão agrupados em dez microrregiões – Alfenas, Andrelândia, Itajubá, Passos, Poços de Caldas, Pouso Alegre, Santa Rita do Sapucaí, São Lourenço, São Sebastião do Paraíso e Varginha.

Gráfico 1 – Participação por atividade no total estadual

Fonte: Elaboração própria com base em IBGE (2010, A) e IBGE (2010, B).

Com uma área de 49.523,893 km² a mesorregião Sul/Sudoeste de Minas é limítrofe a nove outras mesorregiões. Sendo quatro mineiras (Zona da Mata, Campo das Vertentes, Oeste de Minas e Triângulo Mineiro/Alto Paranaíba), uma carioca (Sul Fluminense) e quatro paulistas (Ribeirão Preto, Campinas, Macro Metropolitana Paulista e Vale do Paraíba). Segundo a Embrapa Solos, há a ocorrência de seis tipos distintos de solos na região em questão: latossolo vermelho-amarelo¹⁴ (latossolo vermelho-amarelo), latossolo roxo¹⁵ (latossolo vermelho distroférrico ou acriférrico ou eutroférrico), terra bruna estruturada¹⁶ (nitossolo háplico), podzólico vermelho-amarelo¹⁴ (argissolo vermelho-amarelo), podzol¹⁶ (espodossolo) e plintossolo¹⁶ (plintossolo). A baixa fertilidade e a presença de alumínio tóxico para as plantas limitam o aproveitamento agrícola do solo latossolo vermelho-amarelo. O solo denominado de terra bruna estruturada são conhecidos por apresentar relevo desfavorável e que associado às características de solos rasos e rochosos acabam dificultando a utilização para a agricultura. O podzólico vermelho-amarelo tem como fator limitante para o uso agrícola a baixa fertilidade. Por sua vez, o solo do tipo podzol além de características físicas

¹⁶ As terras que possuem esse tipo de solo abrangem uma área de 3.295 ha que corresponde a 0,01% do território mineiro.

¹⁴ Ocupa 14.732.622 ha equivalendo à aproximadamente 25,11% da superfície de Minas Gerais.

¹⁵ Idem à nota de rodapé 3.

¹⁷ Com ocorrência em 6.099.961 ha o que equivale à aproximadamente 10,40% das terras do estado de Minas Gerais.

¹⁸ São 28.314 ha que apresentam esse tipo de solo e que corresponde à 0,05% de toda a área do solo mineiro.

¹⁹ Com presença de 0,03% em todo o território mineiro esse solo ocupa 19.650 ha de toda a superfície de Minas Gerais.

desfavoráveis também possui baixa fertilidade natural dificultando o aproveitamento agrícola. Por último, a baixa fertilidade natural, os altos teores de alumínio e as condições de drenagem normalmente ruins acabam por prejudicar a utilização do plintossolo para agricultura.

Conforme a Embrapa Clima as taxas anuais de evapotranspiração potencial e de precipitação para a mesorregião Sul/Sudoeste de Minas são 887 mm e 1.550 mm, respectivamente. Verifica-se pela Figura 3 que nos meses de julho, agosto e setembro o processo de evapotranspiração é superior à precipitação e por isso mesmo há deficiência hídrica nesses meses, isto é, o extrato hídrico mensal é negativo. Entretanto, a reposição da perda d'água ocorre majoritariamente no mês de outubro permitindo que entre os meses de outubro e março o extrato hídrico mensal seja positivo.

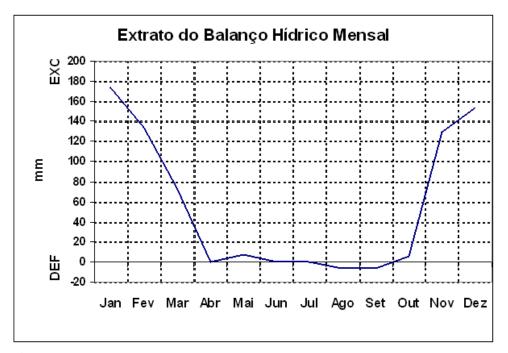


Figura 3 – Extrato da mesorregião Sul/Sudoeste de Minas

Fonte: http://www.bdclima.cnpm.embrapa.br.

O total de hectares que foram utilizados com lavouras temporárias e permanentes na mesorregião em questão totalizaram 430.932 e 110.554, respectivamente, perfazendo um total de 541.487 ha (IBGE 2006). Logo, essa região possuía uma área de lavouras que correspondia a 33,66% de toda área agrícola (temporária e permanente) do Triângulo Mineiro/Alto Paranaíba, mas, entretanto, a receita agrícola daquela foi equivalente a 75,72% à renda dessa. Em termos de culturas, os cafezais ocuparam uma área de 435.923 hectares (IBGE 2010, A) e que correspondeu a aproximadamente 51,83% e 42,48% de toda a área de lavoura da região em análise e de toda a área de plantio de café de Minas Gerais, respectivamente. Para as

demais lavouras os resultados das participações no total da área estadual dedicada especificamente a cada cultura foram aproximadamente: milho 18,71%; feijão 13,02%; canade-açúcar 8,39%; mandioca 7,66% e soja 0,92%²⁰.

Conforme IBGE (2006) o efetivo bovino da mesorregião Sul/Sudoeste de Minas era de 2.080.974 cabeças. Dessas, 207.141 eram de animais para corte (matrizes/reprodutores – 45.624 e engorda – 161.517) e 1.873.833 de bovinos leiteiros. O total de área que foi utilizada com a atividade pecuária abrangeu 1.251.573 ha (aproximadamente 131,14% superior à área agrícola). Assim como realizado para a agricultura, um comparativo entre as mesorregiões Triângulo Mineiro/Alto Paranaíba e Sul/Sudoeste de Minas revelam que a área dessa dedicada à pecuária correspondeu a 32,92% das terras daquela e que por sua vez a receita advinda da pecuária dessa equivaleu a 70,75% daquela. Para a mesorregião em estudo o total de animais abatidos foi de 41.109 e o número de vacas ordenhadas foi de 446.404. Destarte, a participação percentual no total estadual foi, respectivamente, 12,71% e 14,03% ²¹. Os valores para a intensidade tecnológica do Sul/Sudoeste de Minas foram os seguintes: 8,22 ha/l e 112,54 ha/t²².

2.2.3 Noroeste de Minas²³

A mesorregião Noroeste de Minas é a menos populosa e a que possui a menor densidade demográfica de todas as mesorregiões mineiras. Pois uma vez que a área dessa era de 62.381,061 km² e a população era estimada em 366.418 habitantes (IBGE 2010, C) a densidade calculada foi de 5,9 hab/km². Sendo Paracatu o município mais populoso, 84.718 cidadãos. Caracteriza-se por ser uma região cuja economia é altamente agrícola o que pode facilmente ser comprovado pelos resultados monetários realizados tanto na agricultura quanto

_

Para as microrregiões os resultados, também em relação ao total estadual dedicado especificamente a cada cultivo, foram os seguintes: Alfenas – café 6,35%; Andrelândia – milho 1,35%; Itajubá – mandioca 0,78%; Passos – cana-de-açúcar 3,73%; Poços de Caldas – café 4,65%; Pouso Alegre – mandioca 1,22%; Santa Rita do Sapucaí – café 3,61%; São Lourenço – café 2,28%; São Sebastião do Paraíso – café 8,10% e Varginha – café 13,16%.

²¹ Para as microrregiões os resultados foram: Passos – 2,14% e 2,19%; São Sebastião do Paraíso – 1,31% e 1,20%; Alfenas – 1,02% e 1,23%; Varginha – 1,75% e 1,49%; Poços de Caldas – 1,36% e 1,42%; Pouso Alegre – 1,66% e 1,66%; Santa Rita do Sapucaí – 0,97% e 1,17%; São Lourenço – 1,02% e 1,22%; Andrelândia – 0,58% e 1,34% e Itajubá – 0,90% e 1,11%.

Por sua vez, os resultados para cada uma das microrregiões inseridas nessa região foram: Passos – 12,00 ha/l e 126,96 ha/t, São Sebastião do Paraíso – 5,54 ha/l e 74,95 ha/t, Alfenas – 6,50 ha/l e 91,60 ha/t, Varginha – 6,29 ha/l e 81,75 ha/t, Poços de Caldas – 7,45 ha/l e 94,16 ha/t, Pouso Alegre – 8,59 ha/l e 113,95 ha/t, Santa Rita do Sapucaí – 8,92 ha/l e 121,02 ha/t, São Lourenço – 10,20 ha/l e 246,63 ha/t, Andrelândia – 25,98 ha/l e 403,46 ha/t e Itajubá – 10,39 ha/l e 340,75 ha/t.

²³ A mesorregião Noroeste de Minas é formada pela união de duas microrregiões (Paracatu e Unaí) e essas por sua vez são compostas por 19 (dezenove) municípios.

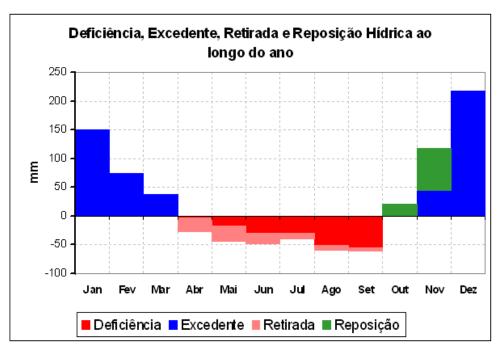
na pecuária. Percebe-se pela Tabela 2 que para o setor agrícola o valor final totalizou R\$ 1,7 bilhão (IBGE 2010, A) e para a bovinocultura leiteira somou R\$ 312,3 milhões (IBGE 2010, B), totalizando R\$ 2,0 bilhões. Destarte, pode-se dizer que 1,87% da população mineira apoderou-se de 8,38% da renda agropecuária do estado.

Tabela 2 – Receita monetária agropecuária do Noroeste de Minas (R\$ 1.000,00)

Setor	Valores		
Atividade agrícola	1.695.422,00		
Atividade pecuária	312.266,99		

Fonte: Elaboração própria com base em IBGE (2010, A) e IBGE (2010, B).

As mesorregiões que estão no entorno da região em análise são três mineiras (Central Mineira, Norte de Minas e Triângulo Mineiro/Alto Paranaíba), uma baiana (Extremo Oeste Baiano) e duas de Goiás (Leste Goiano e Sul Goiano). Os solos do tipo hidromórfico cinzento²⁴ (planossolo), areias quartzosas hidromórficas²⁵ (neossolos quartzarênicos hidromórficos) e solos petroplínticos²⁶ (plintossolos pétricos) são os que compõem a região em estudo. Devido à baixa fertilidade natural e a uma drenagem deficiente, dificultando o aproveitamento mais intensivo para a agricultura, os solos hidromórfico cinzento e areias quartzosas hidromórficas são pouco utilizados. Quanto aos solos petroplínticos a quantidade e o tamanho de materiais grosseiros constituem fatores restritivos ao uso de implementos agrícolas, penetração de raízes e retenção de água o que somado à baixa fertilidade natural desse tipo de solo dificulta o uso agrícola do mesmo.


Percebe-se pela Figura 4 que durante seis meses (de abril a setembro) há retirada de água do solo, segundo a Embrapa Clima. Esse fato ocorre em função da evapotranspiração potencial ser maior do que a precipitação nesses meses e cujas médias são respectivamente, 75,2 mm e 28,3 mm. Por sua vez, as taxas anuais são 1.105 mm e 1.439 mm, respectivamente. Em relação à reposição da água do solo essa ocorre nos meses de outubro e novembro e nos meses subsequentes (dezembro, janeiro, fevereiro e março) os valores invertem-se, ou seja, a precipitação supera a evapotranspiração potencial provocando que haja um excesso de água no solo, isto é, que haja excedente hídrico.

²⁶ Com 43.207 ha das terras mineiras correspondendo a 0,74% do estado.

_

²⁴ Abrange uma área de 42.529 ha o que equivale a aproximadamente 0,08% da superfície de Minas Gerais.

²⁵ Ocupa 0,10% do território mineiro, isto é, 59.215 ha.

Figura 4 – Balanço hídrico normal mensal Noroeste de Minas **Fonte:** http://www.bdclima.cnpm.embrapa.br.

A área total da mesorregião Noroeste de Minas utilizada com a atividade agrícola foi de 1.303.222 hectares (IBGE 2006). Sendo 1.254.281 ha de lavouras temporárias e 48.941 ha de culturas permanentes, ou seja, aquela é 2.462,84% superior a essa. Entre as culturas dessa região a soja é a que ocupa a maior porção de terras, são 368.770 ha (IBGE 2010, A), o que foi equivalente a 52,88% de toda a área de lavoura da mesorregião. Por sua vez, o percentual dessa cultura no total estadual, isto é, do território mineiro utilizado para o plantio do grão de soja, foi de 36,15%. Destarte, o somatório desse resultado com o do Triângulo Mineiro/Alto Paranaíba perfez um total de aproximadamente 93,08% das lavouras de soja de Minas Gerais. Para as demais culturas os resultados foram os seguintes, também em relação ao total da área estadual de cada cultura específica: feijão 25,83%; milho 10,86%; mandioca 4,50%; cana-deaçúcar 3,37% e café 1,11%²⁷.

Com um efetivo de bovinos de 1.755.757 cabeças a pecuária ocupou uma área 2.310.267 ha no Noroeste de Minas, conforme IBGE (2006). Sendo que o número de matrizes e reprodutores e cria, recria, engorda ou trabalho, isto é, pecuária de corte, era de 196.456 animais e, portanto, para a bovinocultura leiteira havia 1.559.301 cabeças. Destarte, esse rebanho era 693,72% superior àquele. O número de animais abatidos foi de 26.034 enquanto o de vacas ordenhadas foi de 175.485. Sendo assim, a participação da mesorregião Noroeste de

-

²⁷ Já as participações microrregionais em termos do total estadual foram: Paracatu – soja 12,47% e Unaí – soja 23,68%.

Minas no total estadual para cada uma dessas atividades foi, respectivamente: 8,05% e 5,52%²⁸. O Noroeste de Minas apresentou os seguintes resultados para a intensidade tecnológica: 61,09 ha/l e 547,06 ha/t²⁹.

2.2.4 Zona da Mata³⁰

Conforme Rezende (2008), o nome Zona da Mata se deve ao fato de que a cobertura vegetal dessa porção do território mineiro era originalmente dominada pela Mata Atlântica. Na economia da região destacam-se o setor industrial, a criação de gado leiteiro e plantações de cana-de-açúcar, milho, café e feijão. O relevo caracteriza-se como sendo rugoso com altos morros. Tanto é assim que na Serra de Caparaó, na divisa com o Espírito Santo, localizam-se o Pico da Bandeira e o Pico do Cristal. É também nessa região onde se situam os principais afluentes da margem esquerda do Rio Paraíba do Sul e os principais formadores e afluentes do Rio Doce. Com uma área igual a 35.747,729 km² e uma população de 2.173.374 habitantes (IBGE 2010, C) essa região possuía a segunda maior densidade demográfica do estado de Minas Gerais, 60,8 hab/km² (a primeira era a mesorregião Metropolitana de Belo Horizonte, 157,9 hab/km²).

A mesorregião Zona da Mata faz divisa com os estados do Espírito Santo e do Rio de Janeiro e por isso mesmo é circunscrita por mesorregiões dos três estados. As mesorregiões mineiras limítrofes são Metropolitana de Belo Horizonte, Campo das Vertentes, Sul/Sudoeste de Minas e Vale do Rio Doce; as cariocas são Sul Fluminense, Centro Fluminense e Noroeste Fluminense e do Espírito Santo é Sul Espírito-santense. Os tipos de solos que predominam nessa região, conforme a Embrapa Solos, são latossolo vermelho-amarelo³¹ (latossolo vermelho-amarelo), podzólico vermelho-amarelo³² (argissolo vermelho-amarelo) e podzólico vermelho-escuro³³ (argissolo vermelho). Os solos latossolo vermelho-escuro e podzólico vermelho-amarelo já foram caracterizados na mesorregião Sul/Sudoeste de Minas. O tipo podzólico vermelho-escuro são solos de bom potencial produtivo no estado, mas deve-se excetuar aqueles localizados em regiões que apresentam período seco prolongado.

-

²⁸ Por sua vez, as participações de cada uma das duas microrregiões, em relação ao total estadual, foram respectivamente: Unaí – 2,88% e 1,88% e Paracatu – 5,17% e 3,64%.

²⁹ Já para as microrregiões os valores foram os seguintes: Unaí – 57,49 ha/l e 527,38 ha/t e Paracatu – 64,17 ha/l e 564,59 ha/t.

A referida região é formada por sete microrregiões (Cataguases, Juiz de Fora, Manhuaçu, Muriaé, Ponte Nova, Ubá e Viçosa) que se originam da união de 142 municípios.

³¹ Idem à nota de rodapé 7.

³² Idem à nota de rodapé 10.

³³ Ocupa 5.639.742 ha equivalente a aproximadamente 9,61% da superfície do estado de Minas Gerais.

Como já salientado acima a agricultura possui uma expressão econômica significativa para a região. Segundo IBGE (2006), a área de lavoura temporária foi de 297.313 ha enquanto a permanente foi de 56.054 ha, totalizando 353.366 hectares. Com 56,34% de toda a área agrícola da mesorregião, ou seja, 199.537 ha (IBGE 2010, A), os cafezais foram a principal cultura para a Zona da Mata. Uma vez que as plantações de café ocuparam uma área total de 1.026.162 ha, em todo o estado mineiro, a participação percentual dessa região, em relação aos hectares estaduais utilizados com a lavoura de café, foi de 19,44%. Para as demais culturas foram os seguintes resultados: feijão 8,91%; milho 6,18%; cana-de-açúcar 3,86%; mandioca 2,73% e soja 0,03% ³⁴.

Dando continuidade à caracterização da mesorregião Zona da Mata, contudo, agora sob uma perspectiva da atividade pecuária, sabe-se que essa abrangeu uma área de 1.327.904 ha (IBGE 2006). O efetivo da pecuária de corte foi de 129.132 animais. Sendo 32.265 cabeças de matrizes e reprodutores e 96.867 cabeças de cria, recria, engorda ou trabalho (IBGE 2010, B). Uma vez que o rebanho total era de 1.496.406 animais conclui-se que o efetivo de bovinos leiteiros era de 1.367.274 cabeças. As produções para cada uma das atividades foram de 23.423 animais abatidos e 348.250 vacas ordenadas. Com esses resultados essa região obteve uma participação no total estadual de 7,24% e 10,95%, respectivamente, para cada uma das atividades. Importante destacar que o efetivo de corte possuía uma participação percentual de 5,75% enquanto o rebanho leiteiro de 7,74%, ambos em relação ao estadual 35. Com 7,49 ha/l e 522,15 ha/t tem-se a intensidade tecnológica para a mesorregião Zona da Mata³⁶.

2.2.5 Norte de Minas³⁷

A mesorregião Norte de Minas possuía, conforme IBGE (2010, C), a segunda menor densidade demográfica do estado, 12,5 km², e o terceiro menor PIB *per capita*, R\$ 3.418,55 (IBGE 2007). Essa mesorregião possui uma grande área de irrigação, Projeto Jaíba e Vale do

³⁴ Utilizando-se do mesmo raciocínio, isto é, a participação percentual em relação à área estadual, obtém-se os seguintes valores para as microrregiões: Cataguases – mandioca 0,35%; Juiz de Fora – feijão 0,86%; Manhuaçu – café 11,00%; Muriaé – café 4,63%; Ponte Nova – cana-de-açúcar 2,53%; Ubá – feijão 0,91% e Viçosa – feijão 3,30%.

_

³⁵ Por sua vez, as participações no total estadual para as microrregiões foram: Ponte Nova – 1,08% e 1,50%; Manhuaçu – 2,78% e 0,78%; Viçosa – 0,92% e 1,03%; Muriaé – 1,10% e 1,74%; Ubá – 0,83% e 1,40%; Juiz de Fora – 1,40% e 2,72% e Cataguases – 0,99% e 1,79%.

³⁶ Já para as microrregiões têm-se os seguintes resultados: Ponte Nova – 8,35 ha/l e 816,62 ha/t; Manhuaçu – 3,21 ha/l e 446,79 ha/t; Viçosa – 4,24% e 411,98 ha/t; Muriaé – 7,63 ha/l e 535,14 ha/t; Ubá – 8,40 ha/l e 313,83 ha/t; Juiz de Fora – 23,20 ha/l e 636,80 ha/t e Cataguases – 19,23 ha/l e 558,18 ha/t.

³⁷ Formada pela união de 89 municípios, agrupados em sete microrregiões: Bocaiuva, Grão Mogol, Janaúba, Januária, Montes Claros, Pirapora e Salinas.

Gorutuba, haja visto que o rio São Francisco passa por essa região, que exporta frutas para seis países além de atender o mercado brasileiro. Segundo a Embrapa Clima, as médias de altitude e de temperatura para essa região são 646 m e 22,4 °C, respectivamente. Sendo que o regime térmico caracteriza-se com o mês de julho tendo a menor temperatura, 19,4 °C, e março a maior, 24,4 °C. Em relação ao período chuvoso, isto é, ao regime pluviométrico, esse está compreendido entre os meses de outubro e março, duração de seis meses, e cuja precipitação média é de 90 mm. A amplitude de precipitação entre dezembro (precipitação de 234 mm) e julho (precipitação de 3 mm) é de 231 mm. Destarte, nota-se pela Figura 5 que o extrato do balanço hídrico mensal atinge o ponto crítico no mês de setembro, aproximadamente - 50 mm. Isso se deve ao fato do processo de evapotranspiração potencial ser superior às taxas de precipitação ocasionando que a retirada de água do solo seja superior à capacidade de reposição.

Figura 5 – Extrato do balanço hídrico mensal para o Norte de Minas **Fonte:** http://www.bdclima.cnpm.embrapa.br.

Em virtude da posição geográfica do Norte de Minas existem mesorregiões baianas que lhe são limítrofes (Extremo Oeste Baiano, Centro-Sul Baiano e São Franciscano da Bahia) além das Central Mineira, Jequitinhonha e Noroeste de Minas que são mineiras.

Conforme IBGE (2006) aproximadamente 90,32% dos 1.373.453 ha da área agrícola do Norte de Minas foram utilizados com lavoura temporária, o que equivale a 1.240.512 ha, os 132.941 ha restantes foram de culturas permanentes. Com a maior utilização de área as

lavouras de milho ocuparam 115.521 ha, ou seja, 35,73% das terras agrícolas da mesorregião como um todo. Entretanto, a participação dessa cultura, ou seja, das plantações de milho, da mesorregião Norte de Minas no total estadual, referente à mesma cultura, foi de 9,70%. Para as demais plantações as participações, no total estadual específico de cada lavoura, foram como se segue: mandioca 36,82%; feijão 13,67%; cana-de-açúcar 4,28%; soja 3,44% e café 0,85% 38.

Para a atividade pecuária, segundo IBGE (2006), o total de área abrangida foi de 3.615.380 ha. O efetivo de corte era formado por 39.258 matrizes e reprodutores e 192.463 cria, recria, engorda ou trabalho. Por sua vez, a bovinocultura leiteira possuía 2.413.650 animais. Destarte, o rebanho total da mesorregião era composto por 2.645.371 bovinos. O número de animais abatidos foi de 45.791 cabeças e o total de vacas ordenadas foi de 199.245 animais. O rebanho de corte representava 10,32% do estadual, também para corte, e obteve uma participação de 14,15% nos abatimentos estaduais. Enquanto o efetivo da bovinocultura leiteira correspondia a 13,66% do estadual, para a mesma atividade, mas cuja participação na produção foi de 6,26% ³⁹. No Norte de Minas foram utilizados 5.937.500 de hectares na agropecuária e uma vez que haviam 300.726 pessoas ocupadas nos estabelecimentos rurais e 5.947 tratores a intensidade tecnológica foi de 19,74 ha/1 e 998,40 ha/t⁴⁰.

2.2.6 Oeste de Minas⁴¹

A economia da mesorregião Oeste de Minas é diversificada, mas, entretanto, é baseada principalmente na indústria e no setor de serviços. Das 12 (doze) mesorregiões mineiras a Oeste de Minas ocupa 6ª posição de menor densidade demográfica (IBGE 2010, C), 39,7 km², e a 7ª posição de maior renda *per capita*, R\$ 5.696,05 (IBGE 2007). Divinópolis é a principal cidade da região e, também, a mais rica, cuja economia está alicerçada na indústria têxtil e na metalúrgica. Segundo IPEA (1991), entre as microrregiões que compõem a mesorregião em análise a Divinópolis ocupa a 8ª posição num *ranking* estadual do Índice de Desenvolvimento

³⁸ Já para as microrregiões os resultados obtidos foram: Bocaiuva – mandioca 1,34%; Grão Mogol – mandioca 1,03%; Janaúba – mandioca 2,88%; Januária – mandioca 12,87%; Montes Claros – mandioca 7,19%; Pirapora – soja 1,82% e Salinas – mandioca 10,45%.

Esses resultados sintetizam os valores para a mesorregião, contudo, para as microrregiões os resultados foram respectivamente os seguintes: Januária – 3,68% e 1,31%; Janaúba – 1,21% e 1,52%; 1,16% e 0,63%; Pirapora – 2,59% e 0,41%; 4,19% e 1,95%; Grão Mogol – 0,38% e 0,14% e Bocaiúva – 0,94% e 0,31%.

⁴⁰ Para as microrregiões os resultados foram: Januária – 17,66 ha/l e 1.005,88 ha/t; Janaúba – 13,48 ha/l e 854,57 ha/t; Salinas – 13,99 ha/l e 1.367,88 ha/t; Pirapora – 68,74 ha/l e 975,06 ha/t; Montes Claros – 17,44 ha/l e 903,40 ha/t; Grão Mogol – 22,77 ha/l e 2.456,90 ha/t e Bocaiúva – 42,59 ha/l e 752,15 ha/t.

⁴¹ A Oeste de Minas é formada pela união de 44 municípios agrupados em cinco microrregiões – Divinópolis, Campo Belo, Formiga, Oliveira e Piumhi.

Humano (IDH), ou seja, fica entre os dez primeiros melhores IDH do estado. Segundo IBGE (2010, C) a população dessa região era de 955.030 habitantes o que representava, aproximadamente, 4,87% da população estadual.

A agricultura dessa região, segundo o IBGE (2006), ocupou uma área total de 290.223 ha entre lavouras temporárias e permanentes sendo que dessa foram 31.650 ha enquanto daquela foram 258.566 ha. Com uma participação de 39,15% (84.212 ha) e 33,60% (72.286 ha), de toda a área agrícola dessa mesorregião, as culturas de milho e café, respectivamente, utilizaram aproximadamente três quartos (3/4) de toda área de plantio. Entretanto, as participações dessas culturas no total da área estadual que foi utilizada com o plantio de milho e café foram 7,07% e 7,04%, respectivamente. Para as demais plantações os resultados percentuais de participação na área estadual total para cada produto foi: feijão 5,20%; mandioca 3,99%; cana-de-açúcar 2,95% e soja 0,46% ⁴².

Com 130.001 animais de corte (17.805 matrizes e reprodutores e 112.196 cria, recria, engorda ou trabalho) e 981.899 cabeças de gado leiteiro, totalizando um efetivo de 1.111.900 animais, a bovinocultura abrangeu uma área de 863.322 ha (IBGE 2006). Logo, a área total utilizada na agropecuária foi de 1.153.545 ha sendo que a da pecuária foi superior em 197,47% a da agricultura. O total de animais abatidos foi 13.275 cabeças e o de vacas ordenadas foi 231.682 bovinos. Destarte, os percentuais de participação da pecuária de corte e leiteira dessa região no total estadual foram respectivamente 4,10% e 7,28%. Vale ressaltar que a representatividade do rebanho de corte da mesorregião Oeste de Minas no total do efetivo estadual para a mesma atividade era de 5,56% ⁴³. Usando como parâmetros a área total empregada na agropecuária, o número de pessoal ocupado nos estabelecimentos e o número de tratores existentes nas propriedades rurais calcula-se a intensidade tecnológica tanto para a mesorregião quanto para as microrregiões inseridas naquela. Sendo assim, para a Oeste de Minas os valores foram 14,62 ha/l e 227,73 ha/t⁴⁴.

_

⁴² Nas microrregiões os percentuais de participação na área da mesorregião Oeste de Minas foram: Campo Belo – café 32,28%; Divinópolis – mandioca 52,78%; Formiga – milho 27,55%; Oliveira – café 24,65% e Piuí – cana-de-açúcar 57,17%. Por sua vez, em relação a área estadual tem-se: Campo Belo – café 2,27%; Divinópolis – mandioca 2,11%; Formiga – milho 1,19%; Oliveira – café 1,74% e Piuí – café 2,30%.

⁴³ Por último, as participações percentuais das microrregiões no total estadual de cada uma das atividades pecuárias foram respectivamente: Piuí – 0,70% e 2,07%; Divinópolis – 1,31% e 1,94%; Formiga – 0,72% e 1,37%; Campo Belo – 0,61% e 0,66% e Oliveira – 0,76% e 1,24%.

⁴⁴ Já para as microrregiões obteve-se: Piuí – 24,00 ha/l e 239,55 ha/t; Divinópolis – 17,04 ha/l e 278,96 ha/t; Formiga – 15,39 ha/l e 244,95 ha/t; Campo Belo – 8,28 ha/l e 133,95 ha/t e Oliveira – 10,96 ha/l e 248,77 ha/t.

2.2.7 Vale do Rio Doce⁴⁵

Com um relevo variando entre montanhoso e plano a mesorregião Vale do Rio Doce é banhada por importantes rios tais como Rio Doce (o qual da nome a região), Suaçuí Grande e Suaçuí Pequeno além de pequenos córregos e ribeirões. Segundo IBGE (2010, C), a população dessa região era a quinta maior do estado (1.620.993 habitantes) o que equivalia a 8,27% da estadual. Uma vez que a área abrangida é igual a 41.809,873 km² a densidade demográfica foi 38,8 hab/km² (sexta maior densidade do estado). O PIB *per capita* ocupou a 6ª posição entre as mesorregiões mineiras e totalizou R\$ 5.699,75 (IBGE 2007). Conforme IPEA (1991), a microrregião melhor classificada no *ranking* estadual de IDH foi Ipatinga que ocupou a 21ª posição e que apresentou um índice de 0,686. Por sua vez, Governador Valadares, o município mais importante da região, empatou com São João del-Rei e ficou na 32ª posição, com 0,635 de índice. Pela Figura 6 nota-se que a agricultura é dependente de irrigação. Uma vez que os níveis de precipitação não são suficientes para repor a perda d'água do solo por meio do processo de evapotranspiração causando um déficit no extrato do balanço hídrico mensal praticamente durante todo o ano.

Figura 6 – Extrato do balanço hídrico da mesorregião Vale do Rio Doce **Fonte:** http://www.bdclima.cnpm.embrapa.br.

_

⁴⁵ A mesorregião Vale do Rio Doce é formada pela união de 102 municípios, o quarto maior número de cidades que compõem uma região de Minas Gerais, que estão agrupados em sete microrregiões (Aimorés, Caratinga, Governado Valadares, Guanhães, Mantena, Peçanha e Ipatinga).

As mesorregiões vizinhas a essa são Jequitinhonha, Metropolitana de Belo Horizonte, Vale do Mucuri e Zona da Mata. E por está na divisa de Minas Gerais com o Espírito Santo ainda tem como mesorregiões limítrofes a Noroeste Espírito-Santense e Central Espírito-Santense. Predominam solos do tipo latossolo amarelo⁴⁶ (latossolo amarelo) e podzólico vermelho-escuro⁴⁷ (argissolo vermelho). Solos latossolo amarelo caracterizam-se por terem baixa fertilidade e por isso mesmo limitando o aproveitamento agrícola desses. Para o podzólico vermelho-escuro a caracterização encontra-se na mesorregião Zona da Mata.

A atividade agrícola na Vale do Rio Doce ocupou uma área total de 290.470 ha cuja repartição entre lavouras temporárias e permanentes foi 225.284 ha para aquela e 65.192 ha para essa (IBGE 2006). Sendo café e milho as lavouras que mais ocuparam hectares da área de agricultura da mesorregião. Segundo IBGE (2010, A), os cafezais abrangeram 79.912 ha enquanto as culturas de milho 57.928 ha. Por sua vez, em relação ao total de área estadual dedicada ao plantio de café, a participação da mesorregião Vale do Rio Doce foi 7,79%. Para os demais produtos, mas também considerando a área estadual de cada cultura, têm-se: mandioca 5,89%; milho 4,86%; feijão 4,43% e cana-de-açúcar 1,61%. Com relação ao plantio de grãos de soja não houve registro dessa lavoura na região em análise, ou seja, nenhuma microrregião inserida na Vale do Rio Doce cultivou soja 48.

Segundo IBGE (2006), o efetivo bovino da região em questão era composto por 193.726 cabeças de gado de corte e 1.674.572 animais de aptidão leiteira, logo, totalizou 1.868.298 bovinos. A área ocupada pela pecuária tanto de corte quanto a leiteira foi igual a 1.824.001 ha, uma superioridade de 527,95% sobre a agrícola. O abatimento de reses totalizou 30.702 cabeças e de vacas ordenadas 364.071 animais. Destarte, as respectivas participações na produção estadual foram 9,49% e 11,44%. Todavia, o rebanho de corte da região representava 8,63% e o leiteiro 9,48% do estadual⁴⁹. Os valores para a intensidade tecnológica da mesorregião Vale do Rio Doce foram 14,5 ha/l e 1.116,1 ha/t⁵⁰.

-

⁴⁶ Com participação percentual de 1,16% da superfície do estado ocupam uma área de 683.319 ha.

⁴⁷ Idem à nota de rodapé 18.

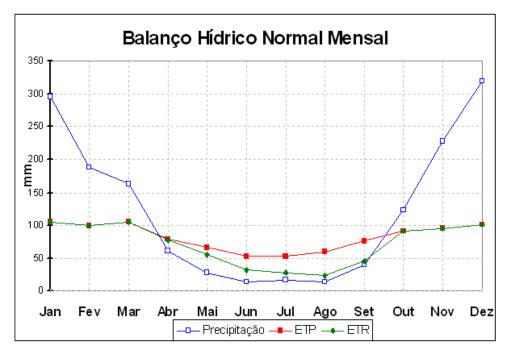
⁴⁸ Mantendo como ponto analítico o total da área estadual para cada lavoura agora se avalia as participações das microrregiões a nível estadual cujos resultados foram: Aimorés – café 2,77%; Caratinga – café 3,14%; Governador Valadares – mandioca 2,17%; Guanhães – milho 0,67%; Ipatinga – mandioca 0,34%; Mantena – café 1,39% e Peçanha – milho 1,03%.

As participações percentuais individuais de cada microrregião na produção estadual foram respectivamente: Guanhães – 0,99% e 1,44%; Peçanha – 0,85% e 1,39%; Governador Valadares – 4,28% e 3,21%; Mantena – 0,51% e 0,78%; Ipatinga – 0,51% e 0,55%; Caratinga – 0,80% e 1,17%; e Aimorés – 1,56% e 2,90%.

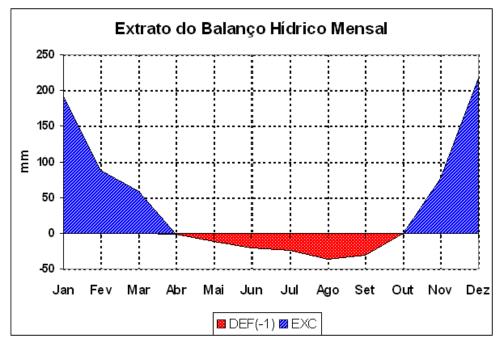
Por sua vez, os resultados para essas razões de cada uma das microrregiões pertencentes a região em estudo foram: Guanhães – 14,2 ha/l e; 999,5 ha/t; Peçanha – 14,2 ha/l e 1.963,6 ha/t; Governador Valadares – 24,9 ha/l e 1.109,0 ha/t; Mantena – 13,5 ha/l e 3.772,4 ha/t; Ipatinga – 10,0 ha/l e 1.741,9 ha/t; Caratinga – 6,6 ha/l e 730,9 ha/t e Aimorés – 19,1 ha/l e 937,2 ha/t.

2.2.8 Metropolitana de Belo Horizonte⁵¹

Segundo IPEA (1991), com um índice de 0,780, Belo Horizonte é a melhor microrregião, da supracitada região, no *ranking* estadual de IDH ocupando a 3ª posição. A temperatura, conforme a Embrapa Clima, é amena e cuja amplitude térmica é de 5,1 °C, haja visto que o menor valor é 18,1 °C (julho) e o maior é 23,2 °C (fevereiro). Os valores médios de temperatura, precipitação e altitude são respectivamente 21,1 °C, 124 mm e 850 m. Os meses de dezembro, janeiro e fevereiro são os mais chuvosos e, portanto, o regime pluviométrico da região restringe-se a três meses. Percebe-se pela Figura 7, que entre os meses de abril e setembro o processo de evapotranspiração é superior ao de precipitação e consequentemente ocasionando uma deficiência hídrica no solo da região, o que pode ser observado na Figura 8. O relevo é acidentado com formação de serras. Essa região caracteriza-se por não ser banhada por nenhum grande rio.


Conforme a Embrapa Solos, os tipos de solos que ocorrem na Metropolitana de Belo Horizonte são latossolo ferrífero⁵² (latossolo vermelho perférrico), solos litólicos⁵³ (neossolos litólicos) e afloramentos rochosos⁵⁴ (afloramentos rochosos). Os solos latossolo ferrífero são de difícil aproveitamento agrícola, pois possuem baixa fertilidade natural e ocorrem em área de exploração mineral. Com profundidade exígua e frequente presença de rochosidade e pedregosidade os solos litólicos, assim como o latossolo ferrífero, são de difícil aproveitamento agrícola. Quanto aos afloramentos rochosos a grande presença de rochas brandas ou duras, descobertas ou com uma reduzida cobertura de materiais em decomposição de caráter heterogêneo também dificultam o uso agrícola dessas terras.

⁵¹ Com 105 cidades agrupadas em oito microrregiões (Sete Lagoas, Conceição do Mato Dentro, Pará de Minas, Belo Horizonte, Itabira, Itaguara, Ouro Preto e Conselheiro Lafaiete) têm-se a mesorregião Metropolitana de Belo Horizonte.


⁵² Ocorrem em 46.010 ha o que equivale a aproximadamente 0,08% da superfície do estado.

⁵³ Com aproximadamente 7,80% da superfície do estado abrangem 4.573.725 ha.

⁵⁴ Ocupam, no estado mineiro, uma área de 403.757 ha perfazendo 0,69% do território dessa unidade federativa.

Figura 7 – Balanço hídrico normal da Metropolitana de Belo Horizonte **Fonte:** http://www.bdclima.cnpm.embrapa.br.

Figura 8 – Extrato do balanço hídrico da Metropolitana de Belo Horizonte **Fonte:** http://www.bdclima.cnpm.embrapa.br.

Embora a economia da mesorregião em análise não esteja fortemente alicerçada na agropecuária os valores para esse setor no ano de 2006 foram expressivos. Segundo IBGE (2006), as lavouras temporárias ocuparam uma área de 313.347 ha enquanto as permanentes abrangeram 59.920 ha. Destarte, foram utilizados 373.267 ha para o cultivo das lavouras. Com uma ocupação de 50.526 ha o milho foi a cultura que utilizou a maior porção de terras dessa região, 50,03% (IBGE 2010, A). Entretanto, quando se considera a área estadual utilizada por cada cultivo, a mandioca foi a lavoura com maior expressão na produção estadual, 6,11%. Para as demais lavouras os resultados, em ordem decrescente, foram: feijão 4,41%; milho 4,24%; cana-de-açúcar 1,59%; café 0,31% e soja 0,05% ⁵⁵.

O número de bovinos que havia na Metropolitana de Belo Horizonte era 1.077.263 cabeças sendo que o número de reses era de 111.944 animais e de vacas leiteiras 965.319 (IBGE 2006). Com esses resultados a participação de cada uma das atividades no rebanho do estado foi respectivamente 4,99% e 5,46%. A área utilizada na bovinocultura correspondeu a 961.689 ha. O abatimento de reses totalizou 21.179 cabeças e o de vacas ordenadas 228.279. Significando respectivamente 6,55% e 7,18% da produção estadual⁵⁶. A mesorregião Metropolitana de Belo Horizonte apresentou os seguintes resultados para o cálculo da intensidade tecnológica: 13,9 ha/1 e 351,9 ha/t⁵⁷.

2.2.9 Central Mineira⁵⁸

Segundo a Embrapa Clima, as médias de temperatura e precipitação dessa região são 22,1 °C e 102 mm, respectivamente. A evapotranspiração potencial entre os meses de abril e setembro supera a precipitação. Sendo assim, nesses meses o extrato do balanço hídrico mensal apresentam resultados negativos evidenciando a escassez de água no solo e a necessidade da irrigação como complemento a precipitação natural. A Central Mineira possui

_

⁵⁵ Ainda considerando a área estadual de cada lavoura, mas em relação às microrregiões, as participações foram: Belo Horizonte – mandioca 0,34%; Conceição do Mato Dentro – mandioca 1,91%; Conselheiro Lafaiete – feijão 1,37%; Itabira – 0,75%; Itaguara – mandioca 1,61%; Ouro Preto – feijão 0,44%; Pará de Minas – mandioca 0,57% e Sete Lagoas – 0,81%.

Para as microrregiões, em relação à produção estadual, obteve-se os seguintes resultados: Sete Lagoas – 1,68% e 1,77%; Conceição do Mato Dentro – 0,68% e 1,09%; Pará de Minas – 0,49% e 0,72%; Belo Horizonte – 0,90% e 0,69%; Itabira – 1,38% e 1,23%; Itaguara – 0,65% e 0,78%; Ouro Preto – 0,19% e 0,19%; Conselheiro Lafaiete – 0,56% e 0,71%.

Para cada uma das microrregiões a intensidade tecnológica foi: Sete Lagoas – 20,5 ha/l e 325,6 ha/t; Conceição do Mato Dentro – 11,5 ha/l e 1.146,9 ha/t; Pará de Minas – 17,7 ha/l e 180,9 ha/t; Belo Horizonte – 15,7 ha/l e 192,6 ha/t; Itabira – 16,0 ha/l e 905,6 ha/t; Itaguara – 7,0 ha/l e 284,8 ha/t; Ouro Preto – 11,3 ha/l e 512,2 ha/t e Conselheiro Lafaiete – 7,7 ha/l e 247,2 ha/t.

As microrregiões de Bom Despacho, Curvelo e Três Marias, resultantes do agrupamento de trinta municípios, compõem a mesorregião Central Mineira.

uma área total de 31.751,901 km² e conforme IBGE (2010, C) havia uma população total de 412.712 habitantes resultando em uma densidade demográfica 13,0 hab/km² (terceira menor densidade de Minas Gerais)⁵⁹. A mesorregião em análise está inscrita apenas por mesorregiões mineiras e que totalizam seis regiões limítrofes à Central Mineira (Jequitinhonha, Metropolitana de Belo Horizonte, Noroeste de Minas, Norte de Minas, Oeste de Minas e Triângulo Mineiro/Alto Paranaíba).

A Central Mineira é a mesorregião do estado que apresenta a maior ocorrência de tipos distintos de solos entre todas as regiões mineiras, ao todo são 11 (onze) os tipos de solos, conforme Embrapa Solos. Esses são: areias quartzosas hidromórficas⁶⁰ (neossolos quartzarênicos hidromóficos), solos aluviais⁶¹ (neossolos flúvicos), hidromórfico cinzento⁶² (planossolo), glei húmico⁶³ (gleissolo melânico), glei pouco úmido⁶⁴ (gleissolo háplico), (vertissolo), areias quartzolas⁶⁶ (neossolos quartzarênicos), podzol⁶⁷ vertissolo⁶⁵ (espodossolo), cambissolo⁶⁸ (cambissolo), planossolo solódico⁶⁹ (planossolo háplico) e plintossolo⁷⁰ (plintossolo). Os solos do tipo areias quartzosas hidromórficas caracterizam-se por possuírem baixa fertilidade natural e uma drenagem ruim dificultando o aproveitamento agrícola. Os solos aluviais são de difícil utilização agrícola, pois em alguns casos há ocorrência de inundações periódicas sendo prejudicial para culturas não acostumadas ao hidromorfismo. A caracterização dos solos hidromórfico cinzento encontra-se na mesorregião Noroeste de Minas. Em função da necessidade de haver uma drenagem intensa para as culturas não adaptadas ao hidromorfismo limitam ao uso agropecuário dos solos glei húmico e glei pouco húmico. Com alta erodibilidade e devido às características físicas do solo vertissolo dificultam o uso agropecuário desse. Como fator limitante ao uso agrícola dos solos do tipo areias quartzolas destaca-se a baixa fertilidade natural desse. Os podzol já foram caracterizados na mesorregião Sul/Sudoeste de Minas. Os cambissolo têm pouca profundidade, uma fase cascalhenta ou pedregosa e uma baixa fertilidade natural o que

_,

⁷⁰ Idem à nota de rodapé 12.

⁵⁹ Para as microrregiões os resultados foram respectivamente os seguintes: Bom Despacho – 7.493,543 km², 165.172 habitantes e 22,0 hab/km², Curvelo – 13.749,120 km², 150.701 habitantes e 11,0 hab/km² e Três Marias – 10.509,238 km², 96.839 habitantes e 9,2 hab/km².

Ocupa 59.215 ha que correspondem aproximadamente a 0,10% da superfície do estado.

⁶¹ Com aproximadamente 1,45% do território de Minas Gerais abrange uma área de 851.250 ha.

⁶² Idem à nota de rodapé 13.

⁶³ Ocorre em 22.881 ha do estado equivalendo a 0,04% das terras desse.

⁶⁴ Abrange 296.686 ha totalizando 0,51% da superfície de Minas Gerais.

⁶⁵ Ocupa 3.295 ha equivalentes a aproximadamente 0,01% do território mineiro.

 $^{^{66}}$ Com uma área de abrangência igual a 1.961.080 ha correspondendo a 3,34% das terras de Minas Gerais.

⁶⁷ Idem à nota de rodapé 11.

⁶⁸ Com 17,84% de ocorrência no estado abrange uma área de 10.464.483 ha.

⁶⁹ Abrangendo 3.539 ha o que representa 0,01% da superfície do estado.

limitam o aproveitamento agrícola desses. Ao apresentarem elevados teores de sódio, uma consistência dura ou muito dura quando seco e uma alta susceptibilidade à erosão dificulta a utilização para agricultura dos solos planossolo solódico. Por último, os solos plintossolo encontram-se caracterizados na região Sul/Sudoeste de Minas.

Conforme IBGE (2006), o total de área utilizada com a atividade agrícola na mesorregião Central Mineira foi de 384.480 ha. Sendo 356.739 ha de lavouras temporárias e 27.741 ha de lavouras permanentes. Com 43.850 ha e 42.123 ha, respectivamente, o milho e a cana-de-açúcar foram as duas culturas que utilizaram a maior porção da área agrícola da região e cujas participações percentuais foram 43,88% e 42,15% respectivamente (IBGE 2010, A). Por sua vez, as participações de cada uma das culturas da mesorregião em relação ao total de área dessas lavouras em nível estadual foram: cana-de-açúcar 5,78%; milho 3,68%; mandioca 3,13%; feijão 1,25%; soja 0,25% e café 0,04% 71.

Com a bovinocultura utilizou-se 1.146.235 ha o que equivale a 198,13% de superioridade em relação à agricultura (IBGE 2006). O número de cabeças era composto por 1.080.804 animais sendo que desse total, 82.492 cabeças eram de animais para corte e o restante, 998.312 cabeças, eram gado leiteiro. Ou seja, esse é 1.110,19% superior àquele. O número total de cabeças abatidas em Minas Gerais foi de 323.527 e, por sua vez, na Central Mineira foi de 20.832 reses. Destarte, essa região teve uma participação percentual na produção do estado de aproximadamente 6,44%, entretanto, o efetivo de gado de corte dessa região representava 3,67% do rebanho mineiro. Para a pecuária leiteira, os resultados foram os seguintes; 180.725 vacas ordenhadas o que equivale a 5,68% da produção estadual e 5,65% do rebanho estadual de gado leiteiro 72. O cálculo da intensidade tecnológica foi realizado dividindo-se a área total empregada na agropecuária pelo total de pessoas ocupadas nos estabelecimentos (ha/1) e pelo número de tratores existentes nos estabelecimentos (ha/t). Para aquele o resultado da mesorregião Central Mineira foi 46,5 ha/1 enquanto para esse foi 517,3 ha/t⁷³.

_

Para as três microrregiões, esse percentual da área de cada lavoura da microrregião em relação ao total estadual da mesma cultura foram: Bom Despacho – cana-de-açúcar 3,51%; Curvelo – milho 1,17% e Três Marias – cana-de-açúcar 1,82%.

Com relação às microrregiões têm-se que os percentuais em relação à produção estadual foram respectivamente: Bom Despacho – 1,43% e 2,71%; Curvelo – 3,53% e 1,24% e Três Marias – 1,48% e 1,74%.


Já para as microrregiões os valores foram respectivamente: Bom Despacho – 43,3 ha/l e 395,0 ha/t; Curvelo – 39,2 ha/l e 595,7 ha/t e Três Marias – 59,2 ha/l e 589,2 ha/t.

2.2.10 Campo das Vertentes⁷⁴

Trata-se de uma região de clima ameno e que, conforme a Embrapa Clima, possui temperatura e precipitação médias de 18,0 °C e 120,0 mm, respectivamente, e cuja altitude média é de 1.126 m. O regime pluviométrico da região caracteriza-se por um período chuvoso de seis meses, de outubro a março, coincidindo com o período mais quente, e com precipitação média de 199,8 mm. Por outro lado, o período de abril a setembro é o de menor precipitação e cuja média é de 39,7 mm. O regime térmico é caracterizado por uma temperatura entre 14,7 °C, em julho, e 20,6 °C, em fevereiro. Essa região é conhecida por possuir um revelo montanhoso e também pelo número expressivo de rios que nascem e correm fluentemente nessas terras, daí o nome Campo das Vertentes, e que contribuem para a formação de dois grandes rios de âmbito nacional, São Francisco e Paraíba do Sul, e um de âmbito internacional, Paraná.

Nota-se pela Figura 9 que os períodos de excedente e de retirada hídrica coincidem, respectivamente, com os períodos de maior e menor precipitação e que a reposição se da nos meses de setembro e outubro, principalmente em outubro, que é justamente o mês de início do período chuvoso. A taxa anual da evapotranspiração potencial dessa mesorregião é de 816 mm e por sua vez a taxa anual da precipitação é de 1.437 mm. Sendo que nos meses de maio, junho, julho e agosto a evapotranspiração é superior à precipitação e por isso mesmo nesse período o extrato do balanço hídrico mensal para a Campo das Vertentes é deficiente. Ou seja, essa é uma época em que há retirada de água do solo tanto por meio da evaporação da água direto do solo quanto pela transpiração das plantas.

⁷⁴ A mesorregião Campo das Vertentes compõe-se por três microrregiões, Barbacena, Lavras e São João del-Rei, totalizando 36 municípios.

Figura 9 – Balanço hídrico normal mensal Campo das Vertentes **Fonte:** http://www.bdclima.cnpm.embrapa.br.

Segundo a Embrapa Solos, o solo da mesorregião Campo das Vertentes é composto por dois tipos distintos, solos litólicos⁷⁵ (neossolos litólicos) e afloramentos rochosos⁷⁶(afloramentos rochosos). Em ambos os tipos há limitações para o aproveitamento agrícola dessa região. Naquele os fatores que dificulta o uso para agricultura é a pouca profundidade do solo e a existência de rochas e pedregosidade. Os afloramentos rochosos estão caracterizados na mesorregião Metropolitana de Belo Horizonte.

Dados de IBGE (2006) demonstram que o total de hectares utilizados na produção agrícola da mesorregião em análise foi de 128.009 ha, sendo 21.176 ha com lavoura permanente e 106.833 ha com temporária. Desse total a cultura com maior área utilizada foi milho, 53.292 ha, o que representou 45,90% de toda a área (IBGE 2010, A). Já as participações em termos estaduais em ordem decrescente foram as seguintes: feijão 5,52%, milho 4,47%, café 2,52%, mandioca 0,79%, cana-de-açúcar 0,38% e soja 0,21% ⁷⁷.

Ainda segundo IBGE (2006), para a atividade pecuária o total de área utilizada na mesorregião Campo das Vertentes foi de 353.420 ha. Destarte, a área dedicada à pecuária na

_

⁷⁵ Há ocorrência em todo o estado de Minas Gerais abrangendo uma área de 4.573.725 ha que corresponde 7,80% da superfície do estado.

⁷⁶ Idem a nota de rodapé 23.

Por sua vez, os resultados em termos estaduais por microrregião foram respectivamente: Barbacena (26.672 ha) feijão 1,87%; Lavras (42.749 ha) café 2,20% e São João del-Rei (46.677 ha) feijão 2,79%. Os valores entre parênteses representam a área total em cada microrregião que foi dedicada a produção agrícola. Importante ressaltar que nas microrregiões Barbacena e Lavras não houve plantio de soja.

supracitada mesorregião foi superior em 176,09% à empregada na agricultura para a mesma região. O efetivo da pecuária de corte era composto por 27.744 cabeças e o leiteiro por 347.681 animais, totalizando um rebanho de 375.425 bovinos. O número de animais abatidos foi de 6.936 e o de vacas ordenhadas de 116.941. Com esses valores, a participação do Campo das Vertentes no total estadual foi respectivamente de 2,14% e 3,68% ⁷⁸. Para mesorregião em questão os valores para a intensidade tecnológica foram 11,9 ha/l e 153,5 ha/t⁷⁹.

2.2.11 Jequitinhonha⁸⁰

É sabido que a mesorregião Jequitinhonha ou como é mais conhecida, Vale do Jequitinhonha, possui baixos indicadores sociais. Por exemplo, entre as cinco microrregiões, que compõem a Jequitinhonha, Diamantina obteve o melhor IDH; 0,565; mas ficou apenas com a 45^a posição no ranking estadual das microrregiões (IPEA 1991). Foi também para essa região de Minas Gerais que houve o maior número de transferências, em termos proporcionais, de renda do governo federal por meio do programa bolsa família (MDS 2010). Ao todo haviam 83.346 bolsas famílias na região e uma vez que a população dessa era de 699.413 habitantes (IBGE 2010, C) isso perfez 0,12 bolsas famílias per capita. Sendo a maior razão entre as 12 (doze) mesorregiões mineiras. Também está nessa região a menor renda per capita do estado, R\$ 2.261,10 (IBGE 2007). Esses dados corroboram a percepção de que os piores indicadores sociais de Minas Gerais encontram-se nessa região. Segundo a Embrapa Clima, entre os meses de maio a setembro devido a pouca precipitação e a elevada evapotranspiração o extrato de balanço hídrico mensal fica negativo. O período de reposição da água do solo ocorre nos meses de outubro e novembro e nos meses seguintes (dezembro, janeiro, fevereiro, março e abril) há excedente. Os valores médios de temperatura e precipitação são, respectivamente, 18,1 °C e 117 mm. Por sua vez, a altura média da região é de 1.296 m.

As mesorregiões que circunscrevem a região em análise são compostas por seis mineiras (Central Mineira, Metropolitana de Belo Horizonte, Norte de Minas, Vale do Mucuri e Vale do Rio Doce) e duas da Bahia (Centro-Sul Baiano e Sul Baiano). Segundo a Embrapa

-

⁷⁸ Para as três microrregiões os resultados foram como se segue: Barbacena (104.116) 0,61% e 1,02%; Lavras (109.153) 0,43% e 0,99% e São João del-Rei (162.156) 1,10% e 1,66%. Os valores dentro dos parênteses são os efetivos de bovinos em cada uma das microrregiões.

Para as microrregiões têm-se os seguintes resultados: Barbacena – 7,3 ha/l e 131,4 ha/t; Lavras – 13,9 ha/l e 129,8 ha/t e São João del-Rei – 15,9 ha/l e 199,6 ha/t.

⁸⁰ A mesorregião Jequitinhonha é formada pela união de 51 municípios agrupados em cinco microrregiões: Almenara, Araçuaí, Capelinha, Diamantina e Pedra Azul.

Solos, o solonetz solodizado⁸¹ (planossolo nátrico) é o tipo de solo que ocorre nessa região. Esse tem como fator limitante ao uso agrícola dessa superfície do estado a alta susceptibilidade à erosão e à seca, uma drenagem deficiente e características físicas desfavoráveis à mecanização.

Com 398,30% de superioridade, conforme IBGE (2006), as lavouras temporárias ocuparam uma área correspondente a 327.792 ha enquanto as culturas permanentes 65.782 ha, isto é, um total de 393.573 ha. Desse as plantações de café, segundo IBGE (2010, A), ocuparam 25.838 ha o que representou 30,69% de toda área dedicada à agricultura na mesorregião. Entretanto, as participações de cada cultura, na área estadual utilizada para o mesmo cultivo, foram: mandioca 16,42%; feijão 3,60%; café 2,52%; milho 1,74% e cana-deaçúcar 1,16% ⁸².

A atividade pecuária ocupou uma área correspondente a 1.626.765 ha o que equivale a uma superioridade em relação à agrícola de 313,33% (IBGE 2006). O rebanho de gado de corte e leiteiro eram, respectivamente, 138.541 reses (6,17%) e 898.204 cabeças (5,08%). Os valores entre parênteses expressam o percentual em relação ao rebanho estadual. O número de animais abatidos foi de 11.905, o que resultou em 3,68% do total de cabeças estaduais abatidas e a quantidade de vacas ordenhadas foi 116.238 resultando 3,65% do estadual⁸³. As razões da área total da agropecuária pelo número de pessoal ocupado nos estabelecimentos e pelo número de tratores existentes nos estabelecimentos, isto é, a intensidade tecnológica, para a região Jequitinhonha foram: 16,1 ha/l e 1.772,6 ha/t. Ou seja, cada trabalhador era responsável por 16,1 ha e cada trator por 1.772,6 ha⁸⁴.

2.2.12 Vale do Mucuri⁸⁵

O nome Vale do Mucuri se deu pelo fato do vale dessa região ser cortado pelo Rio Mucuri. A economia da região está baseada na exploração de pedras preciosas (na região de

81 Ocupa 11.716 ha o que equivale a aproximadamente 0,02% da superfície do estado.

⁸² Considerando como referencial o total da área empregada por cada cultura a nível estadual tem-se que as participações das microrregiões foram: Almenara – mandioca 6,82%; Araçuaí – mandioca 3,36%; Capelinha – mandioca 2,61%; Diamantina – feijão 0,55% e Pedra Azul – mandioca 3,16%.

Para as microrregiões têm-se as seguintes participações em relação ao resultado estadual, respectivamente: Diamantina – 0,34% e 0,18%; Capelinha – 1,25% e 0,71%; Araçuaí – 0,88% e 0,73%; Pedra Azul – 0,25% e 0,37% e Almenara – 0,95% e 1,66%.

Para as microrregiões inseridas na mesorregião em estudo os valores foram: Diamantina – 12,9 ha/l e 1.142,9 ha/t; Capelinha – 8,4 ha/l e 788,0 ha/t; Araçuaí – 11,2 ha/l e 2.716,3 ha/t; Pedra Azul – 25,3 ha/l e 2.184,1 ha/t e Almenara – 35,9 ha/l e 3.157,7 ha/t.

Essa região é constituída por duas microrregiões (Teófilo Otoni e Nanuque) e que por sua vez essas resultam da união de 51 municípios.

Teófilo Otoni), pecuária e agricultura. Conforme a Embrapa Clima, é uma região que apresenta uma altitude média de 356m; temperatura média de 22,4 °C e precipitação média de 1.059 mm. O regime térmico caracteriza-se por uma temperatura mínima de 19,5 °C em julho e máxima de 24,9 °C em março. Por sua vez, o regime pluviométrico compreende um período chuvoso nos meses de outubro, novembro, dezembro e janeiro e um seco nos demais meses. Sendo que janeiro é o mês com maior índice de precipitação (165 mm) e junho o menor (20 mm). Dessa forma, a deficiência hídrica ocorre entre os meses de abril a setembro sendo que naquele é de -14 mm e nesse -41 mm. O relevo dessa região é de forte ondulado a montanhoso com áreas de baixadas intercaladas.

Segundo a Embrapa Solos, os tipos de solos predominantes dessa região são podzólico amarelo⁸⁶, podzólico vermelho-amarelo⁸⁷ e hidromórfico cinzento⁸⁸. Os solos do tipo podzólico amarelo são álicos (alta saturação por alumínio trocável) constituindo numa limitação para o aproveitamento agrícola desses. Os solos do tipo podzólico vermelho-amarelo estão caracterizados na mesorregião Sul/Sudoeste de Minas enquanto as dos hidromórfico cinzento encontra-se na Noroeste de Minas.

Segundo IBGE (2006), todas as atividades da agropecuária da Vale do Mucuri ocuparam uma área total de 1.219.592 ha. Sendo que as lavouras temporárias e permanentes utilizaram 12,16% desse total. Foram 112.805 ha com as culturas temporárias e 36.204 com as permanentes. Os canaviais foram a cultura que abrangeu a maior superfície dessa região, 10.799 ha (IBGE 2010, A), o que representou 32,46% das terras agrícolas. Contudo, a cultura com o maior percentual de participação no total estadual, em relação a área ocupada por cada cultura no estado, foi mandioca que obteve 4,26%. Os resultados para as demais culturas foram: cana-de-açúcar 1,48%; feijão 1,26%; café 0,75% e milho 0,41%. Destaca-se que nessa região não houve o plantio de soja⁸⁹.

Dos 1.219.592 ha utilizados pela agropecuária a bovinocultura utilizou 82,21% dessa área, ou seja, 1.002.593 ha (IBGE 2006). O rebanho de corte era de 87.372 reses enquanto o leiteiro era composto por 917.415 cabeças. Com esses valores depreende-se que o efetivo total era de 1.004.787 animais. Para o ano de 2006 foram abatidas 13.460 cabeças representando uma participação na produção estadual de 4,16% (o rebanho da região correspondia a 3,89% do estadual) e foram ordenhadas 145.833 vacas o que resulta em 4,58% da produção estadual

⁸⁶ Abrange uma área de 32.708 ha o que equivale a aproximadamente 0,06% do território do estado.

Para as microrregiões, em relação a área para cada cultura a nível de estado, foram: Nanuque – mandioca 2,08% e Teófilo Otoni – mandioca 2,18%.

⁸⁷ Idem à nota de rodapé 10.

⁸⁸ Idem à nota de rodapé 13.

(o efetivo leiteiro da Vale do Mucuri representava 5,20% do estado)⁹⁰. O grau de intensidade tecnológica, que capta quantos hectares estava sob "os cuidados" de um trabalhador ou de um trator, para o Vale do Mucuri, foram 23,7 ha/l e 1.526.4 ha/t⁹¹.

Tabela 3 – Intensidade tecnológica das mesorregiões mineiras

Mesorregiões	Intensidade tecnológica	
	hectares/trabalhadores	hectares/tratores
Triângulo Mineiro/Alto Paranaíba	31,71	235,87
Sul/Sudoeste de Minas	8,22	112,54
Noroeste de Minas	61,09	547,06
Zona da Mata	7,49	522,15
Norte de Minas	19,74	998,40
Oeste de Minas	14,62	227,73
Vale do Rio Doce	14,50	1.116,10
Metropolitana de Belo Horizonte	13,90	351,90
Central Mineira	46,50	517,30
Campo das Vertentes	11,90	153,50
Jequitinhonha	16,10	1.772,60
Vale do Mucuri	23,70	1.526,40

Fonte: elaboração própria com base em IBGE (2006).

Conforme a caracterização realizada acima a Zona da Mata é uma região montanhosa que apresenta um solo fértil com bom potencial produtivo tendo como principal produto agrícola o café que na maioria das vezes são cultivados nas encostas dos morros através da técnica de nível. Desse modo, por possuir um relevo rugoso com altos morros que dificulta a mecanização dos cafezais o serviço dessa atividade na grande maioria das vezes é realizado utilizando-se trabalho braçal. Nota-se pela Tabela 3 que nessa região estava a menor taxa de intensidade tecnológica corroborando com esse quadro estrutural, pois de acordo com IBGE (2006) haviam 296.441 pessoas ocupadas nos estabelecimentos rurais da Zona da Mata minimizando assim o índice de intensidade tecnológica hectares/trabalhadores sob os cuidados de uma única pessoa. Assim como a Zona da Mata a mesorregião Sul/Sudoeste de Minas apresenta um relevo desfavorável à agricultura, conforme caracterização acima, dificultando a mecanização das culturas de café, dessa forma, também é uma região que

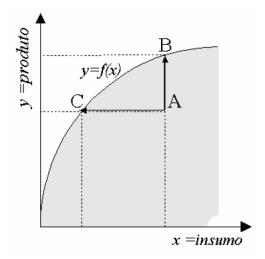
⁹⁰ Respectivamente, os resultados para as microrregiões foram: Teófilo Otoni – 2,73% e 2,44% e Nanuque – 1,43% e 2,14%.

⁹¹ Para as microrregiões o grau de intensidade tecnológica foi: Teófilo Otoni – 17,5 ha/l e 1.391,1 ha/t e Nanuque – 42,0 ha/l e 1.736,5 ha/t.

emprega muitas pessoas nas atividades agrícolas e sendo assim possui a segunda menor razão hectares/trabalhadores, segundo a Tabela 3.

Importante salientar que o baixo valor de hectares sob os cuidados de um único trator na Sul/Sudoeste de Minas, conforme Tabela 3, pode-se justificar pela utilização desses nas demais atividades agrícolas que são cultivadas em áreas mais planas da região. Por exemplo, as culturas de milho que utilizam uma mecanização mais intensa comparada aos cafezais e que nessa região representaram 18,71% de toda a área do estado dedicada às culturas de milho. Na caracterização da região Jequitinhonha destacou-se a dificuldade de mecanização dessa região devido aos aspectos físicos do solo. Fato que se refletiu na taxa de intensidade tecnológica hectares/tratores que indicou que haviam 1.772,6 hectares sob os cuidados de apenas um trator nessa região.

3 REVISÃO BIBLIOGRÁFICA


O objetivo desta seção é apresentar e discutir as teorias e os conceitos que irão alicerçar o desenvolvimento deste trabalho. Desse modo, uma vez que esse objetiva compreender o processo de produção agropecuário dos municípios mineiros bem como mensurar a eficiência econômica através da estimação econométrica e da programação matemática de fronteiras de produção serão apresentados e discutidos as abordagens paramétricas e não-paramétricas para se calcular as eficiências econômicas.

3.1 CONCEITOS DE EFICIÊNCIA

Souza, Gomes, Gazzola et al. (2008), argumentam que se os desvios em relação à fronteira, isto é, à produção ótima, são ocasionados por ineficiência técnica a abordagem DEA, que é definida por problemas de programação linear, funciona bem. Contudo, nos modelos de fronteira estocásticas os desvios em relação ao nível de produção ótimo podem se dar tanto em função dos erros aleatórios quanto em função dos erros de eficiência o que afetará a variável resposta. Para Conceição (2004), uma vez que, no modelo de fronteira estocástica o termo de erro é composto por dois componentes, essa metodologia representa um avanço em relação à fronteira determinística. Um dos componentes é o termo de erro simétrico que é comum a todos os produtores e que capta os choques aleatórios, ou seja, os choques fora do controle dos agentes, além dos efeitos de erros de medida e outros "ruídos" estatísticos; o outro termo de erro é assimétrico (unilateral, unicaudal) captando os efeitos da ineficiência em relação à fronteira estocástica. Por enquanto, ainda não existe no meio acadêmico um consenso de qual dos dois métodos é o mais apropriado para a estimação da fronteira de produção. Coelli e Battese (1996), o modelo de fronteira de produção estocástica geralmente é o preferido na literatura de economia agrícola. Segundo Moreira e Fonseca (2005), devido ao fato dos dois métodos utilizados na análise da ineficiência dos produtores, Análise da Fronteira Estocástica (SFA) e da Análise Envoltória de Dados (DEA), utilizarem abordagens complementares torna difícil o exercício de comparação entre essas duas metodologias, ainda mais quando é admitido um componente estocástico nos dados. O DEA utiliza-se de uma abordagem não-paramétrico que considera que qualquer desvio em relação à fronteira se da em função da ineficiência do produtor, isto é, ignora o ruído contido no dado e supõe apenas a concavidade da função de produção, enquanto os modelos SFA admitem a existência de choques aleatórios que estão fora do controle do produtor (ou seja, assume a presença de um erro estocástico na formulação do modelo), mas depende da especificação do formato da função de produção. Ainda conforme esses autores, apesar dessa dificuldade inicial é possível a comparação dessas metodologias, para isso, basta utilizar uma mesma amostra de dados, para qual se conhecem os verdadeiros valores da produtividade, e aplica-la aos dois métodos, observando os erros cometidos por cada um dos modelos. Deve-se ressaltar que os estudos de funções de produção fronteira partem do princípio da não eficiência dos produtores, contudo, neste trabalho considera-se que os produtores estão sobre a fronteira de produção, ou seja, são tecnicamente eficientes.

Farrell (1957) introduziu a discussão sobre uma técnica capaz de mensurar a eficiência de uma atividade produtiva qualquer baseada na decomposição em dois componentes; um técnico e outro alocativo. Sendo que a fronteira isoquanta unitária, ou seja, uma tecnologia uniproduto, foi empregada como padrão de eficiência. A eficiência técnica caracteriza-se por ser uma grandeza quantificadora da capacidade de uma firma em obter o máximo de *outputs* dado um conjunto de *inputs* enquanto a eficiência alocativa caracteriza-se por ser uma grandeza quantificadora da capacidade de uma firma usar os *inputs* numa proporção ótima, uma vez que são conhecidos o vetor preço e a tecnologia de produção. Para Kopp e Diewert (1982), esse é um conceito que evoluiu para as fronteiras de produção e de custo que são atualmente utilizadas nas análises da eficiência técnica. Ainda conforme esses autores, os desvios observados em relação à fronteira estocástica foram classificados por Farell como uma medida de ineficiência técnica enquanto a ineficiência alocativa refere-se aos desvios em relação à taxa de minimização do custo dos *inputs*.

Segundo Varian (1999) apud Pessanha e Souza (2003), o processo de produção de um bem ou serviço qualquer envolve a transformação de um ou mais *inputs* em um ou mais *outputs*. Existem diversas formas de se realizar esse processo e, sendo assim, utiliza-se de uma representação gráfica, denominada de conjunto de possibilidades de produção (CPP), em que todas as maneiras factíveis de produção são apresentadas. Destarte, para uma tecnologia qualquer e, segundo a ótica dos *inputs*, a função de produção fronteira é resultante da quantidade mínima de um ou mais *inputs* necessários para a produção de uma quantidade fixa de um ou mais tipos de *outputs* ou, ainda, conforme a ótica dos *outputs*, a produção máxima factível para uma quantidade fixa de *inputs* resulta na fronteira de produção.

Figura 10 – Conjunto de possibilidades de produção e fronteira de produção y = f(x)**Fonte:** Varian (1999) *apud* Pessanha e Souza (2003)

Pela Figura 10, todo produtor que estiver sobre a fronteira de produção é tecnicamente eficiente, logo, os produtores $B \in C$ o são. Por sua vez, os produtores do CPP que estiverem fora da fronteira serão considerados tecnicamente ineficientes. Sendo o caso do produtor A que se encontra abaixo da fronteira. Nota-se que com a mesma quantidade de *inputs* utilizada por A o produtor B obteve um *output* superior, por sua vez, C possui uma produção idêntica a de A utilizando uma quantidade de *inputs* bem inferior.

Considerando o pressuposto microeconômico da racionalidade dos agentes é de se supor que; se os vetores de preços dos *inputs*, $w \in R_+^n$ e de *inputs* $x \in R_+^n$ forem conhecidos, os produtores procurarão produzir um conjunto de *outputs* $y \in R_+^m$ com o menor custo de produção possível. Neste caso, Varian (1999) *apud* Pessanha e Souza (2003), o nível de eficiência do produtor não estará mais sendo avaliado em relação à fronteira de produção, mas sim, em relação à fronteira de custo, isto é, segundo a ótica dos *inputs* e, portanto, a eficiência passa a ter dois componentes: técnica (relacionada com a fronteira de produção) e alocativa (relacionada com a fronteira de custo). Para Greene (1980), a fronteira de produção pode ser definida em termos do *output* máximo que seja factível produzir dado um nível fixo de *inputs* qualquer. Analogamente, sendo conhecido o vetor preços dos *inputs* e o formato da tecnologia de produção uma função custo dual da o custo mínimo de produção de um determinado nível de produção.

Ressalta-se que um produtor tecnicamente eficiente não apresenta necessariamente a eficiência econômica, pois pode utilizar um conjunto de *inputs* que não seja o de menor custo. Para ser economicamente eficiente, o produtor deve ser tecnicamente eficiente e também utilizar os insumos de menor custo, isto é, ter eficiência alocativa. Contudo, para que um

agente econômico seja considerado tecnicamente eficiente é necessário que esse esteja posicionado ao longo da isoquanta e, por sua vez, esse só será alocativamente eficiente se estiver situado no ponto em que a inclinação da isoquanta for igual ao preço relativo dos fatores de produção, ou seja, $-P_2/P_1$ (ponto Q' da Figura 11). Segundo Varian (1992), para que um ponto qualquer seja considerado de custo mínimo, a isocusto, isto é, a curva de custo constante, deve tangenciar a isoquanta.

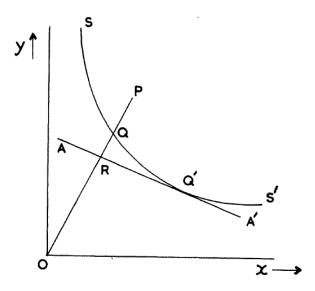


Figura 11 - Eficiências técnica e alocativa

Fonte: Farell 1957

Farell (1957) sugere que de posse da isoquanta unitária de uma firma totalmente eficiente, representada por SS' na Figura 11, torna-se capaz quantificar a eficiência técnica. Sendo assim, a firma P é tecnicamente ineficiente enquanto a firma Q, situada sobre a isoquanta SS', que produz a mesma quantidade de *outputs* que a firma P, mas utilizando uma quantidade menor de *inputs*, é tecnicamente eficiente. A ineficiência de P pode ser medida pelo segmento de reta \overline{QP} , isto é, pela distância \overline{QP} que representa a quantidade pela qual todos os insumos poderiam ser proporcionalmente diminuídos sem que houvesse uma redução na quantidade produzida. Sendo que esse valor é obtido pela razão entre aquele segmento de reta, que representa a quantidade de insumos gastos em excesso, e o segmento (\overline{OP}) , que representa o total de insumos gastos na produção tecnicamente ineficiente, ou seja, é expresso por $(\overline{QP}/\overline{OP})$. Esse resultado representa a percentagem pela qual todos os *inputs* deveriam ser reduzidos para que se alcancem a produção tecnicamente eficiente. De modo geral, a equação que expressa eficiência técnica de uma firma é dada por:

$$TE = \frac{\overline{0Q}}{\overline{0P}} \tag{1}$$

ou analogamente por:

$$TE = 1 - \frac{\overline{QP}}{\overline{0P}} \tag{2}$$

Essa medida pode assumir valores entre zero e um $(0 \le TE \le 1)$ e, assim, fornecer um indicador do grau de eficiência técnica da firma. Quando TE = 1, significa que a firma está sobre a isoquanta e, sendo assim, é tecnicamente eficiente, portanto, a firma Q que está sobre a isoquanta SS' possui eficiência técnica, entretanto, essa não é alocativamente eficiente, e consequentemente não é economicamente eficiente, pois nesse ponto os preços relativos dos *inputs* não são iguais à inclinação da isoquanta. Ou seja, a isoquanta não está sendo tangenciada pela isocusto.

Embora a abordagem analítica inicial, introduzida por Farell (1957), da ineficiência técnica ser direcionada para o setor industrial, isso não inviabiliza aplicabilidade dessa para o setor primário. Segundo Coelli e Battese (1996), os economistas agrícolas têm demonstrado interesse para as técnicas de medição da eficiência produtiva de uma firma, em uma indústria, como uma técnica a ser replicada no setor primário objetivando comparar a produção de uma fazenda em relação a outras fazendas, contribuindo para que haja muitas aplicações das fronteiras de produção para as indústrias agrícolas ao longo dos anos. Dessa forma, a literatura recente de economia agrícola está farta de trabalhos empíricos que se concentram na imperfeição, na medição parcial da produtividade, tais como os rendimentos por hectares ou a produção por unidade de trabalho. Battese (1992) e Bravo-Ureta e Pinheiro (1993) corroboram com essa percepção uma vez que esses trabalhos propõem a mensurar a eficiência técnica no setor agrícola, sendo que esse último tem como objetivo central quantificar a ineficiência em países em desenvolvimento.

Uma extensão importante das fronteiras de produção é que; por meio dessas tornar-se possível identificar quais variáveis estão impactando negativamente na eficiência técnica e alocativa dos produtores rurais e, sendo assim, orientar aos formuladores de políticas públicas quais medidas devem ser incentivadas para que se possa maximizar a produção dada uma quantia fixa de *inputs* (ótica da função produção) ou minimizar os custos de produção (ótica da função custo). Segundo Coelli e Battese (1996), Bravo-Ureta e Pinheiro (1993) salientam a

importância das aplicações que procuram encontrar uma relação entre eficiência técnica e diversas variáveis socioeconômicas tais como: idade e nível de educação do agricultor, tamanho da propriedade rural, acesso ao crédito e utilização de serviços de extensão. Uma vez identificado cada um dos fatores que estão impactando negativamente o nível de eficiência técnica dos produtores rurais, os formuladores de políticas públicas podem usar dessas informações para tentarem aumentar o nível médio da eficiência dos fazendeiros.

Como supracitado uma das vantagens da Análise da Fronteira Estocástica sobre a Análise Envoltória de Dados é que aquela incorpora o erro estocástico, todavia, a abordagem econométrica (SFA) tem como desvantagem a imposição de uma forma funcional explícita para a tecnologia (Conceição, 2004). Destarte, embora a aplicabilidade das funções de produção fronteira já fosse aceita no meio acadêmico ainda havia um "gargalo" para ser vencido, uma vez que as tecnologias de produção empregadas até então eram relativamente muito simples e foram estimadas utilizando técnicas de equação única. Por isso, foram introduzidas algumas alterações nos estimadores das funções de produção fronteira para que se alcance o maior nível de generalização oferecido pelas formas funcionais flexíveis. Schmidt e Lovell (1977) apud Greene (1980) argumentam que haveria possibilidades de se estudar a ineficiência alocativa através da demanda por fatores implícita por um modelo Cobb-Douglas. Contudo, Schmidt e Lovell até então haviam estudado somente a ineficiência técnica. Conforme Greene (1980), estimativa eficiente de formas funcionais flexíveis geralmente implica o uso de um conjunto de equações de demanda por fatores e um estimador multivariado. O uso de um conjunto de equações e uma forma funcional flexível permite a estimação simultânea dos dois tipos de ineficiência na definição de um modelo geral de produção.

Conforme Greene (1980), inúmeras formas funcionais flexíveis tais como: a quadrática generalizada, translog (forma funcional transcendental logarítmica), Leontief generalizada e Cobb-Douglas generalizada têm sido propostas. Contudo, entre todas essas formas funcionais flexíveis a mais utilizada tem sido a função translog. Esse fato deve-se à particularidade das funções translog, assim como a *DEA*, não atribuírem uma forma funcional aos dados. Conforme Barbosa (1985), a função de produção translog caracteriza-se como sendo uma função *transcendental logarítmica* dos fatores de produção. Ishii, Souza e Filho (2007), uma das vantagens da translog é justamente não impor restrições *a priori* à função de produção associada a essa, por sua vez, a desvantagem reside no fato que a translog permite que as condições de convexidade sejam garantidas apenas localmente. Pessanha e Souza (2003), a função translog possui como principal vantagem a acomodação de múltiplos *outputs*

sem necessariamente violar as propriedades de convexidade, entretanto, se muitos regressores forem incluídos no modelo esse poderá apresentar problema de multicolinearidade. Greene (1980), a grande maioria das formas funcionais flexíveis e das funções de demanda associadas a essas, como a translog, são lineares nos parâmetros e, por isso, a extensão para outras formas funcionais será, em muitos casos, direta.

3.2 MODELOS DE FRONTEIRA DE PRODUÇÃO ESTOCÁSTICA

Os modelos de fronteira estocástica introduzidos, simultânea e independentemente, por Aigner, Lovell e Schimidt (1977) e por Meeusen e van Den Broeck (1977) representam um avanço em relação aos modelos até então empregados, os modelos de fronteira determinística, uma vez que esses últimos ignoram que a produção pode ser afetada por fatores que estão fora do controle do produtor tais como as intempéries do tempo (secas, tempestades, variação brusca do clima, etc.). Destarte, para os modelos de fronteira determinística qualquer desvio em relação à fronteira de produção é atribuído à ineficiência técnica do produtor (do ponto de vista *output* orientado). Por sua vez, os modelos de fronteira estocástica reconhecem que os desvios em relação à fronteira de produção pode se dar tanto em função de fatores externos ao controle do produtor, ou seja, por choques aleatórios, bem como se originar da ineficiência técnica do produtor.

Existem quatro formas distintas para se calcular a eficiência técnica (TE_i) dos produtores nos modelos de Análise da Fronteira Estocástica (SFA): meia-normal, exponencial, normal-truncada e normal-gama. Porém, devido a limitações computacionais, no presente trabalho serão calculadas as distribuições dos erros meia-normal e normal-truncada utilizando o software estatístico R. Importante salientar que a distribuição meia-normal do erro assimétrico tem sido alvo de críticas e por isso mesmo surgiram novas formas de distribuição do componente de erro u_i . Meeusen e van Den Broeck (1977) e Aigner, Lovell e Schmidt (1977) admitiram que a distribuição do erro assimétrico poderia assumir um formato unilateral e, sendo assim, apresentaram o logaritmo da função de verossimilhança bem como alguns resultados associados a essa para o caso em que a distribuição daquele erro fosse exponencial. Stevenson (1980), questionando a restrição imposta no modelo apresentado por Aigner, Lovell e Schmidt (1977) da meia-normalidade, sugeriu uma distribuição normal-truncada para o componente de erro que capta a ineficiência dos produtores. Greene (1990) sugeriu que ao invés de u_i possuir uma distribuição meia-normal esse teria uma distribuição normal-gama. Contudo, conforme Greene (1990), apesar dos modelos que assumem a

distribuição meia-normal para o erro assimétrico serem criticados, esses ainda continuam a dominar os trabalhos empíricos na literatura contemporânea.

Os modelos de fronteira estocástica são representados como se segue:

$$\ln q_i = f(x_i; \beta) + v_i - u_i \tag{3}$$

Ou, ainda, pode ser dado pela seguinte forma matricial:

$$\ln q_i = x_i' \beta + v_i - u_i \tag{4}$$

em que o termo q_i representa o produto do i-ésimo produtor; x_i é um vetor de dimensões K x 1 que contém o logaritmo dos insumos; β é um vetor dos parâmetros desconhecidos; v_i representa um erro simétrico cuja a função é capturar qualquer choque aleatório fora do controle do produtor e u_i caracteriza um erro assimétrico que assume apenas valores nãonegativos ($u_i \ge 0$) e que captura o efeito da ineficiência técnica. Segundo Aigner, Lovell e Schmidt (1977) pode-se considerar como duas outras fontes do erro simétrico os erros de observação e os de medida em q_i . Fazendo $\varepsilon_i = v_i - u_i$ tem-se:

$$\ln q_i = \chi_i' \beta + \varepsilon_i \tag{5}$$

em que ε_i é denotado de erro composto.

Devido ao fato de que as condições ambientais desfavoráveis quanto as favoráveis são igualmente prováveis é que se pode dizer que v_i possui uma distribuição simétrica. Por sua vez, em geral, a assimetria da distribuição de u_i está alicerçada no fato de que o maior número de produtores estará mais próximo da fronteira. Assim, assumindo a distribuição simétrica do componente de erro v_i e que esse seja independente de u_i , uma vez que esse último componente de erro é sempre não-negativo tem-se que o erro composto ε_i será assimétrico. Conforme Coelli, Rao, O'Donnell et al. (2005), o modelo (4) é conhecido como função de produção fronteira estocástica, pois os valores de q_i terão como limite superior (fronteira) a variável estocástica $\exp(x_i'\beta + v_i)$ e, uma vez que, o erro simétrico pode assumir tanto valores positivos quanto negativos os valores da fronteira estocástica variarão em função da parte determinística, $\exp(x_i'\beta)$.

Decompondo o modelo dado por (4) obtém-se um componente determinístico $\exp(x_i'\beta)$ que é comum a todos os produtores; um termo de erro $\exp(v_i)$ e outro termo de erro representado por $\exp(u_i)$. De maneira geral, as análises de fronteira estocástica estão preocupadas em mensurar os efeitos da ineficiência do produtor. Sendo a medida de eficiência técnica, com orientação *output*, para o *i*-ésimo produtor, como se segue:

$$TE_{i} = \frac{q_{i}}{\exp(x'_{i}\beta + v_{i})}$$

$$= \frac{\exp(x'_{i}\beta + v_{i} - u_{i})}{\exp(x'_{i}\beta + v_{i})}$$

$$= \exp(-u_{i})$$
(6)

A medida de eficiência técnica (TE_i) quantifica o produto do i-ésimo produtor em relação ao produto máximo factível obtido por um produtor totalmente eficiente usando o mesmo vetor de insumos x_i' . Essa medida está definida no intervalo $0 \le TE_i \le 1$. Sendo que, quando o resultado reportado for igual a zero significa que o produtor é totalmente ineficiente, caso contrário, quando for igual a um, o produtor estará sobre a fronteira de produção e por isso mesmo será totalmente eficiente.

Conforme Coelli, Rao, O'Donnell et al. (2005), em função de haver dois componentes de erro no lado direito do modelo (4) os métodos de estimação devem estar alicerçados sob os pressupostos relativos a essas duas variáveis, v_i e u_i . O erro simétrico é assumido como tendo uma distribuição independente do erro assimétrico e, por sua vez, admite-se que tanto aquele quanto esse são não correlacionados com as variáveis explanatórias em x_i . Além do mais,

$$E(v_i) = 0; (7)$$

$$E(v_i^2) = \sigma_v^2; \tag{8}$$

$$E(v_i v_j) = 0 \ para \ todo \ i \neq j; \tag{9}$$

$$E(u_i^2) = constante; e (10)$$

$$E(u_i u_j) = 0 \ para \ todo \ i \neq j. \tag{11}$$

Assim, pode-se dizer que o componente de erro simétrico possui as mesmas propriedades dos resíduos de um modelo de regressão linear clássica enquanto o componente de ineficiência u_i possui também as mesmas propriedades desses modelos exceto, a estatística

esperança matemática que no caso desse último termo é diferente de zero, $E(u_i) \neq 0$, pois u_i é sempre não-negativo. Destarte, para os modelos de fronteira estocástica com distribuição meia-normal do erro assimétrico, o termo de erro v_i é dito possuir uma distribuição normal, $v_i \sim iid \ N(0, \sigma_v^2)$, enquanto o componente de ineficiência é dito possuir uma distribuição meia-normal, $u_i \sim iid \ N^+(0, \sigma_u^2)$, isto é, u_i é uma variável aleatória com média modal igual a zero. Para Pessanha e Souza (2003), serão essas suposições sobre os dois termos de erro é que irão possibilitar o uso dos estimadores de máxima verossimilhança na estimação dos parâmetros do modelo de regressão bem como serão importantes na mensuração da eficiência técnica dos produtores, baseado na distribuição condicional de u_i dado ε_i .

3.2.1 Distribuição Meia-normal

Objetivando mensurar a eficiência técnica do i-ésimo produtor é preciso obter as estimativas do erro simétrico e do erro assimétrico. Mais precisamente, a estimativa desse último componente de erro, uma vez que esse irá capturar (pela equação 6) o efeito da ineficiência técnica. Sendo que, para isso, as extrai da estimativa do erro composto ε_i . Portanto, dado que $\varepsilon_i = v_i - u_i^{92}$, pode-se obter aquelas estimativas a partir dos resíduos de ε_i . Destarte, dado uma amostra com "i" produtores, de um modelo de fronteira estocástica com distribuição do erro u_i meia-normal, Aigner, Lovell e Schmidt (1977) parametrizaram o logaritmo da função de verossimilhança. Portanto, deve-se primeiramente formar o logaritmo da função de verossimilhança e, para isso, se faz o produto das funções densidade dos termos de erro v_i e u_i , que são respectivamente:

$$f_v(v_i) = \frac{1}{\sqrt{2\pi\sigma_{v_i}^2}} \exp\left(-\frac{v_i^2}{2\sigma_{v_i}^2}\right)$$
(12)

$$f_u(u_i) = \frac{2}{\sqrt{2\pi\sigma_{u_i}^2}} \exp\left(-\frac{u_i^2}{2\sigma_{u_i}^2}\right) \tag{13}$$

Então, do produto de (12) e (13) tem-se que a distribuição conjunta do erro simétrico e

⁹² Numa distribuição do erro assimétrico meia-normal $u_i \ge 0$ ou, de outra forma, no caso de se representar $\varepsilon_i = v_i + u_i$ o erro assimétrico será sempre menor ou igual a zero $(u_i \le 0)$.

do assimétrico será dada por:

$$f_{v,u}(v_i, u_i) = \frac{1}{\pi \sigma_{v_i} \sigma_{u_i}} \exp\left(-\frac{v_i^2}{2\sigma_{v_i}^2} - \frac{u_i^2}{2\sigma_{u_i}^2}\right)$$
(14)

Contudo, uma vez que $\varepsilon_i=v_i-u_i$ obtém-se a distribuição conjunta de u_i e ε_i que é:

$$f_{u,\varepsilon}(u_i, \varepsilon_i) = \frac{1}{\pi \sigma_{v_i} \sigma_{u_i}} \exp\left[-\frac{u_i^2}{2\sigma_{u_i}^2} - \frac{(\varepsilon_i + u_i)^2}{2\sigma_{v_i}^2}\right]$$
(15)

Integralizando a função densidade (15) em relação ao erro assimétrico, obtém-se a distribuição marginal do erro composto:

$$f_{\varepsilon}(\varepsilon_{i}) = \int_{0}^{\infty} f_{u}(u_{i}) f_{v}(\varepsilon_{i} - u_{i}) du_{i}$$

$$= \frac{2}{\sqrt{2\pi(\sigma_{u}^{2} + \sigma_{v}^{2})}} \left[\Phi\left(\frac{-\varepsilon_{i}(\sigma_{u}/\sigma_{v})}{\sqrt{\sigma_{u}^{2} + \sigma_{v}^{2}}}\right) \right] \exp\left(-\frac{\varepsilon_{i}^{2}}{2(\sigma_{u}^{2} + \sigma_{v}^{2})}\right)$$

$$= \frac{2}{\sigma\sqrt{2\pi}} \phi\left(\frac{\varepsilon_{i}}{\sigma}\right) \left[\Phi\left(\frac{-\varepsilon_{i}\lambda}{\sigma}\right) \right]$$
(16)

em que $\lambda = \sigma_{u_i}/\sigma_{v_i}$, $\sigma^2 = \left(\sigma_{u_i}^2 + \sigma_{v_i}^2\right)$ e, por sua vez, ϕ e Φ são respectivamente a função densidade e a função de distribuição acumulada de uma N(0,1). Sendo que o componente de ineficiência do modelo é representado pelo parâmetro λ . Quando esse é igual à zero, $\lambda = 0$, significa que não existe efeito de ineficiência técnica, pois nesse caso, $\sigma_{v_i}^2 \to \infty$ e/ou $\sigma_{u_i}^2 \to 0$, e, portanto, todo desvio em relação à fronteira ocorre por causa de choques aleatórios, ou seja, devido ao componente de erro simétrico v_i . Por sua vez, quando a variância do erro simétrico tender à zero, $\sigma_{u_i}^2$ tenderá a infinito e, assim, todo desvio em relação à fronteira será atribuído à ineficiência técnica do produtor. O erro composto possui uma distribuição assimetricamente negativa, conforme mencionado anteriormente, com média e variância dada por:

$$E(\varepsilon_i) = E(u_i) = -\frac{\sqrt{2}}{\sqrt{\pi}}\sigma_{u_i}$$
(17)

$$V(\varepsilon_i) = V(u_i) + V(v_i)$$

$$= \left(\frac{\pi - 2}{\pi}\right) \sigma_{u_i}^2 + \sigma_{v_i}^2$$
(18)

Uma vez que $\varepsilon_i = v_i - u_i = \ln q_i - x_i'\beta$ e usando a função densidade dada por (16), o logaritmo da função de verossimilhança para o modelo de fronteira estocástica com uma distribuição do erro meia-normal é dado por:

$$\ln L(q \mid \beta, \sigma, \lambda) = N \ln \frac{\sqrt{2}}{\sqrt{\Pi}} + N \ln \sigma^{-1} + \sum_{i=1}^{N} \ln[1 - F^*(\varepsilon_i \lambda \sigma^{-1})] - \frac{1}{2\sigma^2} \sum_{i=1}^{N} \varepsilon_i^2$$
(19)

Que após a parametrização proposta por Aigner, Lovell e Schmidt (1977) em que $\sigma^2 = \sigma_v^2 + \sigma_u^2 e \lambda^2 = \sigma_v^2/\sigma_u^2 \ge 0$ tem-se:

$$\ln L(q \mid \beta, \sigma, \lambda) = -\frac{I}{2} \ln \left(\frac{\pi \sigma^2}{2} \right) + \sum_{i=1}^{I} \Phi \left(-\frac{\varepsilon_i \lambda}{\sigma} \right) - \frac{1}{2\sigma^2} \sum_{i=1}^{I} \varepsilon_i^2$$
 (20)

Jondrow, Lovell, Materov et al. (1982), empregando uma função de densidade condicionada do erro assimétrico em relação ao erro composto, u_i dado ε_i , obtiveram as estimativas daquele erro como sendo a média ou a moda dessa distribuição condicionada. Ou seja:

$$f(u_i \mid \varepsilon_i) = \frac{f(u_i, \varepsilon_i)}{f(\varepsilon_i)}$$

$$= \frac{1}{\sqrt{2\pi}\sigma_*} \exp\left[\frac{\frac{(\mu - \mu_*)^2}{2\sigma_*^2}}{1 - \Phi\left(\frac{\mu_*}{\sigma_*}\right)}\right]$$
(21)

em que:

$$u_i \mid \varepsilon_i \sim N^+(\mu_*, \sigma_*^2);$$
 (22)

$$\mu_* = -\frac{\varepsilon \sigma_*^2}{\sigma^2}; e \tag{23}$$

$$\sigma_*^2 = \frac{\sigma_u^2 \sigma_v^2}{\sigma^2} \tag{24}$$

Logo, a estimativa pontual de u_i é definida pela média de $f(u_i \mid \varepsilon_i)$:

$$\hat{u}_{i} = E(u_{i} \mid \varepsilon_{i})$$

$$= \mu_{*_{i}} + \sigma_{*} \left[\frac{\phi(-\mu_{*i}/\sigma_{*})}{1 - \phi(-\mu_{*i}/\sigma_{*})} \right]$$

$$= \sigma_{*} \left[\frac{\phi(\varepsilon_{i}\lambda/\sigma)}{1 - \phi(\varepsilon_{i}\lambda/\sigma)} - \frac{\varepsilon_{i}\lambda}{\sigma} \right]$$
(25)

Ou pela moda de $f(u_i | \varepsilon_i)$:

$$\hat{u}_i = M(u_i \mid \varepsilon_i) = -\varepsilon_i \frac{\sigma_u^2}{\sigma^2} \qquad se \ \varepsilon_i \le 0$$

$$\hat{u}_i = 0 \qquad caso \ contrário \qquad (26)$$

Dessa forma, como supracitado acima, para que se possa mensurar a eficiência técnica do i-ésimo produtor é preciso obter estimativas do erro assimétrico, que para este caso é \hat{u}_i , e uma vez que de (6) a $TE_i = \exp(-u_i)$, tem-se que a estimativa da eficiência técnica do i-ésimo produtor é dada por:

$$TE_i = \exp(-\hat{u}_i) \tag{27}$$

Como consideração final sobre o modelo com distribuição meia-normal do erro assimétrico, ou seja, sob a suposição de que os efeitos de ineficiência possui uma distribuição meia-normal, é que esse tem sido criticado devido ao fato que a moda da distribuição situa-se em torno de zero quando, na realidade, deveria estar nas proximidades de um, pois assim captaria melhor os efeitos de ineficiência do *i*-ésimo produtor. Desse modo, muitos pesquisadores preferem trabalhar com as distribuições normal-truncada e normal-gama.

3.2.2 Distribuição Exponencial

Aigner, Lovell e Schmidt (1977), no artigo em que introduziram o modelo de erro com distribuição meia-normal, admitiram que os efeitos de ineficiência poderiam possuir uma

distribuição que não necessariamente tivesse o formato de um "sino" como a distribuição normal. Ou seja, que a distribuição de u_i tivesse um formato unilateral, unicaudal característico de distribuições exponenciais. Meeusen e van Den Broeck (1977), independentemente daqueles autores, assumem, assim como no modelo de distribuição meianormal, que a função de produção fronteira possui um termo de erro composto (somatório de um erro simétrico e um assimétrico). Todavia, ao invés desses estarem no nível das demais variáveis do modelo são admitidos como sendo uma função exponencial. Sendo assim, a equação (4), sob a suposição da distribuição exponencial de v_i e u_i , é dada por:

$$\ln q_i = x_i'\beta + \exp(-z_i) + \exp(-w_i) \tag{28}$$

em que $v_i = \exp(-z_i)$ e $u_i = \exp(-w_i)$. Sendo que o erro simétrico é uma amostra aleatória de uma distribuição Gaussiana, $v_i \sim iid \ G(0, \sigma^2)$, enquanto o erro assimétrico possui uma distribuição exponencial representada por: $u_i \sim iid \ G(\lambda, 0)$.

Assim como na distribuição meia-normal, para se obter o logaritmo da função de verossimilhança, no caso em que se assume a distribuição exponencial para o erro assimétrico, primeiramente se faz o produtório das funções densidades dos componentes de erro v_i e u_i . Para o erro simétrico essa é a mesma da equação (12), contudo, a função densidade do erro assimétrico nesse caso é dada por:

$$f_{ii}(u_i) = \theta \exp(u_i \theta) \tag{29}$$

em que $\theta > 0$, $u_i \le 0$, $\theta = 1/\phi$ e $\phi \ge 0$ é a média do erro assimétrico. Assim, do produto de (12) e (29) extrai-se a função densidade do erro composto:

$$f_{\varepsilon}(\varepsilon_{i}) = \frac{1}{\phi} \left[1 - F^{*} \left(\frac{\varepsilon_{i}}{\sigma_{v_{i}}} + \frac{\sigma_{v_{i}}}{\phi} \right) \right] \exp \left(\frac{\varepsilon_{i}}{\phi} + \frac{\sigma_{v}^{2}}{2\phi^{2}} \right)$$
(30)

Desse modo, após integralizar (30) em função do erro assimétrico obtém-se o logaritmo da função de verossimilhança para o caso em que esse é exponencialmente independente e identicamente distribuído com média λ , isto é, $u_i \sim iid\ G(\lambda, 0)$. Dessa forma, a expressão algébrica do logaritmo da função de verossimilhança nesse caso é como se segue:

$$\ln L(\alpha, \beta, \sigma_v, \sigma_u) = \sum_{i=1}^{N} -\ln \sigma_{u_i} + \frac{1}{2} \left(\frac{\sigma_{v_i}}{\sigma_{u_i}} \right)^2 + \ln \Phi \left[\frac{-\left(\varepsilon_i + \sigma_{v_i}^2 / \sigma_{u_i}^2\right)}{\sigma_{v_i}} \right] + \frac{\varepsilon_i}{\sigma_{u_i}}$$
(31)

Por último, assim como a distribuição meia-normal tem sido criticada por considerar a variável aleatória, no caso o erro assimétrico, possuindo média modal igual a zero quando na verdade deveria ser igual a um ou estar próximo desse valor; a distribuição exponencial também é criticada justamente por apresentar a mesma condição para o componente de erro que capta a ineficiência do produtor.

3.2.3 Distribuição Normal-truncada

Stevenson (1980) argumentando que a suposição de Aigner, Lovell e Schmidt (1977) de que o erro assimétrico possui uma esperança matemática não-nula, mas que, contudo, a média modal é igual a zero, não é sustentável e, por isso, introduziu um modelo cuja distribuição de u_i é truncada em uma média igual a zero. Sendo assim, o modelo proposto por aquele autor é semelhante ao desses e só se diferenciam na suposição sobre a média da distribuição amostral. Portanto, como nas duas distribuições acima, o erro no modelo de Stevenson (1980) é assumido tendo dois componentes, $\varepsilon_i = v_i - u_i$. Nesse, o primeiro termo do lado direito da equação é o erro simétrico que permanece sendo idêntico e independentemente distribuído, $v_i \sim iid N(0, \sigma_v^2)$, enquanto o outro termo continua denotando o erro assimétrico que, sob este pressuposto de distribuição, distribui-se normalmente com média truncada em zero, $u_i \sim iid N^+(\mu, \sigma_u^2)$.

A fronteira estocástica para o caso em que se admite uma distribuição do erro assimétrico normal-truncada é idêntica à (4) assim como a função de densidade do erro simétrico permanece igual à equação dada por (12). Contudo, sob essa nova suposição o termo de erro assimétrico possui uma distribuição como se segue:

$$f_{u}(u_{i}) = \frac{1}{\left[1 - F^{*}(-\mu/\sigma_{u_{i}})\right]\sqrt{2\pi\sigma_{u_{i}}^{2}}} \exp\left[-\frac{1}{2}\left(\frac{u_{i} - \mu}{\sigma_{u_{i}}}\right)^{2}\right]$$
(32)

em que $F^*(.)$ representa a função de distribuição para uma variável aleatória normal padrão. Como é sabido, das distribuições anteriores, a função densidade do erro composto é obtida da função densidade conjunta dos erros simétrico e assimétrico, isto é, do produto dessas duas

funções densidade, e é dada por:

$$f_{\varepsilon}(\varepsilon_{i}) = \frac{1}{\left[1 - F^{*}(-\mu/\sigma_{u_{i}})\right] 2\pi\sigma_{u_{i}}\sigma_{v_{i}}} \exp\left\{-\frac{1}{2}\left[\left(\frac{u_{i} - \mu}{\sigma_{u_{i}}}\right)^{2} + \left(\frac{\varepsilon_{i} - u_{i}}{\sigma_{v_{i}}}\right)^{2}\right]\right\}$$
(33)

Que após ser integralizada em função do erro assimétrico resultará no logaritmo da função de verossimilhança:

$$\ln L(\beta, \lambda, \sigma^2, \mu) = \sigma^{-1} f^* \left(\frac{\varepsilon_i - \mu}{\sigma} \right) \left[1 - F^* \left(-\frac{\mu}{\sigma \lambda} - \frac{\varepsilon_i \lambda}{\sigma} \right) \right] \left[1 - F^* \left(-\frac{\mu}{\sigma_{u_i}} \right) \right]^{-1}$$
(34)

em que $\sigma = (\sigma_{u_i}^2 + \sigma_{v_i}^2)^{1/2}$, $\lambda = \sigma_{u_i}/\sigma_{v_i}$ e f^* é a função densidade padrão normal avaliada em $(\varepsilon_i - \mu/\sigma)$.

Contudo, como a suposição feita por Stevenson (1980) é de uma distribuição normal-truncada numa média igual a zero, ou seja, $\mu = 0$, sendo assim, o logaritmo da função de máxima verossimilhança pode, analogamente, ser representada por:

$$\ln L(\beta, \lambda, \sigma^2, \mu) \mid_{\mu=0} = \frac{2}{\sigma} f^* \left(\frac{\varepsilon_i}{\sigma} \right) \left[1 - F^* \left(-\frac{\varepsilon_i \lambda}{\sigma} \right) \right]$$
 (35)

3.2.4 Distribuição Normal-gama

Greene (1980) introduziu um modelo alternativo em que assumia que o componente de erro possuía uma distribuição normal-gama cuja principal característica é o formato unilateral, ou seja, unicaudal dessa distribuição (mesmo formato sob o pressuposto da distribuição exponencial do erro assimétrico). Contudo, esse era um modelo de fronteira de produção determinístico, isto é, todo desvio em relação à fronteira é considerado como sendo ineficiência do produtor ignorando fatores exógenos que estão fora do controle desse. Esse modelo determinístico é dado como se segue:

$$\ln q_i = x_i'\beta + u_i \tag{36}$$

em que $u_i \le 0$ e o termo de erro é uma variável aleatória com distribuição normal-gama idêntica e independentemente, $u_i \sim iid \ G(\Theta, P)$.

Entretanto, Greene (1990) agrega a esse modelo o instrumental proposto por Aigner, Lovell e Schmidt (1977) para os modelos determinísticos, até então, a única maneira de se estimar fronteiras de produção. Qual seja? Um termo de erro composto por dois componentes: um termo simétrico v_i (representando os erros de medida, outros ruídos estatísticos e fatores externos ao controle da firma) e um termo de erro assimétrico u_i (que captará os efeitos de ineficiência do produtor). Sendo assim, nesse último artigo o modelo se refere a uma fronteira de produção estocástica cujo termo de erro é composto pelos dois erros supracitados acima, ou seja, $\varepsilon_i = v_i - u_i$. Sendo que o erro assimétrico é uma variável aleatória com distribuição normal-gama. Nesse caso, o modelo terá o seguinte formato:

$$\ln q_i = x_i'\beta + v_i - u_i \tag{37}$$

em que $v_i \sim iid N(0, \sigma^2)$ e $u_i \sim iid G(0, P)$.

Ou, de forma análoga, esse modelo de fronteira de produção estocástica sob o pressuposto de um erro assimétrico com distribuição normal-gama pode ser representado por:

$$\ln q_i = x_i' \beta + \varepsilon_i \tag{38}$$

Mais uma vez, para que se possa obter o logaritmo da função de verossimilhança é necessário, primeiramente, fazer o produtório das funções densidade do erro simétrico e assimétrico. Para o erro simétrico a função densidade é a mesma dada pela equação (12) enquanto a do erro assimétrico é como se segue:

$$f_u(u_i) = \frac{\Theta^P}{\Gamma(P)} u^{P-1} e^{-\Theta u}, \qquad u \ge 0 \quad \text{e} \quad \Theta, P > 0$$
 (39)

Sendo assim, a função densidade conjunta desses dois termos de erros é dada por:

$$f_{v,u}(v_i, u_i) = \frac{1}{\sqrt{2\pi\sigma_{v_i}^2}} \exp\left(-\frac{v_i^2}{2\sigma_{\sigma_{v_i}}^2}\right) \left[\frac{\Theta^P}{\Gamma(P)} u^{P-1} e^{-\Theta u}\right]$$
(40)

Desse modo, após algumas manipulações matemáticas e estatísticas obtém-se o logaritmo da função de máxima verossimilhança para os modelos cujo pressuposto para o erro assimétrico é de uma distribuição normal-gama. Essa função é dada por:

$$\ln L = \frac{\Theta^P}{\Gamma(P)} \exp\left(\frac{\Theta\varepsilon + \sigma^2 \Theta^2}{2}\right) Prob(Q > 0|\varepsilon) h(P - 1, \varepsilon)$$
(41)

3.3 MODELOS DE FRONTEIRA DE PRODUÇÃO DETERMINÍSTICA

Segundo Coelli (1996), a Análise Envoltória de Dados (DEA) consiste numa abordagem não-paramétrica, utilizando-se de programação matemática linear, para a estimação de uma fronteira de produção segmentada que envolveria os dados observados e, assim, possibilitaria calcular a eficiência em relação a essa fronteira. Na literatura DEA, cada unidade produtora é denotada como sendo uma *Decision Making Units* (DMU's) e cuja ideia subjacente, segundo Gomes e Baptista (2004), é que; se uma DMU qualquer "A" está produzindo um *output* "A" utilizando uma quantidade de *input* "A", isto é, produz y(A) a partir de x(A), qualquer outra DMU que seja tecnicamente eficiente também será capaz de operacionalizar essa produção obtendo o mesmo resultado. O mesmo raciocínio é válido para uma DMU "B" qualquer — produzindo y(B) a partir de x(B). Considerando que ambas as DMU's supracitadas sejam tecnicamente eficientes, é possível combinar o processo de produção dessas e estimar uma DMU composta. Essa última será denominada de DMU virtual, caso não haja nenhuma DMU real que utilize a mesma quantidade de *input* e obtenha o mesmo *output* da DMU virtual.

Essa composição analítica objetiva determinar qual DMU composta representaria uma DMU real que apresenta ineficiência técnica. Quando uma DMU virtual, que pode ser uma combinação convexa de outras DMU's reais, for capaz de obter um *output* maior utilizando a mesma quantidade ou uma quantidade inferior de *input* do que uma DMU real essa será classificada como tecnicamente ineficiente. Como uma última observação sobre as *Decision Making Units* vale ressaltar que, segundo Gomes e Baptista (2004), todas as DMU's reais tecnicamente eficientes, individuais ou combinadas, que forem consideradas uma DMU virtual para uma unidade produtora que apresente ineficiência técnica são denotadas como *pares* ou *benchmarks* dessa DMU. Conforme Cooper, Seiford e Zhu (2000), na escolha dos dados, o somatório das variáveis insumos e produtos não deve, preferencialmente, exceder em um terço o número de unidades produtoras (*Decision Making Units*).

3.3.1 Modelos com Retornos Constantes de Escala

Charnes, Cooper e Rhodes (1978), propuseram um modelo de Análise Envoltória dos Dados (DEA) em que se admite uma tecnologia com retornos constantes de escala e uma orientação insumo e que é conhecida na literatura como modelo CCR. Vale ressaltar que também foram esses autores que cunharam a expressão Data Envelopment Analysis – DEA – e que até hoje é utilizado. Suponha que haja k insumos, m produtos e n DMU's. Destarte, as matrizes representativas dos insumos e produtos serão respectivamente, X e Q, cujas dimensões são (k x n), para a matriz dos insumos, e (m x n) para a matriz dos produtos. Essas matrizes representam as observações de todas as n DMU's e possuem formatos como se segue:

$$X = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{k1} & x_{k2} & \cdots & x_{kn} \end{bmatrix}_{k \times n} \qquad Q = \begin{bmatrix} q_{11} & q_{12} & \cdots & q_{1n} \\ q_{21} & q_{22} & \cdots & q_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ q_{m1} & q_{m2} & \cdots & q_{mn} \end{bmatrix}_{m \times n}$$
(42)

Tanto na matriz dos insumos X quanto na matriz dos produtos Q as colunas representam as DMU's, isto é, cada coluna representa uma DMU específica. Por sua vez, na matriz X as linhas representam um insumo enquanto na matriz Q representam um produto. Conforme Gomes e Baptista (2004), em ambas as matrizes é necessário que os elementos x_{ij} e q_{ij} sejam não-negativos e que cada linha e cada coluna tenham pelo menos um número positivo. Segundo Charnes, Cooper e Rhodes (1978), a medida da eficiência da i-ésima DMU é o resultado de um problema de maximização da razão entre a ponderação de todos os produtos e a ponderação de todos os insumos.

$$\max_{u,v} (u'q_i/v'x_i)$$
sujeito a:
$$u'q_j/v'x_j \le 1, \quad j = 1,2,...,I; e$$

$$u,v \ge 0.$$
(43)

Sendo assim, esse problema de programação matemática objetiva encontrar valores para as ponderações u e v de tal forma que as medidas de eficiências para a i-ésima DMU seja maximizada, mas sujeita à restrição de que as medidas de eficiências de todas as DMU's sejam menores ou iguais a um. Todavia, segundo Coelli, Rao, O'Donnell et al. (2005), tal

problematização possui infinitas soluções e, sendo assim, se faz necessário uma nova restrição, $v'x_i = 1$, para evitar esse que seria o único problema de (43). A nova maximização das ponderações u e v será dada por:

$$\max_{\mu,\nu} (\mu' q_i)$$
sujeito a:
$$\nu' x_i = 1;$$

$$\mu' q_j - \nu' x_j \le 0; e$$

$$\mu, \nu \ge 0.$$
(44)

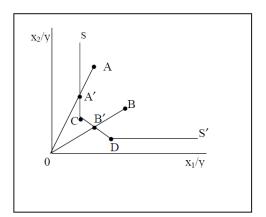
Note que as mudanças de u e v para, respectivamente, μ e ν é simplesmente para evidenciar que se trata de outro problema de maximização, pois as restrições foram alteradas. Sendo assim, a eficiência da i-ésima DMU é dada por:

Eficiência da DMU_i =
$$\frac{\mu' y_i}{\nu' x_i}$$

$$= \frac{\mu_1 y_{1i} + \mu_2 y_{2i} + \dots + \mu_m y_{mi}}{\nu_1 x_{1i} + \nu_2 x_{2i} + \dots + \nu_k x_{ki}}$$
(45)

Uma vez que o número de restrições na forma primal será igual n+1, o cálculo das eficiências nessa forma consumirá muito tempo para ser resolvido. Logo, Coelli, Rao, O'Donnell et al. (2005), empregando a teoria da dualidade derivaram uma forma envoltória cujo o número de restrições será k+m, que é inferior ao número de restrições da forma primal, k+m < n+1, e, sendo assim, terá resolução mais rápida. Destarte, a forma dual é geralmente mais utilizada do que a primal. O formato para esse novo problema de programação matemática linear é dado por:

$$\min_{\theta,\lambda} \theta$$
sujeito a:
$$-q_i + Q\lambda \ge 0;$$


$$\theta x_i - X\lambda \ge 0; e$$

$$\lambda \ge 0.$$
(46)

em que θ é um escalar que reporta a eficiência da *i*-ésima DMU e λ é um vetor $n \times 1$ cujos valores são calculados de forma a obter a solução ótima. Quando $\theta = 1$ a unidade produtora

será eficiente, caso contrário, será tecnicamente ineficiente (θ < 1). No caso do parâmetro λ , esse será sempre igual a zero quando a DMU for tecnicamente eficiente. Entretanto, segundo Gomes e Baptista (2004), os pesos utilizados na projeção de uma DMU ineficiente sobre a fronteira calculada são os parâmetros λ (que nesse caso são diferentes de zero). Isso implica que, para cada DMU ineficiente existirá pelo menos uma DMU eficiente cujos pesos serão utilizados na composição da DMU virtual daquela, mediante combinação linear, ou seja, as DMU's eficientes serão os *benchmarks* das ineficientes.

Importante salientar que, devido ao formato segmentado da fronteira nos modelos de fronteira de produção determinística ocorrerá que algumas projeções ainda continuarão sendo não eficientes. Pois os extremos da fronteira são paralelos aos eixos das abcissas e ordenadas e, sendo assim, as projeções que situarem sobre esses segmentos ainda poderão ter reduzido o insumo referente à coordenada paralela. Por exemplo, na Figura 12, a projeção A' referente à DMU ineficiente A não pode ser considerada como sendo eficiente, pois a DMU C utiliza uma menor quantidade do insumo x_2 e possui uma produção idêntica à DMU A', isto é, ambas situam-se sobre a isoquanta SS'. Logo, há margem para a A' reduzir o insumo x_2 , esse fato é conhecido na literatura DEA como sendo folga de insumos.

Figura 12 – Medida de eficiência e folga de insumos **Fonte:** Coelli, T. J. 1996.

3.3.2 Modelos com Retornos Variáveis de Escala

Banker, Charnes e Cooper (1984), propuseram um modelo de programação matemática linear no qual introduziram uma restrição de convexidade, em relação ao modelo CCR. Assim, se houver alterações na escala de produção esse modelo será capaz de captar os efeitos ao longo da função de produção decorrentes dessas alterações. Esse modelo é

conhecido na literatura de Análise Envoltória de Dados (DEA) como BCC e possui o seguinte formato:

$$\min_{\theta,\lambda} \theta$$
sujeito a:
$$-y_i + Y\lambda \ge 0;$$

$$\theta x_i - X\lambda \ge 0;$$

$$N'_1 \lambda = 1; e$$

$$\lambda \ge 0.$$
(47)

em que N'_1 é um vetor de dimensão $n \times 1$ de algarismos unitários (1, 1, ..., 1). O modelo com retornos variáveis de escala forma uma fronteira convexa de planos em interseção que envolve os dados de forma mais compacta do que a fronteira do modelo CCR. Segundo Gomes e Baptista (2004), se uma DMU qualquer for considerada eficiente no modelo CCR essa também será classificada como eficiente no modelo BCC.

Para Charnes, Cooper, Lewin et al. (1996), o modelo BCC decompõe a eficiência em duas partes: eficiência técnica pura e eficiência de escala. No modelo CCR, quando nem todas as DMU's estiverem operando no ponto de escala ótima induzirá a considerar eficiência de escala como eficiência técnica. Destarte, uma forma de evitar tal confusão é aplicar os dois modelos aos dados e fazer a diferença entre os valores reportados para a eficiência técnica por cada um dos modelos e, caso uma DMU qualquer apresente diferenças entre esses valores significa que essa possui ineficiência de escala cujo valor é justamente a diferença entre o valor reportado da eficiência técnica pelo modelo BCC e pelo CCR. Note que esse cálculo deve ser realizado para cada uma das n DMU's.

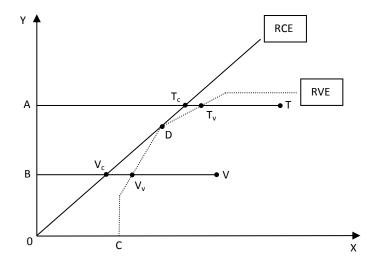


Figura 13 - Eficiência técnica e eficiência de escala

Na Figura 13 estão representadas duas fronteiras eficientes calculadas pelo DEA em que a linha contínua caracteriza uma fronteira para o modelo de retornos constantes de escala (RCE) enquanto a linha pontilhada caracteriza uma fronteira para o modelo de retornos variáveis de escala (RVE). Do ponto C ao D da curva RVE os retornos são crescentes, sendo que no ponto D os retornos são constantes, e do ponto D em diante os retornos são decrescentes. Os pontos V e T são representativos de duas DMU's que são tecnicamente ineficientes sob as duas perspectivas em análise (RCE e RVE). Considerando o ponto V a ineficiência técnica desse sob o pressuposto de retornos constante é da pela distância VV_c , por sua vez, sob a suposição de retornos variáveis a ineficiência técnica será a distância VV_v . Como supracitado anteriormente a ineficiência de escala para a DMU $_v$ será a diferença entre as distâncias VV_v e VV_c . Os valores das medidas de eficiência para a DMU $_v$ são dados por:

$$ET_{RCE} = BV_c/BV;$$

 $ET_{RVE} = BV_v/BV; e$ (48)
 $EE = BV_c/BV_v.$

em que ET é a eficiência técnica e EE é a eficiência de escala. Com essas igualdades é fácil perceber que $ET_{RCE} = ET_{RVE} * EE$, ou seja, que a medida de eficiência técnica sob o pressuposto de retornos constante de escala é composta pela eficiência técnica pura e pela eficiência de escala. Esse mesmo raciocínio se aplica para calcular os valores das medidas de eficiência para a DMU_T , todavia, essa se encontra na parte da fronteira cujos retornos são

decrescentes. Dessa forma, evidencia-se que os pressupostos de (47), mais precisamente $N'_1\lambda=1$, não permite que se faça a distinção entre qual faixa de retorno encontra-se a DMU em análise. A única conclusão que se tira é que se a medida de eficiência de escala for igual a um a DMU estará operando na faixa com retornos constantes de escala, mas quando esse valor for inferior a um a unidade produtora poderá estar operando na faixa de retornos crescentes ou decrescentes. Segundo Gomes e Baptista (2004), se a ineficiência de escala for comprovada não se saberá se essa se da em função de retornos crescentes ou decrescentes de escala.

Portanto, para que seja possível distinguir as faixas de retornos torna-se necessário alterar a restrição $N_1'\lambda = 1$ de modo a identificá-las. Sendo assim, pode-se adotar tanto uma restrição no formato $N_1'\lambda \ge 1$, para faixa com retornos não-decrescente de escala (RNDE), quanto $N_1'\lambda \le 1$, para faixa com retornos não-crescente de escala (RNCE). Para aquela faixa de retorno (RNDE) a fronteira será composta por uma faixa de retornos crescentes que vai do ponto C até D e, desse ponto em diante, por uma faixa de retornos constantes. Enquanto para essa faixa de retorno (RNCE) a fronteira é composta por uma faixa de retornos constantes que vai da origem até o ponto D e, desse ponto em diante, por uma faixa de retornos decrescentes. Para identificar a faixa de escala em que uma dada DMU está operando basta comparar se o coeficiente de eficiência técnica no modelo com retornos não-decrescente de escala (RNDE) é igual ao coeficiente do modelo com retornos variáveis de escala (RVE). Se isso ocorrer a DMU estará operando na faixa de retornos crescente de escala, caso contrário, se os coeficientes forem diferentes, estará numa faixa de retornos decrescente de escala. Analogamente, no modelo com retornos não-crescente de escala (RNCE) se os coeficientes forem iguais a DMU estará operando na faixa de retornos decrescente de escala, caso contrário, se os coeficientes forem diferentes, estará numa faixa de retornos crescente de escala. O formato para esses dois modelos, RNDE e RNCE, são, respectivamente, como se segue:

$$\begin{aligned} & \min_{\theta,\lambda} \theta & \min_{\theta,\lambda} \theta \\ & \text{sujeito a:} & \text{sujeito a:} \\ & -y_i + Y\lambda \geq 0; & -y_i + Y\lambda \geq 0; \\ & \theta x_i - X\lambda \geq 0; & \theta x_i - X\lambda \geq 0; \\ & N_1'\lambda \geq 1; e & N_1'\lambda \leq 1; e \\ & \lambda \geq 0. & \lambda \geq 0. \end{aligned} \tag{49}$$

3.3.3 Eficiência Econômica e Eficiência Alocativa

Nos modelos de fronteira de produção estocástica o vetor preços dos insumos é importante para calcular a eficiência alocativa para cada produtor, por sua vez, nos modelos determinísticos os preços dos insumos são utilizados no cálculo da eficiência econômica de cada uma das DMU's. Isto é, na fronteira estocástica a eficiência econômica é calculada residualmente enquanto na fronteira determinística a variável calculada residualmente é a eficiência alocativa. Conforme Gomes e Baptista (2004), nos modelos de Análise Envoltória de Dados (DEA) a eficiência econômica também é conhecida como eficiência custo. Pois na realidade o que se objetiva é obter quantidades ótimas dos insumos que minimizem o custo de produção. Destarte, o problema de programação matemática linear para calcular o custo mínimo de produção da *i*-ésima DMU, nos modelos de retornos constantes, é dado por:

$$\min_{\lambda, x_i^E} w_i' x_i^E$$
sujeito a:
$$-y_i + Y\lambda \ge 0;$$

$$x_i^E - X\lambda \ge 0; e$$

$$\lambda \ge 0.$$
(50)

em que w_i é o vetor preço dos insumos para a i-ésima DMU e x_i^E é o vetor de insumos que minimiza os custos de produção. Uma vez determinado o custo mínimo de produção a medida da eficiência econômica para a i-ésima DMU será dada pela razão entre o custo mínimo e o custo observado para essa DMU $_i$ e cujo formato é como se segue:

$$EE_{DMU_i} = \frac{w_i' x_i^E}{w_i' x_i} \tag{51}$$

Como supracitado acima, a medida da eficiência alocativa para a *i*-ésima DMU pode ser calculada residualmente, pois essa é igual a razão entre a eficiência econômica e técnica para a DMU_i, isto é:

$$EA_{DMU_i} = \frac{EE_{DMU_i}}{ET_{DMU_i}} \tag{52}$$

em que *EA*, *EE e ET* são, respectivamente, a eficiência alocativa, econômica e técnica para a *i*-ésima DMU.

3.4 MODELO TOBIT

Nos casos em que a variável explicada está limitada entre certos valores ou concentrada em torno de um valor limite, o que representaria um problema, utiliza-se um modelo de regressão censurada Tobit. Pois se fosse realizada uma estimação pelo método dos mínimos quadrados (MQO), sob essas condições, os estimadores dos parâmetros da regressão não seriam consistentes, em virtude das observações estarem concentradas em um ocasionando uma correlação entre o termo de erro da regressão e as covariadas (X's). Portanto, para que se possam obter parâmetros não viesados a esperança matemática do erro deve ser calculada como uma esperança condicional, [$\mu_i | \mu_i < y_i^C - X_i \beta$]. Contudo, torna-se importante destacar que as variáveis explicativas podem assumir qualquer valor.

Sendo assim, optou-se pela utilização desse modelo econométrico objetivando identificar quais são os condicionantes da eficiência dos municípios de Minas Gerais. Então, como regressanda será utilizado os escores de eficiências anteriormente estimados pelas metodologias paramétricas e não-paramétricas e por sua vez como regressoras serão empregados fatores relacionados com as atividades agrícolas e pecuárias e que possam estar impactando no nível de eficiência dos agropecuaristas mineiros. Conforme Greene (1997), o método de estimação do modelo Tobit é o da máxima verossimilhança cuja equação estrutural é dada por:

$$y_i^* = X_i \beta + \varepsilon_i \tag{53}$$

em que ε_i é a variável aleatória do modelo, β representa o vetor dos coeficientes a serem estimados, $X_i = (X_1, X_2, ..., X_n)$ são as variáveis exógenas do modelo e a variável observada y_i^* é aquela que assume apenas valores inferiores a um e que será censurada para valores iguais ou maiores a um. Logo, a representação matemática para essa restrição será dada por:

$$y_{i} = \begin{cases} y_{i}^{*} se \ y_{i}^{*} < y_{i}^{C} \\ y_{i}^{C} se \ y_{i}^{*} \ge y_{i}^{C} \end{cases}$$
(54)

Mas uma vez que o valor da censura é representado por y_i^c , e esse é igual a um, temse:

$$y_i = \begin{cases} y_i^* \ se \ y_i^* < 1 \\ 1 \ se \ y_i^* \ge 1 \end{cases} \tag{55}$$

De acordo com Winkelmann e Boes (2009), a representação da contribuição das variáveis censuradas bem como das não-censuradas na formação da função de verossimilhança é dada respectivamente por:

$$\Pr(y_{i} = y_{i}^{C}) = \Pr(y_{i}^{*} \ge y_{i}^{C})$$

$$= \Pr(X_{i}\beta + \mu_{i} \ge y_{i}^{C})$$

$$= \Pr(\mu_{i} \ge y_{i}^{C} - X_{i}\beta)$$

$$= \Pr\left(\frac{\mu_{i}}{\sigma} \ge \frac{y_{i}^{C} - X_{i}\beta}{\sigma}\right)$$

$$= 1 - \Pr\left(\frac{\mu_{i}}{\sigma} \le \frac{y_{i}^{C} - X_{i}\beta}{\sigma}\right)$$

$$= 1 - \Phi\left(\frac{y_{i}^{C} - X_{i}\beta}{\sigma}\right)$$
(56)

$$Pr(y_{i} = y_{i}^{*}) = Pr(y_{i} = X_{i}\beta + \mu_{i})$$

$$= Pr(\mu_{i} = y_{i} - X_{i}\beta)$$

$$= Pr\left(\frac{\mu_{i}}{\sigma} = \frac{y_{i} - X_{i}\beta}{\sigma}\right)$$

$$= \frac{1}{\sigma}\varphi\left(\frac{y_{i} - X_{i}\beta}{\sigma}\right)$$
(57)

Com essas duas contribuições torna-se possível a formulação, para o modelo Tobit, da função log-verossimilhança encontrando os valores estimados para o vetor de parâmetros β bem como as estimações para o parâmetro σ do desvio-padrão da regressão como se segue:

$$l(\beta, \sigma, y) = \sum_{y_i \ge y_i^C} log \left[1 - \Phi\left(\frac{y_i^C - X_i \beta}{\sigma}\right) \right] + \sum_{y_i = y_i^C} log \left[\frac{1}{\sigma} \varphi\left(\frac{y_i - X_i \beta}{\sigma}\right) \right]$$
 (58)

em que $\Phi(.)$ representa a função de distribuição cumulativa normal padrão enquanto $\varphi(.)$ representa a função de densidade normal padrão.

Entretanto, nos modelos de regressão censurada a relação entre a variável explicada e as explicativas não é interpretada diretamente por meio dos parâmetros da regressão, mas antes pelo contrário, pelo efeito marginal dessas sobre aquela. Desse modo, segundo Greene (1997) a equação do efeito marginal é dada por:

$$EM = \left[1 - F\left(\frac{-X'\beta}{\sigma}\right)\right]\beta\tag{59}$$

em que a função de distribuição acumulada normal (Φ) é representa por F e, por sua vez, os parâmetros estimados são representado por β e σ sendo esses estimados por meio da máxima verossimilhança.

Desse modo, após calcular o efeito marginal de cada uma das variáveis elencadas, calculado no ponto médio, é possível mensurar o impacto dessas sobre o nível de eficiência dos produtores rurais assim como fazer simulações e projeções.

4 RESULTADOS

No atual quadro estrutural no qual as firmas estão inseridas, em que prevalece um ambiente competitivo e dinâmico, torna-se de suma importância que os pesquisadores e os tomadores de decisão conheçam as medidas de eficiências das unidades produtoras. Pois, uma vez que essas forem identificadas aqueles serão capazes de determinar o verdadeiro potencial de expansão da produção (*outuput orientated*) ou de redução de insumos (*input orientated*) permitindo que a adoção de políticas econômicas para os setores analisados sejam mais profícuas. Por essas razões, a Análise Envoltória de Dados (DEA) assim como a Análise da Fronteira Estocástica (SFA) e, consequentemente, das medidas de eficiências, tiveram um expressivo crescimento nas últimas décadas contribuindo para que se tornasse um dos principais tópicos de estudos de economia aplicada nos dias atuais.

4.1 METODOLOGIA

A fonte de informação utilizada no presente trabalho consta nos Censos Agropecuários de 1996 e de 2006, do IBGE, e encontra-se desagregada por municípios. Para os dados de 1996 havia 756 municípios, sendo que, Belo Horizonte, Diogo de Vasconcelos, Palmópolis, Raposos, Santo Antônio do Jacinto e Timóteo foram excluídos por apresentarem dados faltantes em algumas das variáveis elencadas por este trabalho e, portanto, restaram 750 observações. Por sua vez, a base de dados de 2006 continha 853 municipalidades, contudo, Córrego Novo, Divisa Alegre, Nova Lima, Presidente Kubitschek, Raposos, Rio Acima, Santa Cruz de Minas, São José da Safira, Sarzedo, Timóteo e Wenceslau Brás foram eliminadas da análise por possuírem algumas variáveis com dados faltantes, resultando em uma base de dados com 842 observações. Nas análises, tanto para 1996 quanto para 2006, foram considerados três fatores de produção: terra (L), mão de obra (M) e tratores (T) sendo os vetores preços desses representados por w_L , w_M e w_T , respectivamente. Ressalva-se que os valores monetários para 1996, neste trabalho, estão a preços de 2006 corrigidos pelo Índice de Preço por Atacado (produtos agropecuários) – IPA – da Fundação Getúlio Vargas (FGV).

Para calcular a eficiência técnica tanto nos modelos de fronteira de produção determinística quanto nos modelos de fronteira de produção estocástica utilizou-se como variável dependente (E_{t_i}) o logaritmo do produto financeiro da agropecuária mineira, ou seja, produção agrícola e pecuária, indicado por IBGE (1996) e IBGE (2006). Como variáveis independentes utilizou-se os logaritmos das quantidades dos *inputs* empregados nessa

atividade, informação disponibilizada em IBGE (1996) e IBGE (2006), que foram: a) a área, em hectares, utilizada nas atividades agropecuárias (Q_L) ; b) o número de trabalhadores empregados nas propriedades rurais 93 (Q_M) e c) o número de tratores existentes nos estabelecimentos rurais (Q_T) . Logo, a equação representativa da regressão para os modelos de fronteira de produção estocástica é como se segue:

$$E_{t_i} = \beta_0 + \beta_1 \ln Q_{L_i} + \beta_2 \ln Q_{M_i} + \beta_3 \ln Q_{T_i} + e_i$$
(60)

Por sua vez, para a função custo, ou seja, para a eficiência alocativa, a variável explicada (E_{a_i}) é o logaritmo do custo total das variáveis independentes. Sendo assim, o preço da terra (w_L^*) por município foi calculado a partir do somatório das despesas com adubos e corretivos, sementes e agrotóxicos, aluguel de máquinas, despesas bancárias e juros e outras despesas, impostos e taxas e sacarias e outras embalagens, informações disponibilizadas em IBGE (1996) e IBGE (2006). Para o preço de mão de obra (w_M^*) a apuração resultou do somatório das despesas com salários e empreitada. Já o preço da variável trator (w_T^*) foi calculado a partir da soma das despesas com transporte e com combustível.

Como variáveis exógenas foram utilizados os logaritmos dos preços unitários dos inputs (área, mão de obra e trator). Dessa forma, o vetor preço por município da regressora área (w_L) foi calculado a partir da razão entre o montante gasto com essa variável e o total de hectares empregados na agropecuária dos municípios mineiros, conforme IBGE (1996) e IBGE (2006). Analogamente foi possível obter os vetores preços por município das variáveis explicativas mão de obra (w_M) e trator (w_T) , isto é, a razão entre a despesa monetária com cada uma dessas variáveis e a quantidade utilizada delas nas atividades agrícola e pecuária mineira. Por último, o logaritmo do produto financeiro (P_i) por hectare também foi utilizado como uma variável exógena. Então, a equação representativa da regressão paramétrica é:

$$E_{a_i} = \beta_0 + \beta_1 \ln P_i + \beta_2 \ln w_{L_i} + \beta_3 \ln w_{M_i} + \beta_4 \ln w_{T_i} + e_i$$
(61)

Importante ressaltar que, diferentemente da Análise da Fronteira Estocástica, para a Análise Envoltória de Dados a eficiência calculada pela função custo na realidade é a eficiência econômica e não a eficiência alocativa. Pois como supracitado na Análise da

-

Nogueira 2005 pondera os indivíduos ocupados nos estabelecimentos rurais como: homem (100%), mulher (80%) e crianças (50%) para diferenciar a produtividade de cada um deles, contudo, no presente trabalho optou-se por não adotar tal metodologia, pois considera que a mesma possa compensar alguma ineficiência.

Fronteira Estocástica a eficiência econômica é calculada residualmente enquanto na Análise Envoltória de Dados a eficiência alocativa é que será calculada residualmente.

Para o modelo de regressão censurada Tobit tanto para a análise referente ao ano de 1996 quanto para 2006 a variável dependente (E_i) utilizada foi os escores das eficiências econômicas da DEA e da SFA. Como variáveis independentes utilizou-se os logaritmos do número de estabelecimentos com assistência técnica (X_1), do número de estabelecimentos que utilizaram adubos e corretivos de solo (X_2), do número de estabelecimentos que realizaram o controle de pragas e doenças (X_3), do número de estabelecimentos que utilizaram a técnica de irrigação nas lavouras (X_4), valor dos investimentos, por município, realizados pelos estabelecimentos (X_5), valor do financiamento, por município, efetuado pelos estabelecimentos (X_6), do somatório da área (ha) de lavouras permanentes e temporárias, pastagens naturais e artificiais e matas naturais e plantadas (X_7) – indicando a intensidade de utilização da terra em cada município, da área (ha) de lavouras em descanso e produtivas e não utilizadas em cada município (X_8) e a média dos anos de estudo em cada município, indicando a importância do nível educacional (X_9). Desse modo, a função da regressão Tobit é:

$$E_i = \beta_0 + \beta_1 \ln X_1 + \beta_2 \ln X_2 + \dots + \beta_8 \ln X_8 + \beta_9 \ln X_9 + \varepsilon_i$$
 (62)

Tanto as medidas de eficiências do modelo paramétrico quanto as do modelo nãoparamétrico, bem como o modelo Tobit, foram calculadas utilizando-se o software estatístico R 2.15.1.

4.2 FRONTEIRA DE PRODUÇÃO DETERMINÍSTICA

Para as fronteiras de produção determinísticas, as medidas de eficiências, em ambos os anos, foram analisadas sob os pressupostos das seguintes tecnologias: retornos variáveis de escala, retornos decrescentes de escala, retornos crescentes de escala e retornos constantes de escala. Embora nos resultados deste trabalho, tanto para o ano de 1996 quanto para 2006 a tecnologia que obteve a maior eficiência custo médio foi retornos variáveis de escala no presente trabalho optou-se em analisar as propriedades rurais mineiras sob os pressupostos dos retornos constantes de escala uma vez que sob essa tecnologia os agropecuaristas possuíam tanto a eficiência técnica quanto a eficiência de escala.

4.2.1 Análise envoltória de dados (DEA) para o ano 1996

Dos 750 municípios analisados em 1996, apenas Coronel Fabriciano obteve eficiência econômica igual a um, isto é, foi totalmente eficiente sob os pressupostos de retornos constantes de escala. Percebe-se pela Tabela 4 que com uma tecnologia de produção com retornos constantes de escala a eficiência média para aquele ano foi de 0,6854 enquanto a eficiência custo mediana foi de 0,6786.

Tabela 4 – Estatísticas descritivas para as eficiências econômicas (1996)

Tecnologia de produção	Média	Mediana
E ^{VRS}	0,7232	0,7125
E ^{DRS}	0,7079	0,6980
E ^{IRS}	0,7007	0,6922
E ^{CRS}	0,6854	0,6786

Fonte: Resultados da pesquisa.

E^{VRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos variáveis de escala

E^{DRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos decrescente de escala

E^{IRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos crescente de escala

E^{CRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos constante de escala

Conforme a Tabela 5, sob os pressupostos da tecnologia de retornos constantes de escala, 10% dos produtores rurais possuíam uma eficiência igual ou inferior a 0,6356 e por sua vez para 90% a eficiência era igual ou inferior a 0,7387. Sendo assim, a amplitude entre os primeiros nove decis é moderada, caracterizando haver uma homogeneização no sistema produtivo agropecuário mineiro, isto é, as práticas produtivas dos produtores rurais mineiros são equivalentes. O que é coerente, pois é sabido que no meio rural os produtores agropecuários informam-se sobre as práticas produtivos com outros "fazendeiros" mais do que com agentes extensionistas. Sendo assim, vale destacar que quando se pretende realizar alguma campanha para os agropecuaristas é interessante que se identifique aqueles possuidores de um nível de educação mais elevado e que sejam capazes de influenciar os demais para que as políticas públicas tenham mais efetividade.

Tabela 5 – Percentis para as eficiências econômicas (1996)

Tecnologia		Percentis						
de produção	10%	20%	30%	40%	60%	70%	80%	90%
E ^{VRS}	0,6525	0,6717	0,6885	0,7009	0,7270	0,7405	0,7645	0,8014
EDRS	0,6379	0,6586	0,6731	0,6853	0,7109	0,7278	0,7506	0,7868
E ^{IRS}	0,6447	0,6588	0,6705	0,6800	0,7030	0,7146	0,7320	0,7638
ECRS	0,6356	0,6516	0,6622	0,6714	0,6904	0,6998	0,7134	0,7387

E^{VRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos variáveis de escala

E^{DRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos decrescente de escala

E^{IRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos crescente de escala

E^{CRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos constante de escala

Corroborando com esses resultados, a tabela de intervalo de classes (Tabela 6) demonstra que em 526 municípios, isto é, em 70,1% da base de dados, a eficiência econômica dos produtores rurais foi igual ou inferior a 0,70 (mas não inferior a 0,50) e em apenas 3 cidades (0,4%) a eficiência foi superior a 0,90⁹⁴.

Tabela 6 – Intervalo de classe para as eficiências econômicas (1996)

Classes	Freq. absoluta	Freq. relativa (%)	Freq. acumulada (%)
$0 < E \leq 0,50$	0	0	0
$0,50 < E \leq 0,70$	526	70,1	70,1
$0,70 < E \leq 0,90$	221	29,5	99,6
$0,90 < E \leq 1$	3	0,4	100,0

Fonte: Resultados da pesquisa.

Por último, mas não mesmo importante, foram realizados os testes Jarque-Bera e de curtose para verificar a normalidade na distribuição das eficiências. Pela Tabela 7 verifica-se que o valor reportado para aquele teste foi de 1.030,103. Todavia, uma vez que o valor crítico de 5% de uma distribuição qui-quadrado, χ^2 , com 2 graus de liberdade é igual a 5,99 então a hipótese nula de uma distribuição normalmente distribuída é rejeitada, pois 5,99 < 1.030,103. Como forma de ratificação para esse resultado foi calculado o grau de achatamento da série, isto é, a curtose, cujo valor reportado foi de 8,0007. Sendo assim, haja visto que o valor da curtose para uma distribuição normal padrão é igual a 3 aquele resultado

_

⁹⁴ Nogueira (2005) e Ferreira (2005) considerando como eficientes índices iguais ou superiores a 0,90, entretanto, no presente trabalho será considerado apenas eficientes aqueles produtores cujo valor reportado para a eficiência seja igual a 1.

ratifica que a série eficiência econômica dos produtores rurais de Minas Gerais não possuía uma distribuição normal.

Tabela 7 – Teste de normalidade para as distribuições das eficiências econômicas (1996)

Teste	$\mathbf{E^{VRS}}$	$\mathbf{E}^{\mathbf{DRS}}$	E ^{IRS}	E ^{CRS}
Iomana Dama	491,4425	462,0688	1.036,003	1.030,103
Jarque-Bera	(2,2e-16)*	(2,2e-16)*	(2,2e-16)*	(2,2e-16)*
Curtose	6,0066	5,9765	7,7636	8,0007
Assimetria	1,2929	1,2172	1,6171	1,4103

Fonte: Resultados da pesquisa.

4.2.3 Análise envoltória de dados (DEA) para o ano de 2006

Assim como para 1996, em 2006, apenas um município foi totalmente eficiente sob uma tecnologia de produção com retornos constantes de escala, o município de Planura. Notase pela Tabela 8 que a eficiência custo média para o ano de 2006 foi de 0,6343 e que por sua vez eficiência econômica mediana reportada foi de 0,6326.

Tabela 8 – Estatísticas descritivas para as eficiências econômicas (2006)

Tecnologia de produção	Média	Mediana
$\mathbf{E^{VRS}}$	0,7690	0,7610
E ^{DRS}	0,6343	0,6326
E ^{IRS}	0,7690	0,7610
E ^{CRS}	0,6343	0,6326

Fonte: Resultados da pesquisa.

E^{VRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos variáveis de escala

E^{DRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos decrescente de escala

E^{IRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos crescente de escala

E^{CRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos constante de escala

Analogamente ao ano de 1996 a diferença entre o primeiro e o nono decil para o ano de 2006 é moderada, portanto, podendo ser interpretado como uma homogeneização na função custo dos agropecuaristas. Conforme a Tabela 9 o valor para aquele decil é de 0,5669 enquanto para esse é de 0,6982. Desse modo, noventa por cento das eficiências econômicas dos produtores rurais mineiros são inferiores a 0,6982.

^{*} Os valores entre parênteses são os valores-p.

E^{VRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos variáveis de escala E^{DRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos decrescente de escala

 E^{IRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos crescente de escala

E^{CRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos constante de escala

Tabela 9 – Percentis para as eficiências econômicas (2006)

Tecnologia				Perc	entis			
de produção	10%	20%	30%	40%	60%	70%	80%	90%
$\mathbf{E}^{\mathbf{VRS}}$	0,6970	0,7173	0,7341	0,7470	0,7754	0,7943	0,8150	0,8499
EDRS	0,5669	0,5919	0,6093	0,6212	0,6432	0,6546	0,6704	0,6982
E ^{IRS}	0,6970	0,7173	0,7341	0,7470	0,7754	0,7943	0,8150	0,8499
ECRS	0,5669	0,5919	0,6093	0,6212	0,6432	0,6546	0,6704	0,6982

E^{VRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos variáveis de escala

E - eficiência econômica sob o pressuposto de uma tecnologia com retornos decrescente de escala

E^{IRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos crescente de escala

E^{CRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos constante de escala

Percebe-se pela Tabela 10 que em apenas dois municípios, dos 842 da base de dados, os produtores alcançaram eficiência econômica superior a 0,90; ratificando assim os resultados reportados para os percentis e que foram apresentados na tabela anterior em que noventa por cento das cidades a eficiência ficou inferior a 0,6982.

Tabela 10 – Intervalo de classe para as eficiências econômicas (2006)

Classes	Freq. absoluta	Freq. relativa (%)	Freq. acumulada (%)
$0 < E \leq 0,50$	15	1,8	1,8
$0,50 < E \leq 0,70$	746	88,7	90,5
$0,70 < E \leq 0,90$	78	9,3	99,8
$0,90 < E \leq 1$	3	0,2	100,0

Fonte: Resultados da pesquisa.

Com um resultado igual a 806,31 para o teste de normalidade da distribuição, de acordo com a Tabela 11, conclui-se que a série da eficiência custo para o ano 2006 não é normalmente distribuída. Pois o valor crítico para uma significância estatística igual a 5% de uma distribuição qui-quadrada, χ^2 , com 2 graus de liberdade é igual 5,99. Dessa forma, rejeita-se a hipótese nula (H_0 : distribuição normal) uma vez que 806,31 > 5,99. Como forma de ratificação para esse resultado foi empregado o teste de curtose cujo resultado foi 7,4725; contudo, para uma distribuição normal o valor da curtose é igual a 3, dessa forma, 7,4725 > 3 e pelo teste de Jarque-Bera essa diferença é estatisticamente significante.

Tabela 11 – Teste de normalidade para as distribuições das eficiências econômicas (2006)

Teste	$\mathbf{E^{VRS}}$	$\mathbf{E}^{\mathbf{DRS}}$	E ^{IRS}	ECRS
Ionana Dana	129,8091	806,3135	129,8091	806,3135
Jarque-Bera	(2,2e-16)*	(2,2e-16)*	(2,2e-16)*	(2,2e-16)*
Curtose	4,0161	7,4725	4,0161	7,4725
Assimetria	0,8166	0,8630	0,8166	0,8630

4.3 FRONTEIRA DE PRODUÇÃO ESTOCÁSTICA

No presente trabalho, para os modelos de fronteira de produção estocástica optou-se por trabalhar com as formas funcionais flexíveis de primeira ordem, ou seja, uma aproximação diferencial de primeira ordem para uma função qualquer em um único ponto. Destarte, empregou-se uma forma funcional linear entre regressanda e regressores cujo formato é do tipo: $y = \beta_0 + \sum_{n=1}^N \beta_1 x_n$. Para esse modelo de fronteira de produção há quatro pressupostos para a distribuição do erro assimétrico do modelo: meia-normal, normal-truncada, exponencial e normal-gama. Sendo que para a análise em questão foram estimadas as regressões somente sob os dois primeiros pressupostos, em função de limitações computacionais, pois o software utilizado R não possui as distribuições exponencial e normal-gama. Conforme as Tabelas 12 e 16 tanto para o ano de 1996 quanto para 2006 a tecnologia de produção que apresentou a maior eficiência econômica média foi normal-truncada cujos valores foram 0,6399 e 0,4799; respectivamente.

4.3.1 Análise da fronteira estocástica (SFA) para o ano de 1996

Para o ano de 1996, em nenhuma das suposições da distribuição de erro empregadas neste trabalho houve a ocorrência de algum município com eficiência econômica total, ou seja, que estivesse situado sobre a fronteira de produção. Analisando a Tabela 12, percebe-se que os valores reportados para as eficiências econômicas média e mediana foram respectivamente, 0,5651 e 0,5839 para a distribuição meia-normal e 0,6399 e 0,6672 para o pressuposto de uma distribuição normal-truncada.

^{*} Os valores entre parênteses são os valores-p.

E^{VRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos variáveis de escala

E^{DRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos decrescente de escala

E^{IRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos crescente de escala

E^{CRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos constante de escala

Tabela 12 – Estatísticas descritivas para as eficiências econômicas (1996)

Distribuição do erro	Média	Mediana
Meia-normal	0,5651	0,5839
Normal-truncada	0,6399	0,6672

Ratificando os resultados obtidos com a média e a mediana, a distribuição normal-truncada para o erro assimétrico, é que apresentou valores maiores para os percentis, evidenciando que a eficiência econômica sob o pressuposto de uma distribuição normal-truncada é superior à de uma distribuição meia-normal. Verifica-se pela Tabela 13 que mais uma vez a amplitude entre o primeiro e o nono decil, para ambas as distribuições, é moderada, sinalizando haver uma homogeneização nos modos de produção dos agropecuaristas mineiros.

Tabela 13 – Percentis para as eficiências econômicas (1996)

Distribuição do	Percentis							
erro	10%	20%	30%	40%	60%	70%	80%	90%
Meia-normal	0,4058	0,4719	0,5175	0,5543	0,6072	0,6312	0,6597	0,6975
Normal-truncada	0,4824	0,5610	0,6059	0,6392	0,6870	0,7062	0,7293	0,7581

Fonte: Resultados da pesquisa.

Como supracitado, não houve a ocorrência, nem para distribuição meia-normal e nem para a normal-truncada, de um município com eficiência econômica total. Nota-se pela Tabela 14 que para ambos os pressupostos a eficiência máxima foi de 0,90 e, desse modo, os *inputs* poderiam ser reduzidos sem que o nível de produção fosse alterado, ou seja, esse permaneceria o mesmo.

Tabela 14 – Intervalo de classe para as eficiências econômicas (1996)

Classes	Freq. absoluta		Freq. relativa (%)		Freq. acumulada (%)	
Classes	Normal	Truncada	Normal	Truncada	Normal	Truncada
$0 < E \leq 0,50$	194	85	25,9	11,3	25,9	11,3
$0,50 < E \leq 0,70$	486	409	64,8	54,5	90,7	65,8
$0,70 < E \leq 0,90$	70	256	9,3	34,2	100,0	100,0
$0,90 < E \leq 1$	0	0	0	0	100,0	100,0

Fonte: Resultados da pesquisa.

Para verificar se as eficiências econômicas possuíam uma distribuição normal padrão (0,1) aplicou-se o teste de Jarque-Bera a essas séries. Sendo que os valores reportados para o

referido teste provaram tratar-se de séries com distribuição não normal, pois para meia-normal o valor Jarque-Bera foi de 79,0 e para a normal-truncada de 359,5, de acordo com a Tabela 15. Sendo esses superiores ao valor de 5,99 para uma distribuição qui-quadrada (χ^2) com dois graus de liberdade e significância estatística igual a 5%. Logo, não se rejeita a hipótese alternativa de não normalidade da distribuição. Por sua vez, de posse do resultado do teste Jarque-Bera e do valor da curtose pode-se confirma a não normalidade dessa distribuição. Pois como para ambas as séries o valor da curtose foram diferentes de 3 e uma vez que o teste Jarque-Bera rejeitou a hipótese nula, significa que essas diferenças são estatisticamente significantes.

Tabela 15 – Teste de normalidade para as distribuições das eficiências econômicas (1996)

Teste	Meia-normal	Normal-truncada
Jarque-Bera	78,9888 (2,2e-16)*	359,4828 (2,2e-16)*
Curtose	3.6779	5,2208
Assimetria	-0.7191	-1,2817

Fonte: Resultados da pesquisa.

4.3.2 Análise da fronteira estocástica (SFA) para o ano 2006

Assim como em 1996, nenhum dos 842 municípios analisados em 2006 obteve eficiência econômica máxima, isto é, não atingiu a eficiência igual a um. Percebe-se pela Tabela 16 que os valores das eficiências médias e medianas foram: 0,3970 e 0,4063 para a distribuição do erro assimétrico meia-normal e 0,4799 e 0,5013 para a normal-truncada, respectivamente.

Tabela 16 – Estatísticas descritivas para as eficiências econômicas (2006)

Distribuição do erro	Média	Mediana
Meia-normal	0,3970	0.4063
Normal-truncada	0,4799	0,5013

Fonte: Resultados da pesquisa.

Analisando as classes dos percentis contidas na Tabela 17 nota-se que para a distribuição meia-normal 90% dos municípios obtiveram eficiência igual ou inferior a 0,5467 enquanto para o pressuposto de um erro com uma média truncada em zero, considerando aquele mesmo percentil, o valor foi igual ou inferior a 0,6300. Por último, destaca-se que a

^{*} Os valores entre parênteses são os valores-p.

amplitude entre o primeiro decil e a média e entre essa e o nono decil, em ambas as distribuições, estavam próximos, indicando haver um pequeno desvio das eficiências em relação à eficiência média.

Tabela 17 – Percentis para as eficiências econômicas (2006)

Distribuição do	Percentis							
erro	10%	20%	30%	40%	60%	70%	80%	90%
Meia-normal	0,2316	0,2916	0,3349	0,3721	0,4338	0,4635	0,5026	0,5467
Normal-truncada	0,3041	0,3771	0,4275	0,4672	0,5267	0,5556	0,5879	0,6300

Fonte: Resultados da pesquisa.

Verifica-se pela Tabela 18 que das 842 observações para o ano de 2006 que cinco produtores na meia-normal e 20 produtores na normal-truncada obtiveram eficiência econômica superior a 0,70 e menor ou igual 0,90. Contudo, em nenhuma das duas distribuições houve a ocorrência de algum município que estivesse sobre a fronteira de produção, isto é, que tivesse alcançado a eficiência total. No caso da meia-normal, 99,4% das observações possuíam eficiência inferior ou igual a 0,70 enquanto na normal-truncada 97,6% dos municípios situavam nessa mesma classe de eficiência. Sendo assim, para aquela apenas 0,6% dos municípios atingiram eficiência superior a 0,70 enquanto para essa 2,4% possuíam escore de eficiência entre 0,70 e 0,90.

Tabela 18 – Intervalo de classe para as eficiências econômicas (2006)

Classes	Freq. absoluta		Freq. relativa (%)		Freq. acumulada (%)	
Classes	Normal	Truncada	Normal	Truncada	Normal	Truncada
$0 < E \leq 0,50$	665	415	79,0	49,3	79,0	49,3
$0,50 < E \leq 0,70$	172	407	20,4	48,3	99,4	97,6
$0,70 < E \leq 0,90$	5	20	0,6	2,4	100,0	100,0
$0,90 < E \leq 1$	0	0	0	0	100,0	100,0

Fonte: Resultados da pesquisa.

O teste Jarque-Bera para a normalidade da distribuição do erro assimétrico meianormal rejeitou a hipótese nula de normalidade da distribuição, pois 7,2914 > 5,99. Dessa forma, o valor de 3,0234 para curtose é estatisticamente diferente de 3 e sendo assim a função distribuição de probabilidade dessa série não possui o mesmo achatamento que a distribuição normal, ou seja, não é uma função mesocúrtica. Analogamente, para a distribuição normaltruncada não se rejeitou a hipótese alternativa de uma distribuição não normal uma vez que 5,99 < 96,7162. Logo, o valor de 3,7021 para a curtose é estatisticamente diferente de 3 e por isso mesmo essa série não possui uma distribuição normal. Uma vez que se trata de uma distribuição assimétrica negativa (-0,7523) os desvios negativos são preponderantes em relação aos positivos resultando numa cauda à esquerda mais alongada que a cauda à direita.

Tabela 19 – Teste de normalidade para as distribuições das eficiências econômicas (2006)

Teste	Meia-normal	Normal-truncada
Jarque-Bera	7,2914 (0,0261)*	96,7162 (2,2e-16)*
Curtose	3,0234	3,7021
Assimetria	-0,2276	-0,7523

Fonte: Resultados da pesquisa.

4.4 DISCUSSÃO DOS RESULTADOS

Nota-se pela Tabela 20 que 73,4% dos agropecuaristas da mesorregião Triângulo Mineiro/Alto Paranaíba obtiveram uma eficiência entre 0,50 e 0,70. Considerando que, conforme caracterização do capítulo 2 deste trabalho, essa região possui solos favoráveis à agricultura bem como um relevo que facilita uma mecanização intensa infere-se que os produtores dessa região não estavam utilizando os recursos na melhor proporção possível. Contudo, embora em 2006 a grande maioria dos municípios ainda continuava classificados naquele intervalo, foi nessa mesorregião que os produtores do município de Planura obtiveram eficiência máxima. Salienta-se que esse quadro foi semelhante para a análise da fronteira estocástica, Tabelas 22 e 23, para ambas as distribuições de erro.

^{*} Os valores entre parênteses são os valores-p.

Tabela 20 – Intervalo de classes para as eficiências econômicas – DEA (1996)

Magarragião -	Retornos Constantes de Escala (E ^{CRS})						
Mesorregião -	$0 < E \leq 0,50$	$0,50 < E \leq 0,70$	$0,70 < E \leq 0,90$	$0,90 < E \leq 1$			
Triângulo	0	47	17	0			
Sul/Sudoeste	0	108	36	0			
Noroeste	0	11	2	0			
Zona da Mata	0	74	55	0			
Norte	0	50	3	0			
Oeste	0	39	5	0			
Rio Doce	0	45	36	1			
Metropolitana	0	48	47	2			
Central	0	25	5	0			
Vertentes	0	31	4	0			
Jequitinhonha	0	34	7	0			
Mucuri	0	14	4	0			

Para as regiões da Zona da Mata (42,6%), Vale do Rio Doce (43,9%) e Metropolitana de Belo Horizonte (48,5%) quase que a metade dos municípios dessas, de acordo com a Tabela 20, situaram-se num intervalo de classes cuja eficiência está compreendida entre 0,70 e 0,90 (os valores entre parênteses indica a porcentagem de municípios classificados nesse intervalo). Para a Zona da Mata esses resultados foram coerentes uma vez que os tipos de solos encontrados nessa região são favoráveis ao aproveitamento agrícola. Como uma porção territorial da Vale do Rio Doce é composto pelo solo podzólico-vermelho escuro (argissolo vermelho-amarelo), mesmo solo da Zona da Mata, também pode explicar os escores de eficiências obtidos pelos municípios dessa região, a qual pertence Coronel Fabriciano único município mineiro a ter eficiência máxima em 1996. Embora a região Metropolitana de Belo Horizonte não tenha um solo que favoreça a utilização agrícola da mesma a grande maioria dos produtores dessa obtiveram escores de eficiência razoáveis, Tabela 20. Talvez o que tenha contribuído para esse resultado tenha sido um balanço hídrico mensal favorável o que evitou gastos com sistemas de irrigação das lavouras. Porém, para o ano de 2006, esse quadro não se manteve e a grande maioria dos produtores dessas três mesorregiões situou-se no intervalo 0,50-0,70. O que pode ter resultado da crise agrícola de 2005 cuja uma das consequências foi o aumento dos insumos agropecuários.

Tabela 21 – Intervalo de classes para as eficiências econômicas – DEA (2006)

Mesorregião -	Retornos Constantes de Escala (E ^{CRS})						
Wiesurregiau	$0 < E \leq 0,50$	$0,50 < E \leq 0,70$	$0,70 < E \leq 0,90$	$0,90 < E \le 1$			
Triângulo	0	53	11	2			
Sul/Sudoeste	0	128	16	1			
Noroeste	0	17	2	0			
Zona da Mata	0	126	16	0			
Norte	7	78	3	0			
Oeste	0	42	2	0			
Rio Doce	3	90	6	0			
Metropolitana	2	87	12	0			
Central	0	26	4	0			
Vertentes	0	32	3	0			
Jequitinhonha	3	45	2	0			
Mucuri	0	22	1	0			

Nota-se que esse comportamento para as três regiões acima só foi semelhante ao da análise paramétrica com uma distribuição do erro assimétrico normal-truncada (Tabela 24). Em que para o ano de 2006 os índices de eficiências da grande maioria dos municípios situaram-se num intervalo de classe inferior ao obtido em 1996. Enquanto para o pressuposto de uma distribuição meia-normal para o erro assimétrico, tanto em 1996 quanto em 2006, a grande maioria dos estabelecimentos rurais concentrou-se num intervalo entre 0-0,70.

Tabela 22 – Intervalo de classes para as eficiências econômicas – SFA (1996)

Mesorregião -	Distribuição do erro assimétrico normal-truncada						
Wiesorregiao -	$0 < E \leq 0,50$	$0,50 < E \leq 0,70$	$0,70 < E \leq 0,90$	$0,90 < E \leq 1$			
Triângulo	0	35	29	0			
Sul/Sudoeste	8	88	48	0			
Noroeste	2	10	1	0			
Zona da Mata	4	59	66	0			
Norte	33	17	3	0			
Oeste	1	28	15	0			
Rio Doce	8	46	28	0			
Metropolitana	13	52	32	0			
Central	2	14	14	0			
Vertentes	0	22	13	0			
Jequitinhonha	12	26	3	0			
Mucuri	2	12	4	0			

Fonte: Resultados da pesquisa.

Destaca-se que entre as doze mesorregiões mineiras a Sul/Sudoeste de Minas, Noroeste de Minas, Norte de Minas, Oeste de Minas, Central Mineira, Campo das Vertentes, Jequitinhonha e Vale do Mucuri apresentam condições de solos desfavoráveis à utilização dessas para a agricultura. O que pode ser evidenciado pelas tabelas de intervalo de classes dessa seção em que nesses municípios os produtores rurais na grande maioria concentravamse numa classe de eficiência menor. Entretanto, diferentemente desse quadro descrito, na Tabela 23, os resultados da Análise da Fronteira Estocástica com uma distribuição do erro meia-normal para o ano de 1996 os municípios concentravam-se num intervalo de classe superior (0,50-0,90) enquanto uma pequena minoria estava classificada entre 0 e 0,50.

Tabela 23 – Intervalo de classes para as eficiências econômicas – SFA (1996)

Mesorregião -	Dist	Distribuição do erro assimétrico meia-normal						
Wiesurregiau	$0 < E \leq 0,50$	$0,50 < E \leq 0,70$	$0,70 < E \leq 0,90$	$0,90 < E \le 1$				
Triângulo	4	53	7	0				
Sul/Sudoeste	28	107	9	0				
Noroeste	4	9	0	0				
Zona da Mata	14	92	23	0				
Norte	47	5	1	0				
Oeste	7	32	5	0				
Rio Doce	22	52	8	0				
Metropolitana	31	54	12	0				
Central	4	24	2	0				
Vertentes	2	31	2	0				
Jequitinhonha	25	15	1	0				
Mucuri	6	12	0	0				

Fonte: Resultados da pesquisa.

Por exemplo, para a mesorregião Sul/Sudoeste de Minas cujo solo não possui características ambientais e propriedades físicas e químicas favoráveis à agricultura bem como apresenta propriedades que dificultam a mecanização dessa região esses fatores acabam por impactar sobre as atividades agropecuárias contribuindo para que minimizassem a eficiência dos agropecuaristas. Para a DEA 1996 havia 144 municípios na Sul/Sudoeste de Minas sendo que desses 75,0% obtiveram escore de eficiência compreendido no intervalo 0-0,70. Para o mesmo ano, porém sob a análise da SFA, havia 66,7% e 93,8% dos produtores rurais situados nessa mesma classe sendo os pressupostos de distribuição do erro, respectivamente, normal-truncada e meia-normal.

Tabela 24 – Intervalo de classes para as eficiências econômicas – SFA (2006)

Mesorregião -	Distribuição do erro assimétrico normal-truncada						
Wiesui i egiau	$0 < E \leq 0,50$	$0,50 < E \leq 0,70$	$0,70 < E \leq 0,90$	$0,90 < E \leq 1$			
Triângulo	34	31	1	0			
Sul/Sudoeste	64	76	5	0			
Noroeste	14	5	0	0			
Zona da Mata	42	98	2	0			
Norte	79	8	1	0			
Oeste	18	25	1	0			
Rio Doce	43	55	1	0			
Metropolitana	39	54	8	0			
Central	16	14	0	0			
Vertentes	14	20	1	0			
Jequitinhonha	38	12	0	0			
Mucuri	14	9	0	0			

Já os resultados para 2006 em que o número de municípios, devido às emancipações ocorridas na década compreendida entre os dois censos, era de 145, foram 88,3% dos municípios obtiveram eficiência entre 0 e 0,70 para a DEA, para a SFA normal-truncada haviam 96,6% e para a meia-normal haviam 97,9%, considerando o intervalo de 0-0,70.

Tabela 25 – Intervalo de classes para as eficiências econômicas – SFA (2006)

Magannagião	Distribuição do erro assimétrico meia-normal					
Mesorregião -	$0 < E \leq 0,50$	$0.50 < E \le 0.70$	$0,70 < E \leq 0,90$	$0,90 < E \le 1$		
Triângulo	51	15	0	0		
Sul/Sudoeste	116	26	3	0		
Noroeste	15	4	0	0		
Zona da Mata	99	42	1	0		
Norte	83	5	0	0		
Oeste	36	8	0	0		
Rio Doce	78	20	1	0		
Metropolitana	70	31	0	0		
Central	24	6	0	0		
Vertentes	27	8	0	0		
Jequitinhonha	43	7	0	0		
Mucuri	23	0	0	0		

Fonte: Resultados da pesquisa.

Para os condicionantes da eficiência econômica no ano de 1996 para a Análise Envoltória de Dados três variáveis foram estatisticamente significantes (Tabela 26). Para o controle de praga e doenças a relação é inversa com a eficiência, o que parece ser coerente, pois na maioria das vezes o controle de praga e doenças ocorre quando as lavouras já se

encontram infestadas diminuindo a eficiência. Com uma relação positiva tem-se investimento, porém o impacto sobre a variável explicada é bem pequeno (0,0096). Por último, lavouras em descanso reportou uma relação inversa com os escores de eficiência. Desse modo, a técnica de rotação de áreas talvez não estivesse sendo a melhor opção para melhoria da produção. Por sua vez, para o ano de 2006, mas ainda sob a análise DEA, assistência técnica, controle de praga e doenças, lavouras permanentes e temporárias, pastagens naturais e artificiais e matas naturais e plantadas e anos de estudos são diretamente proporcionais aos escores, conforme Tabela 26.

Tabela 26 – Condicionantes da eficiência econômica (Modelo Tobit)

Vorióvoje ovnljestivos	DEA	1996	DEA 2006		
Variáveis explicativas	Efeito marginal	Probabilidade	Efeito marginal	Probabilidade	
Constante	0,7966	$< 2e-16^{a}$	0,5115	<2e-16 ^a	
Assistência técnica	-0,0019	0,3084	0,0074	$0,0505^{d}$	
Adubos e corretivos	0,0025	0,3823	-0,0032	0,2790	
Pragas e doenças	-0,0316	3,94e-13 ^a	0,0083	$0,0064^{b}$	
Irrigação nas lavouras	0,0019	0,1420	-0,0025	0,1656	
Investimentos	0,0096	0,0001 ^a	-0,0146	$0,0008^{a}$	
Financiamento	0,0005	0,5715	0,0021	0,7070	
Intensidade do uso da terra	-0,0012	0,7039	0,0061	0,0371°	
Lavouras em descanso	-0,0044	$0,0033^{b}$	-0,0016	0,3344	
Média de anos de estudo	0,0065	0,2933	0,0392	$0,0003^{a}$	
σ	-3,3776	<2e-16 ^a	-2,8967	<2e-16 ^a	

Fonte: Resultados da pesquisa.

Nível de significância: a = 0.1%; b = 1%; c = 5% e d = 10%.

Salienta-se que para 2006, diferentemente a 1996, controle de praga e doenças aparecem com uma relação positiva caracterizando que os produtores rurais podem estar se antecipando às infestações e fazendo um controle preventivo ao invés de curativo. Também, diferentemente da relação obtida em 1996, investimento reportou uma relação inversamente proporcional às eficiências. Considerando que em 2005 ocorreu uma crise no setor agropecuário e que um dos resultados foi o aumento dos fatores de produção infere-se que essa relação pode ter captado esses aumentos.

Tabela 27 – Condicionantes da eficiência econômica (Modelo Tobit)

Variáveis explicativas	Normal-tru	ncada 1996	Normal-truncada 2006		
variaveis explicativas	Efeito marginal	Probabilidade	Efeito marginal	Probabilidade	
Constante	0,7488	$< 2e-16^a$	0,7178	<2e-16 ^a	
Assistência técnica	0,0039	0,4687	0,0051	0,5283	
Adubos e corretivos	0,0438	$8,72e-08^{a}$	0,0200	$0,0018^{b}$	
Pragas e doenças	-0,0374	$0,0023^{b}$	0,0030	0,6463	
Irrigação nas lavouras	-0,0093	$0,0126^{c}$	-0,0063	0,0968	
Investimentos	0,0273	9,91e-05 ^a	-0,0050	0,5902	
Financiamento	-0,0015	0,5602	-0,0065	0,5791	
Intensidade do uso da terra	-0,0115	0,1824	-0,0408	4,7e-11 ^a	
Lavouras em descanso	-0,0212	$6,34e-07^{a}$	-0,0051	0,1479	
Média de anos de estudo	0,0149	0,3896	0,0760	$0,0010^{a}$	
σ	-2,3421	<2e-16 ^a	-2,1425	<2e-16 ^a	

Nível de significância: a = 0,1%; b = 1%; c = 5% e d = 10%.

Para a Análise da Fronteira Estocástica, em 1996, tanto para uma distribuição normal-truncada do erro assimétrico quanto para a meia-normal, das nove variáveis exógenas cinco foram estatisticamente significantes (Tabelas 27 e 28). Sendo as mesmas variáveis em ambas as distribuições. Com relação positiva teve-se: adubos e corretivos e investimento. Já com relação negativa foram: controle de praga e doenças, irrigação e lavouras em descanso. O uso de adubos e corretivos apresentou o maior impacto sobre as eficiências, 0,0438 (Tabela 27), logo, um aumento no nível da eficiência econômica talvez possa ser obtido com o aumento da utilização desses nas regiões menos eficientes. Por sua vez, a irrigação mostrou-se como um dos fatores que minimizou a eficiência dos agropecuaristas mineiros.

Tabela 28 – Condicionantes da eficiência econômica (Modelo Tobit)

Variáveis explicativas	Meia-normal 1996		Meia-normal 2006	
	Efeito marginal	Probabilidade	Efeito marginal	Probabilidade
Constante	0,6710	$2,04e-14^{a}$	0,6880	$<2e-16^a$
Assistência técnica	0,0025	0,6485	0,0039	0,6030
Adubos e corretivos	0,0427	3,79e-07 ^a	0,0177	0,0031 ^b
Pragas e doenças	-0,0378	$0,0027^{b}$	0,0018	0,7708
Irrigação nas lavouras	-0,0091	0,0179 ^c	-0,0045	0,2087
Investimentos	0,0296	$3,96e-05^{a}$	-0,0032	0,7098
Financiamento	-0,0010	0,7195	-0,0046	0,6731
Intensidade do uso da terra	-0,0127	0,1516	-0,0448	1,37e-14 ^a
Lavouras em descanso	-0,0214	9,95e-07 ^a	-0,0060	0,0671 ^d
Média de anos de estudo	0,0164	0,3578	0,0700	0,0012 ^b
σ	-2,3150	<2e-16 ^a	-2,2059	<2e-16 ^a

Fonte: Resultados da pesquisa.

Nível de significância: a = 0,1%; b = 1%; c = 5% e d = 10%.

Por último, conforme Tabela 27, para o ano de 2006, sob a análise da SFA, para a suposição de uma distribuição normal-truncada do erro as variáveis significativas foram: adubos e corretivos (relação positiva), irrigação (relação negativa), lavouras permanentes e temporárias, pastagens naturais e artificiais e matas naturais e plantadas (relação negativa) e média dos anos de estudos (relação positiva). Sendo que a intensidade do uso da terra mostrou-se como o segundo maior condicionante a impactar as eficiências (o maior foi média dos anos de estudos), mas mais uma vez pode-se considerar esse resultado como um efeito da crise de 2005. Segundo a Tabela 28, para a distribuição meia-normal adubos e corretivos tinha uma relação positiva assim como média dos anos de estudo (sendo o maior coeficiente 0,0700). Já lavouras permanentes e temporárias, pastagens naturais e artificiais e matas naturais e plantadas e lavouras em descanso e produtivas e não utilizadas mantinham uma relação inversa com os escores de eficiências.

5 CONCLUSÃO

Ciente da consolidação das atividades agrícolas e pecuárias como um dos setores de grande importância para a economia brasileira, uma vez que tem contribuído para melhorar as condições socioeconômicas nacionais por meio da geração de renda e trabalho bem como com a entrada de divisas, estudos sobre essas atividades são sempre de grande utilidade.

Sendo assim, este trabalho objetivou estimar a eficiência econômica dos municípios de Minas Gerais tanto pelo método não-paramétrico (DEA) quanto pelo paramétrico (SFA). Pois uma vez conhecidos os escores de eficiência de cada um dos municípios esses poderão ser utilizados pelos formuladores de políticas econômicas bem como pelos programas de fomento ao meio rural na adoção de medidas com resultados mais efetivos. Desse modo, inicialmente realizou-se uma caracterização do espaço territorial mineiro nos aspectos físicos (solo) quanto no aspecto climático. Para tanto, como divisão do território foi adotada a do Instituto Brasileiro de Geografia e Estatística (IBGE) que dividi o estado de Minas Gerais em doze mesorregiões, embora a Fundação João Pinheiro (FJP) considere que haja dez mesorregiões. Essa caracterização teve como intuito verificar se as regiões em que as condições de aproveitamento agrícola do solo e/ou clima não são muito favoráveis à atividade agropecuária e sendo assim precisam que haja uma intervenção humana intensiva para torná-las viáveis tem impactado negativamente nos resultados finais, isto é, tem tornado os produtores dessas regiões menos eficientes relativamente aos das demais regiões.

Constatou-se que coerentemente com a caracterização dos tipos de solo das mesorregiões no ano de 1996 o fator físico pode ter influenciado o *ranking* de escores de eficiências econômicas. Por exemplo, a mesorregião Triângulo Mineiro/Alto Paranaíba que apresenta, no conjunto, solos favoráveis ao aproveitamento agrícola, para as três medidas de eficiências, Retornos Constante de Escala na DEA, normal-truncada e meia-normal na SFA, para aquele ano obteve, respectivamente o maior, o segundo maior e o segundo maior escore. Importante salientar que o fator clima também pode ter influenciado em outras regiões, pois para a região Sul/Sudoeste de Minas que apesar do aspecto físico (solo) ser desfavorável a posição dessa região no *ranking* (para 1996) foi segundo, sexto e sexto maior escore, respectivamente. Ou como supracitado pode ocorrer que nessa região encontravam-se propriedades rurais mais modernas e que foram capazes de adquirirem novas tecnologias.

Outra verificação é que entre os anos de 1996 e 2006 as eficiências de todas as mesorregiões diminuíram o que pode estar correlacionado com a crise agropecuária de 2005.

Pois um dos fatores dessa foi o aumento dos custos de produção para esse setor que, consequentemente, minimizou as eficiências regionais em 2006. Também se verifica no período 1996-2006 uma mudança de posições entre as doze mesorregiões de Minas Gerais bastante intensa. Uma das possíveis razões para essa mudança é que com a abertura neoliberal da década de 1990 houve um incremento de bens de capitais para o setor primário da economia o que pode ter contribuído para que mesorregiões antes ineficientes adotassem novas tecnologias aumentando a eficiência dessas ou, ainda, como não possuíam uma produção expressiva, os impactos da crise de 2005 foram menores.

Verificou-se que, dos 750 municípios analisados no ano de 1996, sob o pressuposto de retornos constante de escala, apenas o município de Coronel Fabriciano (pertencente à mesorregião Vale do Rio Doce) foi classificado como economicamente eficiente. Sendo que, 70,1% dos municípios mineiros, isto é, a grande maioria, estava operando com uma eficiência econômica igual ou inferior a 0,70. Por sua vez, em 2006, a base analítica era composta por 842 municipalidades, sendo que apenas os produtores rurais de Planura (localizada na mesorregião Triângulo Mineiro/Alto Paranaíba) alcançaram a eficiência máxima, ou seja, um. Já 761 municípios, isto é, 90,5% da base de dados, possuíam eficiência econômica inferior a 0,70. Dessa forma, uma vez que neste trabalho optou-se pela *input orientated*, significa que a grande maioria dos agropecuaristas, tanto em 1996 quanto em 2006, poderiam reduzir os insumos utilizados na agropecuária e, mesmo assim, ainda manteriam o nível de produção.

Na análise da fronteira de produção estocástica, para 1996, não havia nenhum dos 750 municípios cujos agropecuaristas estavam operando sobre a curva da fronteira de produção, ou seja, que fossem economicamente eficientes (tanto sob o pressuposto de uma distribuição do erro normal-truncada quanto para uma distribuição meia-normal). Considerando a distribuição do erro assimétrico como sendo meia-normal havia 680 municípios (90,7%) com eficiência econômica inferior ou igual a 0,70, por sua vez, para a distribuição normal-truncada havia 665 cidades (88,7%) cujas eficiências dos produtores eram maiores que 0,50 e menores ou iguais a 0,90. Para 2006, assim como para 1996, considerando tanto um erro assimétrico com uma distribuição meia-normal quanto a normal-truncada não houve, dentre os 842 municípios da análise, nenhum município cujos produtores rurais tivessem atingido a eficiência econômica máxima de um. Para a distribuição meia-normal 837 municípios (99,4%) possuíam escore de eficiência econômica inferior ou igual a 0,70. Contudo, sob o pressuposto de um erro assimétrico que apresente uma distribuição normal-truncada, 822 municípios (97,6%) possuíam uma eficiência inferior ou igual a 0,70.

Considerando que as bases de dados utilizadas neste trabalho possuem um espaço temporal de dez anos, sendo uma das limitações deste trabalho, infere-se que, possivelmente, mudanças pontuais não tenham sido captadas na análise. Desse modo, sugere-se para trabalhos posteriores uma atualização deste estudo utilizando, quando houver, bases de dados anuais.

O trabalho inferiu que as práticas de operacionalização dos agropecuaristas não estavam sendo as mais eficientes possíveis, tanto para 1996 quanto para 2006, e que a produção poderia ser aumentada mantendo o mesmo nível de insumos (*output orientated*) ou que os insumos poderiam ser reduzidos, mas mantendo-se o mesmo nível de produto (*input orientated*). Dessa forma, as políticas públicas destinadas para as atividades agrícolas e pecuaristas, os programas de extensão rural e de fomento a agropecuária devem priorizar a adoção de novas tecnologias pelos produtores rurais para que esses melhorem os resultados da produção do setor agropecuário tornando-o assim mais competitivo.

BIBLIOGRAFIA

- AFRIAT, S.. Efficiency estimation of production functions. **International Economic Review.** v. 13, n. 3, pp. 568-598, outubro, 1972.
- AIGNER, D. J. & CHU, S. F.. On estimating the industry production function. **American Economic Review.** v. 58, n. 4, pp. 826-839, setembro, 1968.
- AIGNER, Dennis; LOVELL, C. A. Knox & SCHMIDT, Peter. Formulation and estimation of stochastic frontier production function models. **Journal of Econometrics.** v.6, p. 21-37, julho, 1977.
- AMEMIYA, Takeshi. Multivariate regression and simultaneous equation models when the dependent variables are truncated normal. **The Econometric Society.** v. 42, n. 6, pp. 999-1012, novembro, 1974.
- ARROW, K. J.; CHENERY, H. B.; MINHAS, B. S. & SOLOW, R. M. Capital-labor substitution and economic efficiency. **Review of Economics and Statistics.** v. 43, n. 3, pp. 225-250, agosto, 1961.
- ATKINSON, S. E. & CORNWELL, C.. Measuring technical efficiency with panel data: a dual approach. **Journal of Econometrics.** v. 59, pp. 257-261, 1993.
- ATKINSON, S. E. & HALVORSEN, R.. A test of relative and absolute price efficiency in regulated utilities. **Review of Economics and Statistics.** v. 62, n. 1, pp. 81-88, fevereiro, 1980.
- BANKER, R. D.. A game theoretic approach to measuring efficiency. **European Journal of Operational Research.** v. 5, pp. 262-268, 1980.
- ______. Estimating most productive scale size using data envelopment analysis. **European Journal of Operational Research.** v. 17, pp. 35-44,1984.
- _____. Maximum likelihood, consistency and data envelopment analysis: a statistical foundation. **Management Science.** v. 39, n. 10, pp. 1265-1273, outubro, 1993.
- BANKER, R. D.; CHARNES, A. & COOPER, W. W.. Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. **Management Science.** v. 30, n. 9, p. 1078-1092, setembro, 1984.
- BANKER, R. D.; CONRAD, R. & STRAUSS, R.. A comparative application of data envelopment analysis and translog methods: an illustrative study of hospital production. **Management Science.** v. 32, n. 1, pp. 30-44, janeiro, 1986.
- BARBOSA, F. de H.. Microeconomia: teoria, modelos econométricos e aplicações à economia brasileira. Rio de Janeiro: IPEA/INPES, 1985, 534 p..
- BATTESE, G. E. & COELLI, T. J.. A model for technical inefficiency effects in a stochastic frontier production function for Panel Data. **Empirical Economics.** v. 20, pp. 325-332, 1995.
- ______. Frontier production functions, technical efficiencies and panel data: with application to Paddy Farmers in India. **Journal of Productivity Analysis.** v. 3, pp. 153-169, junho, 1992.

______. Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data. **Journal of Econometrics.** v. 38, pp. 387-399, 1988.

BATTESE, G. E.. Frontier Production Functions and Technical Efficiency: A Survey of Empirical Applications in Agricultural Economics. **Agricultural Economics.** v. 7, p.185-208, 1992.

BOGETOFT, P. & HOUGAARD, J. L.. Super efficiency evaluation based on potential slack. **European Journal of Operational Research.** v. 152, pp. 14-21, 2004.

BOGETOFT, P. & NIELSEN, K.. DEA based auctions. **European Journal of Operational Research.** v. 184, pp. 685-700, 2008.

BOGETOFT, P. & OTTO, L.. Benchmark and frontier analysis using DEA and SFA. Disponível em: < http://cran.r-project.org/web/packages/Benchmarking/Benchmarking.pdf>. Acessado em 23/08/2012.

Benchmarking with DEA, SFA, and R. New York: Springer, 2011, 351 p...

BOGETOFT, P.; FÄRE, R & OBEL, B.. Allocative efficiency of technically ineficiente production units. **European Journal of Operational Research.** v. 168, pp. 450-462, 2006.

BRAVO-URETA, B. E & PINHEIRO, A. E.. Efficiency Analysis of Developing Country Agriculture: A Review of the Frontier Function Literature. **Agricultural and Resource Economics Review.** v. 22, p. 88-101, 1993.

CABRAL, R. M.. Custos de transação. Agronegócio/Antônio André Cunha Callado (organizador). 3ª Ed. São Paulo: Atlas, p. 105-119, 2011.

CENTRO DE ESTATÍSTICAS E INFORMAÇÕES DA FUNDAÇÃO JOÃO PINHEIRO. **Anexo Estatístico – PIB regiões MG 1999-2009, 2º semestre.** Belo Horizonte: CEI/FJP, 2009. Disponível em: http://www.fjp.gov.br/index.php/analise-economica/pib-produto-interno-bruto-de-minas-gerais. Acessado em 15/04/2012.

CHARNES, A.; COOPER, W. W. & RHODES, E.. Measuring the efficiency of decision making units. **European Journal of Operational Research.** 2, p. 429-444, 1978.

CHARNES, A; COOPER, W. W.; GOLANY, B.; SEIFORD, L. & STUTZ, J.. Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions. **Journal of Econometrics.** v. 30, pp. 91-107, 1985.

CHARNES, Abraham; COOPER, William; LEWIN, Arie Y. & SEIFORD, Lawrence M.. **Data Envelopment Analysis: Theory, Methodology and Applications.** 2^a Ed. London: Kluwer Academic Publishers, 1996, 513 p..

COELLI, T. & BATTESE, G.. Identification of factors which influence the technical inefficiency of Indian farmers. **Australian Journal of Agricultural Economics.** v. 40, n. 2, p. 103-128, agosto, 1996.

COELLI, T. & HENNINGSEN A.. **Stochastic Frontier Analysis.** Disponível em: < http://cran.open-source-solution.org/web/packages/frontier/frontier.pdf>. Acessado em 29/09/2012.

- COELLI, T. J.. A Guide to DEAP Version 2.1: A Data Envelopment Analysis (Computer) **Program.** n° 08, 1996, Working Paper.
- _____. A Guide to FRONTIER Version 4.1: A Computer Program for Stochastic Frontier Production and Cost Function Estimation. n° 07, 1996, Working Paper.
- COELLI, Timothy J.; PRASADA RAO, D. S.; O'DONNELL, Christopher J. & BATTESE, George E.. **An Introduction to Efficiency and Productivity Analysis.** 2^a Ed. New York: Springer, 2005, 349 p..
- CONCEIÇÃO, J. C. P. R. da. **Estimação e análise de fronteiras de produção estocásticas.** Métodos quantitativos em economia. Viçosa, Editora UFV. v. 1, n. 1, p. 523-552, 2004.
- COOPER, William W., SEIFORD, Lawrence M. & ZHU, Joe.. A unified additive model approach for evaluating inefficiency and congestion with associated measures in DEA. **Socio-Economic Planning Sciences**, v. 34, n. 1, p. 1-25, 2000.
- _____. Handbook on Data Envelompement Analysis. 2^a Ed. New York: Springer, 2011, 493 p..
- DEBREU, Gerard. The coefficient of resource utilization. **Econometrica.** v. 19, n. 3, pp. 273.292, julho, 1951.
- EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA (CENTRO NACIONAL DE MONITORAMENTO POR SATÉLITE). **Banco de Dados Climáticos do Brasil.** Campinas: Embrapa Clima, 2003. Disponível em: < http://www.bdclima.cnpm.embrapa.br/>. Acessado em: 25/08/2012.
- EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA (CENTRO NACIONAL DE PESQUISA DE SOLOS CNPS). **Boletim de Desenvolvimento e Pesquisa. Mapeamento de Solos e Aptidão Agrícola das Terras do Estado de Minas Gerais.** Rio de Janeiro: Embrapa Solos, 2004. Disponível em: < http://www.cnps.embrapa.br/publicacoes/pdfs/bpd63_2004_mapeamento_mg.pdf>. Acessado em 27/08/2012.
- FÄRE, R & GROSSKOPF, S.. Intertemporal production frontiers: with dynamics **DEA**. New York: Springer-Verlag, 2011, 220 p..
- FÄRE, R; GROSSKOPF, S. & LOVELL, C. A. K.. An indirect efficiency approach to the evaluation of producer performance. **Journal of Public Economics.** v. 37, n. 1, pp. 71-89, outubro, 1988.
- FARRELL, M. J.. The measurement of productive efficiency. **Journal of the Royal Statistical Society.** v. 120, n. 3, pp. 253-290, 1957.
- FÖRSUND F. & HJALMARSSON, L.. Generalized Farrell measures of efficiency: an application to milk processing in Swedish dairy plants. **Economic Journal.** v. 89, n. 354, pp. 294-315, junho, 1979.
- FRANCO, F. & FORTUNA, M.. **O método de fronteira estocástica na medição da eficiência dos serviços hospitalares: uma revisão bibliográfica.** Disponível em: < http://www.apes.pt/files/dts/dt_022003.pdf>. Acessado em 26/09/2011.

Productive Efficiency and Productivity Growth. 1a Ed. New York: Oxford University Press, Inc., 2008, 638 p... GOMES, Adriano Provezano & BAPTISTA, Antonio José Medina dos Santos. Análise Envoltória de Dados: Conceitos e Modelos Básicos. Métodos quantitativos em economia. Viçosa, Editora UFV. v. 1, n. 1, p. 121-160, 2004. GREENE, W. H., Econometric Analysis, New Jersey: Pearson Education, 2008, 1178 p., _. On the estimation of a flexible frontier production model. Journal of **Econometrics.** v. 13, n. 1, p. 101-115, maio, 1980. . A gamma-distributed stochastic frontier model. **Journal of Econometrics.** v.46, n. 1-2, p. 141-163, outubro-novembro, 1990. _. Maximum likelihood estimation of econometric frontier functions. Journal of **Economectrics.** v. 13, n. 1, p. 27-56, maio, 1980. GUJARATI, D. N. & PORTER, D. Econometria básica. 5ª Ed. Porto Alegre: McGraw Hill-Artmed, 2011, 924 p... GUJARATI, D., Econometria básica. Rio de Janeiro: Elsevier Editora, Ltda, 2006, 812 p., HENNINGSEN A.. Censored Regression (Tobit) Models. Disponível em: < http://cran.rproject.org/web/packages/censReg/censReg.pdf>. Acessado em 20/12/2012. . Estimating Censored Regression Models in R using the censReg Package. Disponível em: < http://cran.r-project.org/web/packages/censReg/vignettes/censReg.pdf>. Acessado em 20/12/2012. INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Censo Agropecuário 1996. Janeiro: IBGE, 1996. Disponível em: de http://www.ibge.gov.br/home/estatistica/economia/agropecuaria/censoagro/1995_1996/defaul t.shtm>. Acessado em 19/07/2012. . Censo Agropecuário 2006. Rio de Janeiro: IBGE, 2006. Disponível em: < http://www.ibge.gov.br/home/estatistica/economia/agropecuaria/censoagro/default.shtm>. Acessado em 19/07/2012. _. Pesquisa de Produção Agrícola Municipal (PAM/2010). Rio de Janeiro: Disponível 2010. http://www.ibge.gov.br/home/estatistica/economia/pam/2010/default.shtm>. Acessado em 19/07/2012. _. Pesquisa de Produção Pecuária Municipal (PPM/2010). Rio de Janeiro: 2010. Disponível http://www.ibge.gov.br/home/estatistica/economia/ppm/2010/default.shtm>. Acessado em 19/07/2012. _. **Sistema de Contas Nacionais Trimestrais.** Rio de Janeiro: IBGE, 2010.

FRIED, Harold O.; LOVELL, C. A. Knox & SCHMIDT, Shelton S.. The measurement of

- ______. **Sistema de Contas Regionais.** Rio de Janeiro: IBGE, 2007. Disponível em: < http://www.ibge.gov.br/home/estatistica/economia/contasregionais/2003_2007/default.shtm>. Acessado em 08/10/2012.
- INSTITUTO DE PESQUISA ECONÔMICA APLICADA. **Índice de Desenvolvimento Humano.** Brasília: IPEA, 1991. Disponível em: < http://www.ipeadata.gov.br/>. Acessado em 29/10/2012.
- ISHII, K. S.; SOUZA, M. J. P. de & FILHO, J. B. de S.. A oferta e a estrutura de demanda de fatores de produção da sojicultora brasileira: o modelo da função lucro translog. Disponível em: < http://www.sober.org.br/palestra/6/268.pdf>. Acessado em 06/08/2011.
- JONDROW, J.; LOVELL, C. A. K.; MATEROV, I. S. & SCHMIDT, P.. On the estimation of technical inefficiency in the stochastic frontier production function model. **Journal of Econometrics.** v. 19, p. 233-238, 1982.
- KOOP, Gary & STEEL, Mark F. J.. **Bayesian Analysis of Stochastic Frontier Models.** Disponível em: < http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic-research/steel_homepage/baltfin.pdf>. Acessado em 22/01/2012.
- KOPP, R. J. & DIEWERT, W. E.. The decomposition of frontier cost function deviation into measures of technical and allocative efficiency. **Journal of Econometrics.** v. 19, n. 2-3, p. 319-331, agosto, 1982.
- KOPP, Raymond J.. The measurement of productive efficiency: a reconsideration. **The Quarterly Journal of Economics.** v. 96, n. 3, pp. 477-503, agosto, 1981.
- KUMBHAKAR, S. C. & LOVELL, C. A. K.. **Stochastic Frontier Analysis.** 1^a Ed. New York: Cambridge University Press, 2003, 344 p..
- LAU, Lawrence J. & YOTOPOULOS, Pan A.. A test for relative efficiency and application to Indian agriculture. **The American Economic Review.** v. 61, n. 1, pp. 94-109, março, 1971.
- LEE, Lung-Fei & TYLER, William G.. The stochastic frontier production function and average efficiency. **Journal of Econometrics.** v. 7, p. 385-389, abril, 1978.
- MADDALA, G. S.. Introdução à Econometria. 3ª Ed. Rio de Janeiro: LTC, 2003, 368 p...
- McDONALD, John F. & MOFFITT, Robert A.. The uses of Tobit analysis. **The Review of Economics and Statistics.** v. 62, n. 2, pp. 318-321, maio, 1980.
- MEEUSEN, W. & van Den BROECK, J. Efficiency estimation from Cobb-Douglas production functions with composed error. **International Economic Review.** v. 18, n. 2, p. 435-444, junho, 1977.
- MINISTÉRIO DO DESENVOLVIMENTO SOCIAL E COMBATE À FOME. **Programa Bolsa Família.** Brasília: MDS, 2010. Disponível em: < http://www.ipeadata.gov.br/>. Acessado em 02/09/2012. Conforme tabulação do Instituto de Pesquisa Econômica Aplicada.
- MOREIRA, A. R. B. & FONSECA, T. C. R.. Comparando medidas de produtividade: **DEA, Fronteira de Produção Estocástica.** Rio de Janeiro, 2005. Texto para discussão nº 1069. Disponível em: < http://www.livrosgratis.com.br/arquivos_livros/td001069.pdf>. Acessado em 10/12/2011.

NOGUEIRA, M. A.. **Eficiência técnica na agropecuária das microrregiões brasileiras.** Viçosa, MG: UFV, 2005. 105 f. Tese (Doutorado em Economia Rural) — Universidade Federal de Viçosa.

OLSON, Jerone A.; SCHMIDT, Peter & WALDMAN, Donald M.. A Monte Carlo study of estimators of stochastic frontier production functions. **Journal of Econometrics.** v. 13, pp. 67-82, 1980.

PESSANHA, J. F. M. & SOUZA, M. V. P.. **Modelos de Fronteira Estocástica.** Disponível em: http://www.maxwell.lambda.ele.puc-rio.br/5566/5566_5.PDF. Acessado em 02/09/2011.

REZENDE, I. N. de. **Negócios e participação política: fazendeiros da Zona da Mata de Minas Gerais (1821-1841).** São Paulo, SP: USP, 2008. 254 f. Tese (Doutorado em História Social) – Universidade de São Paulo.

RICHMOND, J.. Estimating the efficiency of production. **International Economic Review.** v. 15, n. 2, pp. 515-521, junho, 1974.

RUSSEL, R. Robert. Measures of technical efficiency. **Journal of economic theory.** v. 35, p. 109-126, fevereiro, 1985.

SHOWERS, Vince E. & SHOTICK, Joyce A.. The effects of household characteristics on demand for insurance: a Tobit analysis. **The Journal of Risk and Insurance.** v. 61, n. 3, pp. 492-502, setembro, 1994.

SIMAR, Léopold & WILSON, Paul W.. Statistical inference in nonparametric frontier models: the state of the art. **Journal of Productivity Analysis.** v. 13, pp. 49-78, 2000.

SOUZA, G. da S.; GOMES, E. G.; GAZZOLA, R. & WANDER, A. E.. **Eficiência técnica na agricultura brasileira: uma abordagem via fronteira estocástica.** Disponível em: http://www.alice.cnptia.embrapa.br/handle/doc/866987>. Acessado em 18/08/2011.

STEVENSON, R. E.. Likelihood functions for generalized stochastic frontier estimation. **Journal of Econometrics.** v. 13, p. 57-66, 1980.

STEWART, Jay. **Tobit or not Tobit.** Institute for the Study of Labor (IZA). Discussion Paper n° 4588. Disponível em: http://www.econstor.eu/handle/10419/35935. Acessado em 05/12/2012.

VARIAN, H. R.. Microeconomic Analysis. 3^a Ed. New York: W. W. Norton, 1992, 556 p...

VEIGA, José E. **The rural dimension of Brazil.** Estudos, Sociedade e Agricultura, v. 12, pp. 71-94, 2004.

WILHELM, V. E.. **Data Envelopment Analysis – DEA.** Disponível em: < http://www.engprod.ufpr.br/volmir/DEA.pdf>. Acessado em 23/02/2012.

WINKELMANN, Rainer & BOES, Stefan. **Analysis of microdata.** 2^a Ed. New York: Springer, 2009, 357 p.

WOOLDRIDGE, J. M.. Introdução à Econometria: uma abordagem moderna. 4ª Ed. São Paulo: Thomson Pioneira, 2010, 725 p..

ANEXO

Tabela 29 – Eficiências da mesorregião Triângulo Mineiro/Alto Paranaíba – DEA (1996)

(1996) Municípios	E ^{VRS}	EDRS	E ^{IRS}	E ^{CRS}
Abadia dos Dourados	0.64538	0.63993	0.64538	0.63993
	0.04338	0.03993	0.69646	0.63993
Agua Comprida Araguari	0.74239	0.74239	0.67242	0.67242
Araporã	0.76281	0.76281	0.71661	0.07242
Arapuá	0.63711	0.60666	0.63711	0.60666
Araxá	0.72028	0.72028	0.67629	0.67629
Cachoeira Dourada	0.72628	0.72661	0.70631	0.07023
Cachoena Dourada Campina Verde	0.72001	0.72001	0.63494	0.70031
Campina verue Campo Florido	0.77073	0.77073	0.69326	0.69326
Campos Altos	0.78459	0.78459	0.70936	0.70936
Campos Artos Canápolis	0.7999	0.7999	0.69706	0.69706
Capinópolis	0.75614	0.75614	0.67927	0.67927
Carmo do Paranaíba	0.7793	0.7793	0.6864	0.6864
Carneirinho	0.70863	0.70863	0.64974	0.64974
Cascalho Rico	0.70803	0.70803	0.67437	0.67114
Centralina	0.07437	0.7574	0.70856	0.70856
Comendador Gomes	0.78992	0.78992	0.70743	0.70743
Conceição das Alagoas	0.80132	0.80132	0.6964	0.6964
Conquista	0.78758	0.78758	0.70966	0.70966
Coromandel	0.85019	0.85019	0.68052	0.68052
Cruzeiro da Fortaleza	0.68181	0.67321	0.68181	0.67321
Douradoquara	0.68484	0.65707	0.68484	0.65707
Estrela do Sul	0.78677	0.78677	0.71324	0.71324
Fronteira	0.84606	0.84606	0.79343	0.79343
Frutal	0.80112	0.80112	0.665	0.665
Grupiara	0.73869	0.70218	0.73869	0.70218
Guimarânia	0.72191	0.72191	0.70448	0.70448
Gurinhatã	0.69897	0.69897	0.64244	0.64244
Ibiá	0.7346	0.7346	0.6568	0.6568
Indianópolis	0.77404	0.77404	0.69751	0.69751
Ipiaçu	0.71581	0.71581	0.69091	0.69091
Iraí de Minas	0.80232	0.80232	0.75265	0.75265
Itapajipe	0.66259	0.66259	0.61749	0.61749
Ituiutaba	0.72357	0.72357	0.64591	0.64591
Iturama	0.7591	0.7591	0.66323	0.66323
Lagoa Formosa	0.67155	0.67155	0.64261	0.64261
Limeira do Oeste	0.69117	0.69117	0.65456	0.65456
Matutina	0.72848	0.70142	0.72848	0.70142
Monte Alegre de Minas	0.75522	0.75522	0.65716	0.65716
				continua

, •	~
continu	acao

Monte Carmelo	0.88003	0.88003	0.71368	0.71368
Nova Ponte	0.78171	0.78171	0.70551	0.70551
Patos de Minas	0.77954	0.77954	0.65795	0.65795
Patrocínio	1	1	0.67822	0.67822
Pedrinópolis	0.67924	0.67924	0.67873	0.67873
Perdizes	0.81234	0.81234	0.67641	0.67641
Pirajuba	0.90351	0.90351	0.79778	0.79778
Planura	0.72546	0.72546	0.69824	0.69824
Prata	0.79527	0.79527	0.66395	0.66395
Pratinha	0.64648	0.6329	0.64648	0.6329
Rio Paranaíba	0.8566	0.8566	0.69656	0.69656
Romaria	0.83567	0.83567	0.75245	0.75245
Sacramento	0.72296	0.72296	0.64109	0.64109
Santa Juliana	0.75936	0.75936	0.69483	0.69483
Santa Rosa da Serra	0.68012	0.6645	0.68012	0.6645
Santa Vitória	0.75316	0.75316	0.66413	0.66413
São Francisco de Sales	0.67364	0.67364	0.6538	0.6538
São Gotardo	0.77818	0.77818	0.70214	0.70214
Serra do Salitre	0.75327	0.75327	0.67232	0.67232
Tapira	0.64251	0.63747	0.64251	0.63747
Tiros	0.65477	0.65477	0.63501	0.63501
Tupaciguara	0.73744	0.73744	0.66175	0.66175
Uberaba	0.88946	0.88946	0.67129	0.67129
Uberlândia	1	1	0.68429	0.68429
Veríssimo	0.69612	0.69612	0.6607	0.6607
Eficiência média	0.75702	0.75431	0.68342	0.68071
Eficiência mediana	0.75425	0.75425	0.67969	0.67731
Eficiência mínima	0.63711	0.60666	0.61749	0.60666
Eficiência máxima	1	1	0.79778	0.79778

Fonte: Resultados da pesquisa.

EVRS – eficiência econômica sob o pressuposto de uma tecnologia com retornos variáveis de escala EDRS – eficiência econômica sob o pressuposto de uma tecnologia com retornos decrescente de escala EIRS – eficiência econômica sob o pressuposto de uma tecnologia com retornos crescente de escala ECRS – eficiência econômica sob o pressuposto de uma tecnologia com retornos constante de escala ECRS – eficiência econômica sob o pressuposto de uma tecnologia com retornos constante de escala

Tabela 30 – Eficiências da mesorregião Triângulo Mineiro/Alto Paranaíba – SFA (1996)

(1990)	Distribuição do erro			
Municípios	normal-truncada	meia-normal		
Abadia dos Dourados	0.740619658	0.673781111		
Água Comprida	0.761567588	0.70181037		
Araguari	0.732190473	0.664320053		
Araporã	0.584380094	0.49650687		
Arapuá	0.606692455	0.522381378		
Araxá	0.754357665	0.691893957		
Cachoeira Dourada	0.639424575	0.552203156		
Campina Verde	0.604378978	0.513546091		
Campo Florido	0.575196693	0.491982207		
Campos Altos	0.722461068	0.651984262		
Canápolis	0.67427701	0.595510707		
Capinópolis	0.668230033	0.585993332		
Carmo do Paranaíba	0.778827156	0.724617432		
Carneirinho	0.691028107	0.611635488		
Cascalho Rico	0.604818457	0.514823995		
Centralina	0.642448208	0.556516469		
Comendador Gomes	0.556129366	0.471955429		
Conceição das Alagoas	0.678924303	0.599059637		
Conquista	0.734616966	0.666802896		
Coromandel	0.699108024	0.624737572		
Cruzeiro da Fortaleza	0.745330658	0.680337104		
Douradoquara	0.738075376	0.671024796		
Estrela do Sul	0.71666114	0.645721764		
Fronteira	0.532668233	0.453675078		
Frutal	0.67002119	0.588230212		
Grupiara	0.727326352	0.657334406		
Guimarânia	0.766654803	0.708479614		
Gurinhatã	0.619090902	0.528912885		
Ibiá	0.697106192	0.619240655		
Indianópolis	0.762116197	0.702715265		
Ipiaçu	0.728982597	0.65928689		
Iraí de Minas	0.696715612	0.623125701		
Itapajipe	0.729060518	0.658713708		
Ituiutaba	0.631979604	0.54345438		
Iturama	0.708150018	0.632990509		
Lagoa Formosa	0.735737518	0.667570932		
Limeira do Oeste	0.687000754	0.606491029		
Matutina	0.732122677	0.663293633		
		4:		

. •	~
contin	uacao

Continuação		
Monte Alegre de Minas	0.618531683	0.530633785
Monte Carmelo	0.735218224	0.669596136
Nova Ponte	0.763305002	0.704359499
Patos de Minas	0.730474353	0.661412618
Patrocínio	0.738543133	0.672853485
Pedrinópolis	0.796173023	0.748083676
Perdizes	0.679928204	0.601211802
Pirajuba	0.678397586	0.6053603
Planura	0.665448718	0.582196269
Prata	0.610288018	0.52419306
Pratinha	0.693495849	0.61539377
Rio Paranaíba	0.743478308	0.679210274
Romaria	0.799971872	0.753491599
Sacramento	0.698070244	0.620005655
Santa Juliana	0.665595528	0.58382494
Santa Rosa da Serra	0.666246145	0.582784228
Santa Vitória	0.697447153	0.620336075
São Francisco de Sales	0.677169448	0.594692752
São Gotardo	0.709991507	0.637235165
Serra do Salitre	0.739837147	0.673092826
Tapira	0.662355085	0.577537512
Tiros	0.591811363	0.500274043
Tupaciguara	0.656383212	0.57172651
Uberaba	0.712470649	0.639508935
Uberlândia	0.73461721	0.667627415
Veríssimo	0.643191246	0.555550254
Eficiência média	0.69035808	0.615544587
Eficiência mediana	0.697276673	0.620170865
Eficiência mínima	0.532668233	0.453675078
Eficiência máxima	0.799971872	0.753491599

Tabela 31 – Eficiências da m	esorregião Sul/Su		nas – DEA (199	96)
Municípios	E ^{VRS}	EDRS		ECRS
Aiuruoca	0.66169	0.65491	0.66169	0.65491
Alagoa	0.71364	0.65333	0.71364	0.65333
Albertina	0.70816	0.70149	0.70816	0.70149
Alfenas	0.84198	0.84198	0.70393	0.70393
Alpinópolis	0.76489	0.76489	0.67839	0.67839
Alterosa	0.65196	0.65196	0.64238	0.64238
Andradas	0.7115	0.7115	0.65241	0.65241
Andrelândia	0.63943	0.63344	0.63943	0.63344
Arantina	0.87247	0.72879	0.87247	0.72879
Arceburgo	0.7879	0.7879	0.73196	0.73196
Areado	0.75958	0.75958	0.71559	0.71559
Baependi	0.6708	0.6708	0.6591	0.6591
Bandeira do Sul	0.7541	0.73879	0.7541	0.73879
Boa Esperança	0.78185	0.78185	0.67117	0.67117
Bocaina de Minas	0.70188	0.68111	0.70188	0.68111
Bom Jardim de Minas	0.71412	0.69558	0.71412	0.69558
Bom Jesus da Penha	0.65888	0.65528	0.65888	0.65528
Bom Repouso	0.73387	0.73387	0.69009	0.69009
Borda da Mata	0.68207	0.68207	0.65786	0.65786
Botelhos	0.75501	0.75501	0.68757	0.68757
Brasópolis	0.6538	0.65073	0.6538	0.65073
Bueno Brandão	0.69897	0.69897	0.65349	0.65349
Cabo Verde	0.78393	0.78393	0.69541	0.69541
Cachoeira de Minas	0.68032	0.68032	0.66694	0.66694
Caldas	0.68178	0.68178	0.64438	0.64438
Camanducaia	0.72082	0.72082	0.6662	0.6662
Cambuí	0.64005	0.63376	0.64005	0.63376
Cambuquira	0.73715	0.73715	0.69885	0.69885
Campanha	0.72093	0.72093	0.6779	0.6779
Campestre	0.74334	0.74334	0.66985	0.66985
Campo do Meio	0.78888	0.78888	0.73172	0.73172
Campos Gerais	0.80842	0.80842	0.6774	0.6774
Capetinga	0.68502	0.68502	0.67146	0.67146
Capitólio	0.67641	0.67641	0.67588	0.67588
Careaçu	0.69001	0.68917	0.69001	0.68917
Carmo da Cachoeira	0.7831	0.7831	0.70336	0.70336
Carmo de Minas	0.78921	0.78921	0.7302	0.7302
Carmo do Rio Claro	0.76909	0.76909	0.67799	0.67799
Carvalhópolis	0.65364	0.63279	0.65364	0.63279
Carvalhos	0.68202	0.65994	0.68202	0.65994
				aantinua

. •	~
contin	ມາລດລດ
COIILIII	uaçao

continuação				
Cássia	0.73211	0.73211	0.66897	0.66897
Caxambu	0.74908	0.72617	0.74908	0.72617
Claraval	0.64475	0.63913	0.64475	0.63913
Conceição da Aparecida	0.75004	0.75004	0.69323	0.69323
Conceição das Pedras	0.70531	0.6805	0.70531	0.6805
Conceição do Rio Verde	0.74047	0.74047	0.69244	0.69244
Conceição dos Ouros	0.70033	0.6915	0.70033	0.6915
Congonhal	0.63489	0.61919	0.63489	0.61919
Consolação	0.75337	0.71108	0.75337	0.71108
Coqueiral	0.73953	0.73953	0.68792	0.68792
Cordislândia	0.69377	0.69377	0.6904	0.6904
Córrego do Bom Jesus	0.64617	0.62078	0.64617	0.62078
Cristina	0.67808	0.67808	0.66791	0.66791
Cruzília	0.65617	0.64898	0.65617	0.64898
Delfim Moreira	0.69557	0.69469	0.69557	0.69469
Delfinópolis	0.74312	0.74312	0.69338	0.69338
Divisa Nova	0.68068	0.68068	0.67768	0.67768
Dom Viçoso	0.73508	0.69936	0.73508	0.69936
Elói Mendes	0.74908	0.74908	0.678	0.678
Espírito Santo do Dourado	0.65411	0.65161	0.65411	0.65161
Estiva	0.69318	0.69318	0.6688	0.6688
Extrema	0.63873	0.62476	0.63873	0.62476
Fama	0.72662	0.71457	0.72662	0.71457
Fortaleza de Minas	0.68083	0.67666	0.68083	0.67666
Gonçalves	0.72665	0.69935	0.72665	0.69935
Guapé	0.73276	0.73276	0.67097	0.67097
Guaranésia	0.81362	0.81362	0.72306	0.72306
Guaxupé	0.82112	0.82112	0.72777	0.72777
Heliodora	0.69949	0.69817	0.69949	0.69817
Ibiraci	0.74045	0.74045	0.67837	0.67837
Ibitiúra de Minas	0.67393	0.62828	0.67393	0.62828
Ilicínea	0.72666	0.72666	0.67726	0.67726
Inconfidentes	0.65749	0.64635	0.65749	0.64635
Ipuiúna	0.75466	0.75466	0.71067	0.71067
Itajubá	0.67526	0.66304	0.67526	0.66304
Itamoji	0.71194	0.71194	0.66535	0.66535
Itamonte	0.68343	0.66737	0.68343	0.66737
Itanhandu	0.73962	0.73962	0.73029	0.73029
Itapeva	0.76044	0.76044	0.73378	0.73378
Itaú de Minas	0.72152	0.70363	0.72152	0.70363
Jacuí	0.68761	0.68761	0.65857	0.65857
				continua

. •	~
contin	110000
contin	uacao

continuação				
Jacutinga	0.70767	0.70767	0.66391	0.66391
Jesuânia	0.6878	0.68159	0.6878	0.68159
Juruaia	0.67809	0.67809	0.67138	0.67138
Lambari	0.64079	0.62792	0.64079	0.62792
Liberdade	0.69232	0.67941	0.69232	0.67941
Machado	0.79824	0.79824	0.68264	0.68264
Maria da Fé	0.73078	0.73078	0.70077	0.70077
Marmelópolis	0.73938	0.70444	0.73938	0.70444
Minduri	0.70343	0.67933	0.70343	0.67933
Monsenhor Paulo	0.68445	0.68445	0.67336	0.67336
Monte Belo	0.80767	0.80767	0.7195	0.7195
Monte Santo de Minas	0.77403	0.77403	0.68922	0.68922
Monte Sião	0.63813	0.63813	0.63618	0.63618
Munhoz	0.75423	0.75423	0.70066	0.70066
Muzambinho	0.69249	0.69249	0.6502	0.6502
Natércia	0.65404	0.63848	0.65404	0.63848
Nova Resende	0.71597	0.71597	0.66322	0.66322
Olímpio Noronha	0.76469	0.74367	0.76469	0.74367
Ouro Fino	0.70717	0.70717	0.64953	0.64953
Paraguaçu	0.74156	0.74156	0.67406	0.67406
Paraisópolis	0.70332	0.69593	0.70332	0.69593
Passa Quatro	0.72606	0.72487	0.72606	0.72487
Passa Vinte	0.73441	0.67537	0.73441	0.67537
Passos	0.8889	0.8889	0.70572	0.70572
Pedralva	0.68928	0.68928	0.67323	0.67323
Piranguçu	0.71807	0.70714	0.71807	0.70714
Piranguinho	0.68656	0.66995	0.68656	0.66995
Poço Fundo	0.66517	0.66517	0.63769	0.63769
Poços de Caldas	0.83698	0.83698	0.74063	0.74063
Pouso Alegre	0.72124	0.72124	0.66311	0.66311
Pouso Alto	0.66889	0.65632	0.66889	0.65632
Pratápolis	0.67054	0.65857	0.67054	0.65857
Santa Rita de Caldas	0.73266	0.73266	0.67481	0.67481
Santa Rita do Sapucaí	0.78026	0.78026	0.71106	0.71106
Santana da Vargem	0.7965	0.7965	0.72591	0.72591
São Bento Abade	0.75954	0.73856	0.75954	0.73856
São Gonçalo do Sapucaí	0.7461	0.7461	0.68445	0.68445
São João Batista do Glória	0.75592	0.75592	0.71208	0.71208
São João da Mata	0.6746	0.65973	0.6746	0.65973
São José do Alegre	0.63765	0.58797	0.63765	0.58797
São Lourenço	0.78514	0.73514	0.78514	0.73514
				aantin

continuação

•				
São Pedro da União	0.68906	0.68906	0.6683	0.6683
São Sebastião da Bela Vista	0.71445	0.71445	0.69982	0.69982
São Sebastião do Paraíso	0.79976	0.79976	0.68192	0.68192
São Sebastião do Rio Verde	0.74567	0.692	0.74567	0.692
São Thomé das Letras	0.67185	0.65082	0.67185	0.65082
São Tomás de Aquino	0.70876	0.70876	0.68297	0.68297
São Vicente de Minas	0.66432	0.65451	0.66432	0.65451
Sapucaí-Mirim	0.76082	0.75617	0.76082	0.75617
Senador Amaral	0.70451	0.70451	0.68114	0.68114
Senador José Bento	0.69143	0.65693	0.69143	0.65693
Seritinga	0.73067	0.66736	0.73067	0.66736
Serrania	0.79424	0.79424	0.73291	0.73291
Serranos	0.70863	0.67983	0.70863	0.67983
Silvianópolis	0.70311	0.70311	0.67308	0.67308
Soledade de Minas	0.69272	0.67252	0.69272	0.67252
Toledo	0.66615	0.6659	0.66615	0.6659
Três Corações	0.77665	0.77665	0.68093	0.68093
Três Pontas	0.85153	0.85153	0.70379	0.70379
Turvolândia	0.70189	0.70189	0.67953	0.67953
Varginha	0.76435	0.76435	0.69808	0.69808
Virgínia	0.69009	0.68325	0.69009	0.68325
Wenceslau Brás	0.82493	0.76429	0.82493	0.76429
Eficiência média	0.72116	0.71161	0.69104	0.68149
Eficiência mediana	0.71388	0.70337	0.6832	0.67838
Eficiência mínima	0.63489	0.58797	0.63489	0.58797
Eficiência máxima	0.8889	0.8889	0.87247	0.76429
TE 4 D 1/ 1 1 '				

Fonte: Resultados da pesquisa. E^{VRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos variáveis de escala E^{DRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos decrescente de escala E^{IRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos crescente de escala E^{CRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos constante de escala

Tabela 32 – Eficiências da mesorregião Sul/Sudoeste de Minas – SFA (1996)

	Distribuição do erro		
Municípios	normal-truncada meia-normal		
Aiuruoca	0.687112705	0.606635314	
Alagoa	0.812919077	0.770378812	
Albertina	0.700039101	0.623142374	
Alfenas	0.762990176	0.703937302	
Alpinópolis	0.743472152	0.677997847	
Alterosa	0.66617419	0.582464981	
Andradas	0.685862187	0.605568887	
Andrelândia	0.631714246	0.543116828	
Arantina	0.770630217	0.713274002	
Arceburgo	0.673228496	0.5926696	
Areado	0.76369513	0.704722073	
Baependi	0.701865583	0.624837092	
Bandeira do Sul	0.70984386	0.63546346	
Boa Esperança	0.713275244	0.639898668	
Bocaina de Minas	0.687251578	0.606970251	
Bom Jardim de Minas	0.633960528	0.546233484	
Bom Jesus da Penha	0.714672281	0.641451783	
Bom Repouso	0.666786916	0.5838081	
Borda da Mata	0.639015986	0.55137421	
Botelhos	0.688254186	0.609251497	
Brasópolis	0.623451153	0.534204951	
Bueno Brandão	0.603629843	0.513368757	
Cabo Verde	0.675710374	0.59676754	
Cachoeira de Minas	0.670801839	0.587571929	
Caldas	0.645175544	0.558063516	
Camanducaia	0.568863277	0.47824053	
Cambuí	0.492993359	0.407826749	
Cambuquira	0.690933765	0.611965316	
Campanha	0.519682678	0.432017576	
Campestre	0.727573685	0.657553392	
Campo do Meio	0.73271114	0.664904667	
Campos Gerais	0.6736432	0.593466549	
Capetinga	0.56596949	0.474632368	
Capitólio	0.654817202	0.568997545	
Careaçu	0.695503321	0.617399016	
Carmo da Cachoeira	0.681230149	0.601841813	
Carmo de Minas	0.692988168	0.616855859	
Carmo do Rio Claro	0.711344474	0.637330222	
Carvalhópolis	0.586457748	0.498806957	
		continua	

continuação		
Carvalhos	0.716557873	0.643180395
Cássia	0.66446131	0.58040673
Caxambu	0.580686638	0.489889357
Claraval	0.408066545	0.33885456
Conceição da Aparecida	0.679953455	0.599326915
Conceição das Pedras	0.737036438	0.669719783
Conceição do Rio Verde	0.720442651	0.648630488
Conceição dos Ouros	0.584329787	0.493594038
Congonhal	0.540055286	0.453397525
Consolação	0.506972952	0.419992949
Coqueiral	0.711247946	0.637075652
Cordislândia	0.684615966	0.604248248
Córrego do Bom Jesus	0.409541749	0.343282531
Cristina	0.705501426	0.629714139
Cruzília	0.687453392	0.607564138
Delfim Moreira	0.581580015	0.491442905
Delfinópolis	0.666774215	0.583478849
Divisa Nova	0.694655559	0.616274826
Dom Viçoso	0.6589387	0.574122843
Elói Mendes	0.702737467	0.626572063
Espírito Santo do Dourado	0.674970739	0.593115602
Estiva	0.605920794	0.517116954
Extrema	0.307239249	0.266733056
Fama	0.546765676	0.456710229
Fortaleza de Minas	0.700358601	0.623348025
Gonçalves	0.555507	0.465818988
Guapé	0.673316615	0.591359617
Guaranésia	0.581121389	0.497505689
Guaxupé	0.669537692	0.591088887
Heliodora	0.676663061	0.594768109
Ibiraci	0.548087169	0.459379899
Ibitiúra de Minas	0.723887152	0.653889824
Ilicínea	0.674445395	0.592262903
Inconfidentes	0.556991583	0.467522788
Ipuiúna	0.556356751	0.470265512
Itajubá	0.657991144	0.57359659
Itamoji	0.600601942	0.510065322
Itamonte	0.753359239	0.69065509
Itanhandu	0.849403579	0.820765274
Itapeva	0.546715555	0.460269924
Itaú de Minas	0.700492971	0.623654023
		continua

continuação		
Jacuí	0.434743337	0.359284686
Jacutinga	0.658368836	0.573228074
Jesuânia	0.633165112	0.5448271
Juruaia	0.757020708	0.695606468
Lambari	0.720694044	0.648645093
Liberdade	0.719383585	0.647010842
Machado	0.756473996	0.695126846
Maria da Fé	0.669745572	0.588124325
Marmelópolis	0.741363149	0.67518264
Minduri	0.666334164	0.582964457
Monsenhor Paulo	0.62816777	0.539653986
Monte Belo	0.655720263	0.576687316
Monte Santo de Minas	0.55057263	0.464608662
Monte Sião	0.483436765	0.398913824
Munhoz	0.624470844	0.536817395
Muzambinho	0.650691375	0.564401243
Natércia	0.709732906	0.635184578
Nova Resende	0.631495434	0.543189403
Olímpio Noronha	0.800038391	0.753546386
Ouro Fino	0.648338494	0.561645013
Paraguaçu	0.741913408	0.675963902
Paraisópolis	0.679432126	0.598399385
Passa Quatro	0.766636768	0.708635871
Passa Vinte	0.610010684	0.519506302
Passos	0.713051628	0.642171337
Pedralva	0.719361425	0.646996256
Piranguçu	0.550722851	0.461102314
Piranguinho	0.591335562	0.501487473
Poço Fundo	0.725992884	0.655224648
Poços de Caldas	0.669772018	0.592984853
Pouso Alegre	0.637910495	0.551459256
Pouso Alto	0.798858901	0.751454912
Pratápolis	0.782420129	0.72930534
Santa Rita de Caldas	0.688924631	0.609868846
Santa Rita do Sapucaí	0.695280879	0.619332488
Santana da Vargem	0.703677814	0.62937271
São Bento Abade	0.708658583	0.634058949
São Gonçalo do Sapucaí	0.727925412	0.658013319
São João Batista do Glória	0.704188878	0.628893271
São João da Mata	0.678610945	0.597824852
São José do Alegre	0.526974779	0.449857566
		continua

continuação)

3		
São Lourenço	0.638915937	0.552001423
São Pedro da União	0.622460155	0.533097436
São Sebastião da Bela Vista	0.665728348	0.582055943
São Sebastião do Paraíso	0.647276649	0.563335519
São Sebastião do Rio Verde	0.703954655	0.628338181
São Thomé das Letras	0.637897276	0.551185416
São Tomás de Aquino	0.630777939	0.542178554
São Vicente de Minas	0.619144408	0.530260607
Sapucaí-Mirim	0.400296562	0.335804851
Senador Amaral	0.566171967	0.475968575
Senador José Bento	0.634597596	0.549356576
Seritinga	0.683222608	0.604528134
Serrania	0.718188179	0.646765996
Serranos	0.759098448	0.698295649
Silvianópolis	0.685969385	0.605580681
Soledade de Minas	0.599645126	0.509189514
Toledo	0.493137385	0.40807721
Três Corações	0.734068958	0.6659616
Três Pontas	0.687267849	0.611210613
Turvolândia	0.649209052	0.563018894
Varginha	0.706720104	0.631902158
Virgínia	0.677343984	0.595738133
Wenceslau Brás	0.727668935	0.657648465
Eficiência média	0.656374768	0.578289829
Eficiência mediana	0.674044298	0.593050228
Eficiência mínima	0.307239249	0.266733056
Eficiência máxima	0.849403579	0.820765274
	-	

Tabela 33 – Eficiências da mesorregião Noroeste de Minas – DEA (1996)

Municípios	EVRS	E ^{DRS}	E ^{IRS}	ECRS
Arinos	0.65618	0.65618	0.61914	0.61914
Bonfinópolis de Minas	0.72648	0.72648	0.65392	0.65392
Buritis	0.73235	0.73235	0.65402	0.65402
Formoso	0.78377	0.78377	0.70882	0.70882
Guarda-Mor	0.77205	0.77205	0.6834	0.6834
João Pinheiro	0.82843	0.82843	0.66318	0.66318
Lagamar	0.65046	0.65046	0.63974	0.63974
Lagoa Grande	0.76605	0.76605	0.70056	0.70056
Paracatu	0.90001	0.90001	0.67051	0.67051
Presidente Olegário	0.77422	0.77422	0.66813	0.66813
São Gonçalo do Abaeté	0.71785	0.71785	0.66374	0.66374
Unaí	1	1	0.66054	0.66054
Vazante	0.68418	0.68418	0.64326	0.64326
Eficiência média	0.76862	0.76862	0.66377	0.66377
Eficiência mediana	0.76605	0.76605	0.66318	0.66318
Eficiência mínima	0.65046	0.65046	0.61914	0.61914
Eficiência máxima	1	1	0.70882	0.70882

Fonte: Resultados da pesquisa.

E^{VRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos variáveis de escala E^{DRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos decrescente de escala E^{IRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos crescente de escala E^{CRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos constante de escala

Tabela 34 – Eficiências da mesorregião Noroeste de Minas – SFA (1996)

Municípios	Distribuição do erro			
Municipios	normal-truncada	meia-normal		
Arinos	0.317489418	0.269639098		
Bonfinópolis de Minas	0.532172597	0.446282605		
Buritis	0.559429558	0.471344534		
Formoso	0.408533211	0.35526343		
Guarda-Mor	0.691486123	0.614412311		
João Pinheiro	0.638882758	0.556438593		
Lagamar	0.681811016	0.600204911		
Lagoa Grande	0.707518571	0.633046068		
Paracatu	0.587145718	0.506121209		
Presidente Olegário	0.664690175	0.58407784		
São Gonçalo do Abaeté	0.645850272	0.559573432		
Unaí	0.60777647	0.527559163		
Vazante	0.680520264	0.598437578		
Eficiência média	0.594100473	0.517107752		
Eficiência mediana	0.638882758	0.556438593		
Eficiência mínima	0.317489418	0.269639098		
Eficiência máxima	0.707518571	0.633046068		

Tabela 35 – Eficiências da mesor	rregião Zona da l	Mata – DEA	(1996)	
Municípios	E ^{VRS}	EDRS	E ^{IRS}	E ^{CRS}
Abre Campo	0.71804	0.71804	0.70399	0.70399
Acaiaca	0.79544	0.75091	0.79544	0.75091
Além Paraíba	0.67499	0.67131	0.67499	0.67131
Alto Jequitibá	0.72961	0.71405	0.72961	0.71405
Alto Rio Doce	0.60447	0.59206	0.60447	0.59206
Amparo da Serra	0.73316	0.70646	0.73316	0.70646
Antônio Prado de Minas	0.75034	0.70269	0.75034	0.70269
Aracitaba	0.67424	0.61979	0.67424	0.61979
Araponga	0.59091	0.5709	0.59091	0.5709
Argirita	0.69395	0.65966	0.69395	0.65966
Astolfo Dutra	0.73266	0.71631	0.73266	0.71631
Barão do Monte Alto	0.64942	0.63405	0.64942	0.63405
Barra Longa	0.68116	0.66303	0.68116	0.66303
Belmiro Braga	0.77215	0.77215	0.75654	0.75654
Bias Fortes	0.73612	0.7095	0.73612	0.7095
Bicas	0.73399	0.71151	0.73399	0.71151
Brás Pires	0.68898	0.65105	0.68898	0.65105
Caiana	0.70433	0.69819	0.70433	0.69819
Cajuri	0.70229	0.67328	0.70229	0.67328
Canaã	0.67002	0.63584	0.67002	0.63584
Caparaó	0.73	0.73	0.70774	0.70774
Caputira	0.69809	0.69047	0.69809	0.69047
Carangola	0.65883	0.65713	0.65883	0.65713
Cataguases	0.69557	0.689	0.69557	0.689
Chácara	0.7521	0.72137	0.7521	0.72137
Chalé	0.69247	0.66168	0.69247	0.66168
Chiador	0.74681	0.73113	0.74681	0.73113
Cipotânea	0.66084	0.60058	0.66084	0.60058
Coimbra	0.70387	0.68318	0.70387	0.68318
Coronel Pacheco	0.86694	0.86694	0.82547	0.82547
Descoberto	0.75376	0.73155	0.75376	0.73155
Divinésia	0.73391	0.70802	0.73391	0.70802
Divino	0.72615	0.72615	0.68272	0.68272
Dom Silvério	0.67405	0.65668	0.67405	0.65668
Dona Eusébia	0.82039	0.81429	0.82039	0.81429
Dores do Turvo	0.67333	0.6464	0.67333	0.6464
Durandé	0.67048	0.66045	0.67048	0.66045
Ervália	0.62046	0.60732	0.62046	0.60732
Espera Feliz	0.67674	0.67674	0.65198	0.65198
Estrela d'Alva	0.72761	0.70464	0.72761	0.70464

. •	~
contin	macao

continuação				
Eugenópolis	0.67567	0.65587	0.67567	0.65587
Ewbank da Câmara	0.80075	0.74295	0.80075	0.74295
Faria Lemos	0.70996	0.69563	0.70996	0.69563
Fervedouro	0.67351	0.65976	0.67351	0.65976
Guaraciaba	0.66329	0.638	0.66329	0.638
Guarani	0.70558	0.69892	0.70558	0.69892
Guarará	0.74004	0.71107	0.74004	0.71107
Guidoval	0.65621	0.63674	0.65621	0.63674
Guiricema	0.65459	0.6449	0.65459	0.6449
Itamarati de Minas	0.80398	0.76917	0.80398	0.76917
Jequeri	0.68779	0.68779	0.68476	0.68476
Juiz de Fora	0.73873	0.73873	0.68422	0.68422
Lajinha	0.67459	0.67459	0.65679	0.65679
Lamim	0.75038	0.65906	0.75038	0.65906
Laranjal	0.6871	0.66385	0.6871	0.66385
Leopoldina	0.72631	0.72631	0.68031	0.68031
Lima Duarte	0.66704	0.662	0.66704	0.662
Manhuaçu	0.76773	0.76773	0.69052	0.69052
Manhumirim	0.75435	0.75435	0.71414	0.71414
Mar de Espanha	0.67453	0.66367	0.67453	0.66367
Maripá de Minas	0.74073	0.70433	0.74073	0.70433
Matias Barbosa	0.72696	0.70576	0.72696	0.70576
Matipó	0.75447	0.75447	0.72315	0.72315
Mercês	0.69887	0.68422	0.69887	0.68422
Miradouro	0.67259	0.65537	0.67259	0.65537
Miraí	0.68671	0.68671	0.67767	0.67767
Muriaé	0.70976	0.70976	0.6635	0.6635
Olaria	0.7442	0.69167	0.7442	0.69167
Oliveira Fortes	0.75552	0.719	0.75552	0.719
Paiva	0.74603	0.67407	0.74603	0.67407
Palma	0.68002	0.66207	0.68002	0.66207
Patrocínio do Muriaé	0.71286	0.67887	0.71286	0.67887
Paula Cândido	0.66851	0.66226	0.66851	0.66226
Pedra do Anta	0.71347	0.68027	0.71347	0.68027
Pedra Dourada	0.81731	0.77993	0.81731	0.77993
Pedro Teixeira	0.77335	0.71379	0.77335	0.71379
Pequeri	0.80415	0.75937	0.80415	0.75937
Piau	0.72206	0.6932	0.72206	0.6932
Piedade de Ponte Nova	0.88766	0.88766	0.8587	0.8587
Piranga	0.70366	0.69713	0.70366	0.69713
Pirapetinga	0.73673	0.69312	0.73673	0.69312
				continua

. •	~
contin	macao

continuação				
Piraúba	0.69224	0.67779	0.69224	0.67779
Ponte Nova	0.81124	0.81124	0.72815	0.72815
Porto Firme	0.65089	0.63024	0.65089	0.63024
Presidente Bernardes	0.64827	0.60869	0.64827	0.60869
Raul Soares	0.71404	0.71404	0.67514	0.67514
Recreio	0.71518	0.69686	0.71518	0.69686
Rio Casca	0.727	0.727	0.70421	0.70421
Rio Doce	0.8267	0.78208	0.8267	0.78208
Rio Espera	0.72379	0.68508	0.72379	0.68508
Rio Novo	0.70439	0.70161	0.70439	0.70161
Rio Pomba	0.73781	0.73781	0.72328	0.72328
Rio Preto	0.68753	0.67755	0.68753	0.67755
Rochedo de Minas	0.8114	0.76288	0.8114	0.76288
Rodeiro	0.7982	0.70914	0.7982	0.70914
Santa Cruz do Escalvado	0.71622	0.70767	0.71622	0.70767
Santa Margarida	0.72929	0.72929	0.7034	0.7034
Santa Rita de Ibitipoca	0.70829	0.66546	0.70829	0.66546
Santa Rita de Jacutinga	0.69104	0.66712	0.69104	0.66712
Santana de Cataguases	0.70895	0.66943	0.70895	0.66943
Santana do Deserto	0.72994	0.69799	0.72994	0.69799
Santana do Manhuaçu	0.71619	0.71619	0.70492	0.70492
Santo Antônio do Aventureiro	0.65634	0.6293	0.65634	0.6293
Santo Antônio do Grama	0.79169	0.78658	0.79169	0.78658
Santos Dumont	0.69783	0.68566	0.69783	0.68566
São Francisco do Glória	0.71385	0.69411	0.71385	0.69411
São Geraldo	0.71322	0.69022	0.71322	0.69022
São João do Manhuaçu	0.7408	0.7408	0.72448	0.72448
São João Nepomuceno	0.70255	0.7003	0.70255	0.7003
São José do Mantimento	0.77254	0.70628	0.77254	0.70628
São Miguel do Anta	0.65843	0.64104	0.65843	0.64104
São Pedro dos Ferros	0.81264	0.81264	0.76359	0.76359
Senador Cortes	0.75062	0.71496	0.75062	0.71496
Senador Firmino	0.68137	0.64598	0.68137	0.64598
Senhora de Oliveira	0.72754	0.70651	0.72754	0.70651
Sericita	0.82323	0.79639	0.82323	0.79639
Silveirânia	0.74292	0.69754	0.74292	0.69754
Simão Pereira	0.75404	0.71826	0.75404	0.71826
Simonésia	0.74068	0.74068	0.71337	0.71337
Tabuleiro	0.72732	0.70411	0.72732	0.70411
Teixeiras	0.71054	0.69489	0.71054	0.69489
Tocantins	0.65798	0.64809	0.65798	0.64809
				Continue

Continua

continuação

Tombos	0.69734	0.68916	0.69734	0.68916
Ubá	0.65736	0.65736	0.64839	0.64839
Urucânia	0.83308	0.83308	0.76259	0.76259
Viçosa	0.72696	0.72696	0.71724	0.71724
Vieiras	0.7293	0.70913	0.7293	0.70913
Visconde do Rio Branco	0.71473	0.71473	0.71452	0.71452
Volta Grande	0.73435	0.72155	0.73435	0.72155
				_
Eficiência média	0.72019	0.69969	0.71325	0.69276
Eficiência mediana	0.71518	0.69754	0.70829	0.6932
Eficiência mínima	0.59091	0.5709	0.59091	0.5709
Eficiência máxima	0.88766	0.88766	0.8587	0.8587

E^{VRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos variáveis de escala E^{DRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos decrescente de escala E^{IRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos crescente de escala E^{CRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos crescente de escala

Tabela 36 – Eficiências da mesorregião Zona da Mata – SFA (1996)

	sorregião Zona da Mata – SFA (1996) Distribuição do erro			
Municípios	normal-truncada	meia-normal		
Abre Campo	0.795515309	0.747102973		
Acaiaca	0.761669392	0.703024891		
Além Paraíba	0.706835098	0.630772084		
Alto Jequitibá	0.809494061	0.766610909		
Alto Rio Doce	0.540048348	0.454081262		
Amparo da Serra	0.768173169	0.710572493		
Antônio Prado de Minas	0.66577858	0.582299226		
Aracitaba	0.632964433	0.54560377		
Araponga	0.428432616	0.364705745		
Argirita	0.628551913	0.54061895		
Astolfo Dutra	0.625265057	0.536490707		
Barão do Monte Alto	0.577358964	0.48844189		
Barra Longa	0.667589621	0.583540417		
Belmiro Braga	0.674760651	0.596628039		
Bias Fortes	0.740901747	0.674247088		
Bicas	0.639214799	0.551647539		
Brás Pires	0.680308195	0.599831231		
Caiana	0.710607236	0.636196417		
Cajuri	0.710660931	0.636685989		
Canaã	0.788683398	0.737734245		
Caparaó	0.783821744	0.731550874		
Caputira	0.746696275	0.682146734		
Carangola	0.767094755	0.708731658		
Cataguases	0.665263201	0.581395127		
Chácara	0.592622679	0.501642506		
Chalé	0.720572059	0.648481916		
Chiador	0.471435283	0.390130253		
Cipotânea	0.751217344	0.687945101		
Coimbra	0.756374214	0.695155774		
Coronel Pacheco	0.560029648	0.483635753		
Descoberto	0.719833484	0.647980162		
Divinésia	0.558677635	0.468047624		
Divino	0.728241538	0.658876604		
Dom Silvério	0.691565022	0.612408275		
Dona Eusébia	0.827670717	0.791246188		
Dores do Turvo	0.625495774	0.537625714		
Durandé	0.54220129	0.451832374		
Ervália	0.625934583	0.538129982		
·		4:		

continuação Espera Feliz	0.758455945	0.697566677
Estrela d'Alva	0.703214153	0.626893385
Eugenópolis Eugenópolis	0.730577345	0.661130887
Ewbank da Câmara	0.701801257	0.624817913
Faria Lemos	0.739312582	0.672514407
Fervedouro	0.703682797	0.627384855
Guaraciaba	0.520541023	0.43150098
Guarani	0.767204286	0.709150974
Guarará	0.569246075	0.478404154
Guidoval	0.658000086	0.573954479
Guiricema	0.648449779	0.56193154
Itamarati de Minas	0.635849505	0.548858297
Jequeri	0.789668742	0.739395908
Juiz de Fora	0.744530538	0.679244475
Lajinha	0.756581662	0.694967593
Lamim	0.716856625	0.644298608
Laranjal	0.653651638	0.568305719
Leopoldina	0.719949396	0.648147457
Lima Duarte	0.756599372	0.694627356
Manhuaçu	0.762326715	0.703078796
Manhumirim	0.802565224	0.756879646
Mar de Espanha	0.608467251	0.517929916
Maripá de Minas	0.702370938	0.626180358
Matias Barbosa	0.672802232	0.590083139
Matipó	0.687944147	0.610842004
Mercês	0.741037866	0.674553323
Miradouro	0.78607474	0.734194658
Miraí	0.714447766	0.64068243
Muriaé	0.676666431	0.595026415
Olaria	0.809815436	0.766428663
Oliveira Fortes	0.718572534	0.645947224
Paiva	0.632433529	0.547190492
Palma	0.696223642	0.618020651
Patrocínio do Muriaé	0.601173357	0.512274543
Paula Cândido	0.691467534	0.612145071
Pedra do Anta	0.735378376	0.667559108
Pedra Dourada	0.709898507	0.636361173
Pedro Teixeira	0.695348448	0.617300954
Pequeri	0.698411348	0.621048696
Piau	0.603944321	0.513528548
Piedade de Ponte Nova	0.654106963	0.579995468

continuação		
Piranga	0.739418141	0.672519043
Pirapetinga	0.698940573	0.621254575
Piraúba	0.689965001	0.610983839
Ponte Nova	0.753609143	0.692804878
Porto Firme	0.654201657	0.568754713
Presidente Bernardes	0.491162984	0.411562284
Raul Soares	0.757877201	0.697158758
Recreio	0.688821949	0.609165618
Rio Casca	0.719933197	0.6484161
Rio Doce	0.685734344	0.606964341
Rio Espera	0.760539086	0.700095347
Rio Novo	0.673857575	0.591696986
Rio Pomba	0.808973107	0.765645872
Rio Preto	0.712370292	0.637933712
Rochedo de Minas	0.823798471	0.785739613
Rodeiro	0.624664951	0.537596159
Santa Cruz do Escalvado	0.571094847	0.481372183
Santa Margarida	0.742790213	0.67819405
Santa Rita de Ibitipoca	0.803294602	0.757329316
Santa Rita de Jacutinga	0.652924459	0.56645815
Santana de Cataguases	0.620445374	0.531971563
Santana do Deserto	0.365960949	0.305888463
Santana do Manhuaçu	0.690513953	0.613269824
Santo Antônio do Aventureiro	0.579823124	0.490803968
Santo Antônio do Grama	0.723414376	0.654707604
Santos Dumont	0.758541004	0.697455393
São Francisco do Glória	0.739801331	0.673206994
São Geraldo	0.726316209	0.655863443
São João do Manhuaçu	0.686516619	0.608871881
São João Nepomuceno	0.617789871	0.528535256
São José do Mantimento	0.741915607	0.676023006
São Miguel do Anta	0.767243254	0.709160595
São Pedro dos Ferros	0.708982789	0.638420904
Senador Cortes	0.69922791	0.621989024
Senador Firmino	0.606433033	0.517613714
Senhora de Oliveira	0.646564268	0.559776554
Sericita	0.811801707	0.769592329
Silveirânia	0.655991815	0.570398145
Simão Pereira	0.592141937	0.501753919
Simonésia	0.777149915	0.722756337
Tabuleiro	0.710899536	0.636293501
		continua

continuação

Teixeiras	0.766125738	0.707721622
Tocantins	0.708712413	0.634034804
Tombos	0.743478942	0.677878564
Ubá	0.569654232	0.478247569
Urucânia	0.81387669	0.772400351
Viçosa	0.664865129	0.582170715
Vieiras	0.6976687	0.620262888
Visconde do Rio Branco	0.636891822	0.550483794
Volta Grande	0.705101235	0.629070612
Eficiência média	0.689542885	0.616685382
Eficiência mediana	0.702370938	0.626180358
Eficiência mínima	0.365960949	0.305888463
Eficiência máxima	0.827670717	0.791246188
Fontos Decultados de posquise		·

Tabela 37 – Eficiências da m	esorregião Nor	te de Minas – D	EA (1996)	
Municípios			EIRS	ECRS
Águas Vermelhas	0.70049	0.70049	0.69492	0.69492
Bocaiúva	0.69486	0.69486	0.63887	0.63887
Botumirim	0.63986	0.60587	0.63986	0.60587
Brasília de Minas	0.60713	0.60713	0.59716	0.59716
Buritizeiro	0.69782	0.69782	0.64613	0.64613
Capitão Enéias	0.67524	0.67524	0.66043	0.66043
Claro dos Poções	0.65284	0.63499	0.65284	0.63499
Coração de Jesus	0.62966	0.62966	0.60542	0.60542
Cristália	0.69728	0.64635	0.69728	0.64635
Engenheiro Navarro	0.61296	0.59693	0.61296	0.59693
Espinosa	0.60904	0.59423	0.60904	0.59423
Francisco Dumont	0.63701	0.60931	0.63701	0.60931
Francisco Sá	0.7108	0.7108	0.65243	0.65243
Grão Mogol	0.61075	0.61075	0.60599	0.60599
Ibiaí	0.67549	0.67545	0.67549	0.67545
Icaraí de Minas	0.62644	0.59923	0.62644	0.59923
Itacambira	0.64328	0.60212	0.64328	0.60212
Itacarambi	0.61818	0.60028	0.61818	0.60028
Jaíba	0.71239	0.71239	0.64939	0.64939
Janaúba	0.73331	0.73331	0.66532	0.66532
Januária	0.59449	0.59449	0.57859	0.57859
Jequitaí	0.70521	0.70521	0.6783	0.6783
Juramento	0.66397	0.65184	0.66397	0.65184
Lagoa dos Patos	0.68436	0.6764	0.68436	0.6764
Lassance	0.81463	0.81463	0.73874	0.73874
Lontra	0.68289	0.58226	0.68289	0.58226
Mamonas	0.6398	0.58034	0.6398	0.58034
Manga	0.73039	0.73039	0.66939	0.66939
Matias Cardoso	0.72708	0.72708	0.69156	0.69156
Mato Verde	0.6034	0.59425	0.6034	0.59425
Mirabela	0.7073	0.7073	0.67852	0.67852
Montalvânia	0.65343	0.64538	0.65343	0.64538
Monte Azul	0.60944	0.60944	0.60083	0.60083
Montes Claros	0.7101	0.7101	0.64424	0.64424
Montezuma	0.67681	0.65065	0.67681	0.65065
Pedras de Maria da Cruz	0.64849	0.63714	0.64849	0.63714
Pirapora	0.79178	0.79178	0.73199	0.73199
Porteirinha	0.71494	0.71494	0.64224	0.64224
Riachinho	0.62225	0.61362	0.62225	0.61362
Riacho dos Machados	0.71053	0.70506	0.71053	0.70506
				4

continuação

Rio Pardo de Minas	0.57485	0.57286	0.57485	0.57286
Rubelita	0.65882	0.64882	0.65882	0.64882
Salinas	0.66095	0.66095	0.62864	0.62864
Santa Fé de Minas	0.64251	0.62244	0.64251	0.62244
São Francisco	0.62473	0.62473	0.59914	0.59914
São João da Ponte	0.59364	0.59101	0.59364	0.59101
São João do Paraíso	0.71271	0.71271	0.67491	0.67491
São Romão	0.65246	0.64643	0.65246	0.64643
Taiobeiras	0.67425	0.66758	0.67425	0.66758
Ubaí	0.60774	0.60197	0.60774	0.60197
Urucuia	0.59106	0.57862	0.59106	0.57862
Várzea da Palma	0.7174	0.7174	0.67347	0.67347
Varzelândia	0.62006	0.62006	0.60539	0.60539
Eficiência média	0.66429	0.65368	0.64614	0.63554
Eficiência mediana	0.65882	0.64635	0.64613	0.63887
Eficiência mínima	0.57485	0.57286	0.57485	0.57286
Eficiência máxima	0.81463	0.81463	0.73874	0.73874

Fonte: Resultados da pesquisa.

E^{VRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos variáveis de escala E^{DRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos decrescente de escala E^{IRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos crescente de escala E^{CRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos constante de escala

Tabela 38 – Eficiências da mesorregião Norte de Minas – SFA (1996)

Tabela 30 – Efficiencias da I	n mesorregiao Norte de Minas – SFA (1996) Distribuição do erro			
Municípios	normal-truncada meia-normal			
Águas Vermelhas	0.455254376	0.37717713		
Bocaiúva	0.568264351	0.477680392		
Botumirim	0.506009002	0.419508424		
Brasília de Minas	0.346527755	0.290459564		
Buritizeiro	0.48275102	0.398776		
Capitão Enéias	0.529326759	0.439315973		
Claro dos Poções	0.527195419	0.438167227		
Coração de Jesus	0.447583439	0.367814653		
Cristália	0.626310796	0.537091882		
Engenheiro Navarro	0.196363536	0.186974775		
Espinosa	0.352844603	0.295761987		
Francisco Dumont	0.219194598	0.202328377		
Francisco Sá	0.556212663	0.467050137		
Grão Mogol	0.812788549	0.7702771		
Ibiaí	0.299286761	0.257637241		
Icaraí de Minas	0.315091836	0.271951434		
Itacambira	0.419397307	0.346178065		
Itacarambi	0.226134602	0.20674305		
Jaíba	0.559577356	0.47123865		
Janaúba	0.383925913	0.324595333		
Januária	0.402692481	0.331885322		
Jequitaí	0.742716005	0.67694768		
Juramento	0.535589216	0.44541181		
Lagoa dos Patos	0.519910882	0.430497912		
Lassance	0.238803001	0.222204515		
Lontra	0.306675376	0.269427947		
Mamonas	0.622625138	0.535939972		
Manga	0.30493447	0.265876471		
Matias Cardoso	0.423645726	0.352606737		
Mato Verde	0.219779421	0.202217392		
Mirabela	0.31779369	0.273360464		
Montalvânia	0.345403636	0.290016337		
Monte Azul	0.332787486	0.280659478		
Montes Claros	0.703588125	0.627179824		
Montezuma	0.440874211	0.36312036		
Pedras de Maria da Cruz	0.589459294	0.498659499		
Pirapora	0.470910623	0.400472628		
Porteirinha	0.401375369	0.337733291		
Riachinho	0.561226781	0.470569577		
		continuo		

	. •	~
con	tını	ıacao

Riacho dos Machados	0.592938884	0.505038224
Rio Pardo de Minas	0.509530403	0.421575104
Rubelita	0.383877355	0.318283252
Salinas	0.524849915	0.436747688
Santa Fé de Minas	0.267805199	0.235208276
São Francisco	0.345616542	0.289689504
São João da Ponte	0.499099141	0.412823744
São João do Paraíso	0.535931516	0.452143325
São Romão	0.389749226	0.322567753
Taiobeiras	0.415604625	0.343536453
Ubaí	0.551382978	0.460701857
Urucuia	0.173579744	0.169027646
Várzea da Palma	0.396809307	0.331154268
Varzelândia	0.434666949	0.35771073
Eficiência média	0.440231573	0.375051367
Eficiência mediana	0.434666949	0.35771073
Eficiência mínima	0.173579744	0.169027646
Eficiência máxima	0.812788549	0.7702771

Tabela 39 – Eficiências da mes	sorregião Oeste			
Municípios	EVRS	EDRS	E ^{IRS}	ECRS
Aguanil	0.69124	0.68348	0.69124	0.68348
Arcos	0.63342	0.63194	0.63342	0.63194
Bambuí	0.72716	0.72716	0.6588	0.6588
Bom Sucesso	0.72542	0.72542	0.67744	0.67744
Camacho	0.68531	0.65564	0.68531	0.65564
Campo Belo	0.71423	0.71423	0.66922	0.66922
Cana Verde	0.67032	0.66535	0.67032	0.66535
Candeias	0.66616	0.66616	0.63589	0.63589
Carmo da Mata	0.69105	0.69105	0.68696	0.68696
Carmo do Cajuru	0.73378	0.73378	0.68928	0.68928
Carmópolis de Minas	0.71693	0.71693	0.68773	0.68773
Cláudio	0.7211	0.7211	0.69096	0.69096
Conceição do Pará	0.68413	0.67869	0.68413	0.67869
Córrego Danta	0.65047	0.64051	0.65047	0.64051
Córrego Novo	0.76065	0.76065	0.74944	0.74944
Cristais	0.71858	0.71858	0.673	0.673
Divinópolis	0.71059	0.71059	0.66642	0.66642
Doresópolis	0.70216	0.67624	0.70216	0.67624
Formiga	0.70083	0.70083	0.6415	0.6415
Ibituruna	0.66238	0.64815	0.66238	0.64815
Igaratinga	0.73047	0.73047	0.715	0.715
Iguatama	0.64933	0.64933	0.64651	0.64651
Itapecerica	0.68927	0.68927	0.65962	0.65962
Itaúna	0.69558	0.69558	0.67344	0.67344
Medeiros	0.65509	0.65509	0.65122	0.65122
Nova Serrana	0.74815	0.73903	0.74815	0.73903
Oliveira	0.73252	0.73252	0.67383	0.67383
Pains	0.65485	0.65185	0.65485	0.65185
Passa Tempo	0.65612	0.64946	0.65612	0.64946
Pedra do Indaiá	0.70018	0.67916	0.70018	0.67916
Perdigão	0.70711	0.69859	0.70711	0.69859
Perdões	0.70683	0.70683	0.67851	0.67851
Pimenta	0.73307	0.73307	0.69025	0.69025
Piracema	0.69215	0.67796	0.69215	0.67796
Pium-í	0.75892	0.75892	0.67996	0.67996
Santana do Jacaré	0.74586	0.71927	0.74586	0.71927
Santo Antônio do Amparo	0.73476	0.73476	0.68624	0.68624
Santo Antônio do Monte	0.69324	0.69324	0.65242	0.65242
São Francisco de Paula	0.74568	0.74568	0.71333	0.71333
São Gonçalo do Pará	0.69706	0.67857	0.69706	0.67857

continuação

-				
São Roque de Minas	0.62351	0.62351	0.621	0.621
São Sebastião do Oeste	0.6886	0.6886	0.67762	0.67762
Tapiraí	0.69187	0.68313	0.69187	0.68313
Vargem Bonita	0.68907	0.67652	0.68907	0.67652
Eficiência média	0.69966	0.69447	0.67971	0.67452
Eficiência mediana	0.69862	0.69215	0.67924	0.67698
Eficiência mínima	0.62351	0.62351	0.621	0.621
Eficiência máxima	0.76065	0.76065	0.74944	0.74944

E^{VRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos variáveis de escala E^{DRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos decrescente de escala E^{IRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos crescente de escala E^{CRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos crescente de escala

Tabela 40 – Eficiências da mesorregião Oeste de Minas – SFA (1996)

	a mesorregiao Oeste de Minas – SFA (1996) Distribuição do erro		
Municípios	normal-truncada meia-normal		
Aguanil	0.50238596	0.415288719	
Arcos	0.816281525	0.775175481	
Bambuí	0.647885067	0.561732323	
Bom Sucesso	0.679727662	0.598674845	
Camacho	0.575992715	0.485326264	
Campo Belo	0.694247285	0.615758069	
Cana Verde	0.583401683	0.492603629	
Candeias	0.603539905	0.512551157	
Carmo da Mata	0.671631951	0.58859569	
Carmo do Cajuru	0.840330847	0.808217437	
Carmópolis de Minas	0.675536721	0.59413812	
Cláudio	0.593073885	0.503458749	
Conceição do Pará	0.75216885	0.689213467	
Córrego Danta	0.593155898	0.502450514	
Córrego Novo	0.33396263	0.285956316	
Cristais	0.668100843	0.58481848	
Divinópolis	0.800262737	0.753555957	
Doresópolis	0.660831566	0.576787308	
Formiga	0.673679494	0.590922248	
Ibituruna	0.637757984	0.552028941	
Igaratinga	0.861690002	0.837224242	
Iguatama	0.714896599	0.641167954	
Itapecerica	0.669061329	0.585572537	
Itaúna	0.748452259	0.684302554	
Medeiros	0.638676329	0.550670726	
Nova Serrana	0.706338551	0.630941547	
Oliveira	0.751600531	0.688332449	
Pains	0.680153423	0.59900888	
Passa Tempo	0.530552453	0.440760057	
Pedra do Indaiá	0.699200659	0.621690678	
Perdigão	0.743135996	0.677530675	
Perdões	0.67215947	0.589406376	
Pimenta	0.664753952	0.581781078	
Piracema	0.72251616	0.650991355	
Pium-í	0.659783999	0.576426771	
Santana do Jacaré	0.673763766	0.59139864	
Santo Antônio do Amparo	0.710373149	0.635954558	
Santo Antônio do Monte	0.788190282	0.736891252	
São Francisco de Paula	0.629093983	0.542085249	
-		continuo	

continuação

São Gonçalo do Pará	0.724451806	0.653360515
São Roque de Minas	0.565625314	0.474169914
São Sebastião do Oeste	0.75722566	0.69581752
Tapiraí	0.636635727	0.548717132
Vargem Bonita	0.506061565	0.418739046
Eficiência média	0.669507913	0.59409535
Eficiência mediana	0.672919482	0.590164312
Eficiência mínima	0.33396263	0.285956316
Eficiência máxima	0.861690002	0.837224242

Tabela 41 – Eficiências da mes		lo Rio Doce –		
Municípios	E ^{VRS}	EDRS	E ^{IRS}	ECRS
Açucena	0.85696	0.85696	0.7746	0.7746
Água Boa	0.69584	0.69584	0.65983	0.65983
Aimorés	0.67076	0.67076	0.64438	0.64438
Alpercata	0.72523	0.70346	0.72523	0.70346
Alvarenga	0.73501	0.69526	0.73501	0.69526
Antônio Dias	1	1	0.89189	0.89189
Belo Oriente	0.93724	0.93724	0.87804	0.87804
Bom Jesus do Galho	0.64881	0.64861	0.64881	0.64861
Braúnas	0.72884	0.70249	0.72884	0.70249
Campanário	0.71648	0.69461	0.71648	0.69461
Capitão Andrade	0.73108	0.70451	0.73108	0.70451
Caratinga	0.74868	0.74868	0.66787	0.66787
Carmésia	0.85425	0.77558	0.85425	0.77558
Central de Minas	0.72836	0.69098	0.72836	0.69098
Coluna	0.69853	0.67407	0.69853	0.67407
Conceição de Ipanema	0.71893	0.68006	0.71893	0.68006
Conselheiro Pena	0.69056	0.69056	0.6581	0.6581
Coroaci	0.75136	0.75136	0.73176	0.73176
Coronel Fabriciano	1	1	1	1
Divino das Laranjeiras	0.72081	0.70053	0.72081	0.70053
Divinolândia de Minas	0.89282	0.88933	0.89282	0.88933
Dom Cavati	0.82013	0.75056	0.82013	0.75056
Dores de Guanhães	0.72419	0.69586	0.72419	0.69586
Engenheiro Caldas	0.69547	0.68227	0.69547	0.68227
Entre Folhas	0.72918	0.67141	0.72918	0.67141
Fernandes Tourinho	0.7267	0.69389	0.7267	0.69389
Frei Inocêncio	0.67691	0.66749	0.67691	0.66749
Galiléia	0.71629	0.71629	0.69841	0.69841
Gonzaga	0.88423	0.84677	0.88423	0.84677
Governador Valadares	0.70663	0.70663	0.65851	0.65851
Guanhães	0.7219	0.7219	0.67555	0.67555
Iapu	0.68531	0.68531	0.68417	0.68417
Inhapim	0.69856	0.69856	0.65788	0.65788
Ipaba	0.89846	0.87695	0.89846	0.87695
Ipanema	0.70949	0.70949	0.69424	0.69424
Ipatinga	0.69844	0.68375	0.69844	0.68375
Itabirinha de Mantena	0.76664	0.7378	0.76664	0.7378
Itambacuri	0.66369	0.66369	0.63787	0.63787
Itanhomi	0.66948	0.65289	0.66948	0.65289
Itueta	0.66988	0.66988	0.66722	0.66722
				C 4:

Continua

continuação				
Jaguaraçu	0.77935	0.74601	0.77935	0.74601
Jampruca	0.68746	0.67614	0.68746	0.67614
Joanésia	0.78743	0.73821	0.78743	0.73821
Mantena	0.74382	0.74382	0.69681	0.69681
Marilac	0.7178	0.69371	0.7178	0.69371
Marliéria	0.85997	0.85997	0.84396	0.84396
Materlândia	0.73326	0.70473	0.73326	0.70473
Mathias Lobato	0.71914	0.68682	0.71914	0.68682
Mendes Pimentel	0.7341	0.71965	0.7341	0.71965
Mesquita	0.84287	0.81989	0.84287	0.81989
Mutum	0.68616	0.68616	0.64119	0.64119
Nacip Raydan	0.78693	0.74195	0.78693	0.74195
Nova Módica	0.69752	0.68154	0.69752	0.68154
Paulistas	0.75907	0.75048	0.75907	0.75048
Peçanha	0.83945	0.83945	0.75736	0.75736
Pescador	0.68326	0.65138	0.68326	0.65138
Pocrane	0.65378	0.64608	0.65378	0.64608
Resplendor	0.69403	0.69403	0.66843	0.66843
Sabinópolis	0.84017	0.84017	0.75736	0.75736
Santa Bárbara do Leste	0.70456	0.69772	0.70456	0.69772
Santa Efigênia de Minas	0.84221	0.72371	0.84221	0.72371
Santa Maria do Suaçui	0.6843	0.6843	0.6785	0.6785
Santa Rita de Minas	0.77515	0.76516	0.77515	0.76516
Santa Rita do Itueto	0.66672	0.6659	0.66672	0.6659
Santana do Paraíso	0.87953	0.87953	0.8758	0.8758
São Geraldo da Piedade	0.77201	0.72335	0.77201	0.72335
São João do Manteninha	0.79463	0.75046	0.79463	0.75046
São João do Oriente	0.72279	0.7047	0.72279	0.7047
São João Evangelista	0.77042	0.77042	0.73316	0.73316
São José da Safira	0.76377	0.7184	0.76377	0.7184
São José do Divino	0.72592	0.70163	0.72592	0.70163
São José do Jacuri	0.61182	0.58889	0.61182	0.58889
São Pedro do Suaçui	0.67177	0.644	0.67177	0.644
São Sebastião do Maranhão	0.68828	0.66392	0.68828	0.66392
Sardoá	0.90662	0.87394	0.90662	0.87394
Senhora do Porto	0.71515	0.68443	0.71515	0.68443
Sobrália	0.73372	0.71255	0.73372	0.71255
Tarumirim	0.66673	0.66316	0.66673	0.66316
Tumiritinga	0.68967	0.67882	0.68967	0.67882
Ubaporanga	0.68877	0.68352	0.68877	0.68352
Virginópolis	0.7427	0.74112	0.7427	0.74112
				aantinua

continuação

Virgolândia	0.71267	0.67342	0.71267	0.67342
Eficiência média	0.74741	0.72873	0.73536	0.71668
Eficiência mediana	0.72471	0.70206	0.7218	0.69556
Eficiência mínima	0.61182	0.58889	0.61182	0.58889
Eficiência máxima	1	1	1	1

E^{VRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos variáveis de escala E^{DRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos decrescente de escala E^{IRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos crescente de escala E^{CRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos crescente de escala E^{CRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos constante de escala

Tabela 42 – Eficiências da mesorregião Vale do Rio Doce – SFA (1996)

	Distribuição do erro		
Municípios	normal-truncada	meia-normal	
Açucena	0.465417768	0.410179142	
Água Boa	0.577828546	0.48885233	
Aimorés	0.634472379	0.546230522	
Alpercata	0.808594918	0.764998084	
Alvarenga	0.697803445	0.620892075	
Antônio Dias	0.675267598	0.610714933	
Belo Oriente	0.413431381	0.379628601	
Bom Jesus do Galho	0.708426441	0.632984361	
Braúnas	0.568068434	0.477986934	
Campanário	0.618869554	0.528906973	
Capitão Andrade	0.604946364	0.514904201	
Caratinga	0.617082539	0.533407023	
Carmésia	0.74336524	0.67789561	
Central de Minas	0.747262291	0.682575144	
Coluna	0.671380687	0.58832314	
Conceição de Ipanema	0.679377097	0.597603101	
Conselheiro Pena	0.697438094	0.620098098	
Coroaci	0.478800213	0.405865508	
Coronel Fabriciano	0.576180857	0.516202855	
Divino das Laranjeiras	0.667858186	0.5841208	
Divinolândia de Minas	0.626633559	0.555720814	
Dom Cavati	0.784898465	0.73291692	
Dores de Guanhães	0.667825579	0.583925263	
Engenheiro Caldas	0.690094212	0.610891852	
Entre Folhas	0.677173901	0.596286426	
Fernandes Tourinho	0.652484946	0.566432099	
Frei Inocêncio	0.712355987	0.63767007	
Galiléia	0.695389711	0.619630291	
Gonzaga	0.734366573	0.668207303	
Governador Valadares	0.620797292	0.532106283	
Guanhães	0.34755428	0.295802252	
Iapu	0.535232992	0.447669555	
Inhapim	0.733701645	0.665454021	
Ipaba	0.519750713	0.44469378	
Ipanema	0.56991983	0.485245885	
Ipatinga	0.070563073	0.08791738	
Itabirinha de Mantena	0.774511245	0.719417018	
Itambacuri	0.551095933	0.459563992	
Itanhomi	0.636833891	0.548446365	
		continua	

continuação		
Itueta	0.424538147	0.351770054
Jaguaraçu	0.81163897	0.769204191
Jampruca	0.764147093	0.704683887
Joanésia	0.645572474	0.560656327
Mantena	0.774850063	0.719489246
Marilac	0.648619106	0.562679752
Marliéria	0.753602461	0.693220179
Materlândia	0.602831229	0.512032943
Mathias Lobato	0.716637665	0.643531011
Mendes Pimentel	0.797961089	0.750290545
Mesquita	0.709110148	0.639878189
Mutum	0.650314334	0.564656468
Nacip Raydan	0.734476493	0.666443564
Nova Módica	0.681408829	0.600118065
Paulistas	0.515066353	0.435146018
Peçanha	0.522751411	0.459845717
Pescador	0.590407206	0.498710979
Pocrane	0.530907982	0.441035965
Resplendor	0.620182567	0.532587272
Sabinópolis	0.45104817	0.399262271
Santa Bárbara do Leste	0.740671601	0.674607901
Santa Efigênia de Minas	0.657725782	0.572599249
Santa Maria do Suaçui	0.693763639	0.615628456
Santa Rita de Minas	0.771546031	0.715657155
Santa Rita do Itueto	0.72269396	0.650750645
Santana do Paraíso	0.564651979	0.491274308
São Geraldo da Piedade	0.704072938	0.627899183
São João do Manteninha	0.757359067	0.696148577
São João do Oriente	0.702377954	0.626204
São João Evangelista	0.461221862	0.39212823
São José da Safira	0.64243279	0.555189477
São José do Divino	0.759720428	0.698922649
São José do Jacuri	0.568796514	0.482206001
São Pedro do Suaçui	0.734977445	0.666584382
São Sebastião do Maranhão	0.664236811	0.579971695
Sardoá	0.501376725	0.430847839
Senhora do Porto	0.59998663	0.509069088
Sobrália	0.703382148	0.627539795
Tarumirim	0.640108774	0.553082563
Tumiritinga	0.674688078	0.592041475
Ubaporanga	0.734451537	0.666421786
		continua

continuação

Virginópolis	0.525596002	0.442743154
Virgolândia	0.71986325	0.647212226
Eficiência média	0.639571093	0.566589506
Eficiência mediana	0.666031195	0.581948479
Eficiência mínima	0.070563073	0.08791738
Eficiência máxima	0.81163897	0.769204191

Tabela 43 – Eficiências da mesorregião Metropolitana de Belo Horizonte – DEA (1996)

(1996)	E ^{VRS}	EDRS	E ^{IRS}	E ^{CRS}
Municípios	0.73653			
Alvinópolis		0.73653	0.72007	0.72007
Alvorada de Minas	0.68941	0.66278	0.68941	0.66278
Araçaí	0.71265	0.68209	0.71265	0.68209
Baldim	0.6681	0.66159	0.6681	0.66159
Barão de Cocais	0.87525	0.85208	0.87525	0.85208
Bela Vista de Minas	0.88322	0.85769	0.88322	0.85769
Belo Vale	0.65285	0.63935	0.65285	0.63935
Betim	0.70328	0.69976	0.70328	0.69976
Bom Jesus do Amparo	0.72967	0.72345	0.72967	0.72345
Bonfim	0.66253	0.6483	0.66253	0.6483
Brumadinho	0.72082	0.72082	0.66809	0.66809
Cachoeira da Prata	0.80565	0.73641	0.80565	0.73641
Caetanópolis	0.70605	0.67313	0.70605	0.67313
Caeté	0.73949	0.73949	0.72355	0.72355
Capim Branco	0.73325	0.71282	0.73325	0.71282
Casa Grande	0.70486	0.68538	0.70486	0.68538
Catas Altas da Noruega	0.73256	0.68537	0.73256	0.68537
Conceição do Mato Dentro	0.68698	0.68698	0.68576	0.68576
Congonhas	0.77238	0.72263	0.77238	0.72263
Congonhas do Norte	0.66651	0.59742	0.66651	0.59742
Conselheiro Lafaiete	0.72829	0.72829	0.71713	0.71713
Contagem	0.76194	0.70552	0.76194	0.70552
Cordisburgo	0.70225	0.70225	0.67942	0.67942
Cristiano Otoni	0.70002	0.67762	0.70002	0.67762
Crucilândia	0.70282	0.67823	0.70282	0.67823
Desterro de Entre Rios	0.61927	0.5804	0.61927	0.5804
Dionísio	0.81122	0.80334	0.81122	0.80334
Dom Joaquim	0.6928	0.65891	0.6928	0.65891
Entre Rios de Minas	0.65356	0.6442	0.65356	0.6442
Esmeraldas	0.72062	0.72062	0.65643	0.65643
Ferros	0.72761	0.72761	0.72166	0.72166
Florestal	0.66662	0.65741	0.66662	0.65741
Fortuna de Minas	0.72199	0.71553	0.72199	0.71553
Funilândia	0.70993	0.70515	0.70993	0.70515
Ibirité	0.73368	0.73368	0.71966	0.71966
Igarapé	0.71155	0.71021	0.71155	0.71021
Inhaúma	0.6944	0.69198	0.6944	0.69198
Itabira	0.70397	0.70397	0.69949	0.69949
Itabirito	0.74504	0.7246	0.74504	0.7246

. •	~
contin	uacao

continuação				
Itaguara	0.63226	0.62318	0.63226	0.62318
Itambé do Mato Dentro	0.79024	0.73999	0.79024	0.73999
Itatiaiuçu	0.68195	0.66667	0.68195	0.66667
Itaverava	0.66796	0.65291	0.66796	0.65291
Jaboticatubas	0.73561	0.73561	0.71474	0.71474
Jeceaba	0.70335	0.63881	0.70335	0.63881
Jequitibá	0.69382	0.69382	0.67806	0.67806
João Monlevade	0.91354	0.6707	0.91354	0.6707
Juatuba	0.72378	0.69518	0.72378	0.69518
Lagoa Santa	0.71094	0.67992	0.71094	0.67992
Maravilhas	0.69816	0.69362	0.69816	0.69362
Mariana	0.82524	0.82524	0.80105	0.80105
Mateus Leme	0.75511	0.75511	0.71221	0.71221
Matozinhos	0.74002	0.73791	0.74002	0.73791
Moeda	0.79104	0.73989	0.79104	0.73989
Morro do Pilar	0.78819	0.73467	0.78819	0.73467
Nova Era	0.77397	0.77397	0.72875	0.72875
Nova Lima	1	0.90768	1	0.90768
Nova União	0.81216	0.78532	0.81216	0.78532
Onça de Pitangui	0.73589	0.73589	0.71926	0.71926
Ouro Branco	0.69218	0.67289	0.69218	0.67289
Ouro Preto	0.70813	0.70705	0.70813	0.70705
Papagaios	0.66791	0.66791	0.66271	0.66271
Pará de Minas	0.7806	0.7806	0.69475	0.69475
Paraopeba	0.70659	0.70659	0.6761	0.6761
Passabém	0.93129	0.87143	0.93129	0.87143
Pedro Leopoldo	0.77499	0.77499	0.74263	0.74263
Pequi	0.70152	0.70053	0.70152	0.70053
Piedade dos Gerais	0.56635	0.53357	0.56635	0.53357
Pitangui	0.78131	0.78131	0.7208	0.7208
Prudente de Morais	0.71809	0.69822	0.71809	0.69822
Queluzito	0.70985	0.69921	0.70985	0.69921
Ribeirão das Neves	0.78374	0.7268	0.78374	0.7268
Rio Acima	0.98554	0.93049	0.98554	0.93049
Rio Manso	0.71468	0.69505	0.71468	0.69505
Rio Piracicaba	0.75801	0.74942	0.75801	0.74942
Rio Vermelho	0.66048	0.64585	0.66048	0.64585
Sabará	0.79951	0.72374	0.79951	0.72374
Santa Bárbara	1	1	0.8789	0.8789
Santa Luzia	0.77688	0.74001	0.77688	0.74001
Santa Maria de Itabira	0.76282	0.76282	0.7517	0.7517
	·			continua

continuação

,				
Santana de Pirapama	0.65256	0.64855	0.65256	0.64855
Santana do Riacho	0.70524	0.66453	0.70524	0.66453
Santana dos Montes	0.70113	0.67056	0.70113	0.67056
Santo Antônio do Itambé	0.7522	0.73373	0.7522	0.73373
Santo Antônio do Rio Abaixo	0.83084	0.77051	0.83084	0.77051
São Brás do Suaçui	0.73714	0.70114	0.73714	0.70114
São Domingos do Prata	0.74383	0.74383	0.69462	0.69462
São Gonçalo do Rio Abaixo	0.83736	0.83736	0.76726	0.76726
São José da Lapa	0.84477	0.83782	0.84477	0.83782
São José da Varginha	0.70656	0.70656	0.70068	0.70068
São José do Goiabal	0.87455	0.87455	0.84455	0.84455
São Sebastião do Rio Preto	0.86116	0.68123	0.86116	0.68123
Serra Azul de Minas	0.75891	0.64054	0.75891	0.64054
Serro	0.65693	0.65564	0.65693	0.65564
Sete Lagoas	0.8259	0.8259	0.74229	0.74229
Taquaraçu de Minas	0.69434	0.65863	0.69434	0.65863
Vespasiano	1	0.81226	1	0.81226
Eficiência média	0.74667	0.72074	0.73677	0.71084
Eficiência mediana	0.72761	0.70659	0.71474	0.70053
Eficiência mínima	0.56635	0.53357	0.56635	0.53357
Eficiência máxima	1	1	1	0.93049

Fonte: Resultados da pesquisa.

EVRS – eficiência econômica sob o pressuposto de uma tecnologia com retornos variáveis de escala EDRS – eficiência econômica sob o pressuposto de uma tecnologia com retornos decrescente de escala EIRS – eficiência econômica sob o pressuposto de uma tecnologia com retornos crescente de escala ECRS – eficiência econômica sob o pressuposto de uma tecnologia com retornos constante de escala

Tabela 44 – Eficiências da mesorregião Metropolitana de Belo Horizonte – SFA (1996)

(1996)			
Municípios	Distribuição do erro		
	normal-truncada	meia-normal	
Alvinópolis	0.70113629	0.62608812	
Alvorada de Minas	0.671714206	0.589594081	
Araçaí	0.656772944	0.572655962	
Baldim	0.701708623	0.624825385	
Barão de Cocais	0.723490286	0.653758793	
Bela Vista de Minas	0.643643702	0.561691988	
Belo Vale	0.667649101	0.58472011	
Betim	0.66335752	0.579203127	
Bom Jesus do Amparo	0.685675478	0.605956078	
Bonfim	0.6348913	0.547118018	
Brumadinho	0.55083002	0.461552971	
Cachoeira da Prata	0.606354677	0.518072248	
Caetanópolis	0.628358635	0.542505414	
Caeté	0.623940653	0.537521742	
Capim Branco	0.658372835	0.573780122	
Casa Grande	0.664786578	0.581115435	
Catas Altas da Noruega	0.400220042	0.332475074	
Conceição do Mato Dentro	0.573725365	0.483542517	
Congonhas	0.587943783	0.498035226	
Congonhas do Norte	0.496364481	0.419086877	
Conselheiro Lafaiete	0.570970599	0.480891725	
Contagem	0.471643357	0.394981086	
Cordisburgo	0.663114703	0.579334699	
Cristiano Otoni	0.591014771	0.501339243	
Crucilândia	0.714952944	0.641500749	
Desterro de Entre Rios	0.504268152	0.42556975	
Dionísio	0.799116843	0.752202878	
Dom Joaquim	0.651415634	0.565693949	
Entre Rios de Minas	0.657996266	0.573300144	
Esmeraldas	0.712376708	0.637994469	
Ferros	0.56270232	0.47842459	
Florestal	0.573767059	0.48302036	
Fortuna de Minas	0.747583784	0.683235631	
Funilândia	0.791196662	0.741522916	
Ibirité	0.809706644	0.766933464	
	0.480045646	0.397258643	
Inhaúma	0.760033563	0.699447105	
Itabira	0.613273711	0.524960285	
		4:	

continuação		
Itabirito	0.426399845	0.351935335
Itaguara	0.636685426	0.549774626
Itambé do Mato Dentro	0.597386122	0.506629492
Itatiaiuçu	0.733500992	0.665265592
Itaverava	0.387934901	0.322784288
Jaboticatubas	0.543899193	0.455816368
Jeceaba	0.625561895	0.539660426
Jequitibá	0.668640765	0.585288859
João Monlevade	0.761763613	0.701597326
Juatuba	0.773862949	0.717935765
Lagoa Santa	0.627982593	0.541418161
Maravilhas	0.812765702	0.770695423
Mariana	0.678581562	0.604890977
Mateus Leme	0.70135208	0.625651427
Matozinhos	0.575642646	0.485801162
Moeda	0.634584691	0.547442972
Morro do Pilar	0.623041675	0.533370625
Nova Era	0.301733683	0.263657352
Nova Lima	0.389844541	0.324225395
Nova União	0.758009062	0.697542682
Onça de Pitangui	0.804024264	0.759060748
Ouro Branco	0.548136331	0.458378734
Ouro Preto	0.499910282	0.415829887
Papagaios	0.717430947	0.644302641
Pará de Minas	0.850997048	0.822576499
Paraopeba	0.685814989	0.605440491
Passabém	0.569821	0.488591528
Pedro Leopoldo	0.700631548	0.625194855
Pequi	0.789805506	0.739533143
Piedade dos Gerais	0.316087533	0.283701111
Pitangui	0.706571831	0.634159538
Prudente de Morais	0.660919523	0.576970537
Queluzito	0.578199876	0.487417101
Ribeirão das Neves	0.459690627	0.382615957
Rio Acima	0.152167868	0.154062067
Rio Manso	0.726389621	0.65598164
Rio Piracicaba	0.718512092	0.647089323
Rio Vermelho	0.698401753	0.62020797
Sabará	0.722889436	0.65203093
Santa Bárbara	0.627951759	0.56475456
Santa Luzia	0.586645153	0.496481094
		continua

	. •	~
con	tını	ıacao

Santa Maria de Itabira	0.614133883	0.528988524
Santana de Pirapama	0.70191471	0.624887135
Santana do Riacho	0.550223123	0.460306143
Santana dos Montes	0.55491276	0.463806845
Santo Antônio do Itambé	0.56182684	0.471879024
Santo Antônio do Rio Abaixo	0.639195207	0.551898151
São Brás do Suaçui	0.454699445	0.375663465
São Domingos do Prata	0.514188743	0.431156782
São Gonçalo do Rio Abaixo	0.521369456	0.446847558
São José da Lapa	0.882095142	0.864561637
São José da Varginha	0.847869484	0.81864136
São José do Goiabal	0.740812566	0.67825294
São Sebastião do Rio Preto	0.772271619	0.715625597
Serra Azul de Minas	0.700007414	0.62447745
Serro	0.692207438	0.612906821
Sete Lagoas	0.704916482	0.632090913
Taquaraçu de Minas	0.656026804	0.571573408
Vespasiano	0.642473601	0.559162318
Eficiência média	0.632447768	0.558344347
Eficiência mediana	0.651415634	0.565693949
Eficiência mínima	0.152167868	0.154062067
Eficiência máxima	0.882095142	0.864561637
E4 D 11 1		

Tabela 45 – Eficiências da	a mesorregião C	entral Mineira -	- DEA (1996)	CDC
Municípios	E ^{VRS}	E ^{DRS}	E ^{IRS}	E ^{CRS}
Abaeté	0.75901	0.75901	0.68305	0.68305
Araújos	0.70046	0.69604	0.70046	0.69604
Augusto de Lima	0.65025	0.63857	0.65025	0.63857
Biquinhas	0.69184	0.67187	0.69184	0.67187
Bom Despacho	0.784	0.784	0.69483	0.69483
Buenópolis	0.65899	0.65481	0.65899	0.65481
Cedro do Abaeté	0.79857	0.73935	0.79857	0.73935
Corinto	0.62384	0.62384	0.61498	0.61498
Curvelo	0.76476	0.76476	0.67686	0.67686
Dores do Indaiá	0.69609	0.69609	0.66331	0.66331
Estrela do Indaiá	0.68258	0.68258	0.677	0.677
Felixlândia	0.70891	0.70891	0.67617	0.67617
Inimutaba	0.69812	0.67466	0.69812	0.67466
Japaraíba	0.66519	0.62935	0.66519	0.62935
Joaquim Felício	0.67028	0.65419	0.67028	0.65419
Lagoa da Prata	1	1	0.79968	0.79968
Leandro Ferreira	0.69937	0.6893	0.69937	0.6893
Luz	0.74541	0.74541	0.6733	0.6733
Martinho Campos	0.75878	0.75878	0.6985	0.6985
Moema	0.69863	0.67689	0.69863	0.67689
Monjolos	0.70524	0.67753	0.70524	0.67753
Morada Nova de Minas	0.67059	0.67059	0.6555	0.6555
Morro da Garça	0.69446	0.68608	0.69446	0.68608
Paineiras	0.69789	0.69789	0.69459	0.69459
Pompéu	0.77433	0.77433	0.68255	0.68255
Presidente Juscelino	0.65154	0.64433	0.65154	0.64433
Quartel Geral	0.7579	0.7579	0.73575	0.73575
Santo Hipólito	0.70611	0.70005	0.70611	0.70005
Serra da Saudade	0.72388	0.69454	0.72388	0.69454
Três Marias	0.73892	0.73892	0.7062	0.7062
Eficiência média	0.7192	0.70969	0.69151	0.68199
Eficiência mediana	0.69991	0.69529	0.69315	0.67726
Eficiência mínima	0.62384	0.62384	0.61498	0.61498
Eficiência máxima	1	1	0.79968	0.79968
Fortos Dogultodos do resquiso				

 E^{VRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos variáveis de escala E^{DRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos decrescente de escala E^{IRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos crescente de escala E^{CRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos constante de escala

Tabela 46 – Eficiências da mesorregião Central Mineira – SFA (1996)

	Distribuição do erro			
Municípios	normal-truncada	meia-normal		
Abaeté	0.748747222	0.684646592		
Araújos	0.757645874	0.696341099		
Augusto de Lima	0.563868031	0.472775823		
Biquinhas	0.768360901	0.71032678		
Bom Despacho	0.746269796	0.68169117		
Buenópolis	0.705239322	0.628798861		
Cedro do Abaeté	0.706037075	0.630014059		
Corinto	0.637332066	0.549257846		
Curvelo	0.652405383	0.5688474		
Dores do Indaiá	0.752471414	0.689117898		
Estrela do Indaiá	0.719349696	0.646520608		
Felixlândia	0.635451913	0.547493195		
Inimutaba	0.596689108	0.506388591		
Japaraíba	0.656957641	0.575427042		
Joaquim Felício	0.529221555	0.43939488		
Lagoa da Prata	0.46319078	0.421636397		
Leandro Ferreira	0.748769561	0.684483238		
Luz	0.705565929	0.629910797		
Martinho Campos	0.769464965	0.711858117		
Moema	0.757518765	0.696196069		
Monjolos	0.635865041	0.547942375		
Morada Nova de Minas	0.673668936	0.590392836		
Morro da Garça	0.65320088	0.567235856		
Paineiras	0.74100115	0.674404382		
Pompéu	0.697793007	0.621668515		
Presidente Juscelino	0.490127483	0.404770813		
Quartel Geral	0.700539963	0.625132235		
Santo Hipólito	0.659051893	0.573978937		
Serra da Saudade	0.603236656	0.512509223		
Três Marias	0.682591307	0.602753597		
Eficiência média	0.67192111	0.596397174		
Eficiência mediana	0.690192157	0.612211056		
Eficiência mínima	0.46319078	0.404770813		
Eficiência máxima	0.769464965	0.711858117		

Alfredo Vasconcelos 0.72438 0.71908 0.72438 0.71908 Antônio Carlos 0.66793 0.66183 0.66793 0.66183 Barbacena 0.7115 0.7115 0.65696 0.65696 Barroso 0.74225 0.68642 0.74225 0.68642 Capela Nova 0.69893 0.64225 0.69893 0.64225 Carandá 0.717 0.67434 0.717 0.67434 Carandaí 0.78782 0.7882 0.71827 0.71827 Carancas 0.66831 0.65886 0.66831 0.65886 Conceição da Barra de Minas 0.69219 0.66293 0.69219 0.66293 Cornel Xavier Chaves 0.70676 0.69428 0.70676 0.69428 0.70676 0.69428 Desterro do Melo 0.76568 0.71764 0.76568 0.71764 0.76568 0.71764 Dores de Campos 0.79669 0.73923 0.79669 0.73923 0.79669 0.73923 Ibertioga 0.69318 0.67609 <	Tabela 47 – Eficiências da mesor	rregião Campo	das Vertentes	– SFA (1996)	
Antônio Carlos 0.66793 0.66183 0.66793 0.66183 Barbacena 0.7115 0.7115 0.65696 0.65696 Barroso 0.74225 0.68642 0.74225 0.68642 Capela Nova 0.69893 0.64225 0.69893 0.64225 Carandá 0.717 0.67434 0.717 0.67434 Carandaí 0.78782 0.78782 0.71827 0.71827 Carrancas 0.66831 0.65886 0.66831 0.65886 Conceição da Barra de Minas 0.69219 0.66293 0.69219 0.66293 Coronel Xavier Chaves 0.70676 0.69428 0.70676 0.69428 Desterro do Melo 0.76568 0.71764 0.76568 0.71764 Dores de Campos 0.79669 0.73923 0.79669 0.73923 Ibertioga 0.69318 0.67609 0.69318 0.67609 Ijaci 0.70548 0.68925 0.70548 0.68925 Ingaí 0.64245 0.6156 0.64245		EVRS	EDRS	E ^{IRS}	E ^{CRS}
Barbacena 0.7115 0.7115 0.65696 0.65696 Barroso 0.74225 0.68642 0.74225 0.68642 Capela Nova 0.69893 0.64225 0.69893 0.64225 Caranába 0.717 0.67434 0.717 0.67434 Carandaí 0.78782 0.78782 0.71827 0.71827 Carrancas 0.66831 0.65886 0.66831 0.65886 Conceição da Barra de Minas 0.69219 0.66293 0.69219 0.66293 Cornel Xavier Chaves 0.70676 0.69428 0.70676 0.69428 Desterro do Melo 0.76568 0.71764 0.76568 0.71764 Dores de Campos 0.79669 0.73923 0.79669 0.73923 Ibertioga 0.69318 0.67609 0.69318 0.67609 Ijaci 0.70548 0.68925 0.70548 0.68925 Ingaí 0.68292 0.66939 0.68292 0.66939 Itumirim 0.64245 0.6156 0.64245 <th< th=""><th>Alfredo Vasconcelos</th><th>0.72438</th><th>0.71908</th><th>0.72438</th><th>0.71908</th></th<>	Alfredo Vasconcelos	0.72438	0.71908	0.72438	0.71908
Barroso 0.74225 0.68642 0.74225 0.68842 Capela Nova 0.69893 0.64225 0.69893 0.64225 Caranaíba 0.717 0.67434 0.717 0.67434 Carandaí 0.78782 0.78782 0.71827 0.71827 Carrancas 0.66831 0.65886 0.66831 0.65886 Conceição da Barra de Minas 0.69219 0.66293 0.69219 0.66293 Coronel Xavier Chaves 0.70676 0.69428 0.70676 0.69428 Desterro do Melo 0.76568 0.71764 0.76568 0.71764 Dores de Campos 0.79669 0.73923 0.79669 0.73923 Ibertioga 0.69318 0.67609 0.69318 0.67609 Ijaci 0.70548 0.68925 0.70548 0.68925 Ingaí 0.68292 0.66939 0.68292 0.66939 Itutinga 0.64245 0.6156 0.64245 0.6156 Itutinga 0.66556 0.65556 0.65895 <	Antônio Carlos		0.66183	0.66793	0.66183
Capela Nova 0.69893 0.64225 0.69893 0.64225 Caranaíba 0.717 0.67434 0.717 0.67434 Carandaí 0.78782 0.78782 0.71827 0.71827 Carrancas 0.66831 0.65886 0.66831 0.65886 Conceição da Barra de Minas 0.69219 0.66293 0.69219 0.66293 Coronel Xavier Chaves 0.70676 0.69428 0.70676 0.69428 Desterro do Melo 0.76568 0.71764 0.76568 0.71764 Dores de Campos 0.79669 0.73923 0.79669 0.73923 Ibertioga 0.69318 0.67609 0.69318 0.67609 Ijaci 0.70548 0.68925 0.70548 0.68925 Ingaí 0.68292 0.66939 0.68292 0.66939 Itutinga 0.64245 0.6156 0.64245 0.6156 Itutinga 0.66556 0.65565 0.65895 0.65895 Lavras 0.72999 0.72999 0.66781 <t< th=""><th>Barbacena</th><th>0.7115</th><th>0.7115</th><th>0.65696</th><th>0.65696</th></t<>	Barbacena	0.7115	0.7115	0.65696	0.65696
Caranaíba 0.717 0.67434 0.717 0.67434 Carandaí 0.78782 0.78782 0.71827 0.71827 Carrancas 0.66831 0.65886 0.66831 0.65886 Conceição da Barra de Minas 0.69219 0.66293 0.69219 0.66293 Coronel Xavier Chaves 0.70676 0.69428 0.70676 0.69428 Desterro do Melo 0.76568 0.71764 0.76568 0.71764 Dores de Campos 0.79669 0.73923 0.79669 0.73923 Ibertioga 0.69318 0.67609 0.69318 0.67609 Ijaci 0.70548 0.68925 0.70548 0.68925 Ingaí 0.68292 0.66939 0.68292 0.66939 Itutinga 0.64245 0.6156 0.64245 0.6156 Laryas 0.72999 0.72999 0.66781 0.66781 Luminárias 0.66802 0.66444 0.66802 0.66781 Luminárias 0.68165 0.67809 0.68165 <	Barroso	0.74225	0.68642	0.74225	0.68642
Carandaí 0.78782 0.78782 0.71827 0.71827 Carrancas 0.66831 0.65886 0.66831 0.65886 Conceição da Barra de Minas 0.69219 0.66293 0.69219 0.66293 Coronel Xavier Chaves 0.70676 0.69428 0.70676 0.69428 Desterro do Melo 0.76568 0.71764 0.76568 0.71764 Dores de Campos 0.79669 0.73923 0.79669 0.73923 Ibertioga 0.69318 0.67609 0.69318 0.67609 Ijaci 0.70548 0.68925 0.70548 0.68925 Ingaí 0.68292 0.66939 0.68292 0.66939 Itutinga 0.6496 0.62548 0.64996 0.62548 Lagoa Dourada 0.66556 0.66556 0.65895 0.65895 Lavras 0.72999 0.72999 0.66781 0.66781 Luminárias 0.66802 0.66444 0.66802 0.66144 Madre de Deus de Minas 0.68165 0.67809 0	Capela Nova	0.69893	0.64225	0.69893	0.64225
Carrancas 0.66831 0.65886 0.66831 0.65886 Conceição da Barra de Minas 0.69219 0.66293 0.69219 0.66293 Coronel Xavier Chaves 0.70676 0.69428 0.70676 0.69428 Desterro do Melo 0.76568 0.71764 0.76568 0.71764 Dores de Campos 0.79669 0.73923 0.79669 0.73923 Ibertioga 0.69318 0.67609 0.69318 0.67609 Ijaci 0.70548 0.68925 0.70548 0.68925 Ingaí 0.68292 0.66939 0.68292 0.66939 Itumirim 0.64245 0.6156 0.64245 0.6156 Itutinga 0.64996 0.62548 0.64996 0.65895 Lavras 0.72999 0.72999 0.66781 0.66781 Luminárias 0.66802 0.66444 0.66802 0.66444 Madre de Deus de Minas 0.68165 0.67809 0.68165 0.68915 Nazareno 0.05115 0.64214 0.65115	Caranaíba	0.717	0.67434	0.717	0.67434
Conceição da Barra de Minas 0.69219 0.66293 0.69219 0.66293 Coronel Xavier Chaves 0.70676 0.69428 0.70676 0.69428 Desterro do Melo 0.76568 0.71764 0.76568 0.71764 Dores de Campos 0.79669 0.73923 0.79669 0.73923 Ibertioga 0.69318 0.67609 0.69318 0.67609 Ijaci 0.70548 0.68925 0.70548 0.68925 Ingaí 0.68292 0.66939 0.68292 0.66939 Itumirim 0.64245 0.6156 0.64245 0.6156 Itutinga 0.64996 0.62548 0.64996 0.65895 Lavras 0.72999 0.72999 0.66781 0.66781 Luminárias 0.66802 0.66444 0.66802 0.66444 Madre de Deus de Minas 0.68165 0.67809 0.68165 0.68915 Nazareno 0.65115 0.64214 0.65115 0.64214 Nepomuceno 0.79897 0.79897 0.6891	Carandaí	0.78782	0.78782	0.71827	0.71827
Coronel Xavier Chaves 0.70676 0.69428 0.70676 0.69428 Desterro do Melo 0.76568 0.71764 0.76568 0.71764 Dores de Campos 0.79669 0.73923 0.79669 0.73923 Ibertioga 0.69318 0.67609 0.69318 0.67609 Ijaci 0.70548 0.68925 0.70548 0.68925 Ingaí 0.68292 0.66939 0.68292 0.66939 Itumirim 0.64245 0.6156 0.64245 0.6156 Itutinga 0.64996 0.62548 0.64996 0.65895 Lavras 0.72999 0.72999 0.66781 0.66781 Luminárias 0.66802 0.66444 0.66802 0.66444 Madre de Deus de Minas 0.68165 0.67809 0.68165 0.67809 Nazareno 0.65115 0.64214 0.65115 0.64214 Nepomuceno 0.79897 0.79897 0.68915 0.68915 Piedade do Rio Grande 0.70317 0.67219 0.70317	Carrancas	0.66831	0.65886	0.66831	0.65886
Desterro do Melo 0.76568 0.71764 0.76568 0.71764 Dores de Campos 0.79669 0.73923 0.79669 0.73923 Ibertioga 0.69318 0.67609 0.69318 0.67609 Ijaci 0.70548 0.68925 0.70548 0.68925 Ingaí 0.68292 0.66939 0.68292 0.66939 Itumirim 0.64245 0.6156 0.64245 0.6156 Itutinga 0.64996 0.62548 0.64996 0.62548 Lagoa Dourada 0.66556 0.66556 0.65895 0.65895 Lavras 0.72999 0.72999 0.66781 0.66781 Luminárias 0.66802 0.66444 0.66802 0.66144 0.66802 0.68165 0.67809 Nazareno 0.65115 0.64214 0.65115 0.64214 Nepomuceno 0.79897 0.79897 0.68915 0.68915 Piedade do Rio Grande 0.70317 0.67219 0.70317 0.67219 Prados 0.69109 <th>Conceição da Barra de Minas</th> <th>0.69219</th> <th>0.66293</th> <th>0.69219</th> <th>0.66293</th>	Conceição da Barra de Minas	0.69219	0.66293	0.69219	0.66293
Dores de Campos 0.79669 0.73923 0.79669 0.73923 Ibertioga 0.69318 0.67609 0.69318 0.67609 Ijaci 0.70548 0.68925 0.70548 0.68925 Ingaí 0.68292 0.66939 0.68292 0.66939 Itumirim 0.64245 0.6156 0.64245 0.6156 Itutinga 0.64996 0.62548 0.64996 0.62548 Lagoa Dourada 0.66556 0.66556 0.65895 0.65895 Lavras 0.72999 0.72999 0.72999 0.66781 0.66781 Luminárias 0.66802 0.66444 0.66802 0.66444 Madre de Deus de Minas 0.68165 0.67809 0.68165 0.67809 Nazareno 0.65115 0.64214 0.65115 0.64214 Nepomuceno 0.79897 0.79897 0.68915 0.68915 Piedade do Rio Grande 0.70317 0.67219 0.70317 0.67219 Prados 0.69109 0.66149 0.691	Coronel Xavier Chaves	0.70676	0.69428	0.70676	0.69428
Ibertioga 0.69318 0.67609 0.69318 0.67609 Ijaci 0.70548 0.68925 0.70548 0.68925 Ingaí 0.68292 0.66939 0.68292 0.66939 Itumirim 0.64245 0.6156 0.64245 0.6156 Itutinga 0.64996 0.62548 0.64996 0.62895 Lagoa Dourada 0.66556 0.66556 0.65895 0.65895 Lavras 0.72999 0.72999 0.66781 0.66781 Luminárias 0.66802 0.66444 0.66802 0.66444 Madre de Deus de Minas 0.68165 0.67809 0.68165 0.67809 Nazareno 0.65115 0.64214 0.65115 0.64214 Nepomuceno 0.79897 0.79897 0.68915 0.68915 Piedade do Rio Grande 0.70317 0.67219 0.70317 0.67219 Prados 0.69109 0.66149 0.69109 0.66149 Resende Costa 0.65168 0.63647 0.65168 0.63647	Desterro do Melo	0.76568	0.71764	0.76568	0.71764
Ijaci 0.70548 0.68925 0.70548 0.68925 Ingaí 0.68292 0.66939 0.68292 0.66939 Itumirim 0.64245 0.6156 0.64245 0.6156 Itutinga 0.64996 0.62548 0.64996 0.62548 Lagoa Dourada 0.66556 0.66556 0.65895 0.65895 Lavras 0.72999 0.72999 0.66781 0.66781 Luminárias 0.66802 0.66444 0.66802 0.66444 Madre de Deus de Minas 0.68165 0.67809 0.68165 0.67809 Nazareno 0.65115 0.64214 0.65115 0.64214 Nepomuceno 0.79897 0.79897 0.68915 0.68915 Piedade do Rio Grande 0.70317 0.67219 0.70317 0.67219 Prados 0.69109 0.66149 0.69109 0.66149 Resende Costa 0.65168 0.63647 0.65168 0.63647 Ressaquinha 0.7054 0.69451 0.7054 0.69451	Dores de Campos	0.79669	0.73923	0.79669	0.73923
Ingaí 0.68292 0.66939 0.68292 0.66939 Itumirim 0.64245 0.6156 0.64245 0.6156 Itutinga 0.64996 0.62548 0.64996 0.62548 Lagoa Dourada 0.66556 0.66556 0.65895 0.65895 Lavras 0.72999 0.72999 0.66781 0.66781 Luminárias 0.66802 0.66444 0.66802 0.66444 Madre de Deus de Minas 0.68165 0.67809 0.68165 0.67809 Nazareno 0.65115 0.64214 0.65115 0.64214 Nepomuceno 0.79897 0.79897 0.68915 0.68915 Piedade do Rio Grande 0.70317 0.67219 0.70317 0.67219 Prados 0.69109 0.66149 0.69109 0.66149 Resende Costa 0.65168 0.63647 0.65168 0.63647 Ritápolis 0.7054 0.69451 0.7054 0.69451 Ritápolis 0.70858 0.6887 0.70858 0.6887	Ibertioga	0.69318	0.67609	0.69318	0.67609
Itumirim 0.64245 0.6156 0.64245 0.6156 Itutinga 0.64996 0.62548 0.64996 0.62548 Lagoa Dourada 0.66556 0.66556 0.65895 0.65895 Lavras 0.72999 0.72999 0.66781 0.66781 Luminárias 0.66802 0.66444 0.66802 0.66444 Madre de Deus de Minas 0.68165 0.67809 0.68165 0.67809 Nazareno 0.65115 0.64214 0.65115 0.64214 Nepomuceno 0.79897 0.79897 0.68915 0.68915 Piedade do Rio Grande 0.70317 0.67219 0.70317 0.67219 Prados 0.69109 0.66149 0.69109 0.66149 Resende Costa 0.65168 0.63647 0.65168 0.63647 Ressaquinha 0.7054 0.69451 0.7054 0.69451 Ritápolis 0.70858 0.6887 0.70858 0.6887	Ijaci	0.70548	0.68925	0.70548	0.68925
Itutinga0.649960.625480.649960.62548Lagoa Dourada0.665560.665560.658950.65895Lavras0.729990.729990.667810.66781Luminárias0.668020.668020.664440.668020.66444Madre de Deus de Minas0.681650.678090.681650.67809Nazareno0.651150.642140.651150.64214Nepomuceno0.798970.798970.689150.68915Piedade do Rio Grande0.703170.672190.703170.67219Prados0.691090.661490.691090.66149Resende Costa0.651680.636470.651680.63647Resaquinha0.70540.694510.70540.69451Ribeirão Vermelho0.718860.664750.718860.66475Ritápolis0.708580.68870.708580.6887	Ingaí	0.68292	0.66939	0.68292	0.66939
Lagoa Dourada0.665560.665560.658950.65895Lavras0.729990.729990.667810.66781Luminárias0.668020.668020.664440.668020.66444Madre de Deus de Minas0.681650.678090.681650.67809Nazareno0.651150.642140.651150.64214Nepomuceno0.798970.798970.689150.68915Piedade do Rio Grande0.703170.672190.703170.67219Prados0.691090.661490.691090.66149Resende Costa0.651680.636470.651680.63647Resaquinha0.70540.694510.70540.69451Ribeirão Vermelho0.718860.664750.718860.66475Ritápolis0.708580.68870.708580.6887	Itumirim	0.64245	0.6156	0.64245	0.6156
Lavras0.729990.729990.667810.66781Luminárias0.668020.668020.664440.668020.66444Madre de Deus de Minas0.681650.678090.681650.67809Nazareno0.651150.642140.651150.64214Nepomuceno0.798970.798970.689150.68915Piedade do Rio Grande0.703170.672190.703170.67219Prados0.691090.661490.691090.66149Resende Costa0.651680.636470.651680.63647Ressaquinha0.70540.694510.70540.69451Ribeirão Vermelho0.718860.664750.718860.66475Ritápolis0.708580.68870.708580.6887	Itutinga	0.64996	0.62548	0.64996	0.62548
Luminárias0.668020.664440.668020.66444Madre de Deus de Minas0.681650.678090.681650.67809Nazareno0.651150.642140.651150.64214Nepomuceno0.798970.798970.689150.68915Piedade do Rio Grande0.703170.672190.703170.67219Prados0.691090.661490.691090.66149Resende Costa0.651680.636470.651680.63647Ressaquinha0.70540.694510.70540.69451Ribeirão Vermelho0.718860.664750.718860.66475Ritápolis0.708580.68870.708580.6887	Lagoa Dourada		0.66556	0.65895	0.65895
Madre de Deus de Minas0.681650.678090.681650.67809Nazareno0.651150.642140.651150.64214Nepomuceno0.798970.798970.689150.68915Piedade do Rio Grande0.703170.672190.703170.67219Prados0.691090.661490.691090.66149Resende Costa0.651680.636470.651680.63647Ressaquinha0.70540.694510.70540.69451Ribeirão Vermelho0.718860.664750.718860.66475Ritápolis0.708580.68870.708580.6887		0.72999	0.72999	0.66781	0.66781
Nazareno0.651150.642140.651150.64214Nepomuceno0.798970.798970.689150.68915Piedade do Rio Grande0.703170.672190.703170.67219Prados0.691090.661490.691090.66149Resende Costa0.651680.636470.651680.63647Ressaquinha0.70540.694510.70540.69451Ribeirão Vermelho0.718860.664750.718860.66475Ritápolis0.708580.68870.708580.6887	Luminárias	0.66802	0.66444	0.66802	0.66444
Nepomuceno0.798970.798970.689150.68915Piedade do Rio Grande0.703170.672190.703170.67219Prados0.691090.661490.691090.66149Resende Costa0.651680.636470.651680.63647Ressaquinha0.70540.694510.70540.69451Ribeirão Vermelho0.718860.664750.718860.66475Ritápolis0.708580.68870.708580.6887	Madre de Deus de Minas	0.68165	0.67809	0.68165	0.67809
Piedade do Rio Grande 0.70317 0.67219 0.70317 0.67219 Prados 0.69109 0.66149 0.69109 0.66149 Resende Costa 0.65168 0.63647 0.65168 0.63647 Ressaquinha 0.7054 0.69451 0.7054 0.69451 Ribeirão Vermelho 0.71886 0.66475 0.71886 0.66475 Ritápolis 0.70858 0.6887 0.70858 0.6887	Nazareno	0.65115	0.64214	0.65115	0.64214
Prados 0.69109 0.66149 0.69109 0.66149 Resende Costa 0.65168 0.63647 0.65168 0.63647 Ressaquinha 0.7054 0.69451 0.7054 0.69451 Ribeirão Vermelho 0.71886 0.66475 0.71886 0.66475 Ritápolis 0.70858 0.6887 0.70858 0.6887		0.79897	0.79897	0.68915	0.68915
Resende Costa 0.65168 0.63647 0.65168 0.63647 Ressaquinha 0.7054 0.69451 0.7054 0.69451 Ribeirão Vermelho 0.71886 0.66475 0.71886 0.66475 Ritápolis 0.70858 0.6887 0.70858 0.6887	Piedade do Rio Grande	0.70317	0.67219	0.70317	0.67219
Ressaquinha0.70540.694510.70540.69451Ribeirão Vermelho0.718860.664750.718860.66475Ritápolis0.708580.68870.708580.6887	Prados	0.69109			0.66149
Ribeirão Vermelho 0.71886 0.66475 0.71886 0.66475 Ritápolis 0.70858 0.6887 0.70858 0.6887	Resende Costa			0.65168	0.63647
Ritápolis 0.70858 0.6887 0.70858 0.6887			0.69451	0.7054	0.69451
	Ribeirão Vermelho				0.66475
Santa Rárbara do Tugúrio 0.70685 0.67101 0.70685 0.67101					
	Santa Bárbara do Tugúrio	0.70685	0.67101	0.70685	0.67101
Santana do Garambéu 0.78026 0.68966 0.78026 0.68966					
São João del Rei 0.62237 0.62237 0.61021 0.61021	São João del Rei		0.62237	0.61021	0.61021
São Tiago 0.65144 0.64626 0.65144 0.64626					
Senhora dos Remédios 0.6605 0.61565 0.6605 0.61565	Senhora dos Remédios		0.61565	0.6605	0.61565
Tiradentes 0.73718 0.67227 0.73718 0.67227	Tiradentes	0.73718	0.67227	0.73718	0.67227
Eficiência média 0.70246 0.67847 0.69347 0.66948					
Eficiência mediana 0.70317 0.67219 0.69219 0.66939					
Eficiência mínima 0.62237 0.6156 0.61021 0.61021					
Eficiência máxima 0.79897 0.79897 0.79669 0.73923		0.79897	0.79897	0.79669	0.73923

Fonte: Resultados da pesquisa. E^{VRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos variáveis de escala

 E^{DRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos decrescente de escala E^{IRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos crescente de escala E^{CRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos constante de escala

Tabela 48 – Eficiências da mesorregião Campo das Vertentes – SFA (1996)

	Distribuição do erro		
Municípios	normal-truncada meia-normal		
Alfredo Vasconcelos	0.546838937	0.45732392	
Antônio Carlos	0.628099616	0.539418998	
Barbacena	0.681309687	0.60053418	
Barroso	0.678054347	0.598800928	
Capela Nova	0.673127356	0.591969147	
Caranaíba	0.657392742	0.573573504	
Carandaí	0.603058199	0.518026616	
Carrancas	0.67285341	0.59016097	
Conceição da Barra de Minas	0.754133389	0.691663897	
Coronel Xavier Chaves	0.598589401	0.508466317	
Desterro do Melo	0.727216261	0.657050294	
Dores de Campos	0.723249394	0.652178522	
Ibertioga	0.75680058	0.695035623	
Ijaci	0.724568711	0.653878725	
Ingaí	0.674577946	0.592866358	
Itumirim	0.672852657	0.593662519	
Itutinga	0.70608991	0.631715645	
Lagoa Dourada	0.671712774	0.588878517	
Lavras	0.711199948	0.636715881	
Luminárias	0.648339198	0.561647403	
Madre de Deus de Minas	0.554542218	0.46361877	
Nazareno	0.616913883	0.529158553	
Nepomuceno	0.68997886	0.612699492	
Piedade do Rio Grande	0.748280448	0.683985872	
Prados	0.663076166	0.580232523	
Resende Costa	0.705746495	0.630033374	
Ressaquinha	0.670888967	0.588430769	
Ribeirão Vermelho	0.61009819	0.525710549	
Ritápolis	0.748214132	0.683939476	
Santa Bárbara do Tugúrio	0.764504733	0.705308425	
Santana do Garambéu	0.772773134	0.716037275	
São João del Rei	0.651226406	0.565968537	
São Tiago	0.688396133	0.608547162	
Senhora dos Remédios	0.726292019	0.65618934	
Tiradentes	0.608410038	0.524132966	
TIO: 10	0.45000000	0.70001.700	
Eficiência média	0.677983037	0.60021603	
Eficiência mediana	0.674577946	0.593662519	
Eficiência mínima	0.546838937	0.45732392	

Continua

continuação

Eficiência máxima	0.772773134	0.716037275

Tabela 49 – Eficiências da mesor	região Jequiti	nhonha – DE	A (1996)	
Municípios	E ^{VRS}	EDRS	E ^{IRS}	ECRS
Almenara	0.67686	0.67686	0.67317	0.67317
Araçuaí	0.62348	0.61641	0.62348	0.61641
Bandeira	0.79454	0.76024	0.79454	0.76024
Berilo	0.63604	0.60967	0.63604	0.60967
Cachoeira de Pajeú	0.66997	0.65208	0.66997	0.65208
Capelinha	0.77844	0.77844	0.69248	0.69248
Caraí	0.63764	0.61807	0.63764	0.61807
Carbonita	0.88451	0.88451	0.78709	0.78709
Chapada do Norte	0.69314	0.56954	0.69314	0.56954
Comercinho	0.68143	0.65041	0.68143	0.65041
Coronel Murta	0.70094	0.67763	0.70094	0.67763
Couto de Magalhães de Minas	0.72315	0.66575	0.72315	0.66575
Datas	0.83964	0.77008	0.83964	0.77008
Diamantina	0.64957	0.6278	0.64957	0.6278
Divisópolis	0.68082	0.6622	0.68082	0.6622
Felício dos Santos	0.63557	0.57877	0.63557	0.57877
Felisburgo	0.68897	0.65858	0.68897	0.65858
Francisco Badaró	0.68079	0.66379	0.68079	0.66379
Gouveia	0.65192	0.62375	0.65192	0.62375
Itamarandiba	0.76391	0.76391	0.69222	0.69222
Itaobim	0.6776	0.64434	0.6776	0.64434
Itinga	0.63423	0.61979	0.63423	0.61979
Jacinto	0.66749	0.65756	0.66749	0.65756
Jequitinhonha	0.66702	0.66702	0.65814	0.65814
Joaíma	0.66347	0.65559	0.66347	0.65559
Jordânia	0.71656	0.69792	0.71656	0.69792
Mata Verde	0.72802	0.67854	0.72802	0.67854
Medina	0.67752	0.66963	0.67752	0.66963
Minas Novas	0.70119	0.70119	0.66617	0.66617
Novo Cruzeiro	0.68002	0.68002	0.6526	0.6526
Padre Paraíso	0.71151	0.69191	0.71151	0.69191
Pedra Azul	0.75486	0.75486	0.72261	0.72261
Presidente Kubitschek	0.76448	0.63569	0.76448	0.63569
Rio do Prado	0.76342	0.72403	0.76342	0.72403
Rubim	0.70342	0.68629	0.70342	0.68629
Salto da Divisa	0.7026	0.69294	0.7026	0.69294
Santa Maria do Salto	0.70782	0.6633	0.70782	0.6633
São Gonçalo do Rio Preto	0.73332	0.66693	0.73332	0.66693
Senador Modestino Gonçalves	0.73915	0.73915	0.72152	0.72152
Turmalina	0.76297	0.76297	0.73211	0.73211
				continua

continuação

Virgem da Lapa	0.64375	0.62276	0.64375	0.62276
Eficiência média	0.70468	0.67856	0.69466	0.66854
Eficiência mediana	0.69314	0.66693	0.68897	0.66379
Eficiência mínima	0.62348	0.56954	0.62348	0.56954
Eficiência máxima	0.88451	0.88451	0.83964	0.78709

E^{VRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos variáveis de escala E^{DRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos decrescente de escala E^{IRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos crescente de escala E^{CRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos constante de escala

Tabela 50 – Eficiências da mesorregião Jequitinhonha – SFA (1996)

	Distribuição do erro		
Municípios	normal-truncada meia-normal		
Almenara	0.499464677	0.417254256	
Araçuaí	0.547308239	0.455782654	
Bandeira	0.657688195	0.582129499	
Berilo	0.681556984	0.600664243	
Cachoeira de Pajeú	0.559466243	0.467886828	
Capelinha	0.575117689	0.491185476	
Caraí	0.596692161	0.505785901	
Carbonita	0.51380514	0.451134285	
Chapada do Norte	0.749420686	0.685625953	
Comercinho	0.541008323	0.450433144	
Coronel Murta	0.453716525	0.373967396	
Couto de Magalhães de Minas	0.5779321	0.49279516	
Datas	0.545626579	0.455465277	
Diamantina	0.424763565	0.351703101	
Divisópolis	0.370079123	0.308215114	
Felício dos Santos	0.464450502	0.392082547	
Felisburgo	0.617590624	0.527657027	
Francisco Badaró	0.587566236	0.500578897	
Gouveia	0.437774844	0.364775481	
Itamarandiba	0.458177969	0.387826681	
Itaobim	0.451380686	0.372382916	
Itinga	0.522973671	0.432780844	
Jacinto	0.579758112	0.489311425	
Jequitinhonha	0.506187413	0.419450269	
Joaíma	0.545331244	0.454486564	
Jordânia	0.737657714	0.670255071	
Mata Verde	0.605778483	0.515099495	
Medina	0.519565713	0.43296639	
Minas Novas	0.694120117	0.61656496	
Novo Cruzeiro	0.558869638	0.469912615	
Padre Paraíso	0.462359184	0.384551174	
Pedra Azul	0.393993715	0.340638578	
Presidente Kubitschek	0.597647053	0.516747752	
Rio do Prado	0.656806836	0.574830972	
Rubim	0.642210259	0.555453383	
Salto da Divisa	0.628740343	0.540084395	
Santa Maria do Salto	0.647189657	0.560167048	
São Gonçalo do Rio Preto	0.447041185	0.373739145	
Senador Modestino Gonçalves	0.762148214	0.702622703	

Continua

continuação

Turmalina	0.65316324	0.572004848
Virgem da Lapa	0.358068782	0.299768707
Eficiência média	0.556834089	0.476994346
Eficiência mediana	0.558869638	0.467886828
Eficiência mínima	0.358068782	0.299768707
Eficiência máxima	0.762148214	0.702622703

Tabela 51 – Eficiências da mesorregião Vale do Mucuri – DEA (1996)

MunicípiosEVRSÁguas Formosas0.685Ataléia0.643		E ^{IRS} 0.66668	E ^{CRS} 0.66668
		0.66668	0.66668
Ataláia 0.6/3	97 0.64397		
Ataleia 0.043	0101271	0.64277	0.64277
Bertópolis 0.710	41 0.69713	0.71041	0.69713
Carlos Chagas 0.742	55 0.74255	0.67073	0.67073
Catuji 0.64	98 0.61888	0.6498	0.61888
Frei Gaspar 0.677	93 0.66217	0.67793	0.66217
Fronteira dos Vales 0.732	66 0.69271	0.73266	0.69271
Itaipé 0.636	16 0.60493	0.63616	0.60493
Ladainha 0.6	0.58357	0.607	0.58357
Maxacalis 0.739	49 0.71183	0.73949	0.71183
Malacacheta 0.667	18 0.66718	0.64447	0.64447
Nanuque 0.720	44 0.72044	0.67455	0.67455
Ouro Verde de Minas 0.737	55 0.70324	0.73755	0.70324
Pavão 0.672	16 0.66133	0.67216	0.66133
Poté 0.653	0.64259	0.65306	0.64259
Serra dos Aimorés 0.76	77 0.7677	0.76168	0.76168
Teófilo Otoni 0.678	55 0.67855	0.63085	0.63085
Umburatiba 0.738	41 0.71155	0.73841	0.71155
Eficiência média 0.692	23 0.67752	0.68035	0.66565
Eficiência mediana 0.681	79 0.68179	0.67144	0.66443
Eficiência mínima 0.6	0.58357	0.607	0.58357
Eficiência máxima 0.76	77 0.7677	0.76168	0.76168

Fonte: Resultados da pesquisa.

EVRS – eficiência econômica sob o pressuposto de uma tecnologia com retornos variáveis de escala EDRS – eficiência econômica sob o pressuposto de uma tecnologia com retornos decrescente de escala EDRS – eficiência econômica sob o pressuposto de uma tecnologia com retornos crescente de escala EDRS – eficiência econômica sob o pressuposto de uma tecnologia com retornos constante de escala EDRS – eficiência econômica sob o pressuposto de uma tecnologia com retornos constante de escala

Tabela 52 – Eficiências da mesorregião Vale do Mucuri – SFA (1996)

Municípios	Distribuição do erro		
Municípios	normal-truncada	meia-normal	
Águas Formosas	0.598910571	0.509696247	
Ataléia	0.713799922	0.63915593	
Bertópolis	0.631425879	0.54485311	
Carlos Chagas	0.669846987	0.588540465	
Catuji	0.473055908	0.391963407	
Frei Gaspar	0.636185944	0.547622168	
Fronteira dos Vales	0.588792594	0.497336688	
Itaipé	0.564473438	0.475478625	
Ladainha	0.51964504	0.433184041	
Maxacalis	0.686439583	0.606374492	
Malacacheta	0.614306356	0.524501344	
Nanuque	0.743751323	0.67800137	
Ouro Verde de Minas	0.666754231	0.582976194	
Pavão	0.717459658	0.643963869	
Poté	0.473971454	0.390159843	
Serra dos Aimorés	0.707640838	0.634819046	
Teófilo Otoni	0.578255726	0.487447618	
Umburatiba	0.673006791	0.590187732	
Eficiência média	0.625429014	0.542570122	
Eficiência mediana	0.633805912	0.546237639	
Eficiência mínima	0.473055908	0.390159843	
Eficiência máxima	0.743751323	0.67800137	
T 4 D 1: 1 1			

Tabela 53 – Eficiências da mesorregião Triângulo Mineiro/Alto Paranaíba – DEA (2006)

(2006) Municípios	E ^{VRS}	EDRS	E ^{IRS}	ECRS
Abadia dos Dourados	0.71226	0.62175	0.71226	0.62175
Água Comprida	0.73075	0.6213	0.73075	0.62173
Araguari	0.72012	0.63724	0.72012	0.63724
Araporã	0.74699	0.64613	0.74699	0.64613
Arapuá	0.82003	0.73418	0.82003	0.73418
Araxá	0.74828	0.64348	0.74828	0.64348
Cachoeira Dourada	0.84446	0.74077	0.74026	0.74077
Campina Verde	0.721	0.67047	0.721	0.67047
Campo Florido	0.78974	0.71713	0.78974	0.71713
Campos Altos	0.72993	0.66624	0.72993	0.66624
Canápolis	0.85583	0.80348	0.85583	0.80348
Capinópolis	0.85	0.76196	0.85	0.76196
Carmo do Paranaíba	0.81544	0.78302	0.81544	0.78302
Carneirinho	0.79923	0.71379	0.79923	0.71379
Cascalho Rico	0.77852	0.62881	0.77852	0.62881
Centralina	0.73417	0.64407	0.73417	0.64407
Comendador Gomes	0.73692	0.65375	0.73692	0.65375
Conceição das Alagoas	0.71	0.64753	0.71	0.64753
Conquista	0.75373	0.68624	0.75373	0.68624
Coromandel	0.67855	0.64551	0.67855	0.64551
Cruzeiro da Fortaleza	0.77926	0.66552	0.77926	0.66552
Delta	0.8258	0.70486	0.8258	0.70486
Douradoquara	0.78214	0.60449	0.78214	0.60449
Estrela do Sul	0.76261	0.69853	0.76261	0.69853
Fronteira	0.98946	0.97432	0.98946	0.97432
Frutal	0.66544	0.61019	0.66544	0.61019
Grupiara	0.84628	0.65896	0.84628	0.65896
Guimarânia	0.73848	0.65041	0.73848	0.65041
Gurinhatã	0.66881	0.58122	0.66881	0.58122
Ibiá	0.70933	0.657	0.70933	0.657
Indianópolis	0.71801	0.65638	0.71801	0.65638
Ipiaçu	0.73455	0.65018	0.73455	0.65018
Iraí de Minas	0.76856	0.68349	0.76856	0.68349
Itapajipe	0.667	0.61219	0.667	0.61219
Ituiutaba	0.66943	0.61493	0.66943	0.61493
Iturama	0.72706	0.6333	0.72706	0.6333
Lagoa Formosa	0.70114	0.62654	0.70114	0.62654
Limeira do Oeste	0.71526	0.62136	0.71526	0.62136
Matutina	0.74945	0.61394	0.74945	0.61394
				continua

. •	~
continu	acao

Commuação				
Monte Alegre de Minas	0.71678	0.6885	0.71678	0.6885
Monte Carmelo	0.6915	0.65528	0.6915	0.65528
Nova Ponte	0.75559	0.70369	0.75559	0.70369
Patos de Minas	0.70896	0.68931	0.70896	0.68931
Patrocínio	0.66321	0.63843	0.66321	0.63843
Pedrinópolis	0.80796	0.70424	0.80796	0.70424
Perdizes	0.69926	0.65889	0.69926	0.65889
Pirajuba	0.7754	0.6846	0.7754	0.6846
Planura	1	1	1	1
Prata	0.66022	0.60884	0.66022	0.60884
Pratinha	0.73403	0.64831	0.73403	0.64831
Rio Paranaíba	0.70119	0.66817	0.70119	0.66817
Romaria	0.74511	0.68755	0.74511	0.68755
Sacramento	0.70224	0.65613	0.70224	0.65613
Santa Juliana	0.75054	0.69317	0.75054	0.69317
Santa Rosa da Serra	0.75237	0.65215	0.75237	0.65215
Santa Vitória	0.67699	0.6106	0.67699	0.6106
São Francisco de Sales	0.73735	0.63128	0.73735	0.63128
São Gotardo	0.70314	0.62534	0.70314	0.62534
Serra do Salitre	0.69224	0.6482	0.69224	0.6482
Tapira	0.79574	0.71168	0.79574	0.71168
Tiros	0.73562	0.66578	0.73562	0.66578
Tupaciguara	0.73417	0.69402	0.73417	0.69402
Uberaba	0.692	0.67035	0.692	0.67035
Uberlândia	0.67488	0.64718	0.67488	0.64718
União de Minas	0.74474	0.62881	0.74474	0.62881
Veríssimo	0.75254	0.67919	0.75254	0.67919
Eficiência média	0.74694	0.67325	0.74694	0.67325
Eficiência mediana	0.73508	0.65625	0.73508	0.65625
Eficiência mínima	0.66022	0.58122	0.66022	0.58122
Eficiência máxima	1	1	1	1
-				

E^{VRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos variáveis de escala E^{DRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos decrescente de escala E^{IRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos crescente de escala E^{CRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos crescente de escala

Tabela 54 – Eficiências da mesorregião Triângulo Mineiro/Alto Paranaíba – SFA (2006)

(2000)	Distribuição do erro			
Municípios	normal-truncada meia-normal			
Abadia dos Dourados	0.454397679	0.354289599		
Água Comprida	0.540286937	0.448464925		
Araguari	0.655242499	0.554790221		
Araporã	0.716859694	0.657180411		
Arapuá	0.204251618	0.168246825		
Araxá	0.677272377	0.604190299		
Cachoeira Dourada	0.582860465	0.483518048		
Campina Verde	0.364191131	0.273410436		
Campo Florido	0.456931001	0.366746122		
Campos Altos	0.494370122	0.393812219		
Canápolis	0.685859882	0.611479736		
Capinópolis	0.630012287	0.550676211		
Carmo do Paranaíba	0.454342843	0.350484271		
Carneirinho	0.324068675	0.246194954		
Cascalho Rico	0.667456267	0.602487646		
Centralina	0.624020453	0.541127353		
Comendador Gomes	0.338756868	0.252422924		
Conceição das Alagoas	0.653180363	0.572862719		
Conquista	0.506617011	0.406963188		
Coromandel	0.457818261	0.353689295		
Cruzeiro da Fortaleza	0.588983606	0.502658346		
Delta	0.680232587	0.606030791		
Douradoquara	0.595180107	0.510708472		
Estrela do Sul	0.633619264	0.53727223		
Fronteira	0.042150043	0.049021202		
Frutal	0.485665227	0.381659554		
Grupiara	0.522606064	0.433198238		
Guimarânia	0.555069195	0.463402375		
Gurinhatã	0.318241795	0.233669739		
Ibiá	0.388534704	0.297095534		
Indianópolis	0.541425917	0.44584901		
Ipiaçu	0.572133102	0.478048525		
Iraí de Minas	0.504620886	0.407997817		
Itapajipe	0.666586166	0.582040577		
Ituiutaba	0.304682236	0.22534014		
Iturama	0.313926321	0.235167416		
Lagoa Formosa	0.528293111	0.428186804		
Limeira do Oeste	0.243442532	0.183284805		
-		continua		

. •	~
contin	112620
COHUII	uaçao

Continuação		
Matutina	0.540444518	0.454015117
Monte Alegre de Minas	0.221554495	0.180080893
Monte Carmelo	0.357697907	0.273183243
Nova Ponte	0.437222906	0.339434753
Patos de Minas	0.216368513	0.175591651
Patrocínio	0.334227213	0.251829202
Pedrinópolis	0.495960239	0.402323377
Perdizes	0.516263218	0.406376973
Pirajuba	0.669663976	0.594780188
Planura	0.045523605	0.052966912
Prata	0.35703194	0.260923216
Pratinha	0.524969859	0.425948236
Rio Paranaíba	0.406792381	0.312348327
Romaria	0.626632351	0.541542697
Sacramento	0.405599682	0.312230817
Santa Juliana	0.51149318	0.40675641
Santa Rosa da Serra	0.461630945	0.365457876
Santa Vitória	0.424201651	0.316519148
São Francisco de Sales	0.549378441	0.450515962
São Gotardo	0.52760982	0.427691685
Serra do Salitre	0.525089974	0.422161017
Tapira	0.569923241	0.473509638
Tiros	0.306114952	0.23431709
Tupaciguara	0.328890651	0.256560607
Uberaba	0.449699146	0.34379178
Uberlândia	0.453936851	0.349025851
União de Minas	0.364884988	0.273434714
Veríssimo	0.408849981	0.314403662
Eficiência média	0.469876453	0.385021061
Eficiência mediana	0.495165181	0.398067798
Eficiência mínima	0.042150043	0.049021202
Eficiência máxima	0.716859694	0.657180411
TC 4 D 1/ 1 1		

Tabela 55 – Eficiências da r	nesorregião Sul/Su	udoeste de Min	as – DEA (200	06)
Municípios	$\mathbf{E^{VRS}}$	E ^{DRS}	E ^{IRS}	ECRS
Aiuruoca	0.77621	0.65769	0.77621	0.65769
Alagoa	0.84252	0.67353	0.84252	0.67353
Albertina	0.73952	0.5971	0.73952	0.5971
Alfenas	0.68019	0.62567	0.68019	0.62567
Alpinópolis	0.6678	0.58591	0.6678	0.58591
Alterosa	0.73754	0.66307	0.73754	0.66307
Andradas	0.65251	0.57808	0.65251	0.57808
Andrelândia	0.76699	0.69096	0.76699	0.69096
Arantina	0.87334	0.81572	0.87334	0.81572
Arceburgo	0.79451	0.71561	0.79451	0.71561
Areado	0.71897	0.62753	0.71897	0.62753
Baependi	0.74432	0.63913	0.74432	0.63913
Bandeira do Sul	0.82752	0.66079	0.82752	0.66079
Boa Esperança	0.69578	0.64747	0.69578	0.64747
Bocaina de Minas	0.79614	0.64406	0.79614	0.64406
Bom Jardim de Minas	0.82755	0.66683	0.82755	0.66683
Bom Jesus da Penha	0.73216	0.65124	0.73216	0.65124
Bom Repouso	0.71204	0.61913	0.71204	0.61913
Borda da Mata	0.71793	0.58022	0.71793	0.58022
Botelhos	0.72176	0.66526	0.72176	0.66526
Brasópolis	0.73114	0.61082	0.73114	0.61082
Bueno Brandão	0.69828	0.61284	0.69828	0.61284
Cabo Verde	0.73338	0.68274	0.73338	0.68274
Cachoeira de Minas	0.86724	0.76225	0.86724	0.76225
Caldas	0.79206	0.66535	0.79206	0.66535
Camanducaia	0.77915	0.64397	0.77915	0.64397
Cambuí	0.72064	0.60032	0.72064	0.60032
Cambuquira	0.74169	0.65119	0.74169	0.65119
Campanha	0.79852	0.72518	0.79852	0.72518
Campestre	0.71498	0.6601	0.71498	0.6601
Campo do Meio	0.71573	0.63866	0.71573	0.63866
Campos Gerais	0.72644	0.69167	0.72644	0.69167
Capetinga	0.70387	0.61189	0.70387	0.61189
Capitólio	0.73738	0.64117	0.73738	0.64117
Careaçu	0.76671	0.65301	0.76671	0.65301
Carmo da Cachoeira	0.83417	0.7714	0.83417	0.7714
Carmo de Minas	0.78753	0.71852	0.78753	0.71852
Carmo do Rio Claro	0.69564	0.63796	0.69564	0.63796
Carvalhópolis	0.72993	0.61407	0.72993	0.61407
Carvalhos	0.73788	0.59302	0.73788	0.59302
				aontinua

continuação				
Cássia	0.79853	0.72202	0.79853	0.72202
Caxambu	0.82324	0.66878	0.82324	0.66878
Claraval	0.72659	0.62907	0.72659	0.62907
Conceição da Aparecida	0.71958	0.64999	0.71958	0.64999
Conceição das Pedras	0.79477	0.65465	0.79477	0.65465
Conceição do Rio Verde	0.76364	0.6773	0.76364	0.6773
Conceição dos Ouros	0.78239	0.63275	0.78239	0.63275
Congonhal	0.70139	0.5764	0.70139	0.5764
Consolação	0.96417	0.8788	0.96417	0.8788
Coqueiral	0.73403	0.66415	0.73403	0.66415
Cordislândia	0.76207	0.65656	0.76207	0.65656
Córrego do Bom Jesus	0.77533	0.58699	0.77533	0.58699
Cristina	0.7537	0.64685	0.7537	0.64685
Cruzília	0.75528	0.65605	0.75528	0.65605
Delfim Moreira	0.8196	0.70738	0.8196	0.70738
Delfinópolis	0.73231	0.63899	0.73231	0.63899
Divisa Nova	0.74674	0.64717	0.74674	0.64717
Dom Viçoso	0.8881	0.68651	0.8881	0.68651
Elói Mendes	0.74667	0.67937	0.74667	0.67937
Espírito Santo do Dourado	0.73628	0.62912	0.73628	0.62912
Estiva	0.70168	0.6079	0.70168	0.6079
Extrema	0.83374	0.67711	0.83374	0.67711
Fama	0.78138	0.64632	0.78138	0.64632
Fortaleza de Minas	0.74609	0.63445	0.74609	0.63445
Gonçalves	0.79863	0.63662	0.79863	0.63662
Guapé	0.75201	0.67875	0.75201	0.67875
Guaranésia	0.85112	0.76675	0.85112	0.76675
Guaxupé	0.68974	0.62855	0.68974	0.62855
Heliodora	0.76727	0.66902	0.76727	0.66902
Ibiraci	0.68346	0.62293	0.68346	0.62293
Ibitiúra de Minas	0.73738	0.61001	0.73738	0.61001
Ilicínea	0.8637	0.85493	0.8637	0.85493
Inconfidentes	0.74255	0.63499	0.74255	0.63499
Ipuiúna	0.73532	0.63651	0.73532	0.63651
Itajubá	0.72186	0.58199	0.72186	0.58199
Itamoji	0.69982	0.63576	0.69982	0.63576
Itamonte	0.7985	0.64437	0.7985	0.64437
Itanhandu	0.89279	0.83607	0.89279	0.83607
Itapeva	0.74537	0.57671	0.74537	0.57671
Itaú de Minas	0.83288	0.68435	0.83288	0.68435
Jacuí	0.70141	0.61136	0.70141	0.61136
				Continua

Continua

continuação				
Jacutinga	0.71391	0.6276	0.71391	0.6276
Jesuânia	0.73942	0.64064	0.73942	0.64064
Juruaia	0.72091	0.63791	0.72091	0.63791
Lambari	0.77216	0.66893	0.77216	0.66893
Liberdade	0.76044	0.61167	0.76044	0.61167
Machado	0.69044	0.64413	0.69044	0.64413
Maria da Fé	0.76615	0.65885	0.76615	0.65885
Marmelópolis	0.77367	0.56293	0.77367	0.56293
Minduri	0.81252	0.67749	0.81252	0.67749
Monsenhor Paulo	0.72503	0.63457	0.72503	0.63457
Monte Belo	0.75003	0.70119	0.75003	0.70119
Monte Santo de Minas	0.69299	0.63392	0.69299	0.63392
Monte Sião	0.71619	0.60672	0.71619	0.60672
Munhoz	0.75228	0.60476	0.75228	0.60476
Muzambinho	0.70528	0.63441	0.70528	0.63441
Natércia	0.75143	0.63367	0.75143	0.63367
Nova Resende	0.68545	0.62763	0.68545	0.62763
Olímpio Noronha	0.87932	0.7348	0.87932	0.7348
Ouro Fino	0.70995	0.63523	0.70995	0.63523
Paraguaçu	0.84917	0.84047	0.84917	0.84047
Paraisópolis	0.76086	0.63696	0.76086	0.63696
Passa Quatro	0.84342	0.72141	0.84342	0.72141
Passa Vinte	0.84972	0.58171	0.84972	0.58171
Passos	0.67968	0.6439	0.67968	0.6439
Pedralva	0.74925	0.64794	0.74925	0.64794
Piranguçu	0.76476	0.61385	0.76476	0.61385
Piranguinho	0.75685	0.61971	0.75685	0.61971
Poço Fundo	0.6964	0.62346	0.6964	0.62346
Poços de Caldas	0.73654	0.67466	0.73654	0.67466
Pouso Alegre	0.70092	0.63786	0.70092	0.63786
Pouso Alto	0.75821	0.63566	0.75821	0.63566
Pratápolis	0.72565	0.59847	0.72565	0.59847
Santa Rita de Caldas	0.697	0.61999	0.697	0.61999
Santa Rita do Sapucaí	0.76511	0.69189	0.76511	0.69189
Santana da Vargem	0.73951	0.67099	0.73951	0.67099
São Bento Abade	0.98948	0.91531	0.98948	0.91531
São Gonçalo do Sapucaí	0.70236	0.63677	0.70236	0.63677
São João Batista do Glória	0.73325	0.63115	0.73325	0.63115
São João da Mata	0.77759	0.64773	0.77759	0.64773
São José da Barra	0.74194	0.65338	0.74194	0.65338
São José do Alegre	0.81855	0.64726	0.81855	0.64726

. •	~
contin	ມາລດລດ
COIILIII	uaçao

São Lourenço	0.91469	0.68577	0.91469	0.68577
São Pedro da União	0.73777	0.66664	0.73777	0.66664
São Sebastião da Bela Vista	0.76395	0.66368	0.76395	0.66368
São Sebastião do Paraíso	0.70167	0.65509	0.70167	0.65509
São Sebastião do Rio Verde	0.81273	0.55592	0.81273	0.55592
São Thomé das Letras	0.74094	0.60069	0.74094	0.60069
São Tomás de Aquino	0.73553	0.65762	0.73553	0.65762
São Vicente de Minas	0.73056	0.60506	0.73056	0.60506
Sapucaí-Mirim	0.7768	0.62794	0.7768	0.62794
Senador Amaral	0.74853	0.64704	0.74853	0.64704
Senador José Bento	0.76854	0.61815	0.76854	0.61815
Seritinga	0.83346	0.63999	0.83346	0.63999
Serrania	0.75603	0.68141	0.75603	0.68141
Serranos	0.80632	0.65511	0.80632	0.65511
Silvianópolis	0.73293	0.64786	0.73293	0.64786
Soledade de Minas	0.77103	0.64305	0.77103	0.64305
Tocos do Moji	0.74247	0.62778	0.74247	0.62778
Toledo	0.72526	0.58007	0.72526	0.58007
Três Corações	0.68103	0.62193	0.68103	0.62193
Três Pontas	0.71128	0.68592	0.71128	0.68592
Turvolândia	0.73209	0.6338	0.73209	0.6338
Varginha	0.73124	0.67295	0.73124	0.67295
Virgínia	0.75144	0.63869	0.75144	0.63869
Eficiência média	0.75861	0.65404	0.75861	0.65404
Eficiência mediana	0.74537	0.64397	0.74537	0.64397
Eficiência mínima	0.65251	0.55592	0.65251	0.55592
Eficiência máxima	0.98948	0.91531	0.98948	0.91531
E4 D 1(-11				

Fonte: Resultados da pesquisa.

EVRS – eficiência econômica sob o pressuposto de uma tecnologia com retornos variáveis de escala EDRS – eficiência econômica sob o pressuposto de uma tecnologia com retornos decrescente de escala EDRS – eficiência econômica sob o pressuposto de uma tecnologia com retornos crescente de escala EDRS – eficiência econômica sob o pressuposto de uma tecnologia com retornos crescente de escala EDRS – eficiência econômica sob o pressuposto de uma tecnologia com retornos constante de escala

Tabela 56 – Eficiências da mesorregião Sul/Sudoeste de Minas – SFA (2006)

	Distribuição do erro		
Municípios	normal-truncada meia-normal		
Aiuruoca	0.454595431	0.352980781	
Alagoa	0.534700453	0.446767343	
Albertina	0.522905859	0.438377468	
Alfenas	0.333021371	0.239592378	
Alpinópolis	0.506582064	0.406449807	
Alterosa	0.318706486	0.246653349	
Andradas	0.473978595	0.366540608	
Andrelândia	0.286316306	0.220410655	
Arantina	0.00290176	0.005383765	
Arceburgo	0.437298792	0.346148295	
Areado	0.590317176	0.503772602	
Baependi	0.587157739	0.495241773	
Bandeira do Sul	0.54077912	0.45936408	
Boa Esperança	0.386320875	0.297803651	
Bocaina de Minas	0.554150813	0.459315552	
Bom Jardim de Minas	0.376329919	0.287468929	
Bom Jesus da Penha	0.561469171	0.471622814	
Bom Repouso	0.407278104	0.32672646	
Borda da Mata	0.518453149	0.434385353	
Botelhos	0.394839905	0.305977657	
Brasópolis	0.625822888	0.545643068	
Bueno Brandão	0.405408318	0.319972112	
Cabo Verde	0.589757125	0.489081531	
Cachoeira de Minas	0.719600719	0.661806449	
Caldas	0.663435967	0.594402788	
Camanducaia	0.458146795	0.365052781	
Cambuí	0.522540176	0.440313916	
Cambuquira	0.699045822	0.635958082	
Campanha	0.664109498	0.582637874	
Campestre	0.495064906	0.396788539	
Campo do Meio	0.447159669	0.351446113	
Campos Gerais	0.418331351	0.316836523	
Capetinga	0.452253425	0.354988007	
Capitólio	0.554651494	0.453062537	
Careaçu	0.549410634	0.447034864	
Carmo da Cachoeira	0.697911203	0.630921755	
Carmo de Minas	0.424461199	0.326346535	
Carmo do Rio Claro	0.449817695	0.348573433	
Carvalhópolis	0.55073726	0.460204861	
		continua	

continuação		
Carvalhos	0.508293328	0.430023634
Cássia	0.653431886	0.571507463
Caxambu	0.234871653	0.179452653
Claraval	0.467595226	0.377655554
Conceição da Aparecida	0.462826932	0.367109003
Conceição das Pedras	0.591271384	0.507561269
Conceição do Rio Verde	0.526058489	0.430391071
Conceição dos Ouros	0.546577485	0.456772885
Congonhal	0.513702832	0.431959053
Consolação	0.156199965	0.142080689
Coqueiral	0.448266192	0.354153962
Cordislândia	0.528139785	0.437216779
Córrego do Bom Jesus	0.433271085	0.360691448
Cristina	0.584921082	0.495084007
Cruzília	0.390947831	0.300755959
Delfim Moreira	0.482585293	0.384551515
Delfinópolis	0.484585325	0.380824994
Divisa Nova	0.50215459	0.409980929
Dom Viçoso	0.601956583	0.523476651
Elói Mendes	0.62596752	0.546489325
Espírito Santo do Dourado	0.38134192	0.291105266
Estiva	0.517528395	0.431596396
Extrema	0.564282266	0.491062637
Fama	0.605353956	0.529225055
Fortaleza de Minas	0.408180856	0.320213939
Gonçalves	0.509058224	0.425018554
Guapé	0.55174505	0.44891434
Guaranésia	0.616200885	0.530119991
Guaxupé	0.319657043	0.24000589
Heliodora	0.522619606	0.430626775
Ibiraci	0.439977728	0.344751676
Ibitiúra de Minas	0.784268306	0.746553935
Ilicínea	0.044465142	0.048188728
Inconfidentes	0.482758369	0.394080904
Ipuiúna	0.418438919	0.329102925
Itajubá	0.5506115	0.46169697
Itamoji	0.359703642	0.281623822
Itamonte	0.683087002	0.612862901
Itanhandu	0.685493033	0.618474128
Itapeva	0.51600901	0.436265024
Itaú de Minas	0.642475105	0.567176313
		continua

continuação		
Jacuí	0.4684195	0.376519637
Jacutinga	0.552123091	0.462616265
Jesuânia	0.781022704	0.740702566
Juruaia	0.501541831	0.409591814
Lambari	0.578462619	0.49102779
Liberdade	0.5191613	0.426272032
Machado	0.465116269	0.366468972
Maria da Fé	0.513781472	0.426829869
Marmelópolis	0.760375462	0.715608409
Minduri	0.606368243	0.521993006
Monsenhor Paulo	0.449294822	0.360055731
Monte Belo	0.331609676	0.251507645
Monte Santo de Minas	0.4074908	0.316609614
Monte Sião	0.512604733	0.422181803
Munhoz	0.463111669	0.38438486
Muzambinho	0.463344498	0.368295378
Natércia	0.562379021	0.473105375
Nova Resende	0.380851137	0.296649043
Olímpio Noronha	0.634064461	0.556330229
Ouro Fino	0.442082081	0.347210419
Paraguaçu	0.075251423	0.067948199
Paraisópolis	0.538838177	0.444369352
Passa Quatro	0.612850312	0.52597648
Passa Vinte	0.494556599	0.42663381
Passos	0.516220845	0.414283405
Pedralva	0.554853881	0.467812419
Piranguçu	0.533357246	0.442798042
Piranguinho	0.52217758	0.433008679
Poço Fundo	0.501293336	0.405920893
Poços de Caldas	0.454849181	0.357279886
Pouso Alegre	0.427132829	0.330364028
Pouso Alto	0.729833583	0.67310281
Pratápolis	0.587305783	0.50754469
Santa Rita de Caldas	0.39468476	0.305179296
Santa Rita do Sapucaí	0.448424719	0.349060148
Santana da Vargem	0.507022184	0.41390689
São Bento Abade	0.156754483	0.147321517
São Gonçalo do Sapucaí	0.437847542	0.344307312
São João Batista do Glória	0.651540493	0.573752832
São João da Mata	0.558031549	0.469837089
São José da Barra	0.605762929	0.522976811

. •	~
contin	uacao

continuação		
São José do Alegre	0.567108833	0.491067955
São Lourenço	0.517291883	0.442153499
São Pedro da União	0.330583169	0.258322224
São Sebastião da Bela Vista	0.492595091	0.400133319
São Sebastião do Paraíso	0.370393341	0.283298732
São Sebastião do Rio Verde	0.560389251	0.481468085
São Thomé das Letras	0.506154364	0.418457092
São Tomás de Aquino	0.500798671	0.40550745
São Vicente de Minas	0.6931402	0.627747712
Sapucaí-Mirim	0.641003434	0.561885048
Senador Amaral	0.376903768	0.298357504
Senador José Bento	0.579182527	0.501545202
Seritinga	0.530990275	0.445676458
Serrania	0.448823056	0.35239647
Serranos	0.538066903	0.445811427
Silvianópolis	0.428301656	0.334648329
Soledade de Minas	0.556677197	0.467972433
Tocos do Moji	0.48040851	0.394918554
Toledo	0.402003697	0.335962791
Três Corações	0.582932479	0.489911367
Três Pontas	0.28800083	0.227514473
Turvolândia	0.449180765	0.360387278
Varginha	0.480280043	0.382894293
Virgínia	0.52161787	0.42362287
Eficiência média	0.497015671	0.414258384
Eficiência mediana	0.509058224	0.42362287
Eficiência mínima	0.00290176	0.005383765
Eficiência máxima	0.784268306	0.746553935
E4 D 14-1 1 '		

Tabela 57 – Eficiências da mesorregião Noroeste de Minas – DEA (2006)

Manieries	E ^{VRS}	E ^{DRS}	$\frac{as - DEA}{E^{IRS}}$	E ^{CRS}
Municípios				
Arinos	0.63777	0.52998	0.63777	0.52998
Bonfinópolis de Minas	0.72751	0.67347	0.72751	0.67347
Brasilândia de Minas	0.74794	0.66306	0.74794	0.66306
Buritis	0.70469	0.6668	0.70469	0.6668
Cabeceira Grande	0.86317	0.77073	0.86317	0.77073
Dom Bosco	0.75247	0.63501	0.75247	0.63501
Formoso	0.74825	0.67197	0.74825	0.67197
Guarda-Mor	0.85887	0.8103	0.85887	0.8103
João Pinheiro	0.66882	0.62768	0.66882	0.62768
Lagamar	0.6946	0.60072	0.6946	0.60072
Lagoa Grande	0.69101	0.62066	0.69101	0.62066
Natalândia	0.76439	0.64106	0.76439	0.64106
Paracatu	0.68508	0.66064	0.68508	0.66064
Presidente Olegário	0.72307	0.69331	0.72307	0.69331
São Gonçalo do Abaeté	0.72235	0.65458	0.72235	0.65458
Unaí	0.66938	0.65184	0.66938	0.65184
Uruana de Minas	0.74876	0.62801	0.74876	0.62801
Varjão de Minas	0.74847	0.66458	0.74847	0.66458
Vazante	0.72396	0.65606	0.72396	0.65606
Eficiência média	0.73056	0.65897	0.73056	0.65897
Eficiência mediana	0.72396	0.65606	0.72396	0.65606
Eficiência mínima	0.63777	0.52998	0.63777	0.52998
Eficiência máxima	0.86317	0.8103	0.86317	0.8103

Fonte: Resultados da pesquisa.

E^{VRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos variáveis de escala

 E^{DRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos decrescente de escala E^{IRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos crescente de escala E^{CRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos constante de escala

Tabela 58 – Eficiências da mesorregião Noroeste de Minas – SFA (2006)

Municípias	Distribuiç	ão do erro
Municípios	normal-truncada	meia-normal
Arinos	0.224580213	0.165928127
Bonfinópolis de Minas	0.335184111	0.257534124
Brasilândia de Minas	0.38483009	0.288373861
Buritis	0.329481741	0.254024841
Cabeceira Grande	0.614609094	0.531386885
Dom Bosco	0.369609971	0.280071353
Formoso	0.357490364	0.275368395
Guarda-Mor	0.649939926	0.570510432
João Pinheiro	0.426391518	0.317555857
Lagamar	0.48830621	0.38407225
Lagoa Grande	0.667177364	0.585487478
Natalândia	0.604251675	0.51306054
Paracatu	0.277555828	0.213780478
Presidente Olegário	0.226380504	0.183547708
São Gonçalo do Abaeté	0.344333522	0.264248922
Unaí	0.282355758	0.217870582
Uruana de Minas	0.381608678	0.295985131
Varjão de Minas	0.571785796	0.473213088
Vazante	0.474828609	0.364167989
Eficiência média	0.421615841	0.338746739
Eficiência mediana	0.381608678	0.288373861
Eficiência mínima	0.224580213	0.165928127
Eficiência máxima	0.667177364	0.585487478

Tabela 59 – Eficiências da mesorregião Zona da Mata – DEA (2006)					
Municípios	E ^{VRS}	EDRS	E ^{IRS}	ECRS	
Abre Campo	0.79541	0.69468	0.79541	0.69468	
Acaiaca	0.9413	0.79029	0.9413	0.79029	
Além Paraíba	0.76577	0.64525	0.76577	0.64525	
Alto Caparaó	0.89776	0.78745	0.89776	0.78745	
Alto Jequitibá	0.78507	0.67427	0.78507	0.67427	
Alto Rio Doce	0.73123	0.63841	0.73123	0.63841	
Amparo da Serra	0.78304	0.61536	0.78304	0.61536	
Antônio Prado de Minas	0.87988	0.73657	0.87988	0.73657	
Aracitaba	0.83351	0.65366	0.83351	0.65366	
Araponga	0.68047	0.5498	0.68047	0.5498	
Argirita	1	0.86804	1	0.86804	
Astolfo Dutra	0.83189	0.66724	0.83189	0.66724	
Barão do Monte Alto	0.77478	0.63114	0.77478	0.63114	
Barra Longa	0.74692	0.59002	0.74692	0.59002	
Belmiro Braga	0.79994	0.66071	0.79994	0.66071	
Bias Fortes	0.8063	0.63949	0.8063	0.63949	
Bicas	0.80922	0.65158	0.80922	0.65158	
Brás Pires	0.79619	0.58917	0.79619	0.58917	
Caiana	0.75919	0.64901	0.75919	0.64901	
Cajuri	0.75977	0.62435	0.75977	0.62435	
Canaã	0.69815	0.5734	0.69815	0.5734	
Caparaó	0.83596	0.73004	0.83596	0.73004	
Caputira	0.70895	0.59617	0.70895	0.59617	
Carangola	0.67581	0.57733	0.67581	0.57733	
Cataguases	0.67031	0.56267	0.67031	0.56267	
Chácara	0.80171	0.62606	0.80171	0.62606	
Chalé	0.78431	0.64689	0.78431	0.64689	
Chiador	0.79008	0.62076	0.79008	0.62076	
Cipotânea	0.78165	0.57644	0.78165	0.57644	
Coimbra	0.79412	0.67385	0.79412	0.67385	
Coronel Pacheco	0.86955	0.73246	0.86955	0.73246	
Descoberto	0.81065	0.62012	0.81065	0.62012	
Divinésia	0.79892	0.64051	0.79892	0.64051	
Divino	0.72695	0.64112	0.72695	0.64112	
Dom Silvério	0.81347	0.66313	0.81347	0.66313	
Dona Eusébia	0.88185	0.73152	0.88185	0.73152	
Dores do Turvo	0.72698	0.57698	0.72698	0.57698	
Durandé	0.7645	0.66119	0.7645	0.66119	
Ervália	0.7152	0.62109	0.7152	0.62109	
Espera Feliz	0.69573	0.61981	0.69573	0.61981	
				4:	

continuação				
Estrela d'Alva	0.73838	0.57727	0.73838	0.57727
Eugenópolis	0.66542	0.55155	0.66542	0.55155
Ewbank da Câmara	0.86841	0.55752	0.86841	0.55752
Faria Lemos	0.8084	0.6734	0.8084	0.6734
Fervedouro	0.76462	0.65944	0.76462	0.65944
Goianá	0.87078	0.6758	0.87078	0.6758
Guaraciaba	0.66883	0.55342	0.66883	0.55342
Guarani	0.71122	0.59201	0.71122	0.59201
Guarará	0.7955	0.61628	0.7955	0.61628
Guidoval	0.76262	0.62553	0.76262	0.62553
Guiricema	0.74572	0.62234	0.74572	0.62234
Itamarati de Minas	0.82402	0.64523	0.82402	0.64523
Jequeri	0.71358	0.61626	0.71358	0.61626
Juiz de Fora	0.71676	0.61606	0.71676	0.61606
Lajinha	0.7475	0.66992	0.7475	0.66992
Lamim	0.80098	0.50011	0.80098	0.50011
Laranjal	0.76803	0.51176	0.76803	0.51176
Leopoldina	0.70683	0.61881	0.70683	0.61881
Lima Duarte	0.74198	0.63016	0.74198	0.63016
Luisburgo	0.8	0.68653	0.8	0.68653
Manhuaçu	0.71387	0.65562	0.71387	0.65562
Manhumirim	0.78793	0.68893	0.78793	0.68893
Mar de Espanha	0.75283	0.62009	0.75283	0.62009
Maripá de Minas	0.83422	0.6416	0.83422	0.6416
Martins Soares	0.82202	0.71301	0.82202	0.71301
Matias Barbosa	0.80351	0.63269	0.80351	0.63269
Matipó	0.87403	0.82533	0.87403	0.82533
Mercês	0.76457	0.62369	0.76457	0.62369
Miradouro	0.75285	0.63787	0.75285	0.63787
Miraí	0.76174	0.63496	0.76174	0.63496
Muriaé	0.71837	0.63145	0.71837	0.63145
Olaria	0.80211	0.56317	0.80211	0.56317
Oliveira Fortes	0.82872	0.52745	0.82872	0.52745
Oratórios	0.79166	0.64479	0.79166	0.64479
Orizânia	0.81394	0.67111	0.81394	0.67111
Paiva	0.85	0.59375	0.85	0.59375
Palma	0.76606	0.62977	0.76606	0.62977
Patrocínio do Muriaé	0.82731	0.606	0.82731	0.606
Paula Cândido	0.74229	0.63252	0.74229	0.63252
Pedra Bonita	0.7594	0.63529	0.7594	0.63529
Pedra do Anta	0.80104	0.64821	0.80104	0.64821
				aantini

. •	~
contin	uacao

continuação				
Pedra Dourada	0.81863	0.6382	0.81863	0.6382
Pedro Teixeira	0.86288	0.58222	0.86288	0.58222
Pequeri	0.91671	0.70849	0.91671	0.70849
Piau	0.75954	0.61574	0.75954	0.61574
Piedade de Ponte Nova	0.8058	0.65619	0.8058	0.65619
Piranga	0.71111	0.60014	0.71111	0.60014
Pirapetinga	0.76122	0.5932	0.76122	0.5932
Piraúba	0.7929	0.63456	0.7929	0.63456
Ponte Nova	0.72148	0.61677	0.72148	0.61677
Porto Firme	0.76175	0.63838	0.76175	0.63838
Presidente Bernardes	0.77109	0.57819	0.77109	0.57819
Raul Soares	0.71849	0.63084	0.71849	0.63084
Recreio	0.77149	0.60978	0.77149	0.60978
Reduto	0.78203	0.67908	0.78203	0.67908
Rio Casca	0.75889	0.66176	0.75889	0.66176
Rio Doce	0.82961	0.57026	0.82961	0.57026
Rio Espera	0.74242	0.59117	0.74242	0.59117
Rio Novo	0.81728	0.65738	0.81728	0.65738
Rio Pomba	0.74816	0.61824	0.74816	0.61824
Rio Preto	0.8016	0.61294	0.8016	0.61294
Rochedo de Minas	0.91709	0.67375	0.91709	0.67375
Rodeiro	0.77028	0.55378	0.77028	0.55378
Rosário da Limeira	0.79819	0.63181	0.79819	0.63181
Santa Bárbara do Monte Verde	0.79957	0.61136	0.79957	0.61136
Santa Cruz do Escalvado	0.82506	0.68292	0.82506	0.68292
Santa Margarida	0.71515	0.6398	0.71515	0.6398
Santa Rita de Ibitipoca	0.79399	0.60783	0.79399	0.60783
Santa Rita de Jacutinga	0.78318	0.59289	0.78318	0.59289
Santana de Cataguases	0.80024	0.61668	0.80024	0.61668
Santana do Deserto	0.84591	0.68473	0.84591	0.68473
Santana do Manhuaçu	0.76214	0.66171	0.76214	0.66171
Santo Antônio do Aventureiro	0.74412	0.59487	0.74412	0.59487
Santo Antônio do Grama	0.84394	0.68346	0.84394	0.68346
Santos Dumont	0.73977	0.60792	0.73977	0.60792
São Francisco do Glória	0.84672	0.71687	0.84672	0.71687
São Geraldo	0.76592	0.62651	0.76592	0.62651
São João do Manhuaçu	0.81499	0.72747	0.81499	0.72747
São João Nepomuceno	0.74095	0.62181	0.74095	0.62181
São José do Mantimento	0.82872	0.63088	0.82872	0.63088
São Miguel do Anta	0.76378	0.63677	0.76378	0.63677
São Pedro dos Ferros	0.81837	0.73871	0.81837	0.73871
				continua

continuação

•				
São Sebastião da Vargem Alegre	0.81884	0.64868	0.81884	0.64868
Sem-Peixe	0.76987	0.58821	0.76987	0.58821
Senador Cortes	0.86239	0.64053	0.86239	0.64053
Senador Firmino	0.76304	0.5944	0.76304	0.5944
Senhora de Oliveira	0.76264	0.61904	0.76264	0.61904
Sericita	0.79356	0.67218	0.79356	0.67218
Silveirânia	0.80857	0.61783	0.80857	0.61783
Simão Pereira	0.87947	0.71972	0.87947	0.71972
Simonésia	0.78658	0.70191	0.78658	0.70191
Tabuleiro	0.82321	0.64764	0.82321	0.64764
Teixeiras	0.76086	0.63916	0.76086	0.63916
Tocantins	0.71265	0.59478	0.71265	0.59478
Tombos	0.75686	0.63196	0.75686	0.63196
Ubá	0.71695	0.5959	0.71695	0.5959
Urucânia	0.81753	0.73802	0.81753	0.73802
Vermelho Novo	0.80307	0.66132	0.80307	0.66132
Viçosa	0.75108	0.64848	0.75108	0.64848
Vieiras	0.80518	0.65682	0.80518	0.65682
Visconde do Rio Branco	0.75597	0.62503	0.75597	0.62503
Volta Grande	0.78839	0.64337	0.78839	0.64337
Eficiência média	0.78464	0.63821	0.78464	0.63821
Eficiência mediana	0.78469	0.63261	0.78469	0.63261
Eficiência mínima	0.66542	0.50011	0.66542	0.50011
Eficiência máxima	1	0.86804	1	0.86804

Fonte: Resultados da pesquisa.

E^{VRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos variáveis de escala E^{DRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos decrescente de escala E^{IRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos crescente de escala E^{CRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos constante de escala

Tabela 60 – Eficiências da mesorregião Zona da Mata – SFA (2006)

Tabela 00 – Efficiencias da meso	esorregião Zona da Mata – SFA (2006) Distribuição do erro			
Municípios	normal-truncada	meia-normal		
Abre Campo	0.579467166	0.482868617		
Acaiaca	0.241980147	0.196252322		
Além Paraíba	0.427214963	0.329089856		
Alto Caparaó	0.601574231	0.522393832		
Alto Jequitibá	0.627291204	0.544309463		
Alto Rio Doce	0.515324243	0.420479203		
Amparo da Serra	0.649018463	0.578375252		
Antônio Prado de Minas	0.422397676	0.330387355		
Aracitaba	0.32615206	0.256163277		
Araponga	0.565744518	0.488816089		
Argirita	0.362223407	0.291000227		
Astolfo Dutra	0.613094315	0.529618882		
Barão do Monte Alto	0.522073577	0.42567468		
Barra Longa	0.520799818	0.416657085		
Belmiro Braga	0.376631387	0.284735424		
Bias Fortes	0.506225456	0.413707685		
Bicas	0.536082819	0.442373916		
Brás Pires	0.429990089	0.35331091		
Caiana	0.577525812	0.483508992		
Cajuri	0.645554163	0.57244324		
Canaã	0.608603118	0.531864386		
Caparaó	0.557097175	0.4682479		
Caputira	0.487286571	0.398102769		
Carangola	0.476720346	0.393803423		
Cataguases	0.336667838	0.257648242		
Chácara	0.539446827	0.454985888		
Chalé	0.675514258	0.604384359		
Chiador	0.372686377	0.276929576		
Cipotânea	0.457134832	0.376325284		
Coimbra	0.669118046	0.598342638		
Coronel Pacheco	0.388910313	0.290406508		
Descoberto	0.609789433	0.53115605		
Divinésia	0.565897285	0.480429196		
Divino	0.424388333	0.331106089		
Dom Silvério	0.630731866	0.545901414		
Dona Eusébia	0.639793805	0.566524888		
Dores do Turvo	0.554179727	0.474671476		
Durandé	0.496928687	0.405854016		
Ervália	0.550418226	0.460819459		
		continua		

continuação Espera Feliz	0.491439976	0.390062991
Estrela d'Alva	0.352491164	0.274744904
Eugenópolis	0.397414873	0.304417845
Ewbank da Câmara	0.453415829	0.353299383
Faria Lemos	0.555961355	0.460863676
Fervedouro	0.526331471	0.428193357
Goianá	0.473605519	0.378670597
Guaraciaba	0.191448615	0.158930334
Guarani	0.490591704	0.397901158
Guarará	0.523422872	0.429928335
Guidoval	0.574692068	0.490754345
Guiricema	0.629542156	0.546748864
Itamarati de Minas	0.572085988	0.487653825
Jequeri	0.629374479	0.544727137
Juiz de Fora	0.526283642	0.423123686
Lajinha	0.492105253	0.393525313
Lamim	0.396999044	0.349055792
Laranjal	0.696209708	0.635962313
Leopoldina	0.501266531	0.38875197
Lima Duarte	0.486401732	0.3808897
Luisburgo	0.58200518	0.496167721
Manhuaçu	0.533276947	0.435110571
Manhumirim	0.574095912	0.485547208
Mar de Espanha	0.484938865	0.384742174
Maripá de Minas	0.585782054	0.503408525
Martins Soares	0.5988553	0.516598666
Matias Barbosa	0.547134498	0.451130773
Matipó	0.232967857	0.184441645
Mercês	0.542193902	0.448785981
Miradouro	0.529521179	0.433349854
Miraí	0.580689325	0.485515053
Muriaé	0.520962402	0.41491439
Olaria	0.563210083	0.47566447
Oliveira Fortes	0.580680515	0.508450558
Oratórios	0.662953464	0.592132793
Orizânia	0.544304652	0.45906234
Paiva	0.570520308	0.491701626
Palma	0.44493569	0.348843728
Patrocínio do Muriaé	0.590497771	0.507101146
Paula Cândido	0.546077629	0.456354461
Pedra Bonita	0.491979287	0.406614127

continuação		
Pedra do Anta	0.482219099	0.392101799
Pedra Dourada	0.506052237	0.422164631
Pedro Teixeira	0.578285908	0.498791776
Pequeri	0.132708634	0.1106145
Piau	0.660182738	0.586235801
Piedade de Ponte Nova	0.706681633	0.645640393
Piranga	0.548686374	0.454821637
Pirapetinga	0.493351553	0.404541429
Piraúba	0.686079797	0.623919658
Ponte Nova	0.685883566	0.613280838
Porto Firme	0.500996189	0.404593452
Presidente Bernardes	0.510841512	0.430382677
Raul Soares	0.577779836	0.480538145
Recreio	0.606819406	0.519579254
Reduto	0.536812294	0.448582233
Rio Casca	0.592436177	0.49954159
Rio Doce	0.597133124	0.517033961
Rio Espera	0.344967517	0.276643331
Rio Novo	0.416607514	0.32166247
Rio Pomba	0.529043735	0.438627093
Rio Preto	0.591263407	0.500718977
Rochedo de Minas	0.516252421	0.424905974
Rodeiro	0.761154955	0.716409381
Rosário da Limeira	0.58786628	0.505892599
Santa Bárbara do Monte Verde	0.570871272	0.46908572
Santa Cruz do Escalvado	0.632385168	0.550287262
Santa Margarida	0.669360418	0.596415213
Santa Rita de Ibitipoca	0.612760327	0.531933892
Santa Rita de Jacutinga	0.637687968	0.556983531
Santana de Cataguases	0.494313185	0.401349201
Santana do Deserto	0.325780018	0.238726997
Santana do Manhuaçu	0.562675039	0.469290888
Santo Antônio do Aventureiro	0.574286454	0.483403185
Santo Antônio do Grama	0.657303568	0.579104449
Santos Dumont	0.643431319	0.56248521
São Francisco do Glória	0.562928917	0.475058664
São Geraldo	0.615707912	0.535293288
São João do Manhuaçu	0.429875572	0.345441022
São João Nepomuceno	0.456164425	0.355547638
São José do Mantimento	0.585834251	0.509207948
São Miguel do Anta	0.579957379	0.495695726

	. •	~
con	tınıı	ação

São Pedro dos Ferros	0.398061712	0.310046601
São Sebastião da Vargem Alegre	0.565273713	0.483658334
Sem-Peixe	0.540821779	0.453991268
Senador Cortes	0.518856982	0.425054023
Senador Firmino	0.466874645	0.384585988
Senhora de Oliveira	0.601667729	0.52009136
Sericita	0.52256867	0.432195893
Silveirânia	0.58944996	0.510440417
Simão Pereira	0.33543528	0.261428813
Simonésia	0.554831454	0.459145335
Tabuleiro	0.540868041	0.449366289
Teixeiras	0.544820238	0.453392122
Tocantins	0.62059708	0.544490039
Tombos	0.516151475	0.4192967
Ubá	0.616535711	0.535957467
Urucânia	0.666976649	0.590567153
Vermelho Novo	0.589194275	0.506943976
Viçosa	0.542509559	0.451351231
Vieiras	0.61581228	0.534809924
Visconde do Rio Branco	0.481994089	0.392982167
Volta Grande	0.561569356	0.464034612
Eficiência média	0.531751022	0.447111805
Eficiência mediana	0.546606064	0.455670174
Eficiência mínima	0.132708634	0.1106145
Eficiência máxima	0.761154955	0.716409381

Tabela 61 – Eficiências da mesorre	gião Norte de N	∕Iinas – DEA	(2006)	
Municípios	E ^{VRS}	EDRS	E ^{IRS}	ECRS
Águas Vermelhas	0.6966	0.56682	0.6966	0.56682
Berizal	0.79875	0.65299	0.79875	0.65299
Bocaiúva	0.6702	0.55922	0.6702	0.55922
Bonito de Minas	0.78488	0.65085	0.78488	0.65085
Botumirim	0.81486	0.61785	0.81486	0.61785
Brasília de Minas	0.67516	0.55056	0.67516	0.55056
Buritizeiro	0.69312	0.63503	0.69312	0.63503
Campo Azul	0.60768	0.42752	0.60768	0.42752
Capitão Enéias	0.82829	0.6971	0.82829	0.6971
Catuti	0.80006	0.58449	0.80006	0.58449
Chapada Gaúcha	0.69547	0.61266	0.69547	0.61266
Claro dos Poções	0.74645	0.60983	0.74645	0.60983
Cônego Marinho	0.73039	0.49026	0.73039	0.49026
Coração de Jesus	0.68189	0.58394	0.68189	0.58394
Cristália	0.70377	0.39994	0.70377	0.39994
Curral de Dentro	0.8018	0.58342	0.8018	0.58342
Engenheiro Navarro	0.79284	0.65189	0.79284	0.65189
Espinosa	0.68443	0.56549	0.68443	0.56549
Francisco Dumont	0.90838	0.85809	0.90838	0.85809
Francisco Sá	0.70896	0.63503	0.70896	0.63503
Fruta de Leite	0.71968	0.41487	0.71968	0.41487
Gameleiras	0.71859	0.58734	0.71859	0.58734
Glaucilândia	0.85977	0.55395	0.85977	0.55395
Grão Mogol	0.69624	0.57783	0.69624	0.57783
Guaraciama	0.73645	0.47981	0.73645	0.47981
Ibiaí	0.76908	0.60545	0.76908	0.60545
Ibiracatu	0.79932	0.53116	0.79932	0.53116
Icaraí de Minas	0.70025	0.56653	0.70025	0.56653
Indaiabira	0.69745	0.55039	0.69745	0.55039
Itacambira	0.72659	0.60262	0.72659	0.60262
Itacarambi	0.7491	0.61659	0.7491	0.61659
Jaíba	0.69005	0.61842	0.69005	0.61842
Janaúba	0.68584	0.61211	0.68584	0.61211
Januária	0.659	0.55399	0.659	0.55399
Japonvar	0.76989	0.56553	0.76989	0.56553
Jequitaí	0.73239	0.61427	0.73239	0.61427
Josenópolis	0.75997	0.45686	0.75997	0.45686
Juramento	0.77883	0.6253	0.77883	0.6253
Juvenília	0.72236	0.57229	0.72236	0.57229
Lagoa dos Patos	0.78387	0.6233	0.78387	0.6233
				4 !

continuação				
Lassance	0.72481	0.62865	0.72481	0.62865
Lontra	0.78202	0.49635	0.78202	0.49635
Luislândia	0.77019	0.5608	0.77019	0.5608
Mamonas	0.7423	0.51806	0.7423	0.51806
Manga	0.71306	0.61258	0.71306	0.61258
Matias Cardoso	0.81294	0.78197	0.81294	0.78197
Mato Verde	0.71221	0.57632	0.71221	0.57632
Mirabela	0.71409	0.56713	0.71409	0.56713
Miravânia	0.82644	0.65291	0.82644	0.65291
Montalvânia	0.7257	0.59569	0.7257	0.59569
Monte Azul	0.68274	0.56453	0.68274	0.56453
Montes Claros	0.69391	0.63957	0.69391	0.63957
Montezuma	0.75181	0.60577	0.75181	0.60577
Ninheira	0.74901	0.61215	0.74901	0.61215
Nova Porteirinha	0.76244	0.67253	0.76244	0.67253
Novorizonte	0.77125	0.50172	0.77125	0.50172
Olhos-d'Água	0.78511	0.64761	0.78511	0.64761
Padre Carvalho	0.86708	0.66776	0.86708	0.66776
Pai Pedro	0.70732	0.56987	0.70732	0.56987
Patis	0.77322	0.59678	0.77322	0.59678
Pedras de Maria da Cruz	0.72466	0.61754	0.72466	0.61754
Pintópolis	0.73052	0.59458	0.73052	0.59458
Pirapora	0.74832	0.67195	0.74832	0.67195
Ponto Chique	0.76818	0.58612	0.76818	0.58612
Porteirinha	0.67772	0.58543	0.67772	0.58543
Riachinho	0.69301	0.58016	0.69301	0.58016
Riacho dos Machados	0.75153	0.65311	0.75153	0.65311
Rio Pardo de Minas	0.68747	0.58946	0.68747	0.58946
Rubelita	0.7443	0.61491	0.7443	0.61491
Salinas	0.68409	0.57437	0.68409	0.57437
Santa Cruz de Salinas	0.77044	0.54273	0.77044	0.54273
Santa Fé de Minas	0.71766	0.59511	0.71766	0.59511
Santo Antônio do Retiro	0.75595	0.54151	0.75595	0.54151
São Francisco	0.6667	0.58313	0.6667	0.58313
São João da Lagoa	0.71214	0.58292	0.71214	0.58292
São João da Ponte	0.74086	0.6679	0.74086	0.6679
São João das Missões	0.75187	0.53979	0.75187	0.53979
São João do Pacuí	0.70033	0.53471	0.70033	0.53471
São João do Paraíso	0.71807	0.61193	0.71807	0.61193
São Romão	0.75119	0.63858	0.75119	0.63858
Serranóplis de Minas	0.74743	0.51348	0.74743	0.51348
				continua

. •	~
contin	112620
COHUII	uaçao

3				
Taiobeiras	0.7253	0.63534	0.7253	0.63534
Ubaí	0.71383	0.57266	0.71383	0.57266
Urucuia	0.84823	0.80836	0.84823	0.80836
Vargem Grande do Rio Pardo	0.7112	0.56907	0.7112	0.56907
Várzea da Palma	0.73066	0.64085	0.73066	0.64085
Varzelândia	0.71124	0.57374	0.71124	0.57374
Verdelândia	0.70331	0.6231	0.70331	0.6231
Eficiência média	0.73901	0.59287	0.73901	0.59287
Eficiência mediana	0.73045	0.5884	0.73045	0.5884
Eficiência mínima	0.60768	0.39994	0.60768	0.39994
Eficiência máxima	0.90838	0.85809	0.90838	0.85809

E^{VRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos variáveis de escala E^{DRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos decrescente de escala E^{IRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos crescente de escala E^{CRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos crescente de escala

Tabela 62 – Eficiências da mesorregião Norte de Minas – SFA (2006)

	Distribuição do erro		
Municípios	normal-truncada meia-normal		
Águas Vermelhas	0.578907965	0.482677783	
Berizal	0.332116925	0.25223627	
Bocaiúva	0.381535398	0.293801772	
Bonito de Minas	0.112805141	0.098096287	
Botumirim	0.369056275	0.277624255	
Brasília de Minas	0.208680804	0.166653825	
Buritizeiro	0.511221054	0.400461895	
Campo Azul	0.088038095	0.085006735	
Capitão Enéias	0.458970252	0.363341171	
Catuti	0.41621662	0.334823881	
Chapada Gaúcha	0.469003264	0.367379494	
Claro dos Poções	0.377016495	0.284289854	
Cônego Marinho	0.472564877	0.389887425	
Coração de Jesus	0.231616784	0.173199735	
Cristália	0.592204783	0.525248203	
Curral de Dentro	0.263401289	0.202208157	
Engenheiro Navarro	0.725699037	0.669299594	
Espinosa	0.377252523	0.306119919	
Francisco Dumont	0.049330625	0.049836958	
Francisco Sá	0.190577097	0.145417014	
Fruta de Leite	0.317752318	0.27648752	
Gameleiras	0.379101504	0.285379942	
Glaucilândia	0.476535472	0.407673828	
Grão Mogol	0.215189047	0.161560389	
Guaraciama	0.678911504	0.612737541	
Ibiaí	0.06915927	0.067458195	
Ibiracatu	0.320924061	0.260558934	
Icaraí de Minas	0.362717189	0.28275795	
Indaiabira	0.448075066	0.358753908	
Itacambira	0.293082611	0.224776632	
Itacarambi	0.496682083	0.395235223	
Jaíba	0.359055773	0.270585554	
Janaúba	0.341279482	0.253008587	
Januária	0.220533462	0.168242029	
Japonvar	0.384810862	0.309001254	
Jequitaí	0.352160625	0.265067972	
Josenópolis	0.346588399	0.29744817	
Juramento	0.27011153	0.207275156	
Juvenília	0.432404449	0.335663946	

continuação
Lagna dos P

continuação		
Lagoa dos Patos	0.196659862	0.148108143
Lassance	0.393872526	0.297945938
Lontra	0.417641142	0.336787807
Luislândia	0.498935505	0.408818762
Mamonas	0.477253501	0.396325058
Manga	0.326450611	0.245001924
Matias Cardoso	0.157057058	0.126770629
Mato Verde	0.337842721	0.260404756
Mirabela	0.317156835	0.240462508
Miravânia	0.162957729	0.135025706
Montalvânia	0.263977594	0.200928417
Monte Azul	0.339097951	0.257535786
Montes Claros	0.34491424	0.26122252
Montezuma	0.410020715	0.318939413
Ninheira	0.396409265	0.300439829
Nova Porteirinha	0.592423956	0.506562679
Novorizonte	0.623866435	0.548021045
Olhos-d'Água	0.49613608	0.38921998
Padre Carvalho	0.08543393	0.082677106
Pai Pedro	0.197714452	0.156990605
Patis	0.286889097	0.224961925
Pedras de Maria da Cruz	0.265997737	0.198556993
Pintópolis	0.207110697	0.163405822
Pirapora	0.451319171	0.3551589
Ponto Chique	0.230588344	0.179339499
Porteirinha	0.241389917	0.183633595
Riachinho	0.431708827	0.330328771
Riacho dos Machados	0.29003792	0.212265027
Rio Pardo de Minas	0.307886329	0.233374483
Rubelita	0.205048972	0.162635114
Salinas	0.408282891	0.308525142
Santa Cruz de Salinas	0.179505858	0.152241607
Santa Fé de Minas	0.240249673	0.177162062
Santo Antônio do Retiro	0.369719872	0.296449702
São Francisco	0.304000988	0.226135924
São João da Lagoa	0.347797683	0.261278771
São João da Ponte	0.053581073	0.050185091
São João das Missões	0.240302529	0.200535919
São João do Pacuí	0.371889389	0.292692557
São João do Paraíso	0.246938149	0.186759886
São Romão	0.307091985	0.234583921
São Romão	0.307091985	0.2345839 contin

continuação

Serranóplis de Minas	0.505163728	0.417960503
Taiobeiras	0.426875559	0.323830951
Ubaí	0.323777245	0.241233058
Urucuia	0.044553501	0.045724442
Vargem Grande do Rio Pardo	0.558972932	0.471623801
Várzea da Palma	0.221887167	0.1684373
Varzelândia	0.300884884	0.231947254
Verdelândia	0.478695725	0.369348216
Eficiência média	0.339264318	0.270747589
Eficiência mediana	0.340188717	0.260890727
Eficiência mínima	0.044553501	0.045724442
Eficiência máxima	0.725699037	0.669299594
E + D 1: 1 1		

Tabela 63 – Eficiências da m	nesorregião Oeste	e de Minas – DI	EA (2006)	
Municípios		E ^{DRS} I		ECRS
Aguanil	0.77685	0.66995	0.77685	0.66995
Arcos	0.70169	0.59747	0.70169	0.59747
Bambuí	0.7079	0.64577	0.7079	0.64577
Bom Sucesso	0.71193	0.6367	0.71193	0.6367
Camacho	0.71482	0.58867	0.71482	0.58867
Campo Belo	0.78096	0.68649	0.78096	0.68649
Cana Verde	0.6653	0.5583	0.6653	0.5583
Candeias	0.66532	0.58857	0.66532	0.58857
Carmo da Mata	0.66566	0.56893	0.66566	0.56893
Carmo do Cajuru	0.67976	0.55458	0.67976	0.55458
Carmópolis de Minas	0.66893	0.58553	0.66893	0.58553
Cláudio	0.69966	0.60408	0.69966	0.60408
Conceição do Pará	0.74635	0.60636	0.74635	0.60636
Córrego Danta	0.70943	0.58933	0.70943	0.58933
Córrego Fundo	0.78008	0.63128	0.78008	0.63128
Cristais	0.70999	0.62874	0.70999	0.62874
Divinópolis	0.71676	0.62595	0.71676	0.62595
Doresópolis	0.79752	0.64546	0.79752	0.64546
Formiga	0.68123	0.61227	0.68123	0.61227
Ibituruna	0.77398	0.65177	0.77398	0.65177
Igaratinga	0.77185	0.65966	0.77185	0.65966
Iguatama	0.74548	0.64856	0.74548	0.64856
Itapecerica	0.70149	0.60738	0.70149	0.60738
Itaúna	0.73406	0.62732	0.73406	0.62732
Medeiros	0.73474	0.65486	0.73474	0.65486
Nova Serrana	0.79431	0.67635	0.79431	0.67635
Oliveira	0.69589	0.63017	0.69589	0.63017
Pains	0.7494	0.63659	0.7494	0.63659
Passa Tempo	0.77277	0.66245	0.77277	0.66245
Pedra do Indaiá	0.75473	0.6096	0.75473	0.6096
Perdigão	0.79339	0.65343	0.79339	0.65343
Perdões	0.73117	0.64523	0.73117	0.64523
Pimenta	0.77228	0.70899	0.77228	0.70899
Piracema	0.74575	0.60309	0.74575	0.60309
Pium-í	0.69934	0.65211	0.69934	0.65211
Santana do Jacaré	0.93546	0.86508	0.93546	0.86508
Santo Antônio do Amparo	0.72212	0.6702	0.72212	0.6702
Santo Antônio do Monte	0.69504	0.60916	0.69504	0.60916
São Francisco de Paula	0.74968	0.65963	0.74968	0.65963
São Gonçalo do Pará	0.76128	0.62473	0.76128	0.62473

continuação

0.70902	0.63097	0.70902	0.63097
0.70064	0.59673	0.70064	0.59673
0.77852	0.66505	0.77852	0.66505
0.76504	0.63026	0.76504	0.63026
0.73563	0.63418	0.73563	0.63418
0.73261	0.63062	0.73261	0.63062
0.6653	0.55458	0.6653	0.55458
0.93546	0.86508	0.93546	0.86508
	0.70064 0.77852 0.76504 0.73563 0.73261 0.6653	0.70064 0.59673 0.77852 0.66505 0.76504 0.63026 0.73563 0.63418 0.73261 0.63062 0.6653 0.55458	0.70064 0.59673 0.70064 0.77852 0.66505 0.77852 0.76504 0.63026 0.76504 0.73563 0.63418 0.73563 0.73261 0.63062 0.73261 0.6653 0.55458 0.6653

E^{VRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos variáveis de escala E^{DRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos decrescente de escala E^{IRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos crescente de escala E^{CRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos crescente de escala

Tabela 64 – Eficiências da mesorregião Oeste de Minas – SFA (2006)

	Distribuição do erro		
Municípios	normal-truncada	meia-normal	
Aguanil	0.41696048	0.330355908	
Arcos	0.519761257	0.428115444	
Bambuí	0.413401091	0.313249453	
Bom Sucesso	0.535503883	0.437475288	
Camacho	0.337961624	0.264876395	
Campo Belo	0.602726375	0.510790889	
Cana Verde	0.223067141	0.177083224	
Candeias	0.434150841	0.341599892	
Carmo da Mata	0.481149471	0.386890753	
Carmo do Cajuru	0.607636258	0.52759415	
Carmópolis de Minas	0.504414055	0.409125054	
Cláudio	0.607798543	0.520407663	
Conceição do Pará	0.632530633	0.550992596	
Córrego Danta	0.568265518	0.477684168	
Córrego Fundo	0.641972535	0.570269609	
Cristais	0.446323572	0.351306962	
Divinópolis	0.50146986	0.401710773	
Doresópolis	0.51601607	0.424803853	
Formiga	0.456124363	0.354242853	
Ibituruna	0.544531766	0.452926039	
Igaratinga	0.722575928	0.660437399	
Iguatama	0.555851925	0.458852521	
Itapecerica	0.472373895	0.370336202	
Itaúna	0.536981647	0.437703695	
Medeiros	0.501014029	0.39906224	
Nova Serrana	0.605364796	0.516041092	
Oliveira	0.448050285	0.345778303	
Pains	0.482623927	0.386158827	
Passa Tempo	0.387576394	0.296300393	
Pedra do Indaiá	0.552240031	0.460224603	
Perdigão	0.539471307	0.448099185	
Perdões	0.490945995	0.398220082	
Pimenta	0.473609267	0.379476635	
Piracema	0.578621537	0.495902223	
Pium-í	0.372573564	0.285140409	
Santana do Jacaré	0.284081218	0.222737701	
Santo Antônio do Amparo	0.585739178	0.493574904	
Santo Antônio do Monte	0.550310154	0.447096971	
São Francisco de Paula	0.364184985	0.28019517	
		continua	

continuação

0.565604185	0.47403291
0.511110129	0.406275955
0.655455744	0.578992467
0.440614501	0.345851559
0.500084231	0.406497714
0.503836913	0.414192957
0.507762092	0.407811384
0.223067141	0.177083224
0.722575928	0.660437399
	0.511110129 0.655455744 0.440614501 0.500084231 0.503836913 0.507762092 0.223067141

Tabela 65 – Eficiências da me	sorregião Vale do	Rio Doce – I		
Municípios	E ^{VRS}	EDRS	E ^{IRS}	ECRS
Açucena	0.76883	0.63625	0.76883	0.63625
Água Boa	0.68676	0.57317	0.68676	0.57317
Aimorés	0.68664	0.58817	0.68664	0.58817
Alpercata	0.82296	0.67749	0.82296	0.67749
Alvarenga	0.8437	0.69136	0.8437	0.69136
Antônio Dias	0.80013	0.7075	0.80013	0.7075
Belo Oriente	0.83196	0.72184	0.83196	0.72184
Bom Jesus do Galho	0.74931	0.63837	0.74931	0.63837
Braúnas	0.77179	0.61187	0.77179	0.61187
Bugre	0.84176	0.58783	0.84176	0.58783
Campanário	0.68389	0.52462	0.68389	0.52462
Cantagalo	0.67831	0.52537	0.67831	0.52537
Capitão Andrade	0.63012	0.41189	0.63012	0.41189
Caratinga	0.74692	0.67996	0.74692	0.67996
Carmésia	0.70937	0.52985	0.70937	0.52985
Central de Minas	0.80163	0.58786	0.80163	0.58786
Coluna	0.75713	0.63455	0.75713	0.63455
Conceição de Ipanema	0.7725	0.6136	0.7725	0.6136
Conselheiro Pena	0.75047	0.66084	0.75047	0.66084
Coroaci	0.80024	0.6695	0.80024	0.6695
Coronel Fabriciano	0.79386	0.49296	0.79386	0.49296
Cuparaque	0.80873	0.65357	0.80873	0.65357
Divino das Laranjeiras	0.81043	0.62989	0.81043	0.62989
Divinolândia de Minas	0.93662	0.77008	0.93662	0.77008
Dom Cavati	0.79754	0.52287	0.79754	0.52287
Dores de Guanhães	0.84934	0.67391	0.84934	0.67391
Engenheiro Caldas	0.6685	0.5104	0.6685	0.5104
Entre Folhas	0.71691	0.49834	0.71691	0.49834
Fernandes Tourinho	0.90589	0.68538	0.90589	0.68538
Frei Inocêncio	0.79289	0.64151	0.79289	0.64151
Frei Lagonegro	0.79686	0.55599	0.79686	0.55599
Galiléia	0.76324	0.60205	0.76324	0.60205
Goiabeira	0.84031	0.53929	0.84031	0.53929
Gonzaga	0.82338	0.63529	0.82338	0.63529
Governador Valadares	0.69363	0.61724	0.69363	0.61724
Guanhães	0.73414	0.63493	0.73414	0.63493
Iapu	0.7367	0.56231	0.7367	0.56231
Imbé de Minas	0.80254	0.67578	0.80254	0.67578
Inhapim	0.73632	0.62803	0.73632	0.62803
Ipaba	0.87743	0.72115	0.87743	0.72115

. •	~
contin	macao

continuação				
Ipanema	0.77208	0.62723	0.77208	0.62723
Ipatinga	0.83202	0.57746	0.83202	0.57746
Itabirinha de Mantena	0.76401	0.58747	0.76401	0.58747
Itambacuri	0.72474	0.61754	0.72474	0.61754
Itanhomi	0.78557	0.64523	0.78557	0.64523
Itueta	0.69916	0.57429	0.69916	0.57429
Jaguaraçu	0.88758	0.62311	0.88758	0.62311
Jampruca	0.75866	0.61993	0.75866	0.61993
Joanésia	0.74139	0.51117	0.74139	0.51117
José Raydan	0.79549	0.58303	0.79549	0.58303
Mantena	0.75477	0.62902	0.75477	0.62902
Marilac	0.82196	0.61488	0.82196	0.61488
Marliéria	0.8984	0.60989	0.8984	0.60989
Materlândia	0.7878	0.59344	0.7878	0.59344
Mathias Lobato	0.9054	0.69142	0.9054	0.69142
Mendes Pimentel	0.77676	0.62996	0.77676	0.62996
Mesquita	0.7739	0.58854	0.7739	0.58854
Mutum	0.68743	0.61011	0.68743	0.61011
Nacip Raydan	0.8193	0.60638	0.8193	0.60638
Naque	0.9018	0.74167	0.9018	0.74167
Nova Belém	0.77476	0.63371	0.77476	0.63371
Nova Módica	0.80953	0.62247	0.80953	0.62247
Paulistas	0.81951	0.6642	0.81951	0.6642
Peçanha	0.74767	0.65312	0.74767	0.65312
Periquito	0.8555	0.5695	0.8555	0.5695
Pescador	0.81748	0.61132	0.81748	0.61132
Piedade de Caratinga	0.7778	0.65606	0.7778	0.65606
Pingo-d'Água	0.8905	0.67113	0.8905	0.67113
Pocrane	0.70294	0.57378	0.70294	0.57378
Resplendor	0.71437	0.59614	0.71437	0.59614
Sabinópolis	0.75259	0.62098	0.75259	0.62098
Santa Bárbara do Leste	0.77165	0.66203	0.77165	0.66203
Santa Efigênia de Minas	0.83666	0.54387	0.83666	0.54387
Santa Maria do Suaçui	0.78738	0.64475	0.78738	0.64475
Santa Rita de Minas	0.84421	0.71647	0.84421	0.71647
Santa Rita do Itueto	0.7399	0.63714	0.7399	0.63714
Santana do Paraíso	0.89242	0.60918	0.89242	0.60918
São Domingos das Dores	0.83237	0.69781	0.83237	0.69781
São Félix de Minas	0.7988	0.59398	0.7988	0.59398
São Geraldo da Piedade	0.80285	0.60905	0.80285	0.60905
São Geraldo do Baixio	0.80041	0.62448	0.80041	0.62448
				aantings

continuação

3				
São João do Manteninha	0.79252	0.59892	0.79252	0.59892
São João do Oriente	0.835	0.62343	0.835	0.62343
São João Evangelista	0.74935	0.6392	0.74935	0.6392
São José do Divino	0.80976	0.61659	0.80976	0.61659
São José do Jacuri	0.74157	0.57778	0.74157	0.57778
São Pedro do Suaçui	0.80868	0.64851	0.80868	0.64851
São Sebastião do Anta	0.78357	0.66374	0.78357	0.66374
São Sebastião do Maranhão	0.72543	0.57655	0.72543	0.57655
Sardoá	0.87912	0.67256	0.87912	0.67256
Senhora do Porto	0.84427	0.61017	0.84427	0.61017
Sobrália	0.76064	0.57475	0.76064	0.57475
Taparuba	0.8005	0.57497	0.8005	0.57497
Tarumirim	0.74738	0.60488	0.74738	0.60488
Tumiritinga	0.7741	0.64085	0.7741	0.64085
Ubaporanga	0.77012	0.64352	0.77012	0.64352
Vargem Alegre	0.82823	0.60028	0.82823	0.60028
Virginópolis	0.79104	0.67196	0.79104	0.67196
Virgolândia	0.83626	0.6708	0.83626	0.6708
Eficiência média	0.78742	0.61844	0.78742	0.61844
Eficiência mediana	0.79104	0.62098	0.79104	0.62098
Eficiência mínima	0.63012	0.41189	0.63012	0.41189
Eficiência máxima	0.93662	0.77008	0.93662	0.77008

Fonte: Resultados da pesquisa. E^{VRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos variáveis de escala E^{DRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos decrescente de escala E^{IRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos crescente de escala E^{CRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos constante de escala

Tabela 66 – Eficiências da mesorregião Vale do Rio Doce – SFA (2006)

	Distribuição do erro		
Municípios	normal-truncada meia-normal		
Açucena	0.273044684	0.204255631	
Água Boa	0.481923084	0.369996578	
Aimorés	0.438059556	0.330087646	
Alpercata	0.614042408	0.5285125	
Alvarenga	0.132378951	0.115642402	
Antônio Dias	0.581966407	0.477081004	
Belo Oriente	0.424876973	0.318372188	
Bom Jesus do Galho	0.412806168	0.313544492	
Braúnas	0.529148913	0.43320191	
Bugre	0.588913077	0.519963905	
Campanário	0.648228008	0.573472998	
Cantagalo	0.174108727	0.143656149	
Capitão Andrade	0.318543359	0.281553033	
Caratinga	0.694775721	0.624209477	
Carmésia	0.156569107	0.125001475	
Central de Minas	0.592698039	0.50395718	
Coluna	0.417694366	0.326927119	
Conceição de Ipanema	0.602421242	0.516856399	
Conselheiro Pena	0.420467785	0.311077161	
Coroaci	0.436201433	0.334730069	
Coronel Fabriciano	0.419452501	0.364554743	
Cuparaque	0.507441313	0.411492962	
Divino das Laranjeiras	0.494391911	0.39602736	
Divinolândia de Minas	0.587698534	0.488090819	
Dom Cavati	0.656527298	0.592263618	
Dores de Guanhães	0.539561199	0.449201229	
Engenheiro Caldas	0.292559885	0.231562765	
Entre Folhas	0.411195804	0.332368904	
Fernandes Tourinho	0.366451957	0.290280564	
Frei Inocêncio	0.310672234	0.227328704	
Frei Lagonegro	0.523397866	0.435695533	
Galiléia	0.496441171	0.353124038	
Goiabeira	0.609031311	0.531472405	
Gonzaga	0.46184764	0.373904246	
Governador Valadares	0.30307622	0.222551973	
Guanhães	0.315526221	0.238977104	
Iapu	0.752891811	0.706305593	
Imbé de Minas	0.527205864	0.435652239	
Inhapim	0.585167222	0.49082222	
		continua	

co	ntinı	ıação
_		

continuação		
Ipaba	0.358242728	0.269270055
Ipanema	0.551938201	0.44806022
Ipatinga	0.503838479	0.422857983
Itabirinha de Mantena	0.553094921	0.459358923
Itambacuri	0.464510926	0.357875616
Itanhomi	0.424730991	0.328631997
Itueta	0.566600955	0.476797764
Jaguaraçu	0.531579007	0.441223478
Jampruca	0.50700268	0.39994862
Joanésia	0.435156474	0.360405766
José Raydan	0.512381939	0.429662567
Mantena	0.62658863	0.532992203
Marilac	0.550534175	0.461026108
Marliéria	0.38858944	0.312973715
Materlândia	0.563913575	0.473374225
Mathias Lobato	0.486943801	0.385762772
Mendes Pimentel	0.449824425	0.351840437
Mesquita	0.379565859	0.301851514
Mutum	0.479537037	0.375084723
Nacip Raydan	0.524648839	0.424541092
Naque	0.516611599	0.409816956
Nova Belém	0.592133129	0.505968819
Nova Módica	0.547710785	0.442199448
Paulistas	0.406357461	0.3069373
Peçanha	0.560591755	0.453292249
Periquito	0.672546809	0.607069549
Pescador	0.426879002	0.323139182
Piedade de Caratinga	0.59766616	0.515063559
Pingo-d'Água	0.422280593	0.339287378
Pocrane	0.430554115	0.337106353
Resplendor	0.457124923	0.351732685
Sabinópolis	0.474081879	0.376247
Santa Bárbara do Leste	0.610413586	0.531485224
Santa Efigênia de Minas	0.474810132	0.388023714
Santa Maria do Suaçui	0.526196462	0.416905418
Santa Rita de Minas	0.613638711	0.533062926
Santa Rita do Itueto	0.550988151	0.455588782
Santana do Paraíso	0.476642203	0.402126956
São Domingos das Dores	0.570592532	0.490068826
São Félix de Minas	0.502838372	0.420316611
São Geraldo da Piedade	0.597220616	0.510141318
		continua

	. •	~
con	tınıı	ação

3		
São Geraldo do Baixio	0.552431567	0.450633255
São João do Manteninha	0.520869039	0.428272902
São João do Oriente	0.579661404	0.501531004
São João Evangelista	0.480714298	0.373428634
São José do Divino	0.527004727	0.420912311
São José do Jacuri	0.520818236	0.42149756
São Pedro do Suaçui	0.483297918	0.384639571
São Sebastião do Anta	0.50461964	0.418158861
São Sebastião do Maranhão	0.657277684	0.579702935
Sardoá	0.619619098	0.534667694
Senhora do Porto	0.506091315	0.417523986
Sobrália	0.535187655	0.442802029
Taparuba	0.583676846	0.50190769
Tarumirim	0.551971618	0.446484558
Tumiritinga	0.486001222	0.381246232
Ubaporanga	0.637384991	0.562593756
Vargem Alegre	0.538002769	0.457115931
Virginópolis	0.464268706	0.357472476
Virgolândia	0.551281052	0.455982155
Eficiência média	0.497845331	0.409994645
Eficiência mediana	0.512381939	0.420316611
Eficiência mínima	0.132378951	0.115642402
Eficiência máxima	0.752891811	0.706305593

Tabela 67 – Eficiências da mesorregião Metropolitana de Belo Horizonte – DEA (2006)

(2006)	vyn.c	N N O	Tha a	
Municípios	$\mathbf{E}^{\mathbf{VRS}}$	EDRS	E ^{IRS}	E ^{CRS}
Alvinópolis	0.73856	0.61827	0.73856	0.61827
Alvorada de Minas	0.8769	0.71942	0.8769	0.71942
Araçaí	0.69421	0.54624	0.69421	0.54624
Baldim	0.78389	0.69001	0.78389	0.69001
Barão de Cocais	0.92828	0.74892	0.92828	0.74892
Bela Vista de Minas	0.9457	0.68151	0.9457	0.68151
Belo Horizonte	0.95434	0.60679	0.95434	0.60679
Belo Vale	0.72906	0.59614	0.72906	0.59614
Betim	0.76449	0.64493	0.76449	0.64493
Bom Jesus do Amparo	0.78075	0.62082	0.78075	0.62082
Bonfim	0.74157	0.58609	0.74157	0.58609
Brumadinho	0.72885	0.61366	0.72885	0.61366
Cachoeira da Prata	0.69727	0.48357	0.69727	0.48357
Caetanópolis	0.73729	0.59617	0.73729	0.59617
Caeté	0.76567	0.64191	0.76567	0.64191
Capim Branco	0.74052	0.59723	0.74052	0.59723
Casa Grande	0.80289	0.64287	0.80289	0.64287
Catas Altas	0.77972	0.65109	0.77972	0.65109
Catas Altas da Noruega	0.86942	0.63001	0.86942	0.63001
Conceição do Mato Dentro	0.72044	0.59188	0.72044	0.59188
Confins	1	0.56593	1	0.56593
Congonhas	0.97567	0.66943	0.97567	0.66943
Congonhas do Norte	0.80143	0.55651	0.80143	0.55651
Conselheiro Lafaiete	0.78133	0.64171	0.78133	0.64171
Contagem	0.90098	0.66557	0.90098	0.66557
Cordisburgo	0.74257	0.64803	0.74257	0.64803
Cristiano Otoni	0.79471	0.62897	0.79471	0.62897
Crucilândia	0.74827	0.59404	0.74827	0.59404
Desterro de Entre Rios	0.71025	0.57308	0.71025	0.57308
Diogo de Vasconcelos	0.77905	0.54957	0.77905	0.54957
Dionísio	0.79942	0.59552	0.79942	0.59552
Dom Joaquim	0.82418	0.60441	0.82418	0.60441
Entre Rios de Minas	0.77663	0.646	0.77663	0.646
Esmeraldas	0.76963	0.68269	0.76963	0.68269
Ferros	0.77904	0.67958	0.77904	0.67958
Florestal	0.78725	0.63088	0.78725	0.63088
Fortuna de Minas	0.77191	0.58747	0.77191	0.58747
Funilândia	0.78574	0.65389	0.78574	0.65389
Ibirité	1	0.79807	1	0.79807

COI	tinuação
Iga	rapé
,	•

continuação				
Igarapé	0.76755	0.6519	0.76755	0.6519
Inhaúma	0.7927	0.67657	0.7927	0.67657
Itabira	0.7532	0.65086	0.7532	0.65086
Itabirito	0.82218	0.67376	0.82218	0.67376
Itaguara	0.70989	0.59197	0.70989	0.59197
Itambé do Mato Dentro	0.80495	0.58903	0.80495	0.58903
Itatiaiuçu	0.75496	0.60249	0.75496	0.60249
Itaverava	0.74214	0.59635	0.74214	0.59635
Jaboticatubas	0.72865	0.6287	0.72865	0.6287
Jeceaba	0.75385	0.56617	0.75385	0.56617
Jequitibá	0.72125	0.62209	0.72125	0.62209
João Monlevade	0.87913	0.58843	0.87913	0.58843
Juatuba	0.8784	0.66132	0.8784	0.66132
Lagoa Santa	0.87564	0.69995	0.87564	0.69995
Maravilhas	0.74782	0.60846	0.74782	0.60846
Mariana	0.81367	0.67424	0.81367	0.67424
Mário Campos	0.86282	0.63381	0.86282	0.63381
Mateus Leme	0.75602	0.64596	0.75602	0.64596
Matozinhos	0.82961	0.70177	0.82961	0.70177
Moeda	0.87398	0.67733	0.87398	0.67733
Morro do Pilar	0.87557	0.63768	0.87557	0.63768
Nova Era	0.84992	0.72076	0.84992	0.72076
Nova União	0.85484	0.71581	0.85484	0.71581
Onça de Pitangui	0.79147	0.68256	0.79147	0.68256
Ouro Branco	0.78891	0.64645	0.78891	0.64645
Ouro Preto	0.74779	0.62993	0.74779	0.62993
Papagaios	0.73788	0.636	0.73788	0.636
Pará de Minas	0.73667	0.67213	0.73667	0.67213
Paraopeba	0.72693	0.63906	0.72693	0.63906
Passabém	0.93361	0.55321	0.93361	0.55321
Pedro Leopoldo	0.80119	0.68489	0.80119	0.68489
Pequi	0.776	0.6695	0.776	0.6695
Piedade dos Gerais	0.73435	0.58792	0.73435	0.58792
Pitangui	0.76225	0.68135	0.76225	0.68135
Prudente de Morais	0.85068	0.71396	0.85068	0.71396
Queluzito	0.78739	0.61776	0.78739	0.61776
Ribeirão das Neves	0.85023	0.68968	0.85023	0.68968
Rio Manso	0.73637	0.60153	0.73637	0.60153
Rio Piracicaba	0.76228	0.61197	0.76228	0.61197
Rio Vermelho	0.74851	0.59389	0.74851	0.59389
Sabará	0.9036	0.66597	0.9036	0.66597
				Continua

Continua

, •	~
contin	ມາລດລດ
COIIIII	uaçao

3				
Santa Bárbara	0.83906	0.70825	0.83906	0.70825
Santa Luzia	0.86913	0.6313	0.86913	0.6313
Santa Maria de Itabira	0.8432	0.69923	0.8432	0.69923
Santana de Pirapama	0.69528	0.59349	0.69528	0.59349
Santana do Riacho	0.84741	0.59537	0.84741	0.59537
Santana dos Montes	0.78068	0.60806	0.78068	0.60806
Santo Antônio do Itambé	0.85505	0.65227	0.85505	0.65227
Santo Antônio do Rio Abaixo	0.84965	0.54441	0.84965	0.54441
São Brás do Suaçui	0.89182	0.66824	0.89182	0.66824
São Domingos do Prata	0.75026	0.63617	0.75026	0.63617
São Gonçalo do Rio Abaixo	0.82919	0.71181	0.82919	0.71181
São Joaquim de Bicas	0.82134	0.67846	0.82134	0.67846
São José da Lapa	0.9464	0.76293	0.9464	0.76293
São José da Varginha	0.71624	0.62316	0.71624	0.62316
São José do Goiabal	0.89133	0.79613	0.89133	0.79613
São Sebastião do Rio Preto	0.84043	0.47756	0.84043	0.47756
Serra Azul de Minas	0.81945	0.65649	0.81945	0.65649
Serro	0.71129	0.58981	0.71129	0.58981
Sete Lagoas	0.78094	0.71622	0.78094	0.71622
Taquaraçu de Minas	0.7781	0.60563	0.7781	0.60563
Vespasiano	0.96389	0.66354	0.96389	0.66354
Eficiência média	0.80448	0.63852	0.80448	0.63852
Eficiência mediana	0.78574	0.63768	0.78574	0.63768
Eficiência mínima	0.69421	0.47756	0.69421	0.47756
Eficiência máxima	1	0.79807	1	0.79807

Fonte: Resultados da pesquisa.

EVRS – eficiência econômica sob o pressuposto de uma tecnologia com retornos variáveis de escala EDRS – eficiência econômica sob o pressuposto de uma tecnologia com retornos decrescente de escala EIRS – eficiência econômica sob o pressuposto de uma tecnologia com retornos crescente de escala ECRS – eficiência econômica sob o pressuposto de uma tecnologia com retornos constante de escala

Tabela 68 – Eficiências da meosrregião Metropolitana de Belo Horizonte – SFA (2006)

(2006)	D1 (N) 2 2		
Municípios	Distribuição do erro		
	normal-truncada 0.423165666	meia-normal 0.311957084	
Alvinópolis Alvorada de Minas	0.423163666	0.311957084	
Araçaí Baldim	0.298277297	0.226037138 0.223724978	
Barão de Cocais	0.286751861 0.441584971	0.223724978	
	0.382362194	0.300602305	
Bela Vista de Minas Belo Horizonte	0.586678406	0.518095455	
Belo Vale	0.502266106	0.411731549	
Betim Betim	0.569698747	0.475694437	
	0.455694891	0.367493167	
Bom Jesus do Amparo Bonfim	0.433094891	0.552509404	
Brumadinho	0.627646433	0.332309404	
Cachoeira da Prata	0.166603313	0.138651828	
	0.160603313	0.138631828	
Caetanópolis Caeté	0.735985163	0.680156442	
	0.733983103	0.16083487	
Capim Branco Casa Grande	0.597189585	0.507343068	
Casa Grande Catas Altas	0.571453658	0.471391576	
Catas Altas da Noruega	0.371433038	0.33549327	
Conceição do Mato Dentro	0.420308232	0.320409062	
Confins	0.570464709	0.501055272	
Congonhas	0.398535648	0.327879461	
Congonnas do Norte	0.462087083	0.378076101	
Conselheiro Lafaiete	0.455419735	0.369024993	
Contagem	0.433419733	0.534799074	
Cordisburgo	0.442216369	0.34480799	
Cristiano Otoni	0.601698444	0.526794704	
Crucilândia	0.61062519	0.53454534	
Desterro de Entre Rios	0.542006563	0.452907552	
Diogo de Vasconcelos	0.469372826	0.393517537	
Dionísio	0.516115618	0.432689495	
Dom Joaquim	0.403862133	0.326013288	
Entre Rios de Minas	0.642196736	0.569318111	
Esmeraldas	0.508494535	0.407828494	
Ferros	0.482470188	0.374256552	
Florestal	0.550838995	0.464911555	
Fortuna de Minas	0.594185393	0.509906959	
Funilândia	0.408811192	0.319362008	
		continuo	

continuação		
Ibirité	0.664771215	0.59828187
Igarapé	0.732571844	0.680744533
Inhaúma	0.594562145	0.502272582
Itabira	0.404518121	0.300663501
Itabirito	0.486181083	0.394593466
Itaguara	0.485383281	0.392365508
Itambé do Mato Dentro	0.42240929	0.338428436
Itatiaiuçu	0.736951406	0.685830078
Itaverava	0.448674959	0.36863708
Jaboticatubas	0.361655425	0.272930391
Jeceaba	0.610163524	0.534881474
Jequitibá	0.618533458	0.5321321
João Monlevade	0.600374759	0.525393203
Juatuba	0.524912412	0.438237317
Lagoa Santa	0.517875931	0.423538289
Maravilhas	0.598564241	0.514054934
Mariana	0.582575773	0.486078571
Mário Campos	0.732165848	0.681989468
Mateus Leme	0.522679884	0.43095243
Matozinhos	0.379759259	0.292646562
Moeda	0.560866978	0.474408885
Morro do Pilar	0.607800684	0.527901275
Nova Era	0.514550909	0.406047603
Nova União	0.701312984	0.638305267
Onça de Pitangui	0.634303851	0.553363171
Ouro Branco	0.498080152	0.410575563
Ouro Preto	0.439669549	0.338583061
Papagaios	0.561588088	0.463090032
Pará de Minas	0.567313581	0.464742158
Paraopeba	0.445951614	0.344866799
Passabém	0.132309722	0.118562209
Pedro Leopoldo	0.554305422	0.462953674
Pequi	0.528563729	0.434110947
Piedade dos Gerais	0.562242215	0.481557646
Pitangui	0.55770922	0.461848928
Prudente de Morais	0.345606931	0.259994886
Queluzito	0.523952776	0.443952542
Ribeirão das Neves	0.512601167	0.422421267
Rio Manso	0.532222639	0.447670708
Rio Piracicaba	0.720564635	0.661634115
Rio Vermelho	0.587918289	0.49303466
		

, •	~
contin	112620
Comun	uaçao

Communguo		
Sabará	0.524162717	0.434248657
Santa Bárbara	0.673461958	0.59022066
Santa Luzia	0.649211191	0.575793612
Santa Maria de Itabira	0.415490877	0.318065317
Santana de Pirapama	0.527149637	0.426381814
Santana do Riacho	0.361146261	0.282423754
Santana dos Montes	0.422384245	0.334941401
Santo Antônio do Itambé	0.365226422	0.279127432
Santo Antônio do Rio Abaixo	0.604048042	0.526941629
São Brás do Suaçui	0.597611312	0.517960957
São Domingos do Prata	0.576566743	0.477984369
São Gonçalo do Rio Abaixo	0.536800532	0.427740415
São Joaquim de Bicas	0.744309472	0.69589285
São José da Lapa	0.585656983	0.502524363
São José da Varginha	0.745786174	0.692953793
São José do Goiabal	0.424631145	0.340399733
São Sebastião do Rio Preto	0.529692648	0.461825132
Serra Azul de Minas	0.316469173	0.249149154
Serro	0.486278909	0.385777462
Sete Lagoas	0.232651412	0.176516522
Taquaraçu de Minas	0.547293954	0.454724002
Vespasiano	0.537010934	0.45749058
Eficiência média	0.516537058	0.434280659
Eficiência mediana	0.528563729	0.438237317
Eficiência mínima	0.132309722	0.118562209
Eficiência máxima	0.745786174	0.69589285
E (D 1, 1 1 '		

Tabela 69 – Eficiências da n	nesorregião Centra	al Mineira – DI	EA (2006)	~~~
Municípios				ECRS
Abaeté	0.67983	0.60399	0.67983	0.60399
Araújos	0.77347	0.63281	0.77347	0.63281
Augusto de Lima	0.84916	0.60551	0.84916	0.60551
Biquinhas	0.75141	0.59906	0.75141	0.59906
Bom Despacho	0.72867	0.66698	0.72867	0.66698
Buenópolis	0.82115	0.57866	0.82115	0.57866
Cedro do Abaeté	0.90218	0.60989	0.90218	0.60989
Corinto	0.71955	0.61516	0.71955	0.61516
Curvelo	0.75026	0.72358	0.75026	0.72358
Dores do Indaiá	0.72907	0.63046	0.72907	0.63046
Estrela do Indaiá	0.84136	0.72377	0.84136	0.72377
Felixlândia	0.78888	0.69014	0.78888	0.69014
Inimutaba	0.72899	0.58263	0.72899	0.58263
Japaraíba	0.77283	0.60275	0.77283	0.60275
Joaquim Felício	0.78407	0.58074	0.78407	0.58074
Lagoa da Prata	0.8269	0.76633	0.8269	0.76633
Leandro Ferreira	0.77494	0.63049	0.77494	0.63049
Luz	0.742	0.67722	0.742	0.67722
Martinho Campos	0.72845	0.63988	0.72845	0.63988
Moema	0.7807	0.6304	0.7807	0.6304
Monjolos	0.80306	0.61715	0.80306	0.61715
Morada Nova de Minas	0.80196	0.76097	0.80196	0.76097
Morro da Garça	0.75634	0.62909	0.75634	0.62909
Paineiras	0.74284	0.62792	0.74284	0.62792
Pompéu	0.72695	0.67781	0.72695	0.67781
Presidente Juscelino	0.74557	0.60639	0.74557	0.60639
Quartel Geral	0.78343	0.65413	0.78343	0.65413
Santo Hipólito	0.7899	0.67	0.7899	0.67
Serra da Saudade	0.81043	0.63316	0.81043	0.63316
Três Marias	0.70356	0.62574	0.70356	0.62574
Eficiência média	0.77126	0.64309	0.77126	0.64309
Eficiência mediana	0.77315	0.63043	0.77315	0.63043
Eficiência mínima	0.67983	0.57866	0.67983	0.57866
Eficiência máxima	0.90218	0.76633	0.90218	0.76633

E^{VRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos variáveis de escala E^{DRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos decrescente de escala E^{IRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos crescente de escala E^{CRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos constante de escala

Tabela 70 – Eficiências da mesorregião Central Mineira – SFA (2006)

	Distribuição do erro			
Municípios	normal-truncada	meia-normal		
Abaeté	0.493120129	0.381760187		
Araújos	0.5911961	0.505405048		
Augusto de Lima	0.565549703	0.474774416		
Biquinhas	0.611283731	0.521896057		
Bom Despacho	0.485134515	0.373896527		
Buenópolis	0.47462499	0.386355624		
Cedro do Abaeté	0.378653828	0.297857422		
Corinto	0.32310314	0.239954801		
Curvelo	0.268032241	0.216897176		
Dores do Indaiá	0.455244512	0.346796281		
Estrela do Indaiá	0.627738237	0.54345645		
Felixlândia	0.423789108	0.320283566		
Inimutaba	0.411055699	0.323136037		
Japaraíba	0.642621438	0.572852281		
Joaquim Felício	0.378101951	0.291388229		
Lagoa da Prata	0.500773257	0.402449693		
Leandro Ferreira	0.588678267	0.496837928		
Luz	0.430898019	0.328896398		
Martinho Campos	0.579703388	0.477834898		
Moema	0.533160421	0.443585523		
Monjolos	0.516423555	0.421890651		
Morada Nova de Minas	0.182616359	0.153790303		
Morro da Garça	0.610495205	0.523321825		
Paineiras	0.482652442	0.377389905		
Pompéu	0.439470479	0.335314648		
Presidente Juscelino	0.455161459	0.355876267		
Quartel Geral	0.552090079	0.453320985		
Santo Hipólito	0.363544789	0.279291033		
Serra da Saudade	0.571432972	0.476931084		
Três Marias	0.63866828	0.546276302		
Eficiência média	0.485833943	0.395657251		
Eficiência mediana	0.489127322	0.384057906		
Eficiência mínima	0.182616359	0.153790303		
Eficiência máxima	0.642621438	0.572852281		

Tabela 71 – Eficiências da mesorreg	gião Campo da	s Vertentes -)
Municípios	EVRS	EDRS	E ^{IRS}	ECRS
Alfredo Vasconcelos	0.9392	0.895	0.9392	0.895
Antônio Carlos	0.76392	0.66477	0.76392	0.66477
Barbacena	0.68336	0.61158	0.68336	0.61158
Barroso	0.85407	0.59119	0.85407	0.59119
Capela Nova	0.79894	0.59626	0.79894	0.59626
Caranaíba	0.74712	0.53859	0.74712	0.53859
Carandaí	0.85312	0.76952	0.85312	0.76952
Carrancas	0.6759	0.56459	0.6759	0.56459
Conceição da Barra de Minas	0.78501	0.64548	0.78501	0.64548
Coronel Xavier Chaves	0.83759	0.7014	0.83759	0.7014
Desterro do Melo	0.85927	0.67341	0.85927	0.67341
Dores de Campos	0.85123	0.66873	0.85123	0.66873
Ibertioga	0.76983	0.62179	0.76983	0.62179
Ijaci	0.80048	0.64615	0.80048	0.64615
Ingaí	0.7699	0.65682	0.7699	0.65682
Itumirim	0.74372	0.61991	0.74372	0.61991
Itutinga	0.74978	0.61556	0.74978	0.61556
Lagoa Dourada	0.73036	0.64773	0.73036	0.64773
Lavras	0.69659	0.62955	0.69659	0.62955
Luminárias	0.7583	0.66842	0.7583	0.66842
Madre de Deus de Minas	0.77066	0.67712	0.77066	0.67712
Nazareno	0.74346	0.64226	0.74346	0.64226
Nepomuceno	0.70441	0.64459	0.70441	0.64459
Piedade do Rio Grande	0.78866	0.62906	0.78866	0.62906
Prados	0.76189	0.60798	0.76189	0.60798
Resende Costa	0.69104	0.57889	0.69104	0.57889
Ressaquinha	0.80171	0.68642	0.80171	0.68642
Ribeirão Vermelho	0.87679	0.68148	0.87679	0.68148
Ritápolis	0.77695	0.65169	0.77695	0.65169
Santa Bárbara do Tugúrio	0.7917	0.61515	0.7917	0.61515
Santana do Garambéu	0.83856	0.62011	0.83856	0.62011
São João del Rei	0.7085	0.6206	0.7085	0.6206
São Tiago	0.7108	0.59624	0.7108	0.59624
Senhora dos Remédios	0.72769	0.58687	0.72769	0.58687
Tiradentes	0.88395	0.57199	0.88395	0.57199
Eficiência média	0.77841	0.64105	0.77841	0.64105
Eficiência mediana	0.7699	0.62955	0.7699	0.62955
Eficiência mínima	0.6759	0.53859	0.6759	0.53859
Eficiência máxima	0.9392	0.895	0.9392	0.895
Fonto: Posultados da posquisa				

Tabela 72 – Eficiências da mesorregião Campo das Vertentes – SFA (2006)

	Distribuição do erro		
Municípios	normal-truncada meia-normal		
Alfredo Vasconcelos	0.135546023	0.125136711	
Antônio Carlos	0.483337477	0.38843129	
Barbacena	0.615277198	0.531959092	
Barroso	0.542080026	0.469861032	
Capela Nova	0.439228072	0.361734599	
Caranaíba	0.569735935	0.472422724	
Carandaí	0.682835165	0.613498147	
Carrancas	0.438168278	0.340208293	
Conceição da Barra de Minas	0.577314356	0.489863845	
Coronel Xavier Chaves	0.71681846	0.659848405	
Desterro do Melo	0.529905555	0.437116972	
Dores de Campos	0.494255823	0.411786648	
Ibertioga	0.575052693	0.488781221	
Ijaci	0.551501154	0.470394622	
Ingaí	0.554635819	0.463557481	
Itumirim	0.509286266	0.421190992	
Itutinga	0.632889035	0.558324672	
Lagoa Dourada	0.462059387	0.367666918	
Lavras	0.490754643	0.390776082	
Luminárias	0.512985092	0.413980447	
Madre de Deus de Minas	0.49036475	0.393354462	
Nazareno	0.495931886	0.402254896	
Nepomuceno	0.429029804	0.334940173	
Piedade do Rio Grande	0.577741138	0.494443439	
Prados	0.548336971	0.462046762	
Resende Costa	0.415400878	0.329261532	
Ressaquinha	0.617626935	0.535269729	
Ribeirão Vermelho	0.610635566	0.538061707	
Ritápolis	0.466089034	0.371232065	
Santa Bárbara do Tugúrio	0.580782719	0.497646196	
Santana do Garambéu	0.488144998	0.404735482	
São João del Rei	0.501456157	0.401652778	
São Tiago	0.588455579	0.50017869	
Senhora dos Remédios	0.446539828	0.360768229	
Tiradentes	0.587454829	0.516849339	
	A = 0.1=0.1===	A 110=10=0	
Eficiência média	0.524504501	0.440549591	
Eficiência mediana	0.529905555	0.437116972	
Eficiência mínima	0.135546023	0.125136711	

continuação

Eficiência máxima 0.71681846 0.659848405

Tabela 73 – Eficiências da mesor	rregião Jequitir	nhonha – DE	A (2006)	
Municípios	EVRS	EDRS	E ^{IRS}	ECRS
Almenara	0.76191	0.66308	0.76191	0.66308
Angelândia	0.73028	0.63422	0.73028	0.63422
Araçuaí	0.73225	0.56475	0.73225	0.56475
Aricanduva	0.7303	0.49067	0.7303	0.49067
Bandeira	0.75453	0.60275	0.75453	0.60275
Berilo	0.69745	0.54125	0.69745	0.54125
Cachoeira de Pajeú	0.68803	0.51953	0.68803	0.51953
Capelinha	0.83932	0.76853	0.83932	0.76853
Caraí	0.76749	0.65562	0.76749	0.65562
Carbonita	0.75163	0.64629	0.75163	0.64629
Chapada do Norte	0.73646	0.56146	0.73646	0.56146
Comercinho	0.72694	0.55713	0.72694	0.55713
Coronel Murta	0.79799	0.58667	0.79799	0.58667
Couto de Magalhães de Minas	0.83826	0.58257	0.83826	0.58257
Datas	0.80405	0.6341	0.80405	0.6341
Diamantina	0.74674	0.62587	0.74674	0.62587
Divisópolis	0.72626	0.56501	0.72626	0.56501
Felício dos Santos	0.67391	0.52415	0.67391	0.52415
Felisburgo	0.81559	0.65589	0.81559	0.65589
Francisco Badaró	0.74477	0.55851	0.74477	0.55851
Gouveia	0.79631	0.57396	0.79631	0.57396
Itamarandiba	0.69651	0.62869	0.69651	0.62869
Itaobim	0.78754	0.6353	0.78754	0.6353
Itinga	0.72838	0.58637	0.72838	0.58637
Jacinto	0.72481	0.59829	0.72481	0.59829
Jenipapo de Minas	0.84594	0.63722	0.84594	0.63722
Jequitinhonha	0.86863	0.85319	0.86863	0.85319
Joaíma	0.73093	0.61253	0.73093	0.61253
Jordânia	0.78396	0.62823	0.78396	0.62823
José Gonçalves de Minas	0.88638	0.66795	0.88638	0.66795
Leme do Prado	0.7539	0.49694	0.7539	0.49694
Mata Verde	0.77302	0.59536	0.77302	0.59536
Medina	0.8158	0.69825	0.8158	0.69825
Minas Novas	0.71726	0.6245	0.71726	0.6245
Monte Formoso	0.77035	0.51983	0.77035	0.51983
Novo Cruzeiro	0.68492	0.57998	0.68492	0.57998
Padre Paraíso	0.75858	0.60355	0.75858	0.60355
Palmópolis	0.72767	0.52756	0.72767	0.52756
Pedra Azul	0.74586	0.63305	0.74586	0.63305
Ponto dos Volantes	0.73391	0.52723	0.73391	0.52723
	·			

continuação

Rio do Prado	0.79558	0.5093	0.79558	0.5093
Rubim	0.79254	0.64454	0.79254	0.64454
Salto da Divisa	0.77701	0.64186	0.77701	0.64186
Santa Maria do Salto	0.80896	0.49526	0.80896	0.49526
Santo Antônio do Jacinto	0.73084	0.51138	0.73084	0.51138
São Gonçalo do Rio Preto	0.84765	0.51156	0.84765	0.51156
Senador Modestino Gonçalves	0.75654	0.55194	0.75654	0.55194
Turmalina	0.73536	0.6211	0.73536	0.6211
Veredinha	0.73942	0.60147	0.73942	0.60147
Virgem da Lapa	0.74034	0.55955	0.74034	0.55955
Eficiência média	0.76238	0.59628	0.76238	0.59628
Eficiência mediana	0.75276	0.59682	0.75276	0.59682
Eficiência mínima	0.67391	0.49067	0.67391	0.49067
Eficiência máxima	0.88638	0.85319	0.88638	0.85319

Fonte: Resultados da pesquisa.

E^{VRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos variáveis de escala E^{DRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos decrescente de escala E^{IRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos crescente de escala E^{CRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos constante de escala

Tabela 74 – Eficiências da mesorregião Jequitinhonha – SFA (2006)

	Distribuição do erro normal-truncada meia-normal		
Municípios			
Almenara	0.245395538	0.183439123	
Angelândia	0.497450744	0.404911659	
Araçuaí	0.463393207	0.391167271	
Aricanduva	0.508967802	0.424908289	
Bandeira	0.559667575	0.462199136	
Berilo	0.580005716	0.496010882	
Cachoeira de Pajeú	0.403225136	0.32914572	
Capelinha	0.664600632	0.590394045	
Caraí	0.465136169	0.375401861	
Carbonita	0.289649966	0.220404681	
Chapada do Norte	0.32118651	0.252154716	
Comercinho	0.3918432	0.302110757	
Coronel Murta	0.418132701	0.363109094	
Couto de Magalhães de Minas	0.313075715	0.243443298	
Datas	0.558516882	0.46908561	
Diamantina	0.302794486	0.226594434	
Divisópolis	0.450167753	0.355450841	
Felício dos Santos	0.128968844	0.109623412	
Felisburgo	0.51469572	0.419131194	
Francisco Badaró	0.253791114	0.203033686	
Gouveia	0.461215213	0.375648381	
Itamarandiba	0.476172101	0.367351406	
Itaobim	0.375124727	0.289868395	
Itinga	0.319430501	0.238325484	
Jacinto	0.374402543	0.274547423	
Jenipapo de Minas	0.097796431	0.09393037	
Jequitinhonha	0.034642404	0.03381076	
Joaíma	0.435356777	0.326680435	
Jordânia	0.623812273	0.529387832	
José Gonçalves de Minas	0.291465784	0.232934294	
Leme do Prado	0.648528032	0.58257961	
Mata Verde	0.694395292	0.630362032	
Medina	0.314422334	0.234216391	
Minas Novas	0.224756467	0.173656301	
Monte Formoso	0.498599101	0.418412403	
Novo Cruzeiro	0.481372041	0.3760557	
Padre Paraíso	0.598175307	0.505826325	
Palmópolis	0.429569191	0.325483922	
Pedra Azul	0.283568092	0.211032332	
		continua	

. •	~
continu	acao

Ponto dos Volantes	0.340265526	0.264750871
Rio do Prado	0.359044345	0.282081352
Rubim	0.339936936	0.252795293
Salto da Divisa	0.36297919	0.26865868
Santa Maria do Salto	0.374326265	0.307529194
Santo Antônio do Jacinto	0.487510541	0.404654922
São Gonçalo do Rio Preto	0.429751224	0.373578187
Senador Modestino Gonçalves	0.400339201	0.317768239
Turmalina	0.606089334	0.518092065
Veredinha	0.681162317	0.611978986
Virgem da Lapa	0.293339007	0.223311827
Eficiência média	0.413364278	0.337340582
Eficiência mediana	0.410678918	0.326082178
Eficiência mínima	0.034642404	0.03381076
Eficiência máxima	0.694395292	0.630362032
	·	

Tabela 75 – Eficiências da mesorregião Vale do Mucuri – DEA (2006)

Municípios Municípios	E ^{VRS}	$\frac{100 \text{ Niucuii} - 1}{\text{E}^{\text{DRS}}}$	EIRS	ECRS
Águas Formosas	0.78189	0.65909	0.78189	0.65909
Ataléia	0.70356	0.59411	0.70356	0.59411
Bertópolis	0.80073	0.60995	0.80073	0.60995
Carlos Chagas	0.7544	0.66403	0.7544	0.66403
Catuji	0.80893	0.61135	0.80893	0.61135
Crisólita	0.77799	0.63481	0.77799	0.63481
Franciscópolis	0.74691	0.60832	0.74691	0.60832
Frei Gaspar	0.76171	0.61783	0.76171	0.61783
Fronteira dos Vales	0.79202	0.58663	0.79202	0.58663
Itaipé	0.74644	0.62735	0.74644	0.62735
Ladainha	0.79607	0.69169	0.79607	0.69169
Maxacalis	0.79501	0.5977	0.79501	0.5977
Malacacheta	0.74013	0.60626	0.74013	0.60626
Nanuque	0.74549	0.64655	0.74549	0.64655
Novo Oriente de Minas	0.78148	0.58176	0.78148	0.58176
Ouro Verde de Minas	0.77686	0.57681	0.77686	0.57681
Pavão	0.7477	0.61443	0.7477	0.61443
Poté	0.76897	0.62883	0.76897	0.62883
Santa Helena de Minas	0.76993	0.55559	0.76993	0.55559
Serra dos Aimorés	0.87876	0.75499	0.87876	0.75499
Setubinha	0.73712	0.61226	0.73712	0.61226
Teófilo Otoni	0.6788	0.60046	0.6788	0.60046
Umburatiba	0.86374	0.6505	0.86374	0.6505
Eficiência média	0.77194	0.6231	0.77194	0.6231
Eficiência mediana	0.76993	0.61226	0.76993	0.61226
Eficiência mínima	0.6788	0.55559	0.6788	0.55559
Eficiência máxima	0.87876	0.75499	0.87876	0.75499

Fonte: Resultados da pesquisa.

E^{VRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos variáveis de escala E^{DRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos decrescente de escala E^{IRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos crescente de escala E^{CRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos crescente de escala E^{CRS} – eficiência econômica sob o pressuposto de uma tecnologia com retornos constante de escala

Tabela 76 – Eficiências da mesorregião Vale do Mucuri – SFA (2006)

Municípios	Distribuição do erro		
Municípios	normal-truncada	meia-normal	
Águas Formosas	0.445780293	0.343754384	
Ataléia	0.403447308	0.299976499	
Bertópolis	0.535008663	0.430803155	
Carlos Chagas	0.508042958	0.411194033	
Catuji	0.380315664	0.31480027	
Crisólita	0.440350813	0.333498591	
Franciscópolis	0.443175538	0.34042326	
Frei Gaspar	0.530475034	0.426170204	
Fronteira dos Vales	0.55487215	0.462361052	
Itaipé	0.344758332	0.261638044	
Ladainha	0.191356441	0.147679012	
Maxacalis	0.47543325	0.364128871	
Malacacheta	0.507661456	0.402796194	
Nanuque	0.422625107	0.315423737	
Novo Oriente de Minas	0.545936372	0.447184659	
Ouro Verde de Minas	0.514436214	0.430010062	
Pavão	0.428160397	0.328206394	
Poté	0.491520423	0.394619034	
Santa Helena de Minas	0.516814313	0.425524618	
Serra dos Aimorés	0.364536456	0.272204179	
Setubinha	0.396009199	0.308174382	
Teófilo Otoni	0.41472948	0.306727047	
Umburatiba	0.553237309	0.448548385	
Eficiência média	0.452551442	0.357210698	
Eficiência mediana	0.445780293	0.343754384	
Eficiência mínima	0.191356441	0.147679012	
Eficiência máxima	0.55487215	0.462361052	