
ESCOLA POLITÉCNICA
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

DOUTORADO EM CIÊNCIA DA COMPUTAÇÃO

JUAREZ MONTEIRO DOS SANTOS JÚNIOR

ADVANCES IN IMITATION LEARNING FROM
OBSERVATION

Porto Alegre
2023

PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
SCHOOL OF TECHNOLOGY

COMPUTER SCIENCE GRADUATE PROGRAM

ADVANCES IN IMITATION
LEARNING FROM

OBSERVATION

JUAREZ MONTEIRO DOS SANTOS
JÚNIOR

Doctoral Thesis submitted to the Pontifical
Catholic University of Rio Grande do Sul
in partial fulfillment of the requirements
for the degree of Ph. D. in Computer
Science.

Advisor: Prof. Dr. Rodrigo Coelho Barros

Porto Alegre
2023

JUAREZ MONTEIRO DOS SANTOS JÚNIOR

ADVANCES IN IMITATION LEARNING FROM
OBSERVATION

This Doctoral Thesis has been submitted in
partial fulfillment of the requirements for the
degree of Ph. D. in Computer Science of
the Computer Science Graduate Program,
School of Technology of the Pontifical
Catholic University of Rio Grande do Sul

Sanctioned on August 30th, 2023.

COMMITTEE MEMBERS:

Profa. Dra. Isabel Harb Manssour (PPGCC/PUCRS)

Prof. Dr. Gabriel de Oliveira Ramos (PPGCA/UNISINOS)

Prof. Dr. Adré Pereira Grahal (PPGC/UFRGS)

Prof. Dr. Rodrigo Coelho Barros (PPGCC/PUCRS - Advisor)

Com toda a minha gratidão, dedico este trabalho aos meus pais e à minha noiva.
O amor incondicional, o apoio constante e a infinita paciência de vocês têm sido a minha
fonte de energia. Vocês nunca deixaram de acreditar em mim.

“The ending isn’t any more important than any
of the moments leading to it.”
(To the Moon)

ACKNOWLEDGMENTS

Gostaria de expressar a minha sincera gratidão à Pontifícia Universidade Católica
do Rio Grande do Sul e a todos os envolvidos no Programa de Pós-Graduação em Ciência
da Computação. Agradeço por confiarem em mim e por me proporcionarem a oportunidade
de conduzir a minha pesquisa, oferecendo apoio inestimável ao longo de todo o processo
acadêmico.

Quero estender meus agradecimentos ao meu orientador, Rodrigo Coelho Barros,
pela sua paciência e orientação. Obrigado por compartilhar seu conhecimento e confi-
ança ao longo destes anos. Juntos, enfrentamos uma série de desafios e momentos de
aprendizado, e ao refletir sobre essa jornada, posso claramente ver a significativa evolução
que essa colaboração proporcionou em minha vida acadêmica e profissional. Suas con-
tribuições foram inestimáveis. Obrigado por tudo.

Também é de grande importância para mim expressar minha sincera gratidão a
todos os professores que desempenharam um papel fundamental em minha formação como
estudante de doutorado. Em particular, quero destacar o professor Felipe Rech Meneguzzi,
cujo apoio e profundo conhecimento acadêmico sempre estiveram disponíveis para mim.
Sua constante disposição em oferecer suporte e apoio contribuiu significativamente para a
minha jornada acadêmica.

Não posso deixar de agradecer aos colegas do grupo de pesquisa Machine Learn-
ing Theory and Applications Research Group (MALTA), bem como meu amigo e parceiro de
pesquisa, Nathan Schneider Gavenski. Seu apoio constante e amizade foram essenciais
para que eu enxergasse a capacidade de concluir este capítulo da minha vida. Espero que
nossa colaboração na pesquisa continue a trazer valiosas contribuições para a ciência.

Quero expressar minha profunda gratidão aos meus pais pelo amor incondicional
e pela confiança constante que sempre depositaram em mim. Sem dúvida, esses fatores
foram fundamentais para que eu alcançasse este marco.

Por último, mas definitivamente não menos importante, desejo agradecer à minha
noiva, Raquel Alves Marini. Juntos, enfrentamos desafios que incluíram a busca por uma
bolsa acadêmica no exterior e a jornada dessa durante uma pandemia global. Agradeço
por ser a pessoa que esteve ao meu lado em cada momento. Seu poio foi inestimável, e
me considero imensamente grato e afortunado por tê-la ao meu lado. Obrigado por tudo.

AVANÇOS EM APRENDIZADO DE IMITAÇÃO POR OBSERVAÇÃO

RESUMO

A Imitação por Observação, técnica computacional destinada ao ensino de agentes por
meio da observação de demonstrações de especialistas, enfrenta desafios significativos
como baixo desempenho, problemas com mínimos locais e exploração ineficaz do espaço
de estados. Apesar das recentes abordagens empregarem dados não rotulados para deco-
dificar informações de maneira auto-supervisionada, persistem os desafios a serem supera-
dos. Em resposta a tais desafios, a presente tese introduz quatro novos métodos destinados
à imitação por observação. Ainda, apresenta um estudo aprofundado sobre a resiliência
dos métodos de aprendizado por imitação, proporcionando uma melhor compreensão de
seu desempenho e robustez em diversos contextos. As contribuições dos métodos propos-
tos são evidenciadas pelos resultados positivos alcançados. Foi verificado que o uso de um
mecanismo de amostragem pode aperfeiçoar os ciclos iterativos de aprendizado, tornando-
os mais equilibrados. A inclusão de um mecanismo de exploração revelou potencial para
exceder o desempenho de especialistas e estabelecer novos patamares na área. Além
disso, o emprego de mecanismos de aprendizado por reforço e de aprendizado adversário
mostrou-se capaz de gerar políticas mais eficientes, obtendo resultados significativos com
menos amostras. As estratégias propostas melhoraram o desempenho e a eficiência dos
atuais métodos, ao mesmo tempo que minimizam a complexidade da aquisição de dados
de especialistas.

Palavras-Chave: Aprendizado por imitação, Aprendizado por observação, Aprendizado
profundo.

ADVANCES IN IMITATION LEARNING FROM OBSERVATION

ABSTRACT

Imitation from Observation, a computational technique that instructs agents by observing
expert demonstrations, suffers from considerable hurdles such as sub-optimal performance,
local minima issues, and ineffective state-space exploration. Although recent strategies
leverage unlabeled data to decode information self-supervisedly, persistent challenges re-
main. This thesis presents four novel methods for imitation learning from observation in
response to those challenges. Furthermore, a comprehensive study on the resilience of imi-
tation learning methods is provided to enable a nuanced comprehension of their robustness
and performance across various scenarios. The achieved positive outcomes substantiate
the merits of the proposed methods. A sampling mechanism is shown to enhance itera-
tive learning cycles, rendering them more balanced. Integrating an exploration mechanism
shows potential to surpass expert performance, establishing state-of-the-art results in the
field. Moreover, the employment of reinforcement and adversarial learning mechanisms
demonstrate their ability to forge more efficient policies, accomplishing good results with
fewer samples. The proposed strategies boost performance and efficiency while minimizing
the complexity of acquiring expert data.

Keywords: Imitation Learning, Behavioral Cloning, Self-supervised learning.

LIST OF FIGURES

Figure 3.1 – Representation of the Imitation Model (Policy) and the Discriminator.
Image adapted from the work proposed by Torabi et al. [48]. 42

Figure 4.1 – Visual representation of the Acrobot environment. 48

Figure 4.2 – Visual representation of the CartPole environment. 48

Figure 4.3 – Visual representation of the Gym-Maze environment. 49

Figure 4.4 – Visual representation of the LunarLander environment. 49

Figure 4.5 – Visual representation of the MountainCar environment. 50

Figure 5.1 – Expert demonstrations of a 5 × 5 Gym-Maze configuration. Below
each state image, we indicate the number of expert visits. The blue line
depicts the path chosen by our ABCO agent. 59

Figure 5.2 – IDM predictions of the expert examples through time. 60

Figure 5.3 – L2 distance for the average of each action for each iteration normal-
ized by the expert and random samples in the 5× 5 mazes. 60

Figure 6.1 – Heatmap visualization of the gradient filters activating for the maze
environment. The first row shows the input image, while the second row
shows the gradient activation. 68

Figure 6.2 – (a) IDM predictions for the expert examples through time. (b) Per-
centage of choices in which the MAP estimation is not selected by the self-
decaying exploration rate. 69

Figure 7.1 – Results from multiple environments, using five different experts per
environment and four algorithms. The x-axis represents the expert reward,
while the y-axis represents the cumulative reward over a hundred runs for
each agent. The lines on each graph show the patterns of the expert and
one or more algorithms, highlighting their distinct behaviors. 79

Figure 8.1 – Combined Reinforcement and Imitation Learning (CRIL) framework. . 83

Figure 8.2 – Visualization of the MountainCar-v0 environment. Each figure illus-
trates the maximum a posteriori probabilities in a 3D mesh. 89

Figure 8.3 – Comparison between policies trained in the MountainCar-v0 envi-
ronment. We only color the tiles that have the same action as π∗ for easier
visualization. 90

Figure 8.4 – Boxplot of the Average Episodic Reward for all methods and envi-
ronments. 93

Figure 9.1 – Self-Supervised Adversarial Imitation Learning (SAIL) training pipeline. 98

Figure 9.2 – Error rate obtained from SAIL for 5 different runs in the Acrobot en-
vironment. 107

Figure 10.1 – Contributions during my PhD journey. 113

LIST OF TABLES

Table 3.1 – List of related works, as well as the models, metrics and environments
used. 44

Table 4.1 – Information regarding the five selected environments for imitation learn-
ing. 47

Table 5.1 – Comparison of Performance and Average Episodic Reward between
ABCO (our approach) and related work. 57

Table 5.2 – Ablation study evaluating the impact of the attention and sampling
modules in the 5× 5 Maze environment. 61

Table 6.1 – Performance and Average Episode Reward for IUPE and related work. 66

Table 6.2 – Ablation study considering IUPE’s 3 main components in the maze
environment. 67

Table 7.1 – Average Episodic Reward (AER) for experts with decreasing quality.
Expert1 is the optimal expert, while Expert5 is the worst-performing expert
in our experimental analyses. 74

Table 7.2 – Performance (P) and Average Episodic Reward (AER) for all algo-
rithms on all environments using the optimal expert. 75

Table 7.3 – Performance (P) and Average Episodic Reward (AER) for all algo-
rithms on all environments using Expert2. 76

Table 7.4 – Performance (P) and Average Episodic Reward (AER) for all algo-
rithms on all environments using Expert3. 76

Table 7.5 – Performance (P) and Average Episodic Reward (AER) for all algo-
rithms on all environments using Expert4. 77

Table 7.6 – Performance (P) and Average Episodic Reward (AER) for all algo-
rithms on all environments using Expert5. 78

Table 8.1 – KL Divergence from all three models, when compared to an optimal
policy (π∗). 89

Table 8.2 – Performance (P) and Average Episode Reward (AER) for each IL
methods with only one expert’s trajectory as data. 91

Table 8.3 – The average number of timesteps required by each algorithm to reach
the maximum reward in each environment. 92

Table 8.4 – Quantitative results for all RL and IL algorithms used in this study as
baselines. We also display the average Performance of all environments.
DQN1 is the unmodified DQN architecture [29], while DQN2 is the version
from Schaul et al. [39]. 93

Table 9.1 – SAIL and baselines results for all environments. 102

Table 9.2 – Results for SAIL with different sample sizes. 104

Table 9.3 – Results obtained from SAIL’s modules, presenting the accuracy of the
Discriminator (D), the loss of the Generator (G), and the performance of the
Policy (πθ) across different environments. 105

LIST OF ACRONYMS

ABCO – Augmented Behavioral Cloning from Observation

AER – Average Episodic Reward

BC – Behavioral Cloning

BCO – Behavioral Cloning from Observation

CNN – Convolutional Neural Network

CRIL – Combined Reinforcement and Imitation Learning

DQN – Deep Q-Network

GAIFO – Generative Adversarial Imitation from Observation

GAIL – Generative Adversarial Imitation Learning

IDM – Inverse Dynamics Model

IL – Imitation Learning

ILPO – Imitating Latent Policies from Observation

IFO – Imitation from Observation

IUPE – Imitating Unknown Policies via Exploration

LFD – Learning from Demonstration

LSTM – Long Short-Term Memory

MAP – Maximum a Posteriori

MDP – Markov Decision Process

ML – Machine Learning

MLP – Multilayer Perceptron

P – Performance

PM – Policy Model

SA – Self-Attention

TRPO – Trust Region Policy Optimization

CONTENTS

1 INTRODUCTION . 27

1.1 DOCUMENT ORGANIZATION . 28

2 BACKGROUND . 29

2.1 REINFORCEMENT LEARNING . 29

2.1.1 POLICY LEARNING . 30

2.1.2 EXPLORATION VS. EXPLOITATION . 31

2.2 IMITATION LEARNING . 31

2.2.1 BEHAVIOR CLONING . 32

2.2.2 IMITATION LEARNING FROM OBSERVATION . 33

2.3 ADVERSARIAL LEARNING . 35

2.4 TYPES OF ENVIRONMENT . 35

3 RELATED WORK . 37

3.1 BEHAVIOR CLONING FROM OBSERVATION . 37

3.1.1 INVERSE DYNAMICS MODEL . 38

3.1.2 POLICY MODEL . 38

3.1.3 ITERATIVE MODEL . 39

3.2 IMITATING LATENT POLICIES FROM OBSERVATION 39

3.2.1 LATENT FORWARD DYNAMICS . 40

3.2.2 ACTION REMAPPING . 40

3.3 GENERATIVE ADVERSARIAL IMITATION LEARNING . 41

3.4 GENERATIVE ADVERSARIAL IMITATION FROM OBSERVATION 42

3.5 FINAL REMARKLS . 43

4 METHODOLOGY . 45

4.1 HYPOTHESIS . 45

4.2 GOALS . 45

4.3 METRICS . 46

4.4 ENVIRONMENTS . 47

5 AUGMENTED BEHAVIOR CLONING FROM OBSERVATION 51

5.1 INVERSE DYNAMICS MODEL AND POLICY MODEL . 51

5.1.1 POLICY MODEL . 52

5.1.2 ITERATIVE BEHAVIORAL CLONING FROM OBSERVATION 53

5.2 SAMPLING METHOD . 54

5.3 SELF-ATTENTION . 55

5.4 IMPLEMENTATION AND RESULTS . 56

5.4.1 IMPLEMENTATION . 56

5.4.2 RESULTS . 57

5.5 DISCUSSION . 58

5.5.1 ABCO AND SELF-ATTENTION . 58

5.5.2 ABCO AND SAMPLING . 59

5.6 FINAL REMARKS . 61

6 IMITATING UNKNOWN POLICIES VIA EXPLORATION 63

6.1 SAMPLING METHOD . 63

6.2 EXPLORATION . 64

6.3 EXPERIMENTAL RESULTS . 65

6.3.1 RESULTS . 65

6.4 DISCUSSION . 67

6.4.1 SELF-ATTENTION . 67

6.4.2 SAMPLING . 68

6.4.3 EXPLORATION OVER MAXIMIZATION . 69

6.5 FINAL REMARKS . 70

7 RESILIENCE OVER SUB-OPTIMAL SAMPLES . 73

7.1 EXPERIMENTAL DESIGN . 73

7.2 RESULTS . 74

7.3 DISCUSSION . 79

7.4 FINAL REMARKS . 81

8 COMBINED REINFORCEMENT AND IMITATION LEARNING 83

8.1 REINFORCEMENT AND IMITATION LEARNING . 83

8.1.1 SELF-SUPERVISED IMITATION LEARNING . 84

8.1.2 EXPLORATION WITH NEURAL NETWORKS AND q-VALUES 84

8.2 COMBINING IMITATION AND REINFORCEMENT LEARNING 85

8.3 EXPERIMENTAL RESULTS . 87

8.3.1 POLICY OPTIMIZATION BEHAVIOR . 88

8.3.2 REINFORCEMENT LEARNING . 91

8.3.3 QUANTITATIVE RESULTS . 92

8.3.4 FINAL REMARKS . 95

9 SELF-SUPERVISED ADVERSARIAL IMITATION LEARNING 97

9.1 ADVERSARIAL APPROACH . 97

9.1.1 GOAL-AWARE FUNCTION . 99

9.1.2 GENERATIVE MODEL . 100

9.2 EXPERIMENTAL RESULTS . 102

9.2.1 RESULTS . 103

9.3 DISCUSSION . 104

9.3.1 SAMPLE EFFICIENCY . 105

9.3.2 IMITATION BEHAVIOR . 106

9.4 FINAL REMARKS . 107

10 CONCLUSION . 109

10.1 LIMITATIONS . 110

10.2 FUTURE WORK . 111

10.3 PUBLISHED WORK . 112

10.4 ON GOING WORK . 113

REFERENCES . 115

27

1. INTRODUCTION

Human nature has evolved various forms of comprehension and learning, includ-
ing the capacity to learn through observation. Individuals have leveraged this intrinsic ability
since their childhood. In the early stages, we can learn simple gestures by visually observ-
ing and mimicking others, even without direct access to the actions and intentions that led
to that movements [36]. As individuals grow and mature, they can learn a wide range of
skills from various sources, such as dancing, cooking, and painting, by simply observing
and emulating a teacher in the field. However, there are instances where the process of
acquiring skills by observation can pose challenges. For example, watching soccer players
execute complex movements can be insufficient in helping an individual break down the ac-
tions into understandable steps for learning. Clegg and Legare [8] address this problem in
“Instrumental and Conventional Interpretations of Behavior are Associated with Distinct Out-
comes in Early Childhood”, where they experiment with varying complexities and methods
of observation.

Imitation Learning (IL), also known as Learning from Demonstration (LfD), is a Ma-
chine Learning (ML) technique addressed both by supervised and reinforcement learning
perspectives. Its objective is to model how other entities or agents interact with their envi-
ronment or solve a specific task, thereby emulating their actions. These teachers, as they
are often referred to, provide practical examples for the learning algorithm [35]. This method
involves representing the teacher’s behavior as a series of demonstrations comprising state-
action pairs that showcase how the teacher performs a given task across various situations.
The learning entity, often called an agent, is then trained to mimic the teacher’s strategies
or approaches. This is done by establishing a connection between various scenarios and
their corresponding actions, generating behavior that closely resembles that of the teacher
in similar circumstances [18] Recent research has focused on approximating the scope of
human learning through Imitation from Observation (IfO) [47, 48]. This learning strategy
enables agents to learn by observing the teacher without direct access to its actions, the
so-called labels. Such a strategy has gained popularity in the literature and has been the
subject of several studies [27, 47].

While both LfD and IfO involve learning from an expert’s behavior, IfO is particularly
useful in scenarios where it is difficult or expensive to demonstrate the expert’s actions.
For example, having a human operator directly demonstrate a task to the robot in human-
robot interaction may be impractical. Instead, the robot can observe and learn from human
behavior through IfO. However, IfO brings specific challenges that can be detrimental to
the imitation process. These include uncertainty in observed situations, the complexity of
the examples used for learning, and situations where only partial information is available,
among others [47].

28

This thesis presents five distinct contributions to the field of Imitation from Obser-
vation that address these challenges, including the introduction of four novel methods. First,
we improve the Behavioral Cloning from Observation (BCO) framework [47] by introducing
a unique sample selection strategy and a self-attention mechanism. Subsequently, drawing
upon the improvements from the first method, we propose a second approach that incor-
porates an exploration strategy to boost performance even further. Third, we investigate
the resilience of IfO with limited samples. Fourth, we combine reinforcement and imitation
learning to improve sample efficiency. Finally, we introduce adversarial learning to guide
the function approximation process based on the teacher’s trajectories. These contributions
improve sample quality, exploration, and diversity of trajectories while enhancing the agent’s
ability to imitate expert behavior.

1.1 Document Organization

This thesis is organized and structured into ten chapters: Chapters 2 and 3 pro-
vide an introduction to the learning paradigms and current methods in imitation learning.
Chapter 4 outlines the methodology used in this work. Chapters 5 to 9 present and analyze
the proposed methods and contributions for the Imitation Learning area. Finally, Chapter 10
concludes this thesis by summarizing the proposed methods, discussing their limitations,
and suggesting directions for future research.

29

2. BACKGROUND

This chapter briefly introduces the concepts and techniques that form the founda-
tion of this thesis. The chapter is organized into three sections, each of which covers a
key area of this work: Reinforcement Learning (RL), Imitation Learning (IL), and types of
environments.

The first section introduces RL, a paradigm of machine learning in which an agent
learns to make decisions in an environment by interacting with it and receiving feedback via
a reward function that can be positive or negative. We discuss how RL works, its formulation
as a Markov Decision Process, and the key phases of the RL process: exploration and
exploitation.

In Section 2.2, we introduce IL, a technique that enables an agent to learn from
expert demonstrations. We discuss two common forms of IL: behavior cloning and imitation
learning from observation. We also explore how IL can be used in conjunction with RL and
Adversarial Learning to improve the performance of its algorithms.

Finally, in the third section, we discuss the different types of environments with
which an agent can interact in RL and IL. We cover the following types of environments:
deterministic, stochastic, episodic, and continuous. We also discuss how these types of
environments affect the performance of RL and IL algorithms.

2.1 Reinforcement Learning

Reinforcement Learning (RL) is a paradigm of machine learning in which an agent
learns to make decisions in an environment by interacting with it and receiving feedback in
the form of rewards or punishments [45]. RL aims to take actions that maximize a reward
signal over time. The agent achieves this by selecting actions based on a policy that maps
states to actions and maximizes the expected cumulative reward, also known as the return.

The RL problem is commonly formulated as a Markov Decision Process (MDP) [45],
a mathematical framework used to model sequential decision-making problems. An MDP
specifies a set of states, actions, transition probabilities, rewards, and discount factors. The
agent interacts with the environment by transitioning it from one state to another according
to the transition probabilities. The agent receives a reward from the environment for each
transition, which is used to update its policy and value estimates.

There are two main phases during the RL process: exploration and exploitation. In
the exploration phase, the agent interacts with the environment to acquire information about
the environment’s dynamics and to determine the optimal actions to take in each state. Once

30

the exploration phase is complete, the agent transitions to the exploitation phase, utilizing its
learned policy to take actions that maximize its expected cumulative reward.

RL practitioners have successfully applied the approach to various domains, in-
cluding game playing [30], robotics [26], and finance [33]. One of the main strengths of RL is
its capability to learn from feedback without the requirement of explicit supervision, making
it a powerful tool for autonomous decision-making in complex and dynamic environments.

In this thesis, we will use RL as a framework for studying Imitation Learning from
Observation (IfO). Specifically, we will investigate how RL can be used to learn from expert
demonstrations without access to their actions, using only the states of the environment.
We will explore how different types of environments (deterministic, stochastic, episodic, and
continuous) impact the performance of RL algorithms in IfO settings. Furthermore, we will
propose new algorithms that incorporate additional information, such as semantic labels or
human feedback, to improve the performance of RL in IfO settings.

2.1.1 Policy Learning

Policy optimization constitutes a fundamental component within the reinforcement
learning paradigm [45], where the overall objective is to enable an autonomous agent to
learn how to select actions that augment the expected aggregate reward over a temporal
continuum. Conceptually, the policy is a function that maps from states to actions, thus de-
lineating the agent’s interaction behavior within its operational environment. Consequently,
the crux of policy optimization lies in the development of an optimal policy capable of aug-
menting the expected cumulative reward.

Policy optimization bifurcates into two primary categories: on-policy and off-policy
learning [10]. On-policy learning is a methodology in which the agent procures the valuation
of the policy currently employed for decision-making processes. Conversely, off-policy learn-
ing entails learning the valuation of an alternate policy differing from the policy actively em-
ployed in decision-making. Consequently, while on-policy strategies can deliver enhanced
efficiency and stability, off-policy strategies offer expanded flexibility, facilitating learning from
a broader spectrum of experiences.

Several techniques have been propagated for policy optimization, including value-
based methods, policy gradient methods, and actor-critic methods [23]. Value-based meth-
ods target learning the optimal value function corresponding to a particular policy, subse-
quently deriving the optimal policy. Policy gradient methods focus on direct policy optimiza-
tion, conventionally by computing the gradient of the expected cumulative reward in relation
to the policy parameters. Lastly, actor-critic methods amalgamate value-based and policy
gradient techniques to concurrently learn the value function and policy.

31

Policy optimization remains an important element of reinforcement learning, and
its effective implementation is pivotal for achieving effective decision-making in an array of
application domains.

2.1.2 Exploration vs. Exploitation

One of the main challenges in RL is the exploration-exploitation dilemma, where
the agent must balance between exploring new actions to learn more about the environment
and exploiting its current knowledge to maximize rewards [19]. Exploration is necessary to
discover the optimal policy, while exploitation is necessary to reap the rewards of the already
learned policy.

Researchers have proposed several methods to address this challenge. One pop-
ular approach is the ϵ-greedy method, which selects a random action with probability ϵ and
the action with the highest estimated reward with probability 1− ϵ [45]. Another approach is
the Upper Confidence Bound (UCB) method, which selects actions based on an uncertainty
measure of their estimated reward [24].

The choice of exploration-exploitation method can significantly impact the agent’s
performance [4]. For example, excessive exploration can result in a slow convergence to the
optimal policy, while insufficient exploration can cause the agent to get stuck in sub-optimal
policies. Therefore, finding the right balance between exploration and exploitation is crucial
for the success of RL algorithms.

An incorrect balance between exploration and exploitation can significantly impact
the performance of reinforcement learning algorithms. If the agent explores too much, it may
spend too much time in states that are not relevant to the task at hand and need more time
exploiting the learned policy. On the other hand, if the agent exploits too much, it may be
unable to discover better policies thus getting stuck in local optima. Thus, finding the right
balance between exploration and exploitation is crucial for achieving good performance in
reinforcement learning tasks [29].

2.2 Imitation Learning

Human beings possess the remarkable capacity of acquiring new skills and knowl-
edge throughout their lives in a variety of ways. As a result, the process of learning through
observation and imitation of actions performed by others has been extensively studied [36].
For instance, infants learn basic motor skills such as walking by observing and mimicking
adult behavior. This ability to learn through imitation has been extensively examined in the

32

field of psychology [28], and more recently, it has emerged as a prominent area of investiga-
tion in the field of artificial intelligence.

Imitation learning, also known as learning from demonstration, is a sub-field of ma-
chine learning that aims to teach agents to perform tasks by imitating expert behavior [18].
One of the most popular methods of imitation learning in AI is behavior cloning [1], which
allows AI models to learn complex behaviors from expert demonstrations without requir-
ing explicit programming, making it a powerful tool for knowledge transfer and automation.
Behavior cloning has been successfully applied in various domains, including robotics and
video games [37, 47, 50]. However, this approach has important limitations, the main one
being the difficulty of acquiring data of expert demonstrations that capture all possible vari-
ations of a given task.

To address these limitations, researchers have proposed various extensions to im-
itation learning, such as inverse reinforcement learning and apprenticeship learning, which
aim to create more robust and adaptive models. Inverse reinforcement learning involves in-
ferring the underlying reward function that motivated the expert’s behavior, rather than simply
replicating their actions [1]. This can lead to more flexible and generalist models that can
adapt to new situations and tasks. Apprenticeship learning, on the other hand, involves di-
rectly interacting with the expert to learn the underlying decision-making process that leads
to their behavior [1, 2]. This can be especially useful in domains where the behavior of the
expert is difficult to capture in a dataset, such as in social or economic settings.

Behavior cloning, as one of the most popular methods of imitation learning, has
received significant attention in the AI community due to its effectiveness and ease of use.
However, there are ongoing efforts to improve the quality and variety of expert demonstra-
tions used in this approach, as well as to explore alternative methods such as inverse rein-
forcement learning and apprenticeship learning. These extensions and variations in imitation
learning continue to expand the possibilities for creating more robust and effective models,
including the popular method of behavior cloning.

2.2.1 Behavior Cloning

Behavior Cloning (BC) is a popular method of imitation learning that involves train-
ing an AI model to imitate the behavior of a human expert by using a dataset of expert
demonstrations [1]. BC receives information from the behavior of an expert acting in an en-
vironment and learns to map the behavior of the expert demonstration to an intelligent agent
[18], where an intelligent agent is defined as an entity that autonomously interacts within an
environment, attempting to achieve an objective [38]. In classic BC algorithms [1, 9], train-
ing examples are represented by pairs of state and action, similar to supervised learning
algorithms where training examples are represented by pairs containing features and class.

33

A state describes the current behavior of the agent in the environment, which may include
data on the position, velocity, and angle of the agent’s joints, or even an image representing
the agent’s position in relation to the environment in which it is placed.

BC is commonly modeled using a Markov Decision Process (MDP) [45]. In an
MDP, the problem is formulated as a tuple containing five elements M = S, A, T , r , γ, where
S represents the set of states existing in the environment, A the set of possible actions,
T the transition model, r a function that determines the immediate reward when the agent
takes specific action in a given state, and γ is a discount factor. The solution to the problem
of imitation learning using an MDP consists of finding a policy π(a|s) that determines the
probability distribution over the agent’s actions so that the agent performs an action a when
it is in a state st .

The normal sequence of an imitation learning process begins with the acquisition
of expert demonstrations. These demonstrations are converted into a sequence of pairs of
state and action that are used to train a policy that can imitate the behavior of the experts.
While BC has shown promising results in many domains, it also faces several challenges
and limitations. For instance, the quality of the expert demonstrations greatly impacts the
performance of the BC model, and the model is often prone to overfitting and failing to
generalize to new situations.

Despite these limitations, BC has a wide range of potential applications, such as au-
tonomous driving, robotics, and video game AI, among others. Moreover, BC is a prominent
example of the more general field of Imitation Learning, which encompasses a wide range of
algorithms and methods used for training agents to imitate the behavior of experts. Imitation
learning has been extensively studied in recent years, and it has shown great potential for
solving complex tasks in various domains [18]. This field has seen significant advances in
recent years, with new techniques and models being developed that aim to address some
of the limitations of BC and other methods of imitation learning. As such, imitation learning
from observation is a vibrant and active area of research, with exciting new possibilities for
the development of intelligent systems in various domains.

2.2.2 Imitation Learning from Observation

Unlike humans who can learn to imitate without having direct access to the actions
performed in a demonstration [36], classical behavioral cloning algorithms [34, 9] use action
labels to imitate the expert’s behavior. This assumption is restrictive and unrealistic for most
cases, as direct access to the actions being executed by an expert is usually not available.
For example, suppose a person is watching online videos to learn how to play a particular
game. In that case, the person does not have direct access to the buttons being pressed
by the demonstration player, but they can infer which buttons are being pressed through the

34

images. On the other hand, if we want to make an intelligent agent learn to play the same
game by only observing online videos, we have to make it infer which actions are being
executed by the demonstrator, as we do not have direct access to them.

Recent approaches take this aspect into consideration and perform imitation from
observation (IfO) [27, 47]. In this type of approach, only the agent’s states from the expert’s
demonstrations are considered, and the learning algorithm must infer the action that de-
scribes the change between two subsequent states. Thus, such approaches must learn two
models: the Inverse Dynamics Model (IDM) and a Policy Model (PM). The IDM must learn
the inverse dynamics of the agent Mst ,st+1

a = P(a|st , st+1), i.e., the probability distribution for
each action a given that an agent has passed from state st to state st+1. In this problem, the
reward function described by the MDP is not explicitly defined, and the actions performed
by the expert are unknown. Thus, the problem consists of finding a policy that imitates
the behavior of the experts from a set of demonstrations containing only the agent’s states
D = {ζ1, ζ2, ... , ζN}, where ζ is a trajectory containing only states {s0, s1, ... , sN}.

As the IDM needs to perform the mapping between state transitions (st and st+1)
and actions (a), current approaches [47, 48] use self-supervised learning to perform such
mapping. Thus, the agent in state st interacts with the environment by performing an action
a using a random policy π, which consequently generates an agent state st+1 as a result
of the action’s effect. These tuples containing pairs of state and action are saved as pre-
demonstrations Ipre = (st , at , st+1). The pre-demonstrations are used as ground truth for
learning the inverse dynamics of the agentMθ, which seeks to find the parameters θ∗ that
best describe the state transition.

On the other hand, the model containing the policy (PM) is responsible for cloning
the expert’s behavior. For this purpose, each pair of states from the expert’s demonstrations
T e = {(st , st+1)} is used by the IDM to identify the action distribution Mθ(st , st+1) and pre-
dict the action â that corresponds to the movement executed by the expert when the state
changes from st to st+1. Once the most likely action executed for each state st has been
identified using self-supervised learning, the method learns a policy to imitate the expert,
i.e., it finds the parameters ϕ∗ that approximate the sequence of actions taken by the expert.

Recent studies [27, 47] have shown that IfO is a promising alternative to traditional
BC methods, particularly in situations where direct access to the actions taken by the expert
is limited or unavailable. By leveraging the self-supervised learning techniques to learn
the inverse dynamics model, IfO can infer the expert’s actions from state observations and
generate action sequences that are closer to those demonstrated by the expert.

35

2.3 Adversarial Learning

Adversarial learning is a machine learning strategy that leverages the competitive
dynamics between models to enhance learning effectiveness [14]. A prominent example of
adversarial learning is Generative Adversarial Networks (GANs), wherein two neural net-
works, a generator and a discriminator, compete against each other within a zero-sum game
framework. The generator network strives to create synthetic data that closely resemble the
real data, while the discriminator network attempts to distinguish between the real and syn-
thetic data [14]. The ultimate goal is for the generator network to produce data so convincing
that the discriminator network cannot differentiate it from the real data.

Adversarial learning offers a broad spectrum of applications, ranging from gener-
ating synthetic data to enhancing the robustness of machine learning models [14]. Fur-
thermore, adversarial learning has been employed to augment the effectiveness of model
training, enabling them to learn from a more diverse array of examples. Although adversarial
learning presents unique challenges, such as the difficulty of achieving equilibrium between
the generator and discriminator networks, it also offers opportunities for enhancing the ro-
bustness and generalization of machine learning models [3]. As machine learning systems
become increasingly ubiquitous, the importance of understanding and applying adversarial
learning techniques will continue to escalate.

2.4 Types of Environment

In the field of AI, different types of environments are used to model the problem
space that an agent must navigate to achieve its objectives. The type of environment that is
used can have a significant impact on the performance of the agent and the effectiveness of
the learning algorithms used to train it [45].

One important distinction is between deterministic and stochastic environments. In
a deterministic environment, the outcome of each action taken by the agent is known with
certainty, while in a stochastic environment, there is some degree of uncertainty associated
with each action. This uncertainty can arise from factors such as sensor noise or unpre-
dictable changes in the environment [45].

Another important distinction is between episodic and continuous environments. In
an episodic environment, the agent’s actions occur in discrete episodes, where each episode
begins with the agent in a particular state and ends when the agent reaches a terminal
state or a predetermined number of time steps have elapsed. In contrast, in a continuous
environment, the agent’s actions occur continuously over time, without any clear episodic
structure [45].

36

Understanding the type of environment being used is crucial when designing and
training an intelligent agent. In this thesis, we will be using these environment types to test
our hypotheses on the effectiveness of imitation learning from observation. By studying how
our algorithms perform in different environments, we can gain insights into their strengths
and limitations, and refine our methods to achieve better performance in real-world applica-
tions.

37

3. RELATED WORK

The field of imitation from observation is becoming increasingly important as there
is a need to create intelligent systems capable of imitating human behavior. Advancements
in this area and the effectiveness of imitation have motivated various applications, ranging
from enhancing realism in gaming characters and improving physics to using human mod-
els for animation in the film industry. Imitating via observation requires access to the real
or simulated environment where expert data is generated. By accessing the environment,
we can learn from unlabeled expert data, resembling human learning from video observa-
tions. Researchers have recently proposed several approaches and advances to imitation
from observation field. This chapter summarizes the main approaches most relevant to this
thesis and its contributions. We discuss the works of Torabi et al. [47] on "Behavior Cloning
from Observation", Edwards et al. [11] on "Imitating Latent Policies from Observation", Ho
and Ermon [17] on "Generative Adversarial Imitation Learning", and Torabi et al. [48] on
"Generative Adversarial Imitation from Observation". These methods represent significant
contributions to the imitation learning from observation field, and understanding them pro-
vides valuable insights and context for the contributions presented in this thesis. In addition,
by reviewing these approaches, we can emphasize their key concepts, methodologies, and
how they relate to and complement the proposed contributions of this thesis.

3.1 Behavior Cloning from Observation

Torabi et al. [47] present the work Behavioral Cloning from Observation (BCO) to
imitate expert behaviors through a self-supervised approach based on state observation.
They employ an Inverse Dynamics Model (IDM) to infer actions in a self-supervised manner,
making it possible to learn a Policy Model (PM) responsible for informing the agent what to
do in each state of the environment. BCO is one of the most important works for this thesis,
as they share the same motivations. It does not, however, perform tests considering tem-
poral scenarios, and it uses only numerical values directly collected from the experimented
environments (no images nor videos). The authors present the results of their approach in
Cartpole, Mountain Car, Reacher, and Ant environments, all of which are available in Ope-
nAI Gym1, which is a toolkit for developing and comparing reinforcement learning algorithms
and similar techniques. BCO presented results comparable to supervised approaches in the
employed environments.

1OpenAI Gym - https://gym.openai.com/.

https://gym.openai.com/

38

3.1.1 Inverse Dynamics Model

The IDM, implemented in [47], utilizes a neural network to learn the actions that
enable the agent to transition from state st to state st+1. In order to learn these actions
without labeled state-action pairs, the agent interacts with the environment using a random
policy π, generating state pairs Tπϕ

= {(st , st+1), ... } and their corresponding actions Aπϕ
=

{at , at+1, ... }.

The state pairs, along with their corresponding actions (st , at , st+1), are stored as a
pre-demonstration (Ipre) generated by the IDM. By randomly transitioning between states in
Ipre, the model learns the inverse dynamicsMθ of the agent, finding the optimal parameters
θ∗ that best describe the actions leading to the transitions in Tπϕ

.

BCO employs maximum likelihood estimation (Equation 3.1) to find the optimal
parameters, where pθ represents the probability distribution of actions given a pair of states
representing a transition. During the testing phase, the IDM uses the learned parameters to
predict an action â given a state transition (st , st+1). After obtaining the parameters for the
IDM, the next step involves pseudo-labeling expert state pairs and training the Policy Model.

θ∗ = arg max
θ

∏
(st ,at ,st+1)∈Ipre

pθ(at |st , st+1) (3.1)

3.1.2 Policy Model

The PM is responsible for cloning the expert’s behavior in a given task. For ex-
ample, based on expert demonstrations in a given task D = {ζ1, ζ2, ... , ζN}, where each
demonstration consists of state pairs (se

t , se
t+1) ∈ T e, BCO uses the IDM to calculate the

probability distribution over actionsMθ(se
t , se

t+1) and predict actions â that correspond to the
expert’s movement from state st to st+1.

With the predicted action, through self-supervised training, the method creates a
set of state-action pairs {(se

t , â)} corresponding to the action â taken in state st . By having
st and the predicted action â, it is possible to train the PM to learn the imitation policy πϕ,
which is responsible for imitating the expert’s behavior in a supervised manner.

Following the field of Imitation Learning, learning an imitation policy πϕ using state-
action tuples {(se

t , â)} involves finding the parameters ϕ∗ that make πϕ best match the given
tuples. Furthermore, the authors also implement maximum likelihood estimation in the PM,
following Equation 3.2, to find the optimal parameter set ϕ∗. After training the PM, repre-
sented by a neural network [47], the model is capable of receiving any state (st) and pre-

39

dicting the action (a) responsible for transitioning from the current state (st) to the next state
(st+1) that closely resembles the behavior of the experts observed by the model.

ϕ∗ = arg max
ϕ

N∏
t=0

πϕ(ât | st) (3.2)

3.1.3 Iterative Model

Torabi et al. [47] extend their proposed method to incorporate an iterative process.
After training the neural network that represents the PM, it learns observations and stores
the sequences of states and predicted actions as post-demonstrations (Ipos). The purpose
of Ipos is to be used to adjust the parameters of the IDM in the next iteration, enabling the
model to classify state transitions that resemble those of experts.

The improvement, called BCO (α), where α represents a parameter to control the
number of post-demonstration iterations, works as follows. After learning the imitation pol-
icy, the agent executes the environment to acquire new state-action sequences as post-
demonstrations (Ipos). These post-demonstrations are used to update the IDM and, subse-
quently, the PM itself.

The challenge with iterating in BCO is that it solely utilizes the set of post-demonstrations
to retrain the IDM. Thus, in cases where the policy still needs to have sufficiently good predic-
tive performance, the generated set of post-demonstrations will contain mislabeled actions
for the presented state pairs. These erroneous actions tend to degrade the predictive per-
formance of the IDM, leading to a decrease in the quality of policy predictions in a negative
feedback cycle.

3.2 Imitating Latent Policies from Observation

Edwards et al. [11] present a Forward Dynamics Model responsible for mapping
state-action pairs {(st , at)} to the next state st+1, naming this approach "Imitating Latent
Policies from Observation" (ILPO). First, it is important to define that a latent action can be
one or more actions responsible for causing a transition in a given state. This definition is
necessary because ILPO does not define all generated actions as latent ones. The authors
also consider that for all environments, there is a set of known actions A and a set of latent
actions Z, which they define as {z1...zA} ∈ Z.

The authors also note that not all static state transitions have accurate associations
with their original actions. Therefore, ILPO empirically assumes that |Z| ̸= |A|. The approach
consists of two steps: first, the agent learns a latent policy offline (Section 3.2.1), which

40

estimates the probability of a latent action given the current state. Then, in a limited number
of steps in the environment, the model remaps actions (Section 3.2.2), associating latent
actions with the corresponding correct actions.

Finally, they train the models and test them using environments available in the
OpenAI Gym, such as Cartpole, Acrobot, Mountain Car, and CoinRun. The evaluation met-
rics include the Average Episodic Reward (AER) and Performance.

3.2.1 Latent Forward Dynamics

The first step of ILPO involves executing Latent Forward Dynamics, which is a gen-
erative model represented by Gθ

(
Ep (st) , z

)
. This model aims to generate a state st+1 given

the current state st and a latent action z. The Latent Forward Dynamics model predicts the
state difference ∆t = st+1 − st instead of the absolute next state and computes st+1 = st +∆t .
However, after learning, the generator may start predicting average transitions instead of
learning the desired transition. Since ILPO lacks action information to condition state gener-
ation, the authors proposed to train the Latent Forward Dynamics model to make predictions
based on each latent action z ∈ Z , f (st+1|st , z) instead of f (st+1|st , a). To train the generator,
ILPO computes the error using Equation 3.3:

Lmin = min
z

∥∥∆t −Gθ

(
Ep (st) , z

)∥∥2 (3.3)

Thus, the goal of the policy generated by ILPO is to minimize the error presented in
Equation 3.4. For this purpose, they fix the predictions to produce the most likely next state
without impacting the generator’s output.

Lexp =
∥∥st+1 − ŝt+1

∥∥2 (3.4)

The process is to train the network by considering the errors presented in Equations 3.3 and
3.4.

3.2.2 Action Remapping

The second model presented in ILPO is responsible for learning how to map latent
actions discovered by the previous model to real actions. To achieve this, ILPO collects
tuples of the current state, the action taken, and the next state {st , at , st+1} through a random
policy or an iterative policy remapping process πξ.

41

By collecting data while running an agent in a given environment, ILPO first iden-
tifies the latent action corresponding to the state transition. It then uses the action taken
in the environment to label the data and train its policy πξ (at |zt , Ea (st)). The authors use
the L2 distance between the generator and the actual state st+1 for environments with lower-
dimensional state spaces, as shown in Equation 3.5. For environments with higher dimen-
sional state spaces, such as chess, the L2 distance using Ep is applied, as shown in Equa-
tion 3.6.

zt = arg min
∥∥st+1 −Gθ

(
Ep (st) , z

)∥∥
2 (3.5)

zt = arg min
z

∥∥Ep (st+1)− Ep
(
Gθ

(
Ep (st) , z

))∥∥
2 (3.6)

Once the latent action zt that best approximates the action taken in the environment
at is obtained, the network learns using the cross-entropy loss in a supervised manner.

3.3 Generative Adversarial Imitation Learning

Generative Adversarial Imitation Learning (GAIL) [17] leans heavily on the gen-
erative adversarial framework. In GAIL, the goal is to learn how to mimic expert policies,
which are represented as state-action pairs, using adversarial training techniques [15]. This
approach integrates the structure of reinforcement learning with adversarial networks, pro-
viding an intricate balance between exploration and exploitation of the policy space.

As a generative adversarial training-based model, GAIL comprises two main com-
ponents: the discriminator and the generator. The discriminator is responsible for the dis-
tribution of states and actions which define expert behavior, while the generator represents
the imitation policy. The proposed model seeks to find a policy πθ for which the discriminator
DR cannot distinguish between states explored by expert policies πE and states explored by
the imitation policy generated by GAIL πθ. The equilibrium that the discriminator is expected
to attain is formulated by Equation 3.7:

max
πθ

min
DR
−Eπθ

[logDR(s)]− EπE [log(1−DR(s))]. (3.7)

The authors implemented the policy and the discriminator using deep neural net-
works, and the training was performed iteratively by updating their gradients. The discrim-
inator (DR) is trained in a supervised manner using data generated by the evolving policy
πθ as well as data from expert demonstrations. Once DR converges, the pursuit of the opti-
mal policy for a given problem begins. The search for the best policy πθ is conducted using
− logDR(s) as the reward value and the Trust Region Policy Optimization method [40].

42

To test their new method, the authors used the same steps as in the BCO study [47].
They chose OpenAI Gym as the place to run their tests: Cartpole, Acrobot, Mountain Car,
HalfCheetah, Hopper, Walker, Ant, Humanoid, and Reacher. Each environment has different
challenges, which made sure the model was tested thoroughly. After they trained their model
in those environments, they measured its success using the Performance metric, which we
further explain in the following chapter. Hence, they could understand how well the model
learned and copied expert behavior across all different tasks.

3.4 Generative Adversarial Imitation from Observation

Inspired by GAIL, Torabi et al. [48] proposed an approach that uses a Genera-
tive Adversarial Network (GAN) called Generative Adversarial Imitation from Observation
(GAIfO). The method uses demonstrations from experts and demonstrations generated by
a model trained to imitate, while the discriminator classifies the source of the data.

The imitation model’s policy aims to generate state transitions that appear to be
generated by an expert, i.e., it tries to align the distribution of state transitions from the
imitation model to that of the expert. The authors use deep neural networks to implement
the imitation model (policy) and the discriminator.

The overall architecture of the method is depicted in Figure 3.1. The policy model
(top part of Figure 3.1) takes four gray-scale images. These images are arranged from t − 3

Figure 3.1 – Representation of the Imitation Model (Policy) and the Discriminator. Image
adapted from the work proposed by Torabi et al. [48].

43

to t , where t represents the current state. The network applies convolutions and activation
functions to these states, producing the action that transitions the state from t to t +1 through
the environment.

In the discriminator (bottom part of Figure 3.1), the model receives three gray-
scale images representing states from t − 1 to t + 1. These states can come from expert
demonstrations or the imitation model. The discriminator outputs a value of 0 if the states
are from the imitation model or 1 from the experts. The objective is for the imitation model to
generate states so similar to those generated by the experts that the discriminator classifies
them as such.

To evaluate the proposed method, the authors conduct experiments using eight
environments from OpenAI Gym: Inverted Pendulum, Inverted Double Pendulum, Inverted
Pendulum Swing Up, Hopper, Walker 2D, and Reacher.

3.5 Final Remarkls

In this chapter, we introduced the key studies related to this thesis, along with their
features and the environments they utilized. However, the area of Imitation from Observa-
tion (IfO), being relatively new, still lacks a substantial amount of published research. We
highlight the most relevant studies in the field that closely align with our thesis and those that
have been published in prominent conferences.

Most of the selected works in this chapter concentrate primarily on imitation via
observation, without any pre-existing labels identifying the actions of the experts. We em-
phasize the study that pioneered the field of IfO [47], along with the ones that started incor-
porating images and Deep Learning models [17, 11, 48].

Every study discussed in this chapter still has room for improvement, such as is-
sues during the training phase (due to vanishing gradients), the use of more complex envi-
ronments, more effective exploration of problem states, using images as input for the models,
testing in discrete environments, among other aspects.

The works presented in this chapter share several characteristics, as seen in Ta-
ble 3.1. Besides employing some form of Neural Network and Deep Learning, they also use
the Performance metric to measure the quality of their proposed models.

One of the works presented, ILPO [11], introduces the AER metric. This metric is
essential for evaluating the quality of the policy in achieving the highest possible reward in a
given environment. Both AER and Performance are discussed in greater detail in Chapter 4.

Another similar feature among the studies is their use of environments derived from
the OpenAI Gym tool due to its convenience in implementing these environments in their
proposed models. These shared characteristics inspire us to develop this thesis with similar

44

Table 3.1 – List of related works, as well as the models, metrics and environments used.
Method Year Model Metrics Environments

BCO [47] 2018 Artificial Neural Networks Performance Cartpole, Mountain Car, Reacher, Ant.

ILPO [11] 2019 Convolutional Neural Networks AER, Performance Cartpole, Acrobot, Mountain Car,
CoinRun.

GAIL [17] 2016 Generative Adversarial Networks Performance
Cartpole, Acrobot, Mountain Car,

HalfCheetah, Hopper, Walker, Ant,
Humanoid, Reacher.

GAIfO [48] 2019 Generative Adversarial Networks Performance
Inverted Pendulum, Inverted Double

Pendulum, Inverted Pendulum Swing Up,
Hopper, Walker-2D, Reacher.

features (environments and metrics) to use as benchmarks against our methods. In the
next chapter, we will present the methodological elements that guide this thesis: hypothesis,
metrics, application scenarios, and the neural network topology that is used to throughout
this work.

45

4. METHODOLOGY

This chapter presents the backbone of this thesis. It details the systematic ap-
proach to achieve the research goals and test the thesis’ primary hypothesis.

4.1 Hypothesis

The central hypothesis of this research is a practical and targeted proposition aimed
at advancing the field of Imitation Learning from Observation. We hypothesize that the clas-
sic Imitation from Observation framework (BCO) can be significantly improved by incorporat-
ing different techniques, such as state exploration, reinforcement learning, and adversarial
training.

This hypothesis is based on the premise that these techniques can enhance the
robustness and efficiency of the learning model, enabling it to outperform the current state-
of-the-art. By integrating these techniques, we assume the resulting model will be more
effective in imitating expert behavior across a variety of environments.

Throughout this research, we rigorously test this hypothesis using the metrics and
environments detailed in the subsequent sections. The outcomes of these tests provide
valuable insights into the validity of this hypothesis and the effectiveness of the proposed
improvements.

4.2 Goals

The goals of this thesis were carefully crafted and strategically aligned aiming at
addressing the existing challenges, enhancing the current methodologies, and pushing the
boundaries of the state-of-the-art.

• General Goal

– Significantly contributing to Imitation Learning from Observation by improving the
Behavior Cloning from Observation framework.

• Specific Goals

– Environment Selection and Preparation: selecting and preparing environments
with varying characteristics suitable for Imitation Learning. The diversity in these
environments will allow us to test the robustness and adaptability of the proposed
improvements.

46

– Expert Behavior Selection and Preparation: selecting and preparing expert
behaviors for the chosen environments alongside the environment preparation.
These behaviors will serve as the benchmark for the imitation learning models,
providing a clear target for the learning algorithms.

– Framework Improvement: enhancing the existing Imitation from Observation
framework. We aim to achieve superior results compared to the current state-
of-the-art by refining the framework’s performance, efficiency, and reliability.

– Problem Solving: proposing solutions to current problems faced in the field, such
as the issue of gradient vanishing. By addressing these challenges, we focus on
improving the stability and effectiveness of imitation learning models.

– Results Comparison: comparing the achieved results with the current state-of-
the-art approach for each selected environment. This comparison will provide a
clear measure of our progress and the effectiveness of the proposed improve-
ments.

4.3 Metrics

To evaluate the quality of the methods we have developed, we utilize two primary
metrics: Average Episodic Reward (AER) and Performance (P) [17]. We chose these met-
rics because they have been extensively used in imitation learning tasks and studies, as
demonstrated in Table 3.1.

AER is a standard metric to verify how well the generated Policy performs in a given
environment. The metric consists of the average value of 100 runs for each episode in a
given environment. For example, this could involve averaging the rewards of 100 runs in dif-
ferent mazes in the Gym-Maze environment or averaging the rewards generated through 100
consecutive episodes for the CartPole problem. Expert policies with excellent performance
in a given task are usually difficult to imitate. In contrast, experts with low performance may
be easier to imitate. The AER value is a good metric to verify these characteristics, as we
can understand how the expert performed its task and how difficult it was to imitate its be-
havior. The calculation of the AER metric involves the following formula, where E represents
the number of performed episodes (100), F represents the number of steps, and πϕ(eij)
represents the reward obtained by Policy πϕ during execution i at step j :

AER =

E∑
i=1

Fi∑
j=1

πϕij

E (4.1)

47

No less important than AER, the Performance metric is calculated as the average
reward for each run, normalized between 0 and 1. Note that each environment often pro-
vides its minimum and maximum values of rewards. We represent the value 0 of P as the
reward obtained by a random policy running in a given environment and the value 1 as the
reward obtained by the expert’s policy. Similarly to the available imitation learning works in
the literature, we do not use metrics such as accuracy to measure the quality of the gen-
erated policies, as this metric cannot guarantee high-quality results for this problem. IfO
techniques tend to use two models to generate a policy in a self-supervised manner. How-
ever, the error of the first model can easily be propagated to the second, hiding the real
quality of the method. Therefore, we cannot use accuracy as a metric to verify the quality
of the generated policies, as achieving 100% accuracy with a policy generated using a poor
Inverse Dynamics Model will consequently reduce the AER and P. The following equation
illustrates the Performance metric, where E represents the number of performed episodes,
πϕe represents the reward of the model πϕ in episode e, πϵe represents the reward of the ran-
dom model πϵ in episode e, and πe represents the reward of the expert’s policy π for episode
e:

P =

E∑
e=1

πϕe−πϵe
πe−πϵe

E (4.2)

4.4 Environments

This section presents the selected environments for training and testing the pro-
posed methods. All chosen environments are applicable in the Imitation from Observation
field. The primary basis for selecting the environments was the distinct characteristics they
have. We aimed at selecting environments regarding the number of available actions, dimen-
sions, environment observation, type (discrete or continuous), and whether they are static
or dynamic. The goal is to measure the real performance of the proposed methods across
different scenarios. All of these environments are available through the OpenAI Gym toolkit.
The characteristics of each environment are described below and summarized in Table 4.1.

Table 4.1 – Information regarding the five selected environments for imitation learning.
Environment #Actions Dimension Observation Type Discrete/Continuous Static/Dynamic

Acrobot 3 6 full stochastic continuous dynamic

CartPole 2 4 full stochastic continuous dynamic

Gym-Maze 4 128× 128 full deterministic discrete static

LunarLander 4 128× 128 full deterministic continuous dynamic

MountainCar 3 2 full stochastic continuous dynamic

48

Acrobot

Figure 4.1 – Visual representation of the Acrobot environment.

Acrobot, originally proposed by Sutton [44], is an environment featuring two joints
and two mechanical links, with the joint between the two links being actuated. Initially, the
links hang downward, and the objective is to swing the end of the lower link up to a specific
height. The state space consists of 6 dimensions, representing the cosine, sine, and position
of both joints: {cos θ1, sin θ1, cos θ2, sin θ2, θ1, θ2}. The action space consists of three possi-
ble forces: applying force to the right, applying force to the left, or not applying any force. It
is worth mentioning that Acrobot is an unsolved environment, meaning it does not have a
specified reward threshold for being considered solved. Acrobot (Figure 4.1) was chosen for
this thesis due to its continuous and dynamic nature, as well as its significant difficulty, which
poses challenges for imitation learning models. Acrobot serves as a challenging task in the
field of reinforcement learning and provides a platform for testing the capabilities of various
learning algorithms. Its complex dynamics and the absence of a predefined success thresh-
old make it a suitable environment for evaluating imitation learning models’ performance and
generalization abilities.

CartPole

The CartPole environment, first introduced by Barto et al. [5], is a task where an
agent applies forces to the side of a cart to balance a pole vertically for as long as possi-
ble. This environment has two discrete actions: applying force to the left or right side of the
cart. The state space consists of four dimensions: cart position, cart velocity, pole angle,
and velocity at the tip of the pole. The objective of CartPole is to maintain the pole upright
for as many time steps as possible. The CartPole environment defines a successful solu-

Figure 4.2 – Visual representation of the CartPole environment.

49

tion as achieving an average reward of 195 over 100 consecutive attempts. An example of
the CartPole environment can be seen in Figure 4.2. CartPole is a classic reinforcement
learning benchmark and is a suitable environment for testing and evaluating different algo-
rithms and approaches. CartPole’s simplicity and well-defined objective make it popular for
experimenting with reinforcement learning agents.

Gym-Maze

Figure 4.3 – Visual representation of the Gym-Maze environment.

Gym-Maze is a 2D maze environment where an agent, represented by a blue circle
in Figure 4.3, aims to find the shortest path from the starting point (a blue square in the
top-left corner) to the goal (a red square in the bottom-right corner). Each maze within Gym-
Maze can have various configurations of walls and different sizes, such as 3 × 3, 5 × 5, or
10×10. The agent can move in four directions: west, north, east, and south. The state space
of the Gym-Maze environment consists of rendered images of the maze, with a resolution
of 128 × 128 pixels, as shown in Table 4.1. The action space is discrete and allows the
agent to select from four possible actions: N (north), S (south), W (west), and E (east).
Additionally, the Gym-Maze environment is deterministic and discrete, representing a novel
type that has not been extensively explored in the existing literature. Gym-Maze is a platform
for evaluating navigation and pathfinding algorithms in complex 2D mazes. Its varying maze
configurations and sizes provide a challenging setting for testing and benchmarking different
approaches to maze-solving tasks.

LunarLander

Figure 4.4 – Visual representation of the LunarLander environment.

LunarLander, developed by Klimov [6], is an environment where an agent must suc-
cessfully land a spacecraft on the moon’s surface under low gravity conditions. An illustration

50

Figure 4.5 – Visual representation of the MountainCar environment.

of LunarLander is presented in Figure 4.4. The state space in LunarLander is continuous,
while the action space is discrete. There are four possible actions available to the agent: do
nothing, move left, move right, and reduce the falling velocity. In LunarLander, each action
except for the do nothing state incurs a reward of −1, whereas the do nothing state has a
reward of −0.3. The agent receives a positive reward when it moves in the correct direc-
tion, always at the coordinates (0, 0). To consider LunarLander as solved, the agent must
accumulate a total reward of 200 over 100 consecutive trial runs. LunarLander is a chal-
lenging task in the Reinforcement Learning field, requiring precise control and navigation in
a simulated lunar landing scenario.

MountainCar

MountainCar [32] is an environment where a car is positioned on a one-dimensional
track between two "mountains". The goal for the agent is to learn how to leverage potential
energy by driving up the opposite hill to reach the designated goal position. The state space
in MountainCar consists of two continuous attributes: velocity and position. The action
space is discrete and offers three possible actions: left, neutral, and right. In MountainCar,
a reward of −1 is provided for each time step until the car reaches the goal position of 0.5.
The initial state starts with the car in a random position and with no velocity. Its goal is
reached by achieving an average reward of −110 over 100 consecutive trial runs, as defined
by Moore [32].

MountainCar challenges the agent to overcome the forces of gravity and limited car
dynamics to climb the hill and reach the goal position successfully. It provides a testbed for
evaluating and comparing different reinforcement learning algorithms’ capabilities in solving
complex continuous control problems. Figure 4.5 provides a visual representation of the
MountainCar environment.

51

5. AUGMENTED BEHAVIOR CLONING FROM OBSERVATION

Recent approaches perform imitation from observation (IfO) [27, 47], which uses
only the sequence of state observations from the expert. Such approaches learn two mod-
els: the inverse dynamics of the environment (Inverse Dynamics Model, IDM) and an im-
itation policy model (PM). Current approaches learn both models iteratively from samples
based on each other, i.e., the IDM uses demonstrations generated with a specific policy
from PM to update its model, and then the PM is updated using the new outcomes from the
updated IDM. Using iterations during the learning process allows the policy model to approx-
imate the distribution of actions used by the expert, which improves the imitation process.
However, performing IfO using this type of iteration has the drawback of overfitting the policy
demonstrations, primarily in the first iterations, and sometimes, causing some of the actions
to be ignored altogether during learning of the PM due to errors in the IDM.

To address this problem in IfO, we design an architecture, named Augmented Be-
havior Cloning from Observations (ABCO), that uses attention models and a sampling mech-
anism to regulate the observations that feed the inverse dynamics model, preventing the
models from reaching undesirable local minima. The idea is to train a model with the in-
verse dynamics of the environment to infer actions from state changes and a policy model to
mimic the expert via behavior cloning. ABCO considerably boosts both the sample efficiency
and the quality of the imitation policy model, surpassing traditional behavior cloning. This is
achieved first by incorporating an inverse dynamic model (Section 5.1) and a carefully de-
vised sampling strategy (Section 5.2), which together determine the observations inputted
into the inverse dynamic model. The system is further improved by integrating attention
mechanisms (Section 5.3) within both the inverse dynamic model and the sampling strat-
egy. Results (Section 5.4) show that by using either low-dimensional state spaces or raw
images as input, ABCO outperforms the main IfO algorithms regarding both Performance
and Average Episodic Reward.

5.1 Inverse Dynamics Model and Policy Model

Our approach represents the inverse dynamics model (IDM) as a neural network
that learns the actions that enable an agent’s transition from state st to st+1. The agent
interacts unsupervised with the environment, using a random policy π, thereby generating
pairs of states T ag

πϕ
= (sag

t , sag
t+1), ... for the agent ag along with their corresponding actions

Aπϕ = at , These state pairs and their associated actions (st , at , st+1) are stored as a
pre-demonstration (Ipre).

52

While transitioning randomly between states in Ipre, the model learns the inverse
dynamics Mθ of the agent, finding the parameters θ∗ that optimally describe the actions
leading to transitions from T πϕ

ag. The BCO employs maximum-likelihood estimation (Equa-
tion 5.1) to identify the best parameters, where pθ represents the action probability distribu-
tion given a pair of states. At test time, the IDM utilizes the learned parameters to predict an
action â for a state transition (sag

t , sag
t+1).

θ∗ = arg, max
θ

,
|Ipre|∏
t=0

pθ(at | s
πϕ

t , sπϕ

t+1) (5.1)

ABCO enhances the conventional IDM by incorporating a Self-Attention (SA) mod-
ule [49, 54] (Section 5.3). This helps accommodating the substantial sample variations from
Ipre to Ipos during iterative processes. The SA component compels the IDM to discern what
is crucial to learn from each state. When applied to images, the SA can identify which portion
of the image representing the state is essential for predicting the correct action.

5.1.1 Policy Model

The Policy Model (PM) seeks to emulate the behavior of an expert. It bases its pro-
cess on expert demonstrations D = ζ1, ζ2, ... , ζN , where each demonstration contains pairs
of subsequent states (se

t , se
t+1) ∈ T e. ABCO uses the IDM to calculate the action distribution

Mθ(se
t , st + 1e) and predict the action â that corresponds to the movement executed by the

expert to transition from state st to st+1. With the predicted action, the method constructs a
set of state-action pairs (se

t , â) that correspond to the action â taken in state st . This informa-
tion is subsequently used to learn the imitation policy πϕ that replicates the expert behavior
in a supervised manner.

For behavior cloning, the task of learning an imitation policy πϕ from state-action
tuples {(se

t , â)} involves finding parameters ϕ∗ that make πϕ align as closely as possible with
the given tuples. Originally, BCO employed maximum-likelihood estimation (Equation 5.2)
to determine the optimal parameters ϕ∗. Following policy network training, it performs imita-
tion learning and stores the state sequences and predicted actions as post-demonstrations
(Ipos).

ϕ∗ = arg, max
ϕ

,
N∏

t=0

πϕ(ât | st) (5.2)

Contrasting with the original BCO, we improve the PM by introducing a self-attention
module [49, 54], elaborated further in Section 5.3. As opposed to its usage in the IDM, we
deploy the SA in the PM to limit state changes in each iteration, given that the SA module

53

hones in on minor details and differentiates classes provided by the IDM more effectively.
The SA also enables the policy to examine states non-locally, thereby promoting faster learn-
ing for high-dimensional states (Maze and Acrobot) with a more incremental success rate
across iterations.

5.1.2 Iterative Behavioral Cloning from Observation

The BCO algorithm was extended by Torabi et al. [47] through incorporating inter-
actions with the post-demonstration environment to enhance both the IDM and the imitation
policy. This improvement, named BCO(α), with α symbolizing a user-defined hyperparame-
ter controlling the quantity of post-demonstration interactions, operates as follows: Following
the learning of the imitation policy, the agent engages with the environment to accumulate
new state-action sequences as post-demonstrations (Ipos). These post-demonstrations are
subsequently used to update the IDM and, by extension, the imitation policy.

A limitation of the iterative BCO is its exclusive reliance on the set of Ipos for re-
training the IDM. As such, in situations where the policy’s predictive performance remains
sub-optimal, the generated set of post-demonstrations might include incorrect actions for
specific state pairs. These wrong actions could degrade the IDM’s predictive performance,
resulting in a negative feedback loop on the policy’s predictions.

To address these challenges, ABCO(α), a model that iteratively refines ABCO
through a sampling method that balances the extent to which the IDM learns from pre-
demonstrations (Ipre) and post-demonstrations (Ipos). Algorithm 5.1 outlines the ABCO(α)
training process, wherein TRAINIDM(Is) represents the use of Is to identify a θ∗ that best
accounts for the transitions in the demonstration Is as presented in Equation 3.1.

Algorithm 5.1 Augmented Behavioral Cloning from Observation (ABCO)
1: Initialize the modelMθ as a random approximator
2: Initialize the policy πϕ with random weights
3: Generate Ipre using policy πϕ

4: Generate state transitions T e from demonstrations D
5: Set Is = Ipre

6: for i ← 0 to α do
7: ImproveMθ by TRAINIDM(Is)
8: UseMθ with T e to predict actions Â
9: Improve πϕ by behavioralCloning(T e, Â)
10: for e← 1 to |E | do
11: Use πϕ to solve environment e
12: Append samples Ipos ← (st , ât , st+1)
13: if πϕ at goal g then
14: Append ve ← 1
15: else
16: Append ve ← 0
17: end if
18: end for
19: Set Is = SAMPLING(Ipre, Ipos , P(g | E), ve)
20: end for

54

5.2 Sampling Method

In the process of each iteration, our approach focuses on a sampling technique
that generates an improved dataset, Is, which contains a subset of post-demonstrations
Ipos

spl along with a subset of pre-demonstrations Ipre
spl . To derive the subset from Ipos

spl , we
initially determine the distribution of actions, given a specific run E within the environment,
and the current policy P(A | E ; Ipos).

We restrict our focus to only successful runs from Ipos, which implies that we con-
sider only those state-action sequences where the agent accomplished the goal set by the
environment. This goal could be to reach a specific state or to avoid an undesirable state for
a predetermined number of transitions. The type of expert demonstration we receive guides
us in inferring these goal states. We denote it as ve in Equation 5.3, where ve is set to 1 if
the agent accomplishes the environmental objective and zero otherwise, and E is the total
number of runs within an environment.

P(A | E ; Ipos) =

∑
e∈E

ve · P(A | e)

|E |
(5.3)

The logic behind restricting the use of post-demonstration to successful runs is that if a policy
fails to achieve the environmental goal, then exclusively relying on post-demonstration would
not sufficiently bridge the learning gap between what the model previously learned with Ipre

and what the expert performs within the environment. By focusing only on successful runs,
we also ensure a more accurate expert distribution. This approach also solves the issue
where BCO(α) decreases the performance in both models.

With the action distribution derived from successful runs, we select the subset Ipos
spl

from these runs, following the win probability P(g | E), meaning the probability of achieving
a goal in a given environment, as illustrated in Equation 5.4.

Ipos
spl = (P(g | E)× P(A | E , Ipos)) ∼ Ipos (5.4)

The subset from pre-demonstrations complements the size of the Ipos. To create
the subset from Ipre

spl , we apply the loss probability combined with the distribution of actions
in Ipre, denoted as P(A | Ipre), as shown in Equation 5.5.

Ipre
spl = ((1− P(g | E))× P(A | Ipre)) ∼ Ipre (5.5)

Integrating the training dataset with random demonstrations offers two main benefits. Firstly,
it prevents the model from overfitting on the policy demonstrations. Secondly, during the

55

early iterations, when the policy generates only a limited number of successful runs, the
training data ensures exploration by the IDM.

Using a win-loss probability, we guide the training data to align with the expert
demonstration, enhancing the model’s ability to imitate the expert. In this configuration, the
more frequently an agent accomplishes its goal, the less we need Is consisting of Ipre and
more of Ipos. It’s crucial to note that our method is solely goal-oriented as it considers tuples
from successful runs in the subset from post-demonstration and doesn’t use the reward
information for learning or optimization.

We do not use rewards because not all environments have a dedicated function to
provide them. However, most agents do have a goal that is relatively easy to visually identify
by examining the last transition, such as the mountain car reaching the flag pole, arriving
at the final square in a maze, the acrobot reaching the horizontal line, and the Cart-Pole
surviving up to 195 steps, as presented in Section 4.4.

5.3 Self-Attention

The Self-Attention (SA) module [49] is a neural network component capable of
contrasting global relationships within the network’s internal representation. This contrast
is achieved by calculating non-local responses as a weighted sum of features across all
positions. The SA mechanism enables the network to concentrate on task-relevant features
at each stage and establishes correlations between global features [12].

Our approach, ABCO, employs the SA module drawing from the Self-Attention
Generative Adversarial Network (SAGAN) [54], which demonstrated superior performance
in image synthesis. Within the SAGAN framework, the self-attention module formulates the
key f (x), the query g(x), and the value h(x), given a feature map x , through convolutional
filters based on the formulas f (x) = Wf x , g(x) = Wgx , and h(x) = Whx .

The construction of the attention map entails two primary steps. Initially, we employ
Equation 5.6 to the present key f and query g.

sij = f (xi)T g(xj) (5.6)

Subsequently, we compute the softmax function βj ,i , which is applied to the attention module
at the i th position when generating the j th region. Using the attention map β and the values
h(x), we determine the self-attention feature maps a = (a1, a2, ..., aN) ∈ RC×N , where N is
the count of feature locations and C is the channel count, as depicted in Equation 5.7.

aj = υ

(
N∑

i=1

βj ,ih(xi)

)
, υ(xi) = Wυxi (5.7)

56

In this equation, Wf , Wg, and Wh ∈ RĈ×C and Wv ∈ RC×Ĉ, where Ĉ is C/k , a
division applied to reduce the numbers of feature map. Furthermore, we have the SA feature
map a, weighted by µ, an adaptable parameter initialized as zero.

The SA module in our approach is specifically designed to mitigate the effects
of constant instabilities brought by the iterative process through a comprehensive feature
weighting mechanism. This module allows the model to overlook any potential local noise
an agent may introduce, enabling it to concentrate on the most pertinent features for action
prediction. It also ensures more uniform weight updates due to the complete feature weight-
ing. We hypothesize that, during the initial iterations, SA modules will learn from the random
policy dataset how to weigh each state properly. This understanding will subsequently lead
to more precise labeling when Is predominantly consists of Ipos over Ipre.

5.4 Implementation and Results

In order to test ABCO, we perform experiments using five environments available at
OpenAI Gym [6] toolkit. The selected environments are separated in vector-based environ-
ments (Acrobot-v1, Cart-Pole-v1, MountainCar-v0), and image-base environments (Gym-
Maze 3×3, 5×5, and 10×10). Each environment is described in Section 4.4 and illustrated
in the respective Figures (4.1, 4.2, 4.5, 4.3).

We developed two distinct networks to accommodate both vector-based and image-
based environments (Section 5.4.1). Then, we evaluated the results in terms of Average
Episodic Reward (AER) and Performance (P), and we present a comparative analysis with
existing state-of-the-art methods (Section 5.4.2).

5.4.1 Implementation

Our experiments focus on two types of environments: the first, low-dimensional,
vector-based environments and the second, high-dimensional, image-based environments.
To address these distinct scenarios, we have designed two corresponding neural networks.
All models have been constructed with the PyTorch framework, utilizing the Cross-Entropy
loss function and the Adam optimizer. In both the IDM and PM, we have incorporated self-
attention modules.

Here is the detailed composition of each network applied in our experimentation.
In this context, FCd symbolizes a fully connected layer of d dimensions, SAd represents a
self-attention layer and ... indicates the sequence of layers from the initial architecture until
the next described layer:

57

• Vector-based Environments: The network starts with an input of dimensions
Inputdims, followed by a series of layers: FC12 → SA12 → FC12 → SA12 → FC12 → FC12 →
Output6. Here, dims corresponds to a vector housing twelve and six states for the IDM and
PM, respectively.

• Image-based Environments: We modified the ResNet architecture to accom-
modate these environments, integrating two self-attention modules. The layout unfolds as
follows: Input224×224 → · · · → ResBlock2 → SA64 → · · · → ResBlock4 → SA128 → · · · →
FCdims → LeakyRelu → Dropout0.5 → FC512 → LeakyRelu → Dropout0.5 → Output4. In this
case, dims indicates a vector of 1024 and 512 features for the IDM and PM, respectively.

5.4.2 Results

To evaluate our approach, we compare it against the state-of-the-art methods.
Each model is trained using the identical initial set of random pre-demonstrations, Ipre. Ta-
ble 5.1 presents the results in terms of Average Episodic Reward (AER) and Performance
(P) for our models, as well as for related work, BCO [47] and ILPO [11]. As a benchmark,
we also present the results of Behavioral Cloning (BC), a supervised approach.

Our method is found to be either equivalent to or superior to the state-of-the-art
in every environment except for the Maze 3 × 3, where we performed comparably to BCO.
The general results confirm that the attention module and our sampling strategy enhance
the imitation process. All models successfully achieved the maximum score for the CartPole
in both AER and Performance, indicating that this problem is relatively straightforward to
learn. Despite our model boasting the best Pand AER scores in the Acrobot environment,
related work also presented similar results with P ≈ 1.00 and AER = −85.300. The su-
perior AER score our model obtained implies that ABCO can solve the problem with fewer
frames. However, the similar imitation capabilities of both models are apparent as all models

Table 5.1 – Comparison of Performance and Average Episodic Reward between ABCO (our
approach) and related work.
Model Metric CartPole Acrobot MountainCar Maze 3× 3 Maze 5× 5 Maze 10× 10

BC
P 1.000 1.071 1.560 -1.207 -0.921 -0.470

AER 500.000 -83.590 -117.720 0.180 -0.507 -1.000

BCO
P 1.000 0.980 0.948 0.883 -0.112 -0.416

AER 500.000 -117.600 -150.00 0.927 0.104 -0.941

ILPO
P 1.000 1.067 0.626 -1.711 -0.398 0.257

AER 500.000 -85.300 -167.00 -0.026 -0.059 -0.020

ABCO
P 1.000 1.086 1.289 1.159 0.960 0.860

AER 500.000 -77.900 -132.30 0.908 0.932 0.784

58

attained P ≈ 1.00. It is worth noting that even though ABCO does not use labeled data, it
still outperforms the BC approach, which relies on action labels. A noticeable difference in
Performance is seen in the MountainCar, with our model reaching P = 1.289, about 0.34
more than the second-best result achieved by BCO.

Although we recorded the highest Performance scores in all Maze environments,
we noticed that as the complexity of the environment increased, our Performance declined.
However, ABCO was less affected than BCO when faced with increasing complexity. This
is evident from the Performance results we achieved in Mazes 3 × 3, 5 × 5 and 10 × 10
which were 1.159, 0.960 and 0.860 respectively, compared to BCO’s 0.883, −0.112 and
−0.416. In terms of AER, ABCO was only surpassed by BCO in Maze 3× 3 by about 0.02,
where Torabi et al. [47] scored an AER = 0.927. Comparing the results of ABCO with ILPO,
it can be seen that ILPO’s Performance improves as the maze size increases, but it is still
significantly lower than ABCO for the 10 × 10 Maze. We attribute this discrepancy to two
key factors. First, our method incorporates an attention module (5.3), enhancing ABCO’s
ability to concentrate on critical features in non-visited state spaces. Second, ILPO does
not account for a comprehensive view of the scenario, as it employs crop mechanisms and
performs internal manipulations with the state images. Partial environmental observation
means the approach could miss essential image features (e.g., the initial state, the goal
state, the agent, etc). Conversely, as the maze size increases, ILPO gains more local infor-
mation through the crops, thus increasing its Performance.

5.5 Discussion

An ablation study was performed to examine the impact of each component of our
proposed method. We measured Performance and AER in scenarios using only the self-
attention mechanism without sampling, the sampling strategy without self-attention, and the
combination of attention with different samplings. Table 5.2 presents all results that were
generated for this discussion using the Maze 5× 5 environment.

5.5.1 ABCO and Self-attention

ABCO was trained using only the self-attention module to measure the impact on
the learning process. It was observed that using self-attention alone led to higher model
accuracy than the original method. However, high accuracy does not always imply excellent
performance. Without the sampling method, some actions may not occur in later iterations,
resulting in the IDM failing to predict less common actions and forming a subset of all pos-

59

(10/10) (10/10) (10/10) (10/10)

(1/10) (1/10) (1/10) (1/10)

(10/10) (10/10) (10/10)

(9/10) (9/10)

Maze	5x5

Figure 5.1 – Expert demonstrations of a 5 × 5 Gym-Maze configuration. Below each state
image, we indicate the number of expert visits. The blue line depicts the path chosen by our
ABCO agent.

sible actions. Consequently, the policy learns this new subset of actions rather than the real
ones.

The IDM can predict the most common path even when features are weighed. The
agent imitates the most common path when provided with ten different solutions for each
maze, as shown in Figure 5.1. Although the self-attention mechanism yields results similar
to BCO(α), its combination with the sampling method significantly impacts the results.

5.5.2 ABCO and Sampling

In this experiment, ABCO(α) was trained using only the sampling module, with the
self-attention module disabled. It was hypothesized that sampling from the original random
policy dataset would help solve the vanishing actions issue and close the difference between
the initial iteration I and the expert. Vanishing of actions from the IDM prediction occurs due
to the weak policy inference resulting in a Ipos that does not contain all actions or sparse
representations that cause the inverse dynamic model to underfit.

During early iterations under these conditions, IDM ceases predicting classes that
are the minority in the expert dataset. This misclassification leads to the policy looping be-
tween actions that hinder the model from reaching its goal. The distribution of all predictions
from the IDM from BCO(α) and ABCO is compared in Figure 5.2. This comparison shows
that our sampling method can predict all classes better due to the artificial growth of our
dataset caused by sampling from the Ipre.

Moreover, we calculated the L2 distances from the average of all images from each
action during each iteration to determine if the policy can generate samples closer to the
expert than the random dataset. We normalized them between zero for the expert, and one,
for the Ipre samples. The results (Figure 5.3) confirm that our model learns a policy that
generates a better I for majority classes (e.g., S and E) and even for minority classes (e.g.,
N and W). The difference in the approximation of the expert dataset is assumed to be due
to the minority classes consisting mostly of the Ipre since most mazes do not require those

60

Ground Truth ABCO BCO

N WSE
Actions

196 186

81888196

WNSE
Actions

WNSE
ActionsIteractions

0 2 4 6 8 10

Iteractions
0 2 4 6 8 10

2000
4000
6000
8000
10000

Fr
eq
ue
nc
y

2000

4000

6000

8000

10000

Fr
eq
ue
nc
y

Figure 5.2 – IDM predictions of the expert examples through time.

actions. Sampling from the random dataset forces our IDM to balance its labeling and create
further distant iterations. However, as the policy progresses and solves more runs, it gets
closer to the expert. The new samples allow the IDM to fine-tune itself and predict expert
labels more precisely.

We hypothesize that not all interactions following a sub-optimal policy are relevant
for IDM’s learning. To test this, we used a Resnet without attention modules and created
Is with all Ipos and the same ratio used in the original sampling method for all Ipre. This
approach resulted in lower AER and Pas expected, supporting our hypothesis.

In conclusion, the new sampling method alone can enhance the learning experi-
ence by providing a more balanced dataset to the IDM. However, when paired with the self-
attention modules, it improves the model’s generalization by learning to weigh each sample
accordingly, further boosting the performance of our method.

10 20 30 40 50 60 70
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
E
S
W
Random
Expert

Figure 5.3 – L2 distance for the average of each action for each iteration normalized by the
expert and random samples in the 5× 5 mazes.

61

Table 5.2 – Ablation study evaluating the impact of the attention and sampling modules in
the 5× 5 Maze environment.

Model Performance Average Episodic Reward

BCO [47] −0.112 −0.941
Attention −0.415 −0.940

Partial Sampling 0.717 0.716
Whole Sampling 0.628 0.676

ABCO (Attention + Partial Sampling) 0.960 0.932
ABCO (Attention + Whole Sampling) 0.759 0.755

5.6 Final Remarks

In this chapter, we proposed a novel approach, Augmented Behavior Cloning from
Observation (ABCO), to address the challenging task of imitation learning. The model com-
bines a self-attention mechanism with a unique sampling strategy, substantially overcoming
the limitations associated with standard imitation learning methods. The main contributions
of this work, which was later accepted for publication in the International Joint Conference
on Neural Networks (IJCNN), are:

• Self-attention Mechanism: the architecture incorporates a self-attention mechanism
designed to capture global features effectively. This feature allows the model to con-
centrate on crucial aspects of the input space, thereby facilitating a more refined un-
derstanding of complex environments.

• Sampling Strategy: we have developed and implemented a unique sampling strategy
to regulate the observations used for learning. By actively managing the balance of
the samples, our strategy avoids overfitting to more common actions and enhances
the model’s ability to predict less frequent but essential actions.

• Empirical Validation: we conducted extensive empirical evaluations on four environ-
ments where ABCO significantly outperformed state-of-the-art methods. These exper-
iments highlight the model’s robustness and efficacy in learning from observation and
underscore its capacity to work with low-dimensional and raw image data.

62

63

6. IMITATING UNKNOWN POLICIES VIA EXPLORATION

This chapter presents Imitating Unknown Policies via Exploration (IUPE). IUPE ad-
vances significantly over Augmented Behavior Cloning from Observation (ABCO), which was
presented in the previous chapter. ABCO provided a foundational framework by improving
the gaps found in the original BCO framework, but encountered challenges in the initial
stages of training due to the application of maximum-likelihood estimation in situations of
uncertainty.

IUPE mitigates these issues by incorporating exploration and sampling strategies,
enhancing model performance by effectively avoiding local minima. Further, IUPE integrates
self-attention modules, augmenting ABCO’s approach and facilitating the model’s focus on
the most relevant aspects of the input space. This strategy improves generalization and
allows the model to understand complex environments more efficiently.

IUPE has demonstrated its effectiveness by outperforming ABCO and other state-
of-the-art behavior cloning methods, reinforcing its potential in imitation learning. Addition-
ally, IUPE contributes to a deeper understanding of the influence of exploration mechanisms
in the imitation learning paradigm and the evolution of distances from Ipre and Ipos during
iterative processes.

Recognizing these advancements, IUPE was published in the proceedings of the
British Machine Vision Conference (BMVC), affirming its position as a significant contribution
to imitation learning.

6.1 Sampling Method

IUPE employs a strategy similar to ABCO’s sampling approach. It selects from
the post-demonstration using only the runs that have met the goal of the environment, as
depicted in Equation 5.3. However, following this selection of successful runs, IUPE incor-
porates all runs from Ipos rather than re-sampling according to the win probability.

In the subsequent steps, IUPE selects from the pre-demonstrations, Ipre
spl , in align-

ment with the inverse probability of the post-demonstrations, essentially, the loss probability
distribution as given by 1 − P(A | E ; Ipos). To simplify, the samples (observations) that con-
stitute the new post-demonstration dataset are selected proportionately to P(A | E ; Ipos) for
winning executions. The dataset is then populated with the pre-demonstrations in proportion
to the number of loss runs. IUPE and its sampling strategy are outlined in Algorithm 6.1.

It is important to mention that IUPE and ABCO are both goal-aware methods, and
they do not rely on any reward information for learning or model optimization. The idea

64

Algorithm 6.1 Imitating Unknown Policies via Exploration (IUPE)
1: Initialize modelMθ as a random approximator
2: Initialize policy πϕ with random weights
3: Generate Ipre using policy πϕ

4: Generate state transitions T e from demonstrations D
5: Set Is = Ipre

6: Let α be the number of improvement cycles
7: for i ← 0 to α do
8: ImproveMθ by trainIDM(Is)
9: UseMθ with T e to predict actions Â
10: Improve πϕ by behavioralCloning(T e, Â)
11: for e← 1 to |E | do
12: Use πϕ to solve environment e
13: Append samples Ipos ← (st , ât , st+1)
14: if πϕ at goal g then
15: Append ve ← 1
16: else
17: Append ve ← 0
18: end if
19: end for
20: Set Is = sampling(Ipre, Ipos , P(g|E), ve)
21: end for

behind this choice is that not all environments offer intuitive reward functions conducive to
problem-solving.

6.2 Exploration

The original behavioral cloning framework employs a maximum a posteriori (MAP)
estimation technique, predicting the most probable action given a pair of states according to
the model. This applies to both its original form and the α-iterations variant. However, we
noted that in the initial iterations, the model often has a level of uncertainty about the correct
action, leading to local minima that are not desirable.

To tackle this, we adopt a straightforward solution from the domain of language
modeling: we sample actions from the softmax distribution of both models (the IDM during
expert labeling and the PM during environment execution) instead of using MAP estimations.
This strategy generates a stochastic policy that enables more thorough exploration in the
early iterations, taking into account the uncertainty of the model. We demonstrate that this
sampling strategy not only facilitates the convergence of IDM in fewer iterations but also
ensures a more diverse dataset composed of Ipre and Ipos. Further, the stochastic policy
enhances the exploration of the search space for effectively achieving the environment goal.

Additionally, a stochastic policy in dynamic environments is crucial in reaching the
goal where deterministic behavior falls short. This distinction is essential for avoiding local
minima during iterations. In scenarios where the model cannot sample a sub-optimal action
during the training phase, the agent’s actions may default to the most common action in the
expert samples. With this preference to sample the most frequent action, the policy risks
getting caught in a loop between states, e.g., alternating between left and right in a Maze

65

environment. Thus, our method mitigates such instances, contributing to a more effective
learning process.

6.3 Experimental Results

This section presents the experiment details and the final results obtained dur-
ing the IUPE implementation. Our experimental framework is grounded in four diverse en-
vironments derived from OpenAI Gym [6] (see in Section 4.4). These environments en-
compass vector-based scenarios such as Acrobot-v1, Cart-Pole-v1, MountainCar-v0, and
image-based scenarios such as Gym-Maze with variations in dimensions (3× 3, 5× 5, and
10×10). All experimental runs, including the benchmark models, extend across 100 epochs
utilizing the same set of expert data.

For each environment type, we created two unique networks: one catering to low-
dimensions, vector-based environments, and the other tailored to high-dimensions, image-
based environments. All the networks were built on the PyTorch platform. The networks
utilized the Adam optimizer [22] to minimize the cross-entropy loss function. Consistent with
the network topology implemented in the preceding ABCO (Chapter 5) method, as described
in the previous chapter, we integrated self-attention modules [49, 54] into both the IDM and
PM.

To evaluate IUPE, and following the metrics presented in the methodology chapter
of this thesis (Chapter 4), we applied the Average Episodic Reward (AER) and Performance
(P). The AER represents the mean reward across 100 runs for each tested environment.
Given that AER is contingent upon an environment’s reward function, its numeric value varies
across tasks. Essentially, AER quantifies the proficiency of the expert in executing the task,
thereby indicating the degree of difficulty for the agent to mirror the expert’s behavior. The
AER is ascertained by averaging 100 distinct mazes for the Gym-maze environment and
100 sequential runs for the remaining environments.

6.3.1 Results

We evaluate IUPE by comparing it with the leading methods in IfO: BCO [47] and
ILPO [11]). The performance outcomes of each technique are represented in Table 6.1.
For the purpose of making an effective comparison, we incorporate the results (in terms of
both AER and P) of an expert, a randomly acting policy, and behavioral cloning (supervised
fashion). All models are trained on the same starting set of random pre-demonstrations,
denoted as Ipre.

66

Models Metrics CartPole Acrobot MountainCar Maze 3× 3 Maze 5× 5 Maze 10× 10

Expert P 1.000 1.000 1.000 1.000 1.000 1.000
AER 442.628 −110.109 −147.265 0.963 0.970 0.981

Random P 0.000 0.000 0.000 0.000 0.000 0.000
AER 18.700 −482.600 −200.000 0.557 0.166 −0.415

BC P 1.135 1.071 1.560 −1.207 −0.921 −0.470
AER 500.000 −83.590 −117.720 0.180 −0.507 −1.000

BCO P 1.135 0.980 0.948 0.883 −0.112 −0.416
AER 500.000 −117.600 −150.000 0.927 0.104 −0.941

ILPO P 1.135 1.067 0.626 −1.711 −0.398 0.257
AER 500.000 −85.300 −167.000 −0.026 −0.059 −0.020

IUPE P 1.135 1.086 1.314 1.361 1.000 1.000
AER 500.000 −78.100 −130.700 0.927 0.971 0.981

Table 6.1 – Performance and Average Episode Reward for IUPE and related work.

Overall Results: the results, shown in Table 6.1, illustrate IUPE’s superior per-
formance over leading approaches in all environments, but for CartPole, where it is simi-
lar to the baseline results. Predictable results are observed in the CartPole environment,
given its relatively simple state representation of four dimensions and easily distinguishable
actions. In the Acrobot environment, IUPE and ILPO demonstrate near equivalent Perfor-
mance (P≈ 1.00), reflecting their comparable imitation capabilities. However, IUPE delivers
an AER = −78.10, surpassing ILPO’s score of −85.30, indicating IUPE’s ability to resolve
the environment approximately 10 frames faster than ILPO. In the MountainCar environ-
ment, IUPE achieved a P= 1.314, setting the highest benchmark compared to the baselines
in this environment, surpassing the next best result (BCO) by approximately 0.37. IUPE also
surpassed others with a considerably better AER value in the MountainCar environment:
−130.70, which is 19.3 more effective than BCO. In the Maze environments, IUPE confirms
the highest Pvalues across all tested Maze types. As for AER, IUPE was only matched by
BCO in the 3× 3 Maze, where both models scored AER = 0.927. Unlike the Performance of
other approaches that decline as Maze complexity increases, IUPE remains relatively stable.
IUPE’s robustness can be attributed to the stochastic nature of the model, which facilitates a
broader exploration of the environment, avoids local minima, and ensures goal achievement.
When compared with the Expert, IUPE either matches or outperforms it in most of the tested
environments.

IUPE vs. BCO: IUPE, as an enhanced version of BCO, reflects a significant pos-
itive impact on the imitation process in the results. Across all environments, IUPE consis-
tently matches or exceeds the performance of BCO. In the 3× 3 Maze, both IUPE and BCO
earned the same AER score, attributable to the methods solving the same number of en-
vironments. However, IUPE surpassed BCO in the same environment with higher reward
scores. Importantly, as the number of states in the environment escalates, IUPE continues
to learn, differentiating from the BCO method.

67

Model P AER

BCO −0.416 −0.941
Attention −0.415 −0.940
Sampling 0.534 0.348
Exploration 0.734 0.605
Attention + Sampling 0.367 0.088
Attention + Exploration −0.407 −0.921
Sampling + Exploration 0.943 0.901
Attention + Sampling + Exploration (IUPE) 1.000 0.981

Table 6.2 – Ablation study considering IUPE’s 3 main components in the maze environment.

IUPE vs. ILPO: in the CartPole and Acrobot environments, IUPE and ILPO display
similar results. However, IUPE outperforms with superior P and AER scores in the Mountain-
Car and for all Maze environments. In the MountainCar scenario, IUPE achieved a P= 1.314,
demonstrating its ability to imitate effectively and even outcoming the expert results. With re-
spect to AER, IUPE achieved a score of−130.7 compared to ILPO’s−167, representing that
our method achieved superior rewards in MountainCar across 100 episodes. When tested
in Maze environments, ILPO’s AER scores fell below zero, suggesting that it was unable to
solve the majority of the mazes. We believe that ILPO’s underperformance may occur from
its failure to incorporate the complete scenario image as it employs crop mechanisms and
manipulates state images. Such practices could inadvertently exclude crucial elements from
the images (e.g., the agent, the goal state, etc.) during training.

6.4 Discussion

We discuss three key strategies that we explore in the context of behavioral cloning
from observations: self-attention, sampling, and exploration over maximization. We run
several experiments in order to analyze the impact of each feature separately, as well as
combined with the other features. Table 6.2 shows the results of this analysis for the 10×10
Maze environment, where BCO represents the approach without considering any improve-
ment.

6.4.1 Self-Attention

The usage of self-attention modules by IUPE may result from having similar re-
sults when compared with BCO’s performance in terms of P and AER while also converging
faster during the training phase. The significance of the SA modules becomes more evident
when transitioning from Is to T e due to the comprehensive feature weighting provided by
the attention mechanism, which preserves high accuracy across epochs. This phenomenon
is clarified in Figure 6.1, where we use the Grad-CAM [43] technique to illustrate the self-

68

Figure 6.1 – Heatmap visualization of the gradient filters activating for the maze environment.
The first row shows the input image, while the second row shows the gradient activation.

attention gradient activations from an image incorporated in a trained policy. After examining
the gradient activations, it is inferred that the self-attention modules direct the model’s focus
towards the agent while simultaneously accounting for proximal walls. Moreover, it is ob-
served that activation regions are more expansive when the agent navigates through open
passages compared to corridors. This pattern mirrors human visual perception, as evi-
denced in the first and third frames, where the agent is between two walls, contrasted with
other frames where the agent possesses a wider viewpoint. Nevertheless, the absence of
the sampling method and the use of BCO’s original reconstruction for the IDM dataset re-
sults in action predictions disappearing from the model prediction distribution, as depicted in
Figure 6.2(a). Such an issue might occur when the PM fails to execute all actions or behaves
differently from the expert, thereby distancing the feature space from the expert actions.

IUPE demonstrates less score variability during the validation phase comparable
to BCO, suggesting that our model has a superior ability to discern the appropriate action
from the state tuples. After assessing the influence of self-attention (Table 6.2) and the issue
of vanishing actions, we conducted an investigation of the sampling mechanism that guides
the observations input into the IDM, hence preventing it from settling into sub-optimal local
minima.

6.4.2 Sampling

To verify the impact of sampling, we can see that Table 6.2 reveals that the mere
application of the sampling method can ameliorate the vanishing action issue, thus marking
a significant advancement over both BCO and self-attention in isolation. Given that the sam-
pling procedure either retains Ipre in entirety or in fragments during the iterations, it ensures
the IDM continues to receive a selection of random actions as inputs, thereby leading to
more evenly distributed predictions.

As the training progresses and Is increasingly becomes more representative of
Ipos than Ipre, we observe a shift in the action distribution by the IDM that guides the PM to

69

Actions
Interactions

Fr
eq
ue
nc
y

IUPE
BCO

(a)

Number of Epochs

C
ho

ic
es

 o
th

er
 th

an
 M

AP
 (%

)

(b)

Figure 6.2 – (a) IDM predictions for the expert examples through time. (b) Percentage of
choices in which the MAP estimation is not selected by the self-decaying exploration rate.

concentrate more on actions that frequently appear in the expert’s actions. We hypothesize
that this skewing of Is facilitates the IDM’s understanding that the probability of all actions is
not equal, and thus it should prioritize certain actions over others.

In conjunction with the SA module, the sampling mechanism causes the PM to yield
less favorable results when compared to the sole use of the sampling method, although it still
surpasses BCO in performance. Upon investigating the cause of this performance degrada-
tion, we discovered that the Attention+Sampling model provided higher per-action accuracy
during validation. Even though it demonstrated greater confidence in action selection, the
agent was also considerably more prone to becoming trapped between states, predicting
an action that would revert the agent to a prior state and leading to a cyclical pattern of
movement back and forth.

We hence observed that the new sampling method alone could enhance the learn-
ing experience across iterations, but when paired with SA, it inadvertently compromised the
model’s generalization capacity. Given that the issue lay in the excessive certainty associ-
ated with a few actions, we decided to experiment further with the stochastic mechanism we
labeled as exploration.

6.4.3 Exploration over Maximization

Stochastic learning algorithms typically decrease their exploration rate over time,
under the assumption that the agent incrementally discovers the optimal solution as time
passes [30]. If the rate of decay is too slow, the agent may settle on the first solution it
encounters, while an excessively rapid decay might cause the agent to expend too much
time investigating sub-optimal states. By employing the softmax distribution of actions, we
develop an exploration mechanism that gradually diminishes naturally as the neural network

70

improves at segregating the feature space (thereby eliminating the need for tuning a decay
hyperparameter). The self-decaying exploration rate can be observed in Figure 6.2(b).

To assess whether IUPE derives any benefit from this exploration rate, we can
refer to Table 6.2 and observe the impact of exploration on the baseline (BCO), as well as
in combination with the other features (attention and sampling). By solely deploying this
mechanism, we manage to address the issue of repetitive cycling between actions, and
while the PM may achieve the goal via non-optimal paths, it facilitates the generation of
samples that more closely mimic the expert than before.

When the exploration mechanism is paired with the sampling method, it yields re-
sults comparable to IUPE (complete method incorporating all 3 strategies). We understand
that this is due to the increased stochasticity that helps in disrupting loops of actions. While
using exploration with SA results in a model with superior per-action accuracy, we observe
a decrease in both P and AER. We hypothesize that this occurs due to the vanishing ac-
tion problem triggered by the absence of the sampling method. When all mechanisms are
integrated, the SA modules no longer negatively impact the model, instead, they enhance
both P and AER. With the exploration mechanism supporting the model and preventing it
from getting trapped between states, IUPE can refine its predictions earlier because the
non-optimal actions are more similar to the expert. With the inclusion of the sampling mech-
anism, which is responsible for balancing Is, IUPE yields the best results in this analysis.

6.5 Final Remarks

In this chapter, we introduced a new approach, Imitating Unknown Policies via Ex-
ploration (IUPE), that aims to enhance imitation learning performance. IUPE uniquely inte-
grates a self-attention mechanism, a strategic sampling methodology, and an exploration-
driven learning mechanism in order to significantly advance conventional imitation learning
methods. Our proposed approach was published in the proceedings of the British Machine
Vision Conference (BMVC).

The key contributions of IUPE are:

• Self-attention Mechanism: IUPE’s architecture employs a self-attention mechanism
that effectively captures global features from the input data. This feature enables the
model to focus on the most vital aspects of the input space, thus offering a more
nuanced understanding of complex environments and actions.

• Sampling Strategy: we have developed a novel sampling strategy that regulates the
input observations used for the imitation learning process. This strategy not only en-
sures the balance of the samples across different actions but also prevents overfitting

71

to prevalent actions, thereby improving the model’s ability to predict less frequent yet
crucial actions.

• Exploration-driven Learning: IUPE introduces a mechanism of exploration over max-
imization that offers a dynamic, self-decaying exploration rate for action selection, en-
hancing the model’s performance and ability to imitate unknown policies effectively.

• Empirical Validation: we conducted an exhaustive series of empirical evaluations
on several environments, demonstrating that IUPE significantly outperforms state-of-
the-art imitation learning methods. The results highlight the model’s robustness and
effectiveness in learning from observations and its capacity to work with both low-
dimensional data and raw image data.

72

73

7. RESILIENCE OVER SUB-OPTIMAL SAMPLES

Imitation Learning (IL) algorithms aim to emulate the behaviors of experts to exe-
cute specific tasks. Nevertheless, the potential outcomes of these strategies when they learn
from sub-optimal demonstrations are still uncertain. By exploring how IL methods adapt
when faced with varying levels of observational quality, we can enhance areas such as data
collection optimization, model interpretability, reduction of bias in sub-optimal experts, and
beyond. This chapter presents an extensive set of experiments to analyze how diverse IL
methods learn under an array of expert optimality degrees. In this study, we selected four IL
algorithms, three that learn through a self-supervised approach and one that uses ground-
truth labels to learn in supervised mode (Behavioral Cloning) in four different environments.
We subsequently compare their performances when using optimal and sub-optimal expert
demonstrations. Our research reveals that Self-Supervised IL methods demonstrate con-
siderable resilience to sub-optimal experts, a characteristic not presented by the supervised
approach. Interestingly, sub-optimal experts can occasionally provide benefits, as they serve
as a form of regularization technique, protecting models against overfitting.

7.1 Experimental Design

In this study, we aim to investigate the resilience of IL algorithms to varying qualities
of expert samples. Theoretically, if an agent learns behavior from sub-optimal trajectories,
it should perform sub-optimally. That is, it should display lower performance compared to
learning from an optimal expert. Still, we hypothesize that some IL algorithms will be able to
bridge this disparity. Therefore, we search the available literature for various IL methods that
do not depend on direct environment supervision through self-experience, such as a reward
signal.

While many recent IL methods propose hybrid strategies that use the advantages
of reinforcement learning [21, 7], we believe that utilizing a direct signal from the environ-
ment about action optimality would undermine the objective of these experiments. Thus,
we have intentionally decided against including approaches like MobILE [21] in our experi-
mental framework. Additionally, we exclude recent IL methods that necessitate any action
information from the expert, such as OPOLO [55].

For this study, we selected four different methods: Behavioral Cloning (BC) [34],
Generative Adversarial Imitation Learning (GAIL) [17], Imitating Latent Policies from Ob-
servation (ILPO) [11] and Imitating Unknown Policies via Exploration (IUPE) [13]. All the
other methods, but IUPE, presented in the previous chapter, can be seen in greater depth in
Chapter 3.

74

Table 7.1 – Average Episodic Reward (AER) for experts with decreasing quality. Expert1 is
the optimal expert, while Expert5 is the worst-performing expert in our experimental analy-
ses.
Experts CartPole Acrobot MountainCar LunarLander

Expert1 500± 0.00 −82± 22.46 −99± 8.60 228± 62.33

Expert2 435± 70.51 −97± 24.41 −129± 25.50 151± 106.18

Expert3 354± 137.07 −138± 58.15 −137± 25.89 98± 103.76

Expert4 220± 47.42 −199± 79.85 −149± 32.02 60± 119.35

Expert5 112± 7.50 −243± 136.82 −156± 47.76 4± 110.92

To measure the quality of each approach, we use the same two metrics presented
in the methodology of this thesis (Chapter 4): Performance (P) and Average Episodic Re-
ward (AER). As environments, we selected CartPole, Acrobot, MountainCar and LunarLan-
der, all of them presented and explained in depth in Section 4.4.

In order to generate the expert samples, we train different policies, primarily with
DQN [29] and PPO [42] algorithms, with different levels of optimality. We define optimality in
these contexts as a threshold in accumulated reward over 100 episodes. When training an
agent to act as the expert, if it meets the predetermined threshold (specific values can be
seen in Table 7.1), we utilize its behavior for the creation of the (expert) dataset. It is impor-
tant to note that the AER values in Table 7.1 decrease, implying that Expert1 outperforms
Expert2, and so forth. The provided values for each expert in the corresponding environ-
ment are averages over 1, 000 episodes. We use the same number of episodes (1, 000) per
environment to train each IL method in our experimental analysis.

7.2 Results

In this study, we focus on the performance of different algorithms when provided
with non-optimal samples for each domain. We execute each algorithm detailed in the previ-
ous section 10 times, using the data from each expert for 100 epochs. The network topology
is the same for each approach, which consists of a multi-layer perceptron containing two
layers and 32 neurons in each layer.

Table 7.2 displays the average and standard deviation of both metrics for each
algorithm when using Expert1 for each environment. The corresponding AER values for the
experts are also included.

CartPole was the simplest environment for all methods to learn from, with all ap-
proaches achieving a performance score of 1. The second most accessible environment
was Acrobot, with all algorithms reaching an average Performance score of 0.865. In this

75

Table 7.2 – Performance (P) and Average Episodic Reward (AER) for all algorithms on all
environments using the optimal expert.
Experts Metrics CartPole Acrobot MountainCar LunarLander

Random AER 18.7± 0 −482.6± 0 −200± 0 −182.72± 0
P 0± 0 0± 0 0± 0 0± 0

Expert1 AER 500± 0 −82± 22.46 −99± 8.60 228± 62.33
P 1± 0 1± 0 1± 0 1± 0

BC AER 500.0± 0.0 −93.6± 18.5 −200.0± 0.0 −80.9± 188.15
P 1± 0 0.97± 0.0 0.0± 0.0 0.25± 0.03

GAIL AER 500.0± 0.0 −286.23± 90.86 −200.0± 0.0 −92.26± 114.67
P 1± 0 0.48± 0.15 0.0± 0.0 0.22± 0.13

ILPO AER 500.0± 0.0 −75.65± 12.85 −184.54± 10.06 −98.46± 56.54
P 1± 0 1.02± 0.0 0.15± 0.31 0.2± 0.07

IUPE AER 500.0± 0.0 −87.26± 22.19 −166.97± 18.34 −81.34± 74.5
P 1± 0 0.99± 0.05 0.38± 0.15 0.25± 0.25

context, ILPO achieved the highest reward of −75.42 (surpassing the expert), while GAIL
recorded the lowest reward of −290.57.

One significant observation is the results exhibited by IUPE in the LunarLander
environment. Despite not reaching the expert’s proficiency, IUPE performed on par with BC.
It is important to remember that BC is a robust baseline with access to the expert’s actions
at every state, also known as ground-truth labels.

Comparing the results from CartPole and Acrobot with those from MountainCar
and LunarLander, where the average performance for all algorithms was approximately
0.095 and 0.2425, respectively, we can infer that: (i) High rewards are closely correlated
to accurate overall trajectories in both MountainCar and LunarLander. (ii) In environments
where trajectories can be noisy yet contain a few correctly executed actions, non-exploratory
agents that operate locally tend to outperform their exploratory counterparts. This tendency
is evident in the results observed in the Acrobot and CartPole environments.

Table 7.3 provides the results for all methods when using Expert2. CartPole main-
tains its status as the easiest environment for all methods, except for BC, which cannot
achieve a Performance score of 1. Given that a reward of 195 is considered as solving
the CartPole environment, however, it is expected that other algorithms will retain similar
outcomes even as we introduce more sub-optimal experts.

Regarding the Acrobot environment, with an average performance score of 0.905,
all IL approaches demonstrate a minor decline in Performance compared to the optimal
expert. This pattern emerges from Acrobot’s nature towards random actions and further
supports our secondary conclusion drawn from Table 7.2.

For the MountainCar environment, a reduction in Performance is observed across
all approaches. This is expected as maintaining momentum is essential for solving the task.
A single non-optimal action can result in a significant divergence from the optimal trajectory,
making it challenging for IL algorithms to recover from unseen states [18].

76

Table 7.3 – Performance (P) and Average Episodic Reward (AER) for all algorithms on all
environments using Expert2.
Algorithms Metrics CartPole Acrobot MountainCar LunarLander

Random AER 18.7± 0 −482.6± 0 −200± 0 −182.72± 0
P 0± 0 0± 0 0± 0 0± 0

Expert2 AER 435± 70.51 −97± 24.41 −129± 25.50 151± 106.18
P 1± 0 1± 0 1± 0 1± 0

BC AER 415.84± 81.46 −103.36± 18.0 −200.0± 0.0 32.45± 63.39
P 0.95± 0.04 0.98± 0.0 0.0± 0.0 0.64± 0.01

GAIL AER 500.0± 0.0 −253.55± 84.78 −199.26± 2.73 −100.21± 99.02
P 1.16± 0.0 0.61± 0.17 0.0± 0.1 0.23± 0.14

ILPO AER 500.0± 0.0 −76.07± 13.48 −192.7± 2.63 −89.06± 76.45
P 1.16± 0.0 1.05± 0.0 0.0± 0.4 0.26± 0.11

IUPE AER 489.61± 9.06 −120.36± 36.35 −190.26± 11.03 −57.93± 91.75
P 1.16± 0.24 0.98± 0.16 0.12± 0.22 0.35± 0.22

Table 7.4 – Performance (P) and Average Episodic Reward (AER) for all algorithms on all
environments using Expert3.
Experts Metrics CartPole Acrobot MountainCar LunarLander

Random AER 18.7± 0 −482.6± 0 −200± 0 −182.72± 0
P 0± 0 0± 0 0± 0 0± 0

Expert3 AER 354± 137.07 −138± 58.15 −137± 25.89 98± 103.76
P 1± 0 1± 0 1± 0 1± 0

BC AER 181.99± 78.5 −130.94± 25.4 −200.0± 0.0 107.48± 101.49
P 0.49± 0.02 1.02± 0.0 0.0± 0.0 1.03± 0.03

GAIL AER 500.0± 0.0 −248.78± 82.66 −199.96± 1.6 −96.88± 106.57
P 1.44± 0.0 0.66± 0.14 0.0± 0.03 0.29± 0.19

ILPO AER 500.0± 0.0 −75.63± 14.05 −199.82± 4.36 −90.88± 68.94
P 1.44± 0.0 1.18± 0.0 0.0± 0.32 0.33± 0.06

IUPE AER 177.73± 85.75 −85.59± 22.59 −173.5± 14.55 −190.7± 89.16
P 0.63± 0.38 1.15± 0.07 0.43± 0.3 0.12± 0.46

In contrast, the results for the LunarLander environment are quite unexpected. De-
spite a 50-point reduction in the expert result, they are transitioning from trajectories that
solve the environment to those that do not. The Performance increases for BC and re-
mains nearly unchanged for the remaining approaches. This intriguing behavior suggests
that a sub-optimal expert might assist in generalization despite the high correlation between
LunarLander’s trajectories and the final reward. When faced with slightly less optimal trajec-
tories that do not solve the environment, the IL agent avoids overfitting to specific behaviors
and potentially learns to diverge from landing positions observed during training. This unex-
pected adjustment leads to a surprising enhancement in terms of generalization.

Table 7.4 presents the results for Expert3. In this setup, we observe a drop in AER
and Pfor IUPE, alongside BC, in the CartPole environment. IUPE’s success is more strongly

77

Table 7.5 – Performance (P) and Average Episodic Reward (AER) for all algorithms on all
environments using Expert4.
Experts Metrics CartPole Acrobot MountainCar LunarLander

Random AER 18.7± 0 −482.6± 0 −200± 0 −182.72± 0
P 0± 0 0± 0 0± 0 0± 0

Expert4 AER 220± 47.42 −199± 79.85 −149± 32.02 60± 119.35
P 1± 0 1± 0 1± 0 1± 0

BC AER 372.76± 120.85 −179.18± 26.72 −200.0± 0.0 71.48± 136.87
P 1.76± 0.05 1.07± 0.0 0.0± 0.0 1.04± 0.05

GAIL AER 498.28± 16.08 −316.42± 79.66 −200.0± 0.37 −88.32± 91.24
P 2.39± 0.04 0.53± 0.2 0.0± 0.0 0.39± 0.16

ILPO AER 500.0± 0.0 −75.78± 13.8 −190.47± 5.25 −103.39± 80.0
P 2.39± 0.0 1.43± 0.0 0.0± 0.67 0.32± 0.09

IUPE AER 357.65± 61.64 −338.1± 40.02 −161.05± 20.11 −79.54± 110.0
P 1.84± 0.69 0.24± 0.64 0.8± 0.51 0.49± 0.2

connected to the expert’s optimality than GAIL and ILPO, which can maintain their maximum
results (500 reward points) in this environment.

In the Acrobot environment, all algorithms sustain their performance with minimal
degradation in reward, with their standard deviations remaining largely consistent. IUPE
continues to perform best in the MountainCar environment, reaching −172.92 of AER, close
to the optimal expert. Although IUPE tracks behind ILPO in terms of overall reward, its sta-
bility, indicated by standard deviation values, surpasses ILPO in most environments, except
CartPole.

The results from LunarLander in Table 7.4 further underscore the point that when
dealing with an environment that necessitates specific trajectories (e.g., landing within the
flags), fewer optimal experts can aid IL algorithms in achieving better generalization. How-
ever, it is important to note that good performance here (behavior similar to the expert) may
not indicate the optimal behavior, given that the expert is flawed. Thus, achieving P of 1 no
longer correlates with optimal behavior.

Table 7.5 presents the results for Expert4. These results indicate a mid-way point
in solving each environment, except for the CartPole environment, which maintains a reward
score of 195. We expected continual performance degradation for IUPE and BC during
these trials in the Acrobot and CartPole environments. However, this occurred only in the
Acrobot experiments.

In the CartPole environment, while ILPO and GAIL retained the maximum reward,
as expected, an intriguing reward increase was noticed for both BC and IUPE. Further-
more, an increased standard deviation was evident in the 10 runs of BC. IUPE consistently
performed well in the MountainCar environment, despite reducing expert optimality. These
observations, associated with the ILPO performance on Acrobot, lead us to conclude that
the intrinsic explorative nature of these methods primarily drives this behavior. While ILPO
only relies on expert and random samples, IUPE constantly receives varied samples for its

78

Table 7.6 – Performance (P) and Average Episodic Reward (AER) for all algorithms on all
environments using Expert5.
Algos Metrics CartPole Acrobot MountainCar LunarLander

Random AER 18.7± 0 −482.6± 0 −200± 0 −182.72± 0
P 0± 0 0± 0 0± 0 0± 0

Expert5 AER 112± 7.50 −243± 136.82 −156± 47.76 4± 110.92
P 1± 0 1± 0 1± 0 1± 0

BC AER 155.96± 71.82 −178.82± 55.38 −200.0± 0.1 −6.03± 93.79
P 1.46± 0.05 1.27± 0.02 0.0± 0.0 0.96± 0.02

GAIL AER 484.22± 40.29 −331.85± 84.55 −199.94± 2.14 −60.28± 101.21
P 5.11± 0.31 0.61± 0.26 0.0± 0.03 0.77± 0.4

ILPO AER 500.0± 0.0 −75.93± 15.15 −192.58± 7.65 −96.57± 76.11
P 5.16± 0.0 1.7± 0.0 0.0± 0.64 0.41± 0.14

IUPE AER 134.72± 22.51 −259.57± 23.58 −178.24± 23.54 −176.33± 85.52
P 1.33± 0.55 1.33± 0.82 0.6± 0.36 0.14± 0.57

IDM. A plausible hypothesis is that self-supervised methods with exploration mechanisms
can enable more dynamic learning models (as evidenced by the MountainCar outcomes). In
contrast, those lacking exploration excel in more stochastic environments.

Table 7.6 reveals results for the least effective expert, Expert5. In this scenario,
none of the experts resolve the tasks, yet they significantly outperform the random agent.
A considerable performance drop is observed for all algorithms across the CartPole, Ac-
robot, and MountainCar environments, except for ILPO, which remains consistent in the first
two experiments. This consistency observed with ILPO supports our inference that self-
supervised IL methods without exploration perform better in environments where trajectory
formation is less crucial (e.g., in Acrobot, where the impact of any action on the overall
trajectory is minimal compared to MountainCar).

IUPE sustains its results with minimal alterations, even with degraded expert sam-
ples. This behavior strengthens our assertion that self-supervised IL methods with explo-
rative mechanisms can assist IL agents in executing smoother actions in environments more
predisposed to trajectory deviations (e.g., momentum in MountainCar). Lastly, as antici-
pated, in the LunarLander environment, all methods experienced diminishing results in this
final scenario.

Figure 7.1 shows the performance of all the approaches across four environments
and using five experts. The lines indicate the performance tendency of each algorithm as
the quality of the samples decreases, with the blue line representing the expert. In the
CartPole environment (Figure 7.1(a)), BC’s performance decreases linearly even though it
had access to all labels from the expert. IUPE’s performance pattern follows BC, while GAIL
and ILPO maintain relatively stable performance throughout the sample-quality degradation
process. Next, we analyze the Acrobot (Figure 7.1(b)) and MountainCar (Figure 7.1(c))
environments. In Acrobot, ILPO is able to maintain its performance throughout the sample-
quality degradation, suggesting that ILPO has learned the dynamics of the environment, and

79

500 435 354 220 112
0

200

400

R
ew

ar
d

Expert BC GAIL ILPO IUPE

(a) CartPole

-82 -97 -138 -199 -243

300

200

100

0

(b) Acrobot

-99 -129 -137 -149 -156
200

150

100

50

0

R
ew

ar
d

(c) MountainCar

228 151 98 60 4
200

100

0

100

200

(d) LunaderLander

Figure 7.1 – Results from multiple environments, using five different experts per environment
and four algorithms. The x-axis represents the expert reward, while the y-axis represents
the cumulative reward over a hundred runs for each agent. The lines on each graph show
the patterns of the expert and one or more algorithms, highlighting their distinct behaviors.

the expert’s behavior only works as a guide to its goal. In the MountainCar environment,
IUPE exhibits a similar pattern of consistent performance, showing some correlation with
the expert. Finally, in the LunarLander environment (Figure 7.1(d)), BC shows the best
overall results, GAIL displays the most consistent and robust performance, and IUPE has
the best performance in 3 out of 5 experts among those that do not have access to the
ground-truth labels. Overall, receiving sub-optimal trajectories allows the approaches to
learn the dynamics of the environment more effectively and achieve better results. However,
this does not occur in all environments. We hypothesize that the LunarLander environment
might provide a better scenario for testing the generalization capabilities of IL approaches
since merely learning to mimic the trajectory of the expert without understanding how and
where to land does not lead to high performance, especially given that the final goal changes
depending on the chosen seeds.

7.3 Discussion

In this study, similar to previous research in this field and following the metrics pre-
sented in our methodology, we employed the Performance metric to evaluate the results
of our experiments. As elaborated in Section 4.3, this metric normalizes the agent’s per-
formance by computing the average reward across 100 executions and comparing it to the
expert’s performance and the expected performance of a random policy. Consequently, an

80

agent surpassing the expert’s performance can achieve results greater than 1, while poor
performance may yield negative results.

However, it is important to note that this metric may not always obtain accurate
information or align with common expectations. When applied to skewed data, it inherits the
same challenges as linear normalization methods. Although we do not use it for classification
or regression optimization, it can misrepresent the agent’s behavior in a given environment.
To illustrate this point, the experiments conducted in the MountainCar domain can be exam-
ined under two scenarios: (i) when the expert achieves a reward of −160 and the random
policy achieves −200 (the lowest possible reward); and (ii) when the expert’s reward is −110
(considered the threshold for solving the task) and the random policy still receives −200.

In the first scenario, if an agent replicates the expert’s behavior, it would be given a
Performance score of 1, whereas in the second scenario, achieving the same reward would
result in a Performance score of approximately 0.44. This example highlights the issue of
assuming the expert policy is optimal, as also observed in Tables 7.5 and 7.6. If the selected
expert samples are not optimal, the performance metric will fail to represent the agent’s
competence accurately. In this case, the agent falls short of solving the task by 50 reward
points, yet the metric suggests it is optimal.

Therefore, it becomes crucial to have prior knowledge regarding the optimality level
of the expert, which can present a complex challenge across various application domains.
Furthermore, if an agent achieves a reward of −100 in the same example, the performance
scores would be 2.5 and 1.11 for the first and second scenarios, respectively. This example
demonstrates that (i) the samples may not be ideal, as was the case with most of the samples
in this study, and (ii) the policy may not have fully learned the precise behavior exhibited
by the expert. The results support both hypotheses, indicating that the proposed method
successfully learned from and even surpassed the expert’s performance.

We can conclude that the reward function alone does not accurately represent the
expert’s trajectory. To illustrate this point, consider an environment where an agent’s task is
to drive a car from point A to point B and then pick up a passenger. Suppose the reward
function solely tracks the distance driven by the agent and fails to account for the act of
picking up the passenger. In that case, the agent’s and expert’s rewards will be the same.
Consequently, the agent’s performance would be assigned a value of 1. Similarly, if the
reward function only considers the act of picking up the passenger and ignores the distance
driven, an agent that takes a longer path than the expert would still achieve a performance
score of 1, despite its sub-optimal behavior. This example can be applied to the LunarLander
environment, where the agent is rewarded for landing between flags. Even if the agent takes
longer to reach its destination, it can still attain a performance score close to 1.

Furthermore, it is important to note that the performance metric fails to provide in-
sights into the agent’s generalization abilities. When utilizing classic control environments, IL
can easily force the agent to closely reproduce the expert’s trajectory without requiring sig-

81

nificant effort to map unseen states correctly. This issue becomes apparent when examining
how ILPO maintains its performance across multiple sub-optimal experts, as depicted in Fig-
ure 4.1. Despite the consistent degradation of the expert’s performance, ILPO manages to
map the trajectory accurately. While this behavior is useful in cases where the environment
task does not necessitate generalization over time, such as in MountainCar, a closer exam-
ination of Figures 4.5 and 4.4 reveals that these algorithms perform similarly to the random
policy in environments where a moderate level of generalization is required.

We highlight that the performance metric can still produce positive results even
when evaluating sub-optimal agents. This observation emphasizes the necessity for caution
when using the metric, as it underscores the importance of fully considering its inherent
flaws and limitations.

7.4 Final Remarks

This study explored the efficacy of four Imitation Learning algorithms under varying
degrees of expert optimality in diverse scenarios. Specifically, we assess the impact of
reducing expert quality on these approaches while solving different tasks. Notably, two IL
algorithms, ILPO and IUPE, exhibit superior performance and demonstrate less dependence
on expert correlation compared to the other methods. Employing approaches that involve
the initial classification of state transitions by the agent, followed by learning the expert
policy, enhances their resilience to different levels of sample quality. Although IUPE follows a
distinct model for classifying transitions, its iterative nature aids in generalization by providing
diverse labels for the same state samples during training.

This study was published in the proceedings of the Brazilian Conference on Intelli-
gent Systems (BRACIS).

The key contributions and findings of this study are:

• Analysis of IL Algorithms: we experiment with four different IL algorithms, evaluating
their performance in scenarios with varying levels of expert quality.

• Impact of Expert Quality: we investigate the impact of decreasing expert quality on
IL algorithms’ performance when solving different tasks.

• Superior Performance of ILPO and IUPE: ILPO and IUPE demonstrate better per-
formance and exhibit less correlation with the expert than BC and GAIL.

• Robustness to Sample Quality: approaches involving initial classification of state
transitions enhance resilience to different degrees of sample quality.

• Iterative Nature of IUPE: IUPE’s iterative nature aids in generalization by providing
diverse labels for the same state samples throughout training.

82

• Trade-off between Optimality and Generalization: certain environments showcase
a clear trade-off between IL agents’ optimality and generalization capabilities.

• Proposal for New Evaluation Metrics: given the possibility of experts being sub-
optimal, we emphasize the importance of proposing new evaluation metrics for IL.

83

8. COMBINED REINFORCEMENT AND IMITATION LEARNING

While successful in reproducing observed behaviors, imitation learning approaches
are constrained by the quality and availability of expert-generated trajectories. In the previ-
ous chapter (Chapter 7), we delved deep into this subject and conducted a series of com-
prehensive experiments to gain a thorough understanding of the impact of sub-optimality on
IL algorithms. In contrast, Reinforcement Learning (RL), although not reliant on a super-
vised signal for task learning, often demands extensive computational resources, potentially
leading to sub-optimal policies under resource constraints.

To address these limitations, we present a novel method called Combined Rein-
forcement and Imitation Learning (CRIL), which leverages a small sample of expert behavior
to accelerate the reinforcement learning process and achieve optimal policies. CRIL (Fig-
ure 8) combines the strengths of both IL and RL by using expert trajectories to learn how to
behave while concurrently learning from its own experiences in a traditional RL manner.

8.1 Reinforcement and Imitation Learning

CRIL adopts an interleaved process of Imitation and Reinforcement Learning to
converge toward an optimal policy efficiently. Our method incorporates the concept of self-
supervised learning of policies using an IDM, as explored and presented in previous ap-
proaches (Chapters 5 and 6). We then enhance and refine this policy through reward-based
exploration inspired by q-learning techniques described in Watkins and Dayan [51], Mnih et

IDM IDM Policy

Policy

Env.

i ii iii iv v vi

Figure 8.1 – Combined Reinforcement and Imitation Learning (CRIL) framework.

84

al.[29], and Kaiser et al. [20]. The final goal is to develop a novel algorithm that uses expert
trajectory samples to guide policy design while leveraging its own experiences to explore
states beyond the expert’s trajectories and refine its trajectory.

For the RL component of our method, we base our implementation on the original,
unmodified Deep Q-Network (DQN) [29] architecture. We chose DQN as it exhibits interest-
ing parallels with the self-supervised IL component, particularly concerning being off-policy.
Additionally, we acknowledge the pivotal role of the exploration versus exploitation trade-off
in achieving higher rewards. This consideration aligns with our approach’s Imitation and
Reinforcement Learning components.

8.1.1 Self-Supervised Imitation Learning

Self-supervised Imitation Learning usually encompasses two main modules: the
Inverse Dynamics Model (IDM) and the Policy Model (PM). The IDM learns to predict actions
based on state transitions, denoted asMθ(a | st , st+1), while the policy πϕ acts as a stationary
model, predicting the most likely action a given the state st . To learn these transitions, a
pre-demonstration dataset (Ipre) is generated using πϕ with random weights, consisting of
samples in the form of (st , a, st+1). The IDM then leverages Ipre to learn the inverse dynamics
of the agent, aiming to find optimal parameters θ∗ that accurately describe state transitions.
As expert labels are unavailable, pairs of states from expert demonstrations (se

t , se
t+1) are

used with the IDM to predict the actions associated with expert transitions. Subsequently,
using these self-supervised labels, the PM learns to predict actions π(â | st). However,
since Ipre includes random actions, the pseudo-labels generated by the IDM may deviate
significantly from those of the expert. Chapter 2.2 further explores this topic in greater detail.

To address this issue, an iterative process is employed. The updated policy gener-
ates new samples Ipos, and the dataset Is is balanced with all trajectories that successfully
reach the environment goal. This iterative approach maintains a weighted distribution be-
tween random and updated policy samples, preventing the model from getting stuck in local
minima. Importantly, the probability of actions vanishing in each iteration is minimal, ensur-
ing effective learning and avoiding convergence issues.

8.1.2 Exploration with Neural Networks and q-values

Another essential component of our proposed approach involves an exploration
mechanism through RL using q-values and neural networks. One popular method in this
context is Deep Q-Network (DQN), introduced by Mnih et al. [29]. DQN uses a Deep Neural
Network to approximate the optimal Q-function, as defined in Equation 8.1. In this equation,

85

r represents the reward received during the transition from state st to st+1, α denotes the
learning rate, a corresponds to the action, and Q refers to the deep neural network.

Q (St , At)← Q (St , At) + α
[
Rt+1 + γ max

a
Q (St+1, a)−Q (St , At)

]
(8.1)

DQN incorporates an experience replay mechanism, which stores a set of observa-
tions from the environment to update the Q-function using random samples. This approach
addresses the correlation issue between observation sequences and facilitates smoother
changes in the data distribution.

During each episode, the algorithm selects a random action with a probability of ϵ or
uses the action-value function. Typically, the value of ϵ decreases as training progresses to
shift the agent’s focus from exploring early states to exploiting late states, particularly those
close to the goal. The agent executes the ϵ-greedy action in the environment, receiving a
reward and transitioning to the next state.

8.2 Combining Imitation and Reinforcement Learning

CRIL follows an iterative approach that combines IL and RL ideas, leveraging both
paradigms’ benefits. The algorithm generates new samples using the environment and em-
ploys RL techniques.

CRIL introduces a Reinforcement Learning approach to learning through experi-
ence by accessing states and rewards from the environment. The complete learning pipeline
of CRIL is outlined in Algorithm 8.1, with the following main steps: (i) Creation of dataset Ipre

by using the imitation policy πϕ as Is (lines 4-5); (ii) Utilization of Is to learn the inverse dy-

Algorithm 8.1 Combined Reinforcement Learning (CRIL)
1: Initialize modelMθ as a random approximator
2: Initialize policy πϕ with random weights
3: Generate state transitions T e from expert demonstration
4: Generate Ipre using policy πϕ
5: Set Is = Ipre

6: while πϕ improves from either method do
7: UpdateMθ by TRAIN(Mθ, Is)
8: Generate pseudo-labels Â byMθ(T e)
9: Update πϕ by BCLOSS(T e, Â)

10: for e← 1 to |E | do
11: Use πϕ to solve environment e
12: Append samples Ipos ← (st , at , st+1)
13: Update πϕ by TDLOSS(Ipos, A)
14: end for
15: Is ← GOALSAMPLER(Ipos)
16: end while

86

namics of the environment (line 7); (iii) Labeling the expert actions Â responsible for the state
transitions in the expert samples T e using the IDM network (line 8); (iv) Training the policy
πϕ in an imitation learning fashion using T e and the pseudo-labels Â (line 9). (v) Using the
policy πϕ in the environment to create new state transitions Ipos and employing the temporal
difference update to learn from its own experiences (lines 10-14); (vi) Employing a sampling
mechanism to create a new dataset Is for feeding the IDM network (line 15); (vii) Repeating
steps ii-vi until no further improvement is observed. This occurs when there are no changes
in actions between two consecutive epochs or when there is no significant reduction in loss
over consecutive epochs.

By iteratively following these steps, CRIL integrates IL’s and RL’s strengths, allowing
the policy to benefit from expert guidance while learning from its own experiences in the
environment.

In the RL-based component of CRIL, ϵ-greedy exploration is applied to learn states
outside the expert’s scope. While traditional ϵ-greedy approaches often decrease the ex-
ploration chance over time, CRIL alternates between learning from demonstration and ex-
perience, which can result in acquiring sub-optimal information from both perspectives. To
address this, CRIL adapts its exploration behavior based on the model’s accuracy.

The policy of CRIL uses the softmax distribution from its output to predict actions.
As the policy learns to differentiate between actions, it becomes less predisposed to choose
actions based solely on the maximum a posteriori label. In each iteration of CRIL, the
exploration ratio of the policy is computed during the self-supervised learning component
(Line 9). The same value is used as the epsilon for exploration in the RL-based component
(Lines 10-14). This approach allows the model to explore more initially, similar to ϵ-greedy
policies. As the policy evolves, it allows for less exploration and more exploitation. This
strategy eliminates the need for a time-dependent decaying function for exploration values
commonly observed in RL algorithms and enables increased exploration when the policy
encounters local minima.

It is important to note that RL approaches are typically not designed to learn an
optimal policy in a limited number of episodes. Therefore, it is crucial to adapt the size of the
experience replay. If the size is too large, there will be fewer updates during each iteration,
potentially leading to less desirable actions. Contrarily, if the size is too small, fewer samples
will result in sub-optimal weight updates. To tackle this issue, CRIL utilizes the average
size of expert trajectories available to determine the size of the replay memory for each
environment. Specifically, CRIL sets the experience replay size to be 10× the average size
of the expert samples available in each domain. This adaptive approach ensures a balance
between updating the weights effectively and utilizing the available expert knowledge for
efficient learning.

87

One potential drawback of CRIL is its reliance on RL and IL methods. This iterative
process constantly shifts data and labels, with one part depending on a reward signal and
the other being self-supervised.

To address this limitation, we propose three modifications to both components: (i)
We introduce gradient clipping for both the Reinforcement and Imitation Learning compo-
nents. By limiting the magnitude of the gradients, we reduce variance during the learning
process. Since the two learning methods have different objectives, this clipping helps sta-
bilize the training; (ii) We incorporate layer normalization into both the IDM and PM. This
addition is motivated by the continuous shift in data and labels due to the approach’s self-
supervised iterative nature. While traditional IL methods benefit from large expert datasets
that mitigate the effects of covariance shift, CRIL relies on fewer expert samples. By in-
corporating layer normalization into CRIL’s topology, the model became capable of learning
the correct normalization of all neurons in each layer based on the samples. This addition
boosts the learning process of the policy; (iii) We modify the sampling mechanism employed
by the self-supervised strategy to reduce the impact of covariate shift. In its original form,
the sampling is performed from a softmax distribution, allowing the IDM to quickly learn a
distribution beyond Ipre, which ensures balanced actions. However, this approach proves
less effective when expert samples are scarce. The constant changes in IDM’s predictions,
combined with the limited number of examples, negatively affect the policy.

To mitigate this issue, we introduce an upper limit on the number of samples I
from Ipos. We determine this limit using Equation 8.2, where n represents a hyperparameter
defining the number of epochs required for the upper limit to reach 100%, e denotes the cur-
rent epoch, and k indicates the slope of the curvature. This approach promotes smoother
transitions between epochs, reducing the covariate shift experienced by CRIL during train-
ing.

lim sup Ipos = 1− 1
1 + (n

e − 1)−k , (8.2)

8.3 Experimental Results

In our main experiments, we set the value of k to 2, and each algorithm was trained
for 150 epochs. These values may vary in later ablation studies. For the RL model, gradient
clipping was applied within the range of [−0.5, 0.5], while the IL models used [−1, 1] for
clipping. The evaluation of CRIL and other IL-related approaches is based on Average
Episodic Reward (AER) and Performance (P).

To compare RL approaches’ sample efficiency, we count the number of samples
each algorithm receives to reach a specific reward rather than measuring timesteps. This

88

ensures a fair comparison considering CRIL’s utilization of both expert and environment sam-
ples. Two DQN methods are tested: the original version (DQN1) by Mnih et al. [29], which
serves as a reference for several mechanisms in CRIL, and the prioritized experience replay
variant (DQN2) by Schaul et al. [39], which is state-of-the-art for most tested environments.
Additionally, we include two other RL algorithms, PPO [42] and ACKTR [53], as baselines.

These algorithms were chosen due to their distinct approaches, both achieving
optimal policies for the Acrobot and MountainCar environments. Unlike CRIL, the other IL
methods in this study do not utilize any RL mechanisms.

8.3.1 Policy Optimization Behavior

IL and RL methods work on the same premise that an agent needs to learn an
approximation to a theoretical optimal policy in the form of an MDP. Nevertheless, IL focuses
on a more specific optimal policy: the expert’s. At the same time, RL learns how to optimize
its value function, thus achieving one of many possible optimal functions for each environ-
ment. We hypothesize that CRIL yields better policies than IL methods since it learns with
its own experiences, while also achieving results much more efficiently than RL methods. To
validate that hypothesis, we conduct an experiment where we compute the KL Divergence
of a trajectory with four different policies: (i) the optimal policy (π∗); (ii) an RL policy [29]; (iii)
an IL policy [13]; and (iv) the CRIL policy. Since π∗ may be one of many theoretical optimal
policies, we do not use these results as a form of quantifying any of the policies created.
However, upon carefully analyzing them, we can draw intuitions regarding the combination
of RL and IL into a single policy.

We compute two different KL Divergence values. First, we compare all models with
π∗ and compute the difference with the probability of all possible actions. This result shows
how similar a policy is to the optimal one regarding its mapping of the likelihood of actions
given a state. However, such difference is trivial when an agent during evaluation uses only
a greedy approach for choosing an action. Thus, we also compute the KL Divergence using
one-hot encodings for the specific action given a state (KL-Divergence∗).

In Table 8.1, it is evident that the CRIL policy exhibits the highest divergence from
π∗ according to the first metric, with a value of 9.6476. This difference can be attributed to
two primary factors: the expert’s actions may not be optimal, and the reinforcement learning
updates can significantly vary the softmax probabilities.

To explore the first hypothesis, we can refer to Figure 8.2, which visualizes the
probability of the maximum a posteriori action across all discretized values. Comparing
π∗ with the other policies, we observe that in the middle of the valley, π∗ demonstrates a
certain level of uncertainty (approximately 33% for each action), which is not apparent in the
other policies. Furthermore, when comparing RL and IL policies, we find that the RL policy

89

0
5

10
15 0

5
10
15

-17.5
-15.0
-12.5
-10.0

-5.0
-7.5

(a)

0
5

10 15 0
5
10
15

-1.5
-1.0
-0.5

0.5
0.0

(b)

0
5

10 15 0
5
10
15

-1.5
-1.0
-0.5

0.5
0.0

1.0

(c)

0
5

10 15 0
5
10
15

-1.5
-1.0
-0.5

0.5
0.0

1.0

(d)

Figure 8.2 – Visualization of the MountainCar-v0 environment. Each figure illustrates the
maximum a posteriori probabilities in a 3D mesh.

exhibits behavior more similar to π∗ than the IL policy. This indicates that the RL approach
better captures the optimal policy’s characteristics than the IL approach.

The IL policy demonstrates a higher level of certainty compared to the other policies
across all discretized values (approximately 58%). This characteristic can help explain the
poor performance of the IL model. Since IL methods solely rely on expert samples in a
supervised manner, the model’s certainty only considers the classification problem without
considering the sparse rewards that the MountainCar environment presents.

In contrast, when comparing CRIL with the other methods, we observe that CRIL
manifests a combination of RL and IL characteristics within the "valley" region. Although
CRIL does not yet generate results more closely aligned with π∗, it strikes a balance by
creating a more moderate mapping of discretized values.

When comparing CRIL with the greedy optimal policy, our method achieves the
highest similarity, with a value of 0.8094. This result indicates that despite their divergence
in probabilities, both methods exhibit considerable similarity. In other words, both methods
agree on the action to be taken for the same state.

Figure 8.3 visually illustrates the proximity of CRIL to π∗ by discretizing the contin-
uous state-space of MountainCar into a 20 × 20 Q-table. The plot depicts the maximum a
posteriori action and colors the states equivalent to π∗. The figure shows that in a discrete
space, CRIL is closer to the optimal policy than the other methods.

Table 8.1 – KL Divergence from all three models, when compared to an optimal policy (π∗).

Metric π∗ RL (DQN) IL (IUPE) RIL

Reward -86 -87 -162 -84
KL Divergence - 2.0869 4.9863 9.6476
KL Divergence∗ - 1.7345 1.7345 0.8094

90

St
at

e
(C

ar
 P

os
iti

on
)

Actions

State (Car Velocity)

Reward: -86.00
KL Divergence*: -

DQN
Reward: -87.00

KL Divergence*: 1.734
Similar Actions: 189

IUPE
Reward: -162.00

KL Divergence*: 1.734
Similar Actions: 190

RIL
Reward: -84.00

KL Divergence*: 0.809
Similar Actions: 222

10 2 3 4 5 6 7 8 9 10 111213141516171819

1
0

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

10 2 3 4 5 6 7 8 9 10111213141516171819 10 2 3 4 5 6 7 8 9 10 111213141516171819 10 2 3 4 5 6 7 8 9 10111213141516171819

D
ivergent

0: Push Left
1: N

o Push
2: Push R

ight

Figure 8.3 – Comparison between policies trained in the MountainCar-v0 environment. We
only color the tiles that have the same action as π∗ for easier visualization.

Regarding the regular KL Divergence, it is worth noting that the reward in this
episode does not appear to be a decisive factor for the result in KL-Divergence∗. This is
evident as RL and IL policies exhibit similar distances from the optimal policy. Finally, if the
reward plays a significant role in achieving good performance in the MountainCar environ-
ment, CRIL should be closer to zero in the KL Divergence compared to RL.

Imitation Learning

Since CRIL reaches P ⩾ 1 with only one episode from the expert, we give the same
single trajectory for all other IL methods during this experiment. The results in Table 8.2 show
the average and standard deviation of 10 different runs for each learning algorithm.

Considering that for the CartPole and Acrobot environments there is almost no
variation in their initial states, one trajectory should be enough to achieve their goal, even
though not optimally. We hypothesize that all methods have comparable results in these
cases. Nevertheless, just ILPO and CRIL results were good enough to achieve the goal for
the CartPole environment, i.e. r ⩾ 195. In contrast, GAIL and IUPE achieved performance
around 0.30, with GAIL being only 10 reward points from the goal, though far from the
expert. The Acrobot environment does not have a defined goal, but we can define that a
reward close to −80 can be considered ideal, as is the case for the expert. However, only
CRIL was able to reach such a result. ILPO achieves a performance of 0.9, with IUPE being
close with 0.8 performance points. Since a random policy achieves an AER of −482.6, both
methods converge to policies closer to the expert than GAIL, which only achieves −279.02
reward points.

By contrast, MountainCar depends heavily on the agent starting position, while
LunarLander alters its objective during each iteration. Having only one trajectory to learn
how to mimic the expert is a significant disadvantage. This limitation is evident in the overall

91

Table 8.2 – Performance (P) and Average Episode Reward (AER) for each IL methods with
only one expert’s trajectory as data.

Algorithms Metric CartPole Acrobot MountainCar LunarLander Average P

Random AER 18.7 −482.6 −200 −182.72 0± 0P 0 0 0 0

Expert AER 500 −85 −106 235.96 1± 0P 1 1 1 1

BC AER 490.96± 19.65 −122.75± 2.99 −129.92± 4.14 131.84± 53.25 0.84± 0.12P 0.98± 0.04 0.91± 0.01 0.75± 0.04 0.75± 0.13

GAIL AER 185.07± 168.25 −279.02± 104.91 −196± 10.99 59.03± 87.76 0.36± 0.23P 0.35± 0.34 0.51± 0.26 0.04± 0.12 0.58± 0.21

ILPO AER 456.87± 4.10 −125.92± 19.23 −200± 0 −451.81± 247.53 0.29± 0.75P 0.91± 0.01 0.90± 0.04 0± 0 −0.64± 0.59

IUPE AER 144.64± 11.65 −232.38± 50.92 −198.00± 6.00 −203.05± 35.51 0.19± 0.27P 0.26± 0.02 0.55± 0.16 0.02± 0.06 −0.05± 0.08

CRIL AER 500± 0 −79.52± 4.49 −100.29± 1.59 261.73± 9.91 1.04± 0.03P 1± 0 1.01± 0.01 1.06± 0.02 1.06± 0.02

results for all IL methods that reach a performance of ≈ 0.06 in MountainCar, and of ≈
−0.04 in LunarLander. These policies are further away from the expert and the goal of the
environment (−110 and 200).

Since the BC method uses the ground-truth labels, we hypothesize that this ap-
proach yield similar results to CRIL, even though the number of trajectories is limited. In
the CartPole and Acrobot environments, the BC method achieves results closer to the ex-
pert (P ≃ 0.9); however, performance and rewards decrease significantly during the Moun-
tainCar and LunarLander environments. This experiment shows that CRIL’s capability of
learning with its own experience is a substantial advantage.

8.3.2 Reinforcement Learning

By comparing CRIL with IL methods, we demonstrate that CRIL achieves better
results with fewer expert samples. However, CRIL leverages its own experiences through
q-value mapping to create an optimal policy, which other IL methods cannot access. Thus,
we also compare CRIL with RL methods to understand whether CRIL achieves comparable
results with fewer samples than RL.

The results in Table 8.3 indicate the timesteps required for each method to reach its
maximum reward. Since CRIL combines off-policy RL training with IL training, we consider
both the samples used during RL training and the expert samples used during IL training
in these results. For each iteration of CRIL, we count the number of timesteps from the RL
component training plus 500 expert samples.

92

Table 8.3 – The average number of timesteps required by each algorithm to reach the
maximum reward in each environment.

Environment DQN1 DQN2 PPO ACKTR CRIL

CartPole 211,000 64,500 15,000 169,500 14,800
Acrobot 427,500 498,000 98,000 482,000 16,365
MountainCar 224,500 155,500 680,000 507,500 29,745
LunarLander 357,000 239,000 154, 000† 646,000 281,204

As expected, DQN1 and DQN2 demonstrate similar results in terms of reaching
their maximum rewards, although DQN2 solves most environments while DQN1 does not.
DQN2 achieves its maximum reward more efficiently than the other RL methods while achiev-
ing higher or comparable rewards. Specifically, DQN2 exhibits a success rate (P) of 0.92,
whereas PPO and ACKTR achieve success rates of approximately 0.85. The difference be-
tween PPO and DQN2 is minor for the CartPole environment but significant for MountainCar.
PPO utilizes a smoother exploration mechanism, enabling it to attain superior outcomes
with fewer samples (524, 500) in the Acrobot environment. Similar behavior is observed with
CRIL, as the ϵ-greedy strategy used during RL training becomes less frequent due to the
initialization with the exploration rate from the previous epoch. Consequently, it enables a
more efficient path to reach the maximum reward.

Although ACKTR achieves the best result among the RL methods for the Mountain-
Car environment, it requires approximately 500,000 timesteps (477, 755 more than CRIL).
Notably, PPO requires fewer timesteps than all other algorithms to reach its maximum reward
in the MountainCar environment. However, since PPO does not achieve the environmental
goal, we do not consider it a significant result.

These experiments demonstrate that leveraging the expert trajectory as a guide
allows CRIL to reach its maximum reward and accomplish the goal of all environments more
efficiently than RL approaches. However, CRIL inherits the challenge from IL of relying on an
expert’s trajectory, making it challenging to adapt to environments where the goal constantly
shifts, such as LunarLander.

8.3.3 Quantitative Results

Table 8.4 presents the results for both paradigms, showcasing the Performance of
each method in terms of their ability to learn a policy capable of achieving the highest reward.
The average P is also presented, indicating how well each method compares to the expert’s
Performance. We extended the evaluation to include 100 different expert trajectories in this

93

500

480

460

440

420

CartPole Acrobot MountainCar LunarLander

-100

-200

-300

-400

-500

200

0

-200

-400

-40

-60

-80

-100

-120

-140

-160

-180

-200

Figure 8.4 – Boxplot of the Average Episodic Reward for all methods and environments.

experiment, providing approximately 100 times more samples than the previous analysis.
For the RL approaches, we trained each algorithm for 2, 000, 000 timesteps.

As expected, DQN1 achieved lower rewards than all other RL algorithms, support-
ing our premise that the RL component alone in CRIL may not solve the environment. Except
for the CartPole environment, where all methods achieved r ⩾ 195, DQN1 performed closer
to the random policy than the expert’s reward. On the other hand, DQN2 achieved the en-
vironmental goal. It came close to the ideal reward in the Acrobot environment for most
scenarios, surpassing the Performance of other RL approaches. However, unlike the other
RL methods, DQN2 struggled to solve the MountainCar environment.

Regarding the results of PPO, while it outperformed other RL methods in the Ac-
robot environment, it performed worse than ACKTR and DQN2 in the remaining environ-
ments. ACKTR achieved the best result for the MountainCar environment but performed
less favorably in the other environments. MountainCar is expected to be a challenging task
due to its sparse reward function and a goal that incentives less exploration from the policy.

Table 8.4 – Quantitative results for all RL and IL algorithms used in this study as baselines.
We also display the average Performance of all environments. DQN1 is the unmodified DQN
architecture [29], while DQN2 is the version from Schaul et al. [39].

Environments
Reinforcement Learning Imitation Learning

DQN1 DQN2 PPO ACKTR BC GAIL ILPO IUPE CRIL

CartPole 431.87 500.00 500.00 487.70 500.00 500.00 500.00 500.00 500.00
±5.31 ±0.00 ±0.00 ±64.76 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00

Acrobot -191.51 -87.83 -83.43 -89.36 -82.92 -83.12 -83.84 -78.10 -75.72
±64.29 ±27.96 ±23.29 ±24.89 ±2.63 ±20.95 ±2.50 ±10.56 ±4.49

MountainCar -145.00 -135.28 -142.16 -112.55 -99.69 -186.74 -177.56 -130.70 -100.37
±31.18 ±24.10 ±21.67 ±21.19 ±0.69 ±0.65 ±27.77 ±15.23 ±2.50

LunarLander -127.64 273.07 105.24 85.85 214.93 83.56 -421.62 -211.2 266.55
±70.58 ±37.92 ±51.90 ±64.72 ±5.56 ±65.26 ±180.41 ±40.77 ±19.34

Average P 0.53 0.92 0.83 0.88 1.01 0.70 0.42 0.67 1.04

94

Moreover, for the LunarLander environment, most RL algorithms did not achieve the goal
(r ⩾ 200), highlighting the difficulty of obtaining positive results. LunarLander has the lowest
Performance among all tested environments, as its goal and reward system lack a strong
correlation compared to environments like CartPole, and the goal itself is not fixed.

Analyzing the IL methods (excluding BC), we observe that they also face signifi-
cant challenges in the LunarLander environment. While the RL methods achieved positive
results, the IL strategies deteriorated over time. This behavior can be attributed to the poli-
cies learning to mimic the expert’s landing position, which does not correlate with the actual
goal. Without a reward signal to guide their learning, these methods tend to perform closer
to the random policy rather than matching the expert’s Performance.

The IL methods, on average, achieve higher results in the Acrobot environment
(≈ 81.69) compared to the RL methods (≈ 86.87, excluding DQN1). This can be attributed to
the fact that IL methods learn an optimal trajectory without significant exploration. However,
it is worth noting that IL approaches tend to replicate the average actions in a given state
as the number of trajectories increases. This behavior benefits environments like CartPole
and Acrobot, where the expert’s states do not vary significantly. The policies can accurately
predict the correct actions even when a particular state was not encountered in the learned
trajectories or rapidly correct themselves.

Due to the self-supervised nature of IL methods, in the MountainCar environment,
there is a decrease in reward. This occurs because these algorithms rely on pseudo-labels
and only approximate the expert’s actions. An incorrect action may cause the car to lose
momentum in this environment, resulting in fewer reward points. One potential solution to
address this issue is to use ground-truth labels from the expert.

Behavioral Cloning (BC) exhibits similar results to the best RL method (DQN2) and
is close to CRIL with a performance difference of 1.01. Although BC’s performance is similar
to the expert, it has access to ground-truth labels. However, acquiring these labels can be
challenging or ineffective if the agent needs to learn the environment to generate a signif-
icant number of annotated trajectories. Therefore, CRIL’s overall performance significantly
improved over current IL methods. CRIL performs equally or better than the expert in all
environments without relying on ground-truth labels. It also achieves higher rewards than
the RL methods, except for DQN2 in the LunarLander environment.

To further analyze the performance comparison between CRIL and DQN2 in the
LunarLander environment, we examine the standard deviation of rewards and the boxplot
graph presented in Figure 8.4. CRIL achieves a reward of 266.55 with a standard deviation
of 19.34, while DQN2 achieves a higher reward of 273.07 with a larger deviation (37.92).
CRIL falls within the reward interval of DQN2 and achieves a significantly higher reward than
the threshold required to solve the LunarLander environment (i.e., r ⩾ 200). We hypothesize
that applying stricter gradient clipping during the RL training phase in CRIL contributes to

95

this result. One potential solution is to adjust the clipping values during the IL and RL training
phases as the epochs progress, allowing for better convergence.

Notably, CRIL exhibits a smaller standard deviation than all other methods except
for BC. The average deviation across all environments is approximately 6.58, while DQN2,
performing best among the RL methods, has an average standard deviation of approxi-
mately 23. BC, on the other hand, has an average standard deviation of 2.22, which is only
4.36 lower than CRIL. However, this difference may not be statistically significant, especially
considering BC uses ground-truth labels for policy learning. For that reason, we plot the in-
terval for all methods in all environments in Figure 8.4, allowing us to understand how CRIL
compares to other methods in terms of variance (stability).

Except for BC, CRIL demonstrates the lowest variance among all methods. In the
case of the MountainCar environment, CRIL may not achieve the highest possible value,
which ACKTR achieves with a non-outlier maximum value of approximately −60. However,
it is important to mention that CRIL’s behavior surpasses the median behavior of ACKTR. A
similar observation can be made for the LunarLander environment. Despite DQN2 having the
highest average reward of 273.07 and a maximum value of approximately 290, the behavior
of CRIL falls within the interval of the RL method, with a difference of 6.52. It is important to
recall that the LunarLander environment poses significant challenges for IL methods due to
the strong correlation between the landing position and the final reward. The average reward
is computed over 100 episodes, representing 100 different landing positions. None of the
other environments considered in this work have the same characteristic of a moving goal.

The behavior of CRIL demonstrates that employing a hybrid RL/IL approach results
in policies with lower variance. Furthermore, when comparing the stability of CRIL with RL
approaches, it becomes evident that the adaptation capability of the RL methods is not as
refined as that of CRIL. A similar tendency can be observed when comparing CRIL with IL
approaches, although the average results of the IL methods are more aligned with CRIL’s
performance in the Acrobot environment.

8.3.4 Final Remarks

In this work, we introduced the Combined Reinforcement and Imitation Learning
(CRIL) framework, which integrates IL and RL components in an iterative and interconnected
process. CRIL leverages unlabeled expert samples and its own experiences to achieve
state-of-the-art results across various benchmark environments.

The IL component of CRIL uses unlabeled expert trajectories to guide the policy
toward a theoretically optimal policy. By learning from the expert’s behavior, CRIL can benefit
from the expertise encapsulated in the trajectories. On the other hand, the RL component

96

of CRIL explores the q-value functions derived from its own experiences, allowing the policy
to adapt and refine its behavior more coherently.

CRIL offers two significant advantages. It demonstrates robust performance even
with limited expert trajectories, thanks to its self-supervised learning strategy. CRIL effec-
tively utilizes the available expert samples to guide its learning process, making it applicable
when expert demonstrations are scarce. Additionally, CRIL achieves state-of-the-art results
without requiring large amounts of data or extensive training iterations. By combining the
strengths of both IL and RL paradigms, CRIL effectively leverages the advantages of each
approach to achieve superior performance.

Compared to other IL methods, CRIL demonstrates superior results with fewer
samples while maintaining comparable performance in scenarios with a higher volume of
expert trajectories. This highlights CRIL’s capability to extract valuable information from lim-
ited expert demonstrations, making it a highly efficient and effective approach. Furthermore,
experimental evaluations reveal that CRIL achieves comparable or even better results than
RL baselines while significantly reducing the number of required timesteps. This efficiency
makes CRIL a promising framework for real-world applications, enabling the learning pro-
cess to be more time and resource-efficient without compromising performance.

97

9. SELF-SUPERVISED ADVERSARIAL IMITATION LEARNING

As presented in this thesis, Imitation learning methods, such as Behavioral Cloning,
instruct agents on expected conduct using expert demonstrations. State-of-the-art meth-
ods employ self-supervision techniques using fully-observable, unlabeled state snapshots
to reverse-engineer state pairs into actions. Nevertheless, their iterative learning process is
sensitive to getting stuck in sub-optimal local minima. Previous studies have attempted to
mitigate this issue by employing goal-aware strategies, which necessitate manual interven-
tion to ascertain if an agent has achieved its goal. This final study addresses this constraint
by integrating a discriminator into the established framework. We named our approach Self-
Supervised Adversarial Imitation Learning (SAIL). SAIL delivers three main benefits and
directly tackles a learning challenge identified in earlier work: (i) it eliminates manual verifi-
cation; (ii) it enables learning by straightforward function approximation based on the state
transitions observed in expert trajectories; (iii) the discriminator solves a commonly encoun-
tered learning challenge in the Policy Model, where the agent occasionally refrains from
performing any action in the environment until it ultimately comes to a deadlock.

As we saw previously in this thesis, the evaluation of LfO techniques is com-
monly based on metrics of performance and efficiency, as outlined in specific formaliza-
tion [47, 31, 13] (Chapter 2). One alternative approach is to evaluate imitation by comparing
the trajectories of the agent and the expert in executing a given task. However, both method-
ologies come with their own set of limitations.

In the case of traditional metrics, an agent can deviate significantly from the expert’s
path yet achieve the same reward, undermining the aim of the task. Sparse rewards in the
environment can further complicate the identification of proficient behavior. By focusing only
on rewards and disregarding trajectories or intent, an agent may achieve the same reward
as a more proficient counterpart while failing to demonstrate part of the anticipated behavior.

An analogous issue can be seen when evaluating based on trajectory comparison.
Consider an agent operating in a maze that mimics the teacher’s trajectory. However, sup-
pose the agent fails to reach the final state. In that case, it may receive a drastically different
reward despite following a similar path.

9.1 Adversarial Approach

SAIL utilizes an exploration mechanism based on previous work [13, 21] to explore
when it is unsure of the teacher’s actions and a discriminator model to classify whether the
policy trajectory is similar to a teacher’s one.

98

Policy

Policy

Env.

i ii iii iv v viiivii

Figure 9.1 – Self-Supervised Adversarial Imitation Learning (SAIL) training pipeline.

SAIL comprises four different models: (i) modelM, which predicts an action given
a state transition P(â | st , st+1); (ii) a policy model πθ that uses the self-supervised labels â to
mimic a teacher, given a state P(â | st); (iii) a generative model G conditioned by predictions
from πθ and the current state P(st+1 | st , ã); and (iv) a discriminator model D to discriminate
πe and πθ, creating better samples for M and updating weights θ when the policy is not
similar to its proficient counterpart.

The complete training process is presented in Algorithm 9.1 and the pipeline is
illustrated in Figure 9.1.

Once all samples consisting of (st , a, st+1) tuples are added to the dataset Is, SAIL
proceeds to train its inverse dynamic model in a supervised manner (referred to as Function
SUPERVISED in Line 7). Using the updated weights θ, the modelM predicts pseudo-labels
Â for all teacher’s transitions in T e (Line 8). Since the model’s weights may not be optimal at
each iteration, SAIL incorporates an exploration mechanism that enablesMθ to deviate from
its Maximum A Posteriori (MAP) prediction by sampling from its softmax distributions, which

Algorithm 9.1 Self-Supervised Adversarial Imitation Learning (SAIL)
1: Initialize modelMθ as a random approximator
2: Initialize policy πθ with random weights
3: Initialize generative model G with random weights
4: Initialize discriminator D with random weights
5: Generate Is using πθ

6: for i ← 1 to epochs do
7: ImproveMθ by SUPERVISED(Is)
8: UseMθ with T e to predict Â
9: Improve πθ and G by BEHAVIOURALCLONING(T e, Â)

10: Use πθ to solve environments E
11: Append samples Ipos ← (st , ãt , st+1)
12: Append Is ← ∀i ∈ Ipos | D(G(Ipos

i)) = 1
13: end for

99

serve as weights for the predictions. This mechanism allows SAIL to dynamically explore
alternative labels when uncertain, indicated by more uniformly distributed MAP values, and
to exploit its MAP values when they are further apart.

After generating all self-supervised labels, we train the policy model πθ using a
behavioral cloning approach (Function BEHAVIOURALCLONING in Line 9). In contrast to other
behavioral cloning approaches, SAIL also incorporates a generative model G that predicts
the next state conditioned on the action predicted by πθ. Thus, during the training of πθ, G is
also updated. Subsequently, SAIL employs πθ to generate new samples that can assistM
in approximating the unknown ground-truth actions from T e (Line 10).

Finally, SAIL appends to Is those samples for which the discriminator model D can-
not differentiate between T e and G(Ipos) (Line 12). This step aims to discard trajectories that
may causeM to converge to poor local minima and update πθ to correct certain behaviors
that D utilizes to distinguish between the teacher and the student.

9.1.1 Goal-aware function

Developing a goal-aware function can be challenging, particularly because different
environments in the agent literature have varying definitions of what constitutes a goal. Typ-
ically, environments fall into two categories: maintenance tasks or achievement tasks [52].

Environments with achievement tasks define a specific end goal, such as the case
of MountainCar [32], where the agent aims to reach a flag located at the top of a mountain
while accumulating a reward greater than or equal to −110 (see Chapter 4). However, in the
context of Imitation Learning, agents do not have direct access to the reward signal, so the
number of steps taken by an agent before reaching its objective becomes a crucial consid-
eration. Designing a goal-aware function to encode such objectives becomes increasingly
difficult as environments become more complex.

On the other hand, maintenance-task environments typically involve defining a set
of states that an agent should avoid reaching. For example, in the Ant environment [41], the
agent attempts to walk as far as possible without encountering angles that would classify
its state as "falling." In environments like CartPole [5], a stopping criterion is defined, such
as when the pole of the cart reaches a specific angle, and an optimal threshold is set, such
as maintaining the task for 195 consecutive steps. However, incorporating a goal-aware
function adds complexity to the learning algorithm, which may not be desirable.

SAIL addresses these challenges by exclusively utilizing samples that reach a pre-
defined goal, thereby acquiring examples that exhibit some degree of optimality and approx-
imating the samples from the dataset I to align with the teacher’s behavior [13]. However,
accurately classifying whether samples are close to the proficient teacher’s behavior can

100

be difficult. Defining the criteria for determining the proximity of a sample to the proficient
teacher is challenging. If we consider a stationary agent, as in the case of SAIL, we risk
discarding samples solely based on their distance from the states observed in the proficient
teacher’s behavior. Consequently, SAIL requires a goal-aware function that allows the model
M to handle sub-optimal samples effectively to enhance the quality of learned policies.

To eliminate the need for hand-crafted goal-aware functions, SAIL incorporates a
discriminator model D that distinguishes between the policy πθ and an exploration policy πe.
This approach allows SAIL to operate without any human intervention and introduces a non-
greedy sampling mechanism by employing a model to classify the origin of each trajectory.
Additionally, since D is initialized with random weights (Line 4), it enables the inclusion of
sub-optimal samples, i.e., samples that did not reach a specific goal, into the dataset Is.

However, as SAIL operates under LfO constraints, where the actions of the explo-
ration policy πe are not accessible, there is a need to develop a mechanism that discriminates
between state-only trajectories generated by the teacher and the student. SAIL accom-
plishes this by utilizing state-only trajectories from πθ and πe and adopting an adversarial
learning approach (described in Equation 9.1). This allows the policy πθ and the generative
model G to be updated based on the gradient flow derived from the discriminator D.

min
M∪π

max
D

SAIL(M, π,G,D) =

Er∼R(πϵ,Env)[log(D(r))]+

Er ′∼R(πθ ,Env)[log(1−D(G(r ′, πθ(r ′))))]

(9.1)

Considering that SAIL operates with a limited number of samples, represented by
the sets T e ∪ T π, it is crucial to prevent overfitting of D. To address this, SAIL maintains
a replay buffer RB where all trajectories generated by πθ are recorded. At each iteration, a
small subset of trajectories is sampled from both sets, denoted as RB(st ,··· ,st+n) ∼ T e ∪ T π.
By using only a subset of trajectories from each sample pool, SAIL mitigates the risk of
D overfitting, particularly during the initial iterations when the trajectories generated by πθ

significantly differ from the proficient teacher’s behavior.

9.1.2 Generative model

SAIL effectively utilizes a generative model in two distinct phases: firstly, during
the Function BEHAVIORALCLONING(), and secondly, in the process of meticulously selecting
which samples to incorporate into the dataset Is.

Although adding a generative model introduces additional complexity to the pipeline,
SAIL benefits from this approach in two significant ways: (i) intrinsic encoding of environment

101

physics, by updating the weights of the generative model G using Equation 9.2, SAIL allows
the loss function LG to update the policy πθ in a way that facilitates the generation of cor-
rect state transitions, aligned with the observed transitions. This process helps πθ encode
some aspects of the environment’s dynamics, such as physics. Consequently, the genera-
tive model becomes a forward dynamics model that aids in the proper conditioning of G by
the actions predicted by πθ. And (ii), by updating πθ via Gradient Flow from D. The gener-
ative model’s weights are updated through the gradient flow derived from the discriminator
D, which indirectly updates the policy πθ. This joint update mechanism assists πθ in avoiding
local minima and promotes exploration, as updating the weights of πθ with multiple objectives
helps prevent the policy from getting stuck.

While it is possible to consider updating only the weights of G when πθ accurately
predicts a self-supervised label, this approach introduces certain challenges. Firstly, the cor-
rectness of πθ in predicting â may not accurately reflect its ability to condition G properly. The
correctness of â predictions does not guarantee the correctness of the resulting state tran-
sitions. Secondly, if M stops predicting certain actions due to being stuck in local minima,
G will not receive updates for state transitions associated with those actions. Consequently,
G will update πθ less frequently, reducing exploration. By updating πθ with two different ob-
jectives, SAIL helps prevent the policy from becoming trapped in local minima and promotes
effective exploration.

LG = − 1
N

[
N∑

i=1

si+1 · log(G(si , πθ(si))

]
(9.2)

The second benefit of incorporating a generative model into SAIL arises from its
adversarial training mechanism. In this process, the discriminator D directly updates the
weights of the policy πθ through gradient flow when it correctly discriminates between the
teacher and the student (as described in Equation 9.1). This aspect is useful because up-
dating πθ via D provides the agent with a direct temporal signal, indicating where it deviates
from the teacher’s observations. Consequently, by combining the original behavioral cloning
techniques with this update mechanism, SAIL enables the creation of agents that more ac-
curately mimic the trajectories of the teacher while maintaining high performance.

Both moments of generative model updates in SAIL contribute to the generation
of more precise trajectories (see Section 9.2) and an increased number of trajectories that
closely resemble their source (discussed in Section 9.3). Having trajectories closer to the
teacher’s is beneficial because it helps avoid undesirable biases from previous methods that
rely solely on performance metrics, which lack behavioral meaning [13].

102

Table 9.1 – SAIL and baselines results for all environments.
Algorithm Metric CartPole MountainCar Acrobot LunarLander

Random AER 21, 92± −200± 0 −499.36± −170.47±
P 0 0 0 0

Expert AER 500± 0 −98.03± 8.17 −74.85± 8.61 256.79± 21.38
P 1 1 1 1

BC AER 218.53± 160.71 −102.06± 4.23 −80.21± 3.61 63.05± 79.50
P 0.37 0.97 0.99 0.63

GAIL AER 302.03± 158.96 −200± 0 −274.27± 116.85 120.21± 28.03
P 0.41 0 0.54 0.66

GAIfO AER 500± 0 −200± 0 −128.20± 15.88 200± 29.95
P 1 0 0.85 0.86

IUPE AER 500± 0 −166.97± 18.34 −75.65± 12.85 −81.34± 74.5
P 1 0.32 1 0.21

SAIL AER 500± 0 −99.35± 1.84 −78.84± 0.41 183.62± 5.63
P 1 0.99 0.99 0.83

9.2 Experimental Results

In order to evaluate the quality of SAIL, we conducted experiments using four differ-
ent environments: CartPole, MountainCar, Acrobot, and LunarLander. These environments,
which can be accessed through OpenAI Gym [6], are detailed in Chapter 4. Also, following
the methodology proposed in this thesis, we measure our experiments using two main met-
rics: Average Episodic Reward (AER), and Performance (P) [17] metrics. It is important to
mention that is possible for a model to achieve scores < 0 if it has the worst Performance
than a random policy and > 1 if the model can perform better than its teacher.

We adopt the implementation in [13] for our agents. Specifically, our policy net-
work, denoted as πθ, is constructed as a Multi-Layer Perceptron (MLP) model. It consists of
two hidden layers, each containing 32 neurons, and incorporates two self-attention modules
after each layer. We employ an MLP denoted as M to describe our model for the value
function approximation. This MLP also consists of two hidden layers with 32 neurons each
and includes two self-attention modules and two Normalization layers. For the generator
network G, we utilize an MLP architecture with two hidden layers. The number of neurons
in each hidden layer is set to 2 × (| s | +1), where | s | represents the size of the environ-
ment state vector. Unlike the policy and value networks, the generator network does not
include self-attention or normalization layers. Lastly, we utilize a Long Short Term Memory
(LSTM) network [16] for our discriminator D. The LSTM network consists of two layers, each
containing 32 neurons, and incorporates a dropout rate of 50% to mitigate overfitting.

103

9.2.1 Results

Table 9.1 presents the results of different baselines and SAIL across four distinct
environments. In most environments, such as CartPole, MountainCar, and Acrobot, SAIL’s
performance closely aligns with the rewards achieved by the teacher, establishing it as the
superior method across all environments. However, it exhibits comparatively poorer perfor-
mance in the LunarLander environment.

When comparing SAIL to other methods, it is evident that SAIL demonstrates a
lower standard deviation (⩽ 1) in the first three environments. In contrast, the LunarLander
environment displays a higher standard deviation of 5.63. We attribute these lower devia-
tions to the gradient flow from D into πθ, as elaborated in Section 9.1.1, and the intrinsic
encoding of each environment’s physics into πθ by G, as discussed in Section 9.1.2.

By effectively encoding the physics within its policy, SAIL achieves behavior that
enables the agent to generate outcomes akin to the teacher’s. This is primarily due to its
understanding of how st+1 should be derived from a and st . Furthermore, the presence of D
empowers πθ with a temporal signal within its trajectory, enabling it to rectify any undesired or
divergent behavior, thus assisting D in discriminating between the teacher and the student.

In contrast, SAIL does not achieve optimal results for the Acrobot and LunarLander
environments. In the case of the Acrobot environment, SAIL’s accumulated reward drops
below that of IUPE by 3.19. However, SAIL exhibits a remarkably lower standard deviation
than BC, which had access to labeled snapshots during training. This can be attributed to the
fact that the Acrobot environment rewards aggressive behavior from the agent, which IUPE
benefits from due to its exploration mechanism, while D incentivizes SAIL to produce more
consistent trajectories. We hypothesize that in cases where SAIL has a higher exploration
ratio, reducing the gradient from its adversarial phase would be beneficial, preventing it from
entering an exploitative phase prematurely.

In the LunarLander environment, SAIL achieves a result similar to GAIfO, with a
difference of 16.38 in accumulated reward but a significantly higher standard deviation of
24.32. This can be attributed to SAIL learning proficient behavior more closely than other
imitation learning counterparts. When comparing SAIL’s Performance to BC, we observe a
drastic change in results, similar to BC. For the LunarLander environment, IUPE performs
the worst and exhibits a negative result. This can be attributed to LunarLander’s optimal
behavior highly depends on the agent and goal initialization, which IUPE lacks mechanisms
to comprehend from its proficient source.

Furthermore, SAIL outperforms other baselines in environments with stronger state
relationships, such as MountainCar. While most baselines yield policies similar to or only
marginally better than a random one, SAIL achieves a performance close to 1. Through
experimentation, we observed that most other methods require the agent to be in a specific

104

Table 9.2 – Results for SAIL with different sample sizes.
Environment Trajectories P AER (avg) AER (min) AER (max) SD

CartPole

1 0.55 1.55 86.23 457.30 ±133.98
25 1 500 500 500 ±0
50 1 500 500 500 ±0
75 1 500 500 500 ±0

100 1 500 500 500 ±0

MountainCar

1 0 −200 −200 −200 ±0
25 0.87 −109.96 −114.40 −103.60 ±4.21
50 0.96 −101.78 −103.70 −99.11 ±2.02
75 0.99 −99.35 −102.10 −97.38 ±1.84

100 0.98 −101.31 −109.90 −97.87 ±4.93

Acrobot

1 0.98 −87.47 −112.20 −77.75 ±14.03
25 0.99 −77.95 −79.75 −76.78 ±1.16
50 0.99 −79.33 −80.33 −78.23 ±0.96
75 0.99 −78.84 −79.46 −78.46 ±0.41

100 0.99 −79.36 −80.72 −76.43 ±1.73

LunarLander

1 0.31 −30.13 −76.95 55.28 ±52.28
25 0.86 196.50 148 242.20 ±36.86
50 0.83 133.19 −24.84 207.30 ±98.04
75 0.83 183.62 175.20 188.90 ±5.63

100 0.81 151.26 10.72 204.50 ±79.45

state, such as stationary or minimal movement force. However, SAIL does not exhibit similar
behavior due to the information it receives from its discriminator model.

9.3 Discussion

We explore two aspects of our results: (i) we analyze how SAIL learns with varying
sample sizes, aiming to understand the trade-off between the number of trajectories and
the learning speed. This investigation helps us determine the optimal balance, allowing
SAIL to learn with as few samples as possible while achieving faster convergence. This
understanding is crucial in optimizing the learning process; (ii) we investigate how the policy
πθ behaves in terms of its performance and similarity to the expert policy πe. While imitation
learning methods typically utilize performance metrics and adversarial evaluation rewards,
they often overlook the extent to which the learned policy approximates the teacher policy.
By examining this aspect, we gain insights into the quality of the learned policy and its
alignment with the expert’s behavior.

By considering these factors, we aim to enhance our understanding of SAIL’s learn-
ing process and evaluate the effectiveness of the learned policy compared to the expert’s
behavior.

105

Table 9.3 – Results obtained from SAIL’s modules, presenting the accuracy of the Discrim-
inator (D), the loss of the Generator (G), and the performance of the Policy (πθ) across
different environments.

Environment D’s Accuracy (%) G’s Loss πθ ’s Performance

CartPole 49.44± 1.12 0.0015 1

MountainCar 49.76± 0.83 0.0029 0.98

Acrobot 50.13± 3.21 0.8685 0.99

LunarLander 49.08± 1.28 0.0308 0.81

9.3.1 Sample Efficiency

The SAIL method exhibits two distinct characteristics inherited from behavioral
cloning approaches. Firstly, it needs a larger sample size than a single trajectory to acquire
a comparable performance to its teacher. This outcome is unsurprising, considering that a
single trajectory lacks sufficient information for SAIL to effectively encode diverse states and
generalize well across different environments [25]. Secondly, SAIL suffers from scalability
issues as the number of samples increases due to compounding errors [46]. As the sample
count grows, the policy deviates less from the observed trajectories, resulting in a decline in
agent performance. Hence, behavioral cloning methods must determine the optimal num-
ber of trajectories. In contrast, as demonstrated in Table 9.2, SAIL achieves near-optimal
performance with only 25 episodes, progressively reducing the standard deviation for each
subsequent row, followed by an increase at 100 trajectories. We attribute this achievement
to the updates derived from G and, consequently, D. By employing an alternative objective,
such as generating trajectories closer to those of the teachers, SAIL requires fewer episodes
compared to prior methods, as πθ relies less on its LfO objective.

However, it should be noted that SAIL accomplishes these results by employing a
smaller sequential discriminator model, which comes at the cost of reduced parallelization.
Our hypothesis suggests that in order to maintain a small sample size, SAIL cannot use
larger sequence models like Transformers [49]. The substantial number of parameters in
such models increases the risk of overfitting the discriminator model on the limited dataset.
To further enhance the efficiency of SAIL, additional experimentation is required regarding
the augmentation of observations. The modification of teacher samples must be approached
with domain knowledge to avoid augmenting tuples that result in impossible or undesired
transitions.

106

9.3.2 Imitation Behavior

The evaluation of IL metrics typically centers on analyzing the agent’s cumulative
reward, which serves as a crucial indicator to measure the policy’s success in reproducing
the behavior exhibited by its teacher. However, this approach, illustrated by the commonly
used P metric, overlooks certain problems inherent to IL agents, such as their trajectory.
By solely relying on the reward signal for evaluating these agents, it is insufficient to con-
clude that the agent truly exhibits behavior akin to its teacher. This limitation arises due
to the potential existence of proficient behaviors that are not explicitly encoded within the
reward function or the presence of stochastic behavior not apparent in the observations.
Consequently, the P metric might fall short in capturing trajectory divergence since the ac-
cumulated reward can be equal. To illustrate this point, consider a maze environment where
two trajectories always have the same length, but one path carries a slight risk of the floor
breaking. In this scenario, a cautious agent may consistently avoid the trajectory with the
faulty floor. Conversely, a more aggressive agent may overlook this risk while navigating the
maze. An imitation learning agent trained on the conservative policy might inherit the bias
of never stepping onto the potentially faulty floor. However, the performance metric fails to
account for this behavior, even if the student policy increasingly resembles the aggressive
policy in other aspects.

To address this concern, we propose an analysis that incorporates not only the
performance of the policy πθ, but also the accuracy of the discriminator D and the error of the
generator G. By considering these additional metrics, we can gain insights into the agent’s
behavior beyond just its reward. When πθ achieves higher performance, accompanied by
high accuracy in D and a lower error in G, it indicates that although πθ has successfully
encoded proficient behavior, its trajectory significantly deviates from that of the teacher. This
misalignment becomes apparent due to the high accuracy of D and the low error of G.
Furthermore, if πθ achieves a performance close to 1, but D exhibits lower accuracy and G
experiences higher error, it implies that πθ produces the same reward as its teacher, yet its
generator has learned to manipulate the encoding of next states to "fool" D, without following
the observations correctly.

Consequently, we are interested in identifying scenarios where πθ exhibits P close
to 1, D demonstrates an accuracy around 50%, and its associated G yields a lower error
during the BEHAVIOURALCLONNING phase (specifically, Line 9 in Algorithm 9.1). For a com-
prehensive presentation of the results, Table 9.3 displays the values of all three metrics for
the four environments employed in this study.

Upon observation of all the environments, we noticed a consistent pattern where
the best results achieved by πθ coincided with D producing results similar to that of a random
model. In other words, D could not discriminate between trajectories originating from the

107

0 20 40 60 80 100
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

1st run
2nd run
3rd run
4st run
5st run

Figure 9.2 – Error rate obtained from SAIL for 5 different runs in the Acrobot environment.

teacher or the student policy. Additionally, we observed lower error rates when comparing
the error of G during its initial learning phase, where it attempts to recreate the next state
based on the teacher’s trajectory. This suggests that G effectively learned how to encode
state transitions accurately. These findings highlight that SAIL generates a policy that not
only aligns with proficient rewards but also maintains a trajectory consistent with its learned
source. It is important to note that the interpretation of the error rates is highly dependent on
the context of each environment’s state encodings.

For instance, in the case of Acrobot, its state is represented as a vector with six
values, where four values range from [−1, 1] and the remaining two values range from
[−12.57, 12.57] and [28.27, 28.27], respectively. Figure 9.2 illustrates different error margins
for five executions of SAIL in the Acrobot environment. It is evident that while the absolute
error of G may be higher for Acrobot compared to other environments, the initial error value
(approximately 2.5) is elevated due to the specific characteristics of the environment’s en-
coding. Therefore, it is important to consider the higher error rate in Acrobot (compared to
other environments) within its contextual framework, where it could be perceived as a lower
margin rate.

9.4 Final Remarks

In this chapter, we presented a novel LfO approach that leverages an adversarial
module to imitate the behavior of teachers without direct access to their actions. Our ap-
proach, named Self-Supervised Adversarial Imitation Learning (SAIL), demonstrates state-
of-the-art performance and efficiency. We conducted extensive evaluations by comparing
our model against various baselines from the literature, using different amounts of sampled

108

behavior. The results showed that SAIL achieved significant improvements in both perfor-
mance and efficiency with fewer samples.

Our approach’s success can be attributed to two main contributions. Firstly, we in-
corporated an adversarial mechanism into our end-to-end model, enabling a better approxi-
mation of the teacher’s behavior. Through iterative learning driven by a loss error, our model
achieved higher returns. Secondly, SAIL employs an exploration technique that strategically
selects the most valuable data for each interaction, leading to faster model convergence.
Additionally, we discussed the metrics for measuring the fidelity of policy imitation and con-
ducted an ablation study. This study revealed that SAIL attains proficient rewards while
effectively tricking its discriminator, further supported by a detailed analysis of the results.

109

10. CONCLUSION

In this thesis, we presented four distinct Imitation Learning algorithms inspired by
the Behavior Cloning from Observation framework [47], as well as a study that investigates
the effectiveness of imitation learning methods when exposed to sub-optimal samples.

First, we introduced a method called ABCO, which enhances the original BCO
framework by incorporating two key components: (i) an improved sampling method and
(ii) a self-attention mechanism. The first component determines the extent to which policy
samples are used in each iteration, while the second component helps mitigate weight up-
dates that frequently change due to dataset shifts. By introducing these novel mechanisms,
we successfully solved the issue of negative feedback loops observed in our experiments.
However, ABCO, similar to BCO, is susceptible to encountering deadlocks between states,
as we found this example while applying our algorithm in a maze-like environment. We
conducted an in-depth efficiency analysis to gain further insights into the effectiveness of
the ABCO method and compare its performance with different Reinforcement Learning ap-
proaches. The experiments outlined in Section 7 demonstrate that, when applied without
prior knowledge, the ABCO framework exhibits sub-optimal performance with limited expert
samples. However, when combined with a pre-trained Inverse Dynamics Model (see Sec-
tion 5.1), ABCO achieves superior results using fewer samples.

To mitigate the issues encountered and further enhance the performance of our
models, we developed a new method named IUPE. IUPE stands out by introducing an ex-
ploration mechanism that aims to prevent getting trapped in a loop of states (deadlock) while
assisting in the search for improved decision-making. By sampling examples using the soft-
max probabilities, the proposed exploration mechanism suppose to act randomly at first, but
eventually, as the model improves, it starts to explore less and exploit more since the prob-
abilities of a specific action should stand out from others. While successfully mitigating the
deadlock issue in state transitions, there is still a significant need for a considerable volume
of data to train a policy that exhibits significant performance. The greater the complexity
of a given task, the more data we require to learn how to perform it effectively. This be-
comes a concern when addressing real-life problems, as data collection can be expensive
and time-consuming.

To tackle the challenge of the data requirement, we dedicated our efforts to devel-
oping a new framework called CRIL (see Section 8). CRIL combines the strengths of Rein-
forcement and Imitation Learning, focusing on achieving significant performance while min-
imizing the need for a large volume of data. The process updates policy weights based on
experiences gained while constructing Ipos. As demonstrated in Section 8.3, CRIL matches
the outcomes achieved by ABCO and IUPE, albeit with a smaller number of expert sam-
ples. We adopted a classic version of the DQN methodology for the reinforcement learning

110

component to explore how IUPE functions when adjusting the policy weights outside the ini-
tial training cycle. However, applying more sophisticated reinforcement learning techniques
could yield improved results.

Finally, the last method we designed was named SAIL, which utilizes an adversarial
component to emulate the conduct of expert teachers without needing to access their spe-
cific actions. Remarkably, SAIL is able to yield cutting-edge results in both performance and
efficiency. Two main factors contribute to SAIL’s noteworthy performance and AER results
using fewer samples. Initially, we employed an adversarial mechanism to better align our
model’s conduct with the teacher’s. This mechanism, integrated into our end-to-end model,
evolves iteratively through a loss error, enabling the model to achieve superior returns. Addi-
tionally, SAIL integrates an exploration technique that aids the model in amassing the most
optimal data from each interaction, thereby expediting the model’s convergence. To this ef-
fect, we conducted an ablation study in Section 9.3 demonstrating that SAIL can consistently
achieve high rewards while successfully ’deceiving’ its discriminator.

10.1 Limitations

Despite the persistent dedication and concerted efforts invested in developing each
study presented in this thesis and the persistent focus on refining the ABCO framework that
served as our inspiration, each study individually possesses its unique limitations. Although
the initial two studies, ABCO and IUPE, demonstrated very good results, they were notice-
ably constrained by efficiency limitations. They also encounter the deadlock issue, previ-
ously discussed in prior chapters, due to a deficiency in state exploration capability. This
deficiency prevents the policy from becoming ensnared in a specific state transition (e.g.,
s1 → s2, s2 → s1). While CRIL has shown an enhancement in efficiency, it grapples with
effectiveness when the state space of the problem is not considerably large. This situation
triggers the proposed framework to activate its exploration mechanism unnecessarily. An-
other limitation open to further investigation is the application of more robust reinforcement
learning algorithms to augment the method’s effectiveness.

A significant challenge during this research was the time-intensive nature of the
computational processing required for each experiment. Several experiments spanned weeks
before reaching completion, primarily due to the iterative design of the framework under
study. Each iteration necessitated the agent to deliberate a specified number of times, in-
evitably prolonging the duration of the experiments. As the complexity of an environment es-
calated, the learning curve for the agent to master an appropriate function became steeper.
This complexity resulted in sub-optimal agent performance, with the agent operating within
an environment only up to the maximum number of predetermined timesteps. During sev-
eral experiments, an early termination mechanism was employed in the policy implementa-

111

tion due to the inherent nature of the ABCO and IUPE methods, which typically disregard
episodes failing to achieve the set environmental goal.

In contrast, CRIL utilizes each experience to advance its learning process, render-
ing this approach ineffective. Another hurdle that emerged during our work was the lack
of readily available source code from IL methods and well-documented environments. De-
spite these being frequently published as conference papers of significant stature, they often
lack adequate community or creator support. Several of these environments are formulated
within the OpenAI Gym [6] framework, simplifying the process of adapting an agent to learn
within a new domain. However, some environments do not conform to any framework and
lack the necessary documentation to understand the essential components. Moreover, Ope-
nAI Gym environments are traditionally Reinforcement Learning (RL) environments employ-
ing RL metrics. This setup introduces two key issues: (i) the need to incorporate IL metrics;
and (ii) a predominant focus on vector-state. The first necessitates the addition of new code
and subsequent testing for each new environment. In contrast, the second presents chal-
lenges when transitioning from vector to image-state.

Lastly, it is crucial to note that the current metrics used for evaluating IL algorithms
exhibit certain limitations, particularly in accurately assessing an agent’s performance. Met-
rics such as Performance and Average Episodic Reward primarily depend on the final re-
ward achieved by an agent, neglecting its actual capacity to mimic. This approach enables
an agent to learn a different trajectory from the expert yet achieve the same outcome. For
instance, consider a maze with two paths of equal length, where the agent and the expert
choose different paths. Although the final rewards are identical, the agent has not genuinely
learned to imitate the expert. Suppose the primary goal of imitation learning is to develop an
agent matching the expert’s proficiency. In that case, this disparity may not pose a problem.
However, complications arise when a domain fails to incorporate a significant action, such
as collecting an item within the maze; these standard metrics would not reflect this issue.
Consequently, both Performance and Average Episodic Reward metrics appear overly re-
liant on the reward function designated for each environment, potentially leading to skewed
results.

In response to these limitations, there is a need to create a new metric that consid-
ers the distance between the teacher and the learner, aiming to reflect differences in their
behavior accurately. However, the computational cost of calculating such a distance, largely
dependent on the state representation, could lead to significantly slower training times.

10.2 Future Work

As we understand and find limitations in Imitation Learning from Observation, sev-
eral improvements and experiments were identified for our future work.

112

Firstly, the impact of various reinforcement learning mechanisms on the iterative
nature of the CRIL framework warrants further investigation. Using more recent algorithms
could lead to improved results. However, it may also introduce greater complexity due to the
multiple optimization functions involved, a larger number of hyperparameters to manage, and
a different approach to combining reinforcement and imitation learning may be necessary.
Exploring the use of Inverse Reinforcement Learning to achieve similar results could also be
a fruitful line of inquiry. Given that GAIL already employs an IRL approach to approximate
its policy from the expert, combining this approach with IL could yield positive outcomes.

While the development of an IL metric was not the primary focus of this research,
we understand that there may be a need to create a new method for evaluating the effective-
ness of IL algorithms. The final goal of IL methods should extend beyond merely achieving
expert rewards. Instead, IL agents should aim to perform trajectories that closely mirror
those of the expert samples. This could lead to the creation of more robust and efficient IL
algorithms, thereby pushing the boundaries of what is currently achievable in the field of im-
itation learning. The need for a new metric that captures imitation in its essence represents
a potential area for further research and development.

10.3 Published Work

This section provides an organized list of the academic publications that have
emerged from this thesis. These published works jointly represent the breadth, depth, and
the novel contributions of this study. Furthermore, they serve to emphasize the unique
methods implemented, the breakthroughs achieved, and their overall implications on the
larger research community. Additionally, Figure 10.1 visually portrays the contributions I
have made during my time as a PhD student. This illustrative representation presents both
my substantial endeavors in the realm of Imitation Learning (highlighted in green), as well
as achievements in diverse areas (represented in gray).

• Monteiro, Juarez; Gavenski, Nathan; Meneguzzi, Felipe; and Barros, Rodrigo C. Self-
Supervised Adversarial Imitation Learning. In Proceedings of the 36th International Joint
Conference on Neural Networks (IJCNN), Queensland, Australia, 2023.
(Qualis A2)

• Gavenski, Nathan; Monteiro, Juarez; Medronha, Adilson; and Barros, Rodrigo C. How
Resilient Are Imitation Learning Methods to Sub-optimal Experts? In Proceedings of the
11th Brazilian Conference on Intelligent Systems (BRACIS), Campinas, Brazil, 2022.
(Qualis A4)

113

Augmented
Behavioral Cloning
from Observation

(IJCNN 2020)

Imitating
Unknown Policies

via Exploration

(BMVC 2020)

Sandwich PhD
University of

Aberdeen

How resilient are
Imitation Learning

methods to
sub-optimal experts?

(BRACIS 2022)

Combining
Reinforcement and
Imitation Learning

(TBD)

Self-Supervised
Adversarial Imitation

Learning

(IJCNN 2023)

Beating bomberman
with artificial
intelligence

(ENIAC 2018)

Norm conflict
identification using vector

space offsets

(IJCNN 2018)

Evaluating the feasibility
of deep learning for
action recognition in

small datasets

(IJCNN 2018)

Improving action
recognition using
temporal regions

(JIDM 2018)

Using Scene Context
to Improve Action

Recognition

(CIARP 2018)

Classifying norm
conflicts using

learned semantic
representations

(AAMAS 2019)

Object-based
goal recognition
using real-world

data

(MICAI 2020)

Figure 10.1 – Contributions during my PhD journey.

• Gavenski, Nathan; Monteiro, Juarez; Granada, Roger; Meneguzzi, Felipe; and Barros,
Rodrigo C. Imitating Unknown Policies via Exploration. In Proceedings of the 31st British
Machine Vision Conference (BMVC), Manchester, UK, 2020.
(Qualis A1)

• Monteiro, Juarez; Gavenski, Nathan; Granada, Roger; Meneguzzi, Felipe; and Barros,
Rodrigo C. Augmented Behavioral Cloning from Observation. In Proceedings of the 33rd
International Joint Conference on Neural Networks (IJCNN), Glasgow, Scotland, 2020.
(Qualis A2)

10.4 On Going Work

Here, we enumerate two pivotal works-in-progress: The first primarily centers around
an insightful exploration of IfO focused on continuous problems, while the latter is commit-
ted to the design and development of a versatile and challenging maze environment to test
different RL and IL algorithms.

• Continuous Imitation learning from Observation. Conference/Journal: TBD;

• Adaptive Maze: an Environment for Imitation and Reinforcement Learning algorithms. Con-
ference/Journal: TBD;

114

115

REFERENCES

[1] Abbeel, P.; Ng, A. Y. “Apprenticeship learning via inverse reinforcement learning”. In:
Proceedings of the 21st International Conference on Machine learning, 2004, pp. 1.

[2] Argall, B. D.; Chernova, S.; Veloso, M.; Browning, B. “A survey of robot learning from
demonstration”, Robotics and Autonomous Systems, vol. 57–5, May 2009, pp. 469–
483.

[3] Arjovsky, M.; Bottou, L. “Towards principled methods for training generative adversarial
networks”, arXiv preprint, vol. 1701.04862, Jan 2017, pp. 1–17.

[4] Auer, P.; Cesa-Bianchi, N.; Fischer, P. “Finite-time analysis of the multiarmed bandit
problem”, Machine learning, vol. 47, May 2002, pp. 235–256.

[5] Barto, A. G.; Sutton, R. S.; Anderson, C. W. “Neuronlike adaptive elements that can
solve difficult learning control problems”, IEEE transactions on systems, man, and
cybernetics, vol. 1–5, Sep 1983, pp. 834–846.

[6] Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.;
Zaremba, W. “Openai gym”, arXiv preprint, vol. 1606.01540, Jun 2016, pp. 1–4.

[7] Ciosek, K. “Imitation learning by reinforcement learning”, arXiv preprint, vol.
2108.04763, Aug 2022, pp. 1–15.

[8] Clegg, J. M.; Legare, C. H. “Instrumental and conventional interpretations of behavior
are associated with distinct outcomes in early childhood”, Child Development, vol. 87–2,
Dec 2016, pp. 527–542.

[9] Coates, A.; Abbeel, P.; Ng, A. Y. “Learning for control from multiple demonstrations”.
In: Proceedings of the 25th International Conference on Machine Learning, 2008, pp.
144–151.

[10] Degris, T.; White, M.; Sutton, R. S. “Off-policy actor-critic”. In: Proceedings of the 29th
International Conference on Machine Learning, 2012, pp. 179–186.

[11] Edwards, A. D.; Sahni, H.; Schroecker, Y.; Isbell, C. L. “Imitating latent policies
from observation”. In: Proceedings of the 36th International Conference on Machine
Learning, 2019, pp. 1755–1763.

[12] Gatys, L. A.; Ecker, A. S.; Bethge, M. “Image style transfer using convolutional neural
networks”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 2414–2423.

116

[13] Gavenski, N.; Monteiro, J.; Granada, R.; Meneguzzi, F.; Barros, R. C. “Imitating
unknown policies via exploration”. In: Proceedings of the 31st International British
Machine Vision Virtual Conference, 2020, pp. 1–8.

[14] Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.;
Courville, A.; Bengio, Y. “Generative adversarial networks”, Communications of the
ACM, vol. 63–11, Oct 2020, pp. 139–144.

[15] Goodfellow, I. J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.;
Courville, A.; Bengio, Y. “Generative adversarial nets”. In: Proceedings of the 27th
International Conference on Neural Information Processing Systems, 2014, pp. 2672–
2680.

[16] Graves, A.; Graves, A. “Long short-term memory”, Supervised sequence labelling with
recurrent neural networks, vol. 385, Jan 2012, pp. 37–45.

[17] Ho, J.; Ermon, S. “Generative adversarial imitation learning”. In: Proceedings of the
30th Conference on Neural Information Processing Systems, 2016, pp. 4565–4573.

[18] Hussein, A.; Gaber, M. M.; Elyan, E.; Jayne, C. “Imitation learning: A survey of learning
methods”, ACM Computing Surveys (CSUR), vol. 50–2, Jun 2017, pp. 1–35.

[19] Kaelbling, L. P.; Littman, M. L.; Moore, A. W. “Reinforcement learning: A survey”,
Journal of artificial intelligence research, vol. 4, May 1996, pp. 237–285.

[20] Kaiser, L.; Babaeizadeh, M.; Milos, P.; Osinski, B.; Campbell, R. H.; Czechowski, K.;
Erhan, D.; Finn, C.; Kozakowski, P.; Levine, S.; Mohiuddin, A.; Sepassi, R.; Tucker,
G.; Michalewski, H. “Model-based reinforcement learning for atari”, arXiv preprint, vol.
1903.00374, Mar 2020, pp. 1–28.

[21] Kidambi, R.; Chang, J.; Sun, W. “Mobile: Model-based imitation learning from
observation alone”, arXiv preprint, vol. 2102.10769, Jan 2022, pp. 1–28.

[22] Kingma, D. P.; Ba, J. “Adam: A method for stochastic optimization”, arXiv preprint, vol.
1412.6980, Jan 2014, pp. 1–15.

[23] Konda, V.; Tsitsiklis, J. “Actor-critic algorithms”, Advances in neural information
processing systems, vol. 12, Jun 1999, pp. 1008–1014.

[24] Lattimore, T.; Szepesvári, C. “Bandit algorithms”. Cambridge University Press, 2020,
536p.

[25] Le, H. M.; Yue, Y. “Imitation learning tutorial”. ICML Presentation, Source: https:
//sites.google.com/view/icml2018-imitation-learning, 2021-06-22.

https://sites.google.com/view/icml2018-imitation-learning
https://sites.google.com/view/icml2018-imitation-learning

117

[26] Levine, S.; Finn, C.; Darrell, T.; Abbeel, P. “End-to-end training of deep visuomotor
policies”, The Journal of Machine Learning Research, vol. 17–1, Apr 2016, pp. 1334–
1373.

[27] Liu, Y.; Gupta, A.; Abbeel, P.; Levine, S. “Imitation from observation: Learning to imitate
behaviors from raw video via context translation”. In: Proceedings of the International
Conference on Robotics and Automation, 2018, pp. 1118–1125.

[28] Maisto, S. A.; Carey, K. B.; Bradizza, C. M. “Social learning theory.”, Psychological
Theories of Drinking and Alcoholism, vol. 1, Jul 1999, pp. 106–163.

[29] Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller,
M. “Playing atari with deep reinforcement learning”, arXiv preprint, vol. 1312.5602,
Dec 2013, pp. 1–9.

[30] Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness, J.; Bellemare, M. G.; Graves,
A.; Riedmiller, M.; Fidjeland, A. K.; Ostrovski, G.; et al.. “Human-level control through
deep reinforcement learning”, Nature, vol. 518–7540, Feb 2015, pp. 529–533.

[31] Monteiro, J.; Gavenski, N.; Granada, R.; Meneguzzi, F.; Barros, R. C. “Augmented
behavioral cloning from observation”. In: Proceedings of the International Conference
on Neural Networks, 2020, pp. 1–8.

[32] Moore, A. W. “Efficient memory-based learning for robot control”, Ph.D. Thesis,
University of Cambridge, 1990, 42p.

[33] Nevmyvaka, Y.; Feng, Y.; Kearns, M. “Reinforcement learning for optimized trade
execution”. In: Proceedings of the 23rd International Conference on Machine learning,
2006, pp. 673–680.

[34] Pomerleau, D. A. “Alvinn: An autonomous land vehicle in a neural network”. In:
Proceedings of the 1st International Conference on Neural Information Processing
Systems, 1988, pp. 305–313.

[35] Raza, S.; Haider, S.; Williams, M.-A. “Teaching coordinated strategies to soccer robots
via imitation”. In: Proceedings of the IEEE International Conference on Robotics and
Biomimetics, 2012, pp. 1434–1439.

[36] Rizzolatti, G.; Sinigaglia, C. “The functional role of the parieto-frontal mirror circuit:
Interpretations and misinterpretations”, Nature Reviews Neuroscience, vol. 11–4,
Mar 2010, pp. 264–274.

[37] Ross, S.; Gordon, G.; Bagnell, D. “A reduction of imitation learning and structured
prediction to no-regret online learning”. In: Proceedings of the 14th International
Conference on Artificial Intelligence and Statistics, 2011, pp. 627–635.

118

[38] Russell, S. J. “Artificial intelligence a modern approach”. Pearson Education, Inc., 2010,
1132p.

[39] Schaul, T.; Quan, J.; Antonoglou, I.; Silver, D. “Prioritized experience replay”, arXiv
preprint, vol. 1511.05952, Nov 2015, pp. 1–21.

[40] Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; Moritz, P. “Trust region policy
optimization”. In: Proceedings of the 32nd International Conference on Machine
Learning, 2015, pp. 1889–1897.

[41] Schulman, J.; Moritz, P.; Levine, S.; Jordan, M.; Abbeel, P. “High-dimensional
continuous control using generalized advantage estimation”, arXiv preprint, vol.
1506.02438, Jun 2015, pp. 1–14.

[42] Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. “Proximal policy
optimization algorithms”, arXiv preprint, vol. 1707.06347, Jul 2017, pp. 1–12.

[43] Selvaraju, R. R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. “Grad-
cam: Visual explanations from deep networks via gradient-based localization”. In:
Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 618–
626.

[44] Sutton, R. S. “Generalization in reinforcement learning: Successful examples using
sparse coarse coding”. In: Advances in neural information processing systems, 1996,
pp. 1038–1044.

[45] Sutton, R. S.; Barto, A. G. “Reinforcement learning: An introduction”. MIT press, 2018,
552p.

[46] Swamy, G.; Choudhury, S.; Bagnell, J. A.; Wu, S. “Of moments and matching: A
game-theoretic framework for closing the imitation gap”. In: International Conference
on Machine Learning, 2021, pp. 10022–10032.

[47] Torabi, F.; Warnell, G.; Stone, P. “Behavioral cloning from observation”. In: Proceedings
of the 27th International Joint Conference on Artificial Intelligence, 2018, pp. 4950–
4957.

[48] Torabi, F.; Warnell, G.; Stone, P. “Generative adversarial imitation from observation”.
In: Proceedings of the International Conference on Machine Learning Workshop on
Imitation, Intent, and Interaction, 2019, pp. 1–8.

[49] Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A. N.; Kaiser,
Ł.; Polosukhin, I. “Attention is all you need”. In: Proceedings of the 31st Conference on
Neural Information Processing Systems, 2017, pp. 5998–6008.

119

[50] Vinyals, O.; Babuschkin, I.; Czarnecki, W. M.; Mathieu, M.; Dudzik, A.; Chung, J.; Choi,
D. H.; Powell, R.; Ewalds, T.; Georgiev, P.; et al.. “Grandmaster level in starcraft ii using
multi-agent reinforcement learning”, Nature, vol. 575–7782, Oct 2019, pp. 350–354.

[51] Watkins, C. J.; Dayan, P. “Q-learning”, Machine learning, vol. 8–3-4, May 1992, pp.
279–292.

[52] Wooldridge, M. “An introduction to multiagent systems”. John wiley & sons, 2009, 488p.

[53] Wu, Y.; Mansimov, E.; Grosse, R. B.; Liao, S.; Ba, J. “Scalable trust-region method
for deep reinforcement learning using kronecker-factored approximation”, Advances in
neural information processing systems, vol. 30, Dec 2017, pp. 5285––5294.

[54] Zhang, H.; Goodfellow, I.; Metaxas, D.; Odena, A. “Self-attention generative adversarial
networks”. In: Proceedings of the 36th International Conference on Machine Learning,
2019, pp. 7354–7363.

[55] Zhu, Z.; Lin, K.; Dai, B.; Zhou, J. “Off-policy imitation learning from observations”,
Advances in Neural Information Processing Systems, vol. 33, Dec 2020, pp. 12402–
12413.

120

	Introduction
	Document Organization

	Background
	Reinforcement Learning
	Policy Learning
	Exploration vs. Exploitation

	Imitation Learning
	Behavior Cloning
	Imitation Learning from Observation

	Adversarial Learning
	Types of Environment

	Related Work
	Behavior Cloning from Observation
	Inverse Dynamics Model
	Policy Model
	Iterative Model

	Imitating Latent Policies from Observation
	Latent Forward Dynamics
	Action Remapping

	Generative Adversarial Imitation Learning
	Generative Adversarial Imitation from Observation
	Final Remarkls

	Methodology
	Hypothesis
	Goals
	Metrics
	Environments

	Augmented Behavior Cloning from Observation
	Inverse Dynamics Model and Policy Model
	Policy Model
	Iterative Behavioral Cloning from Observation

	Sampling Method
	Self-Attention
	Implementation and Results
	Implementation
	Results

	Discussion
	ABCO and Self-attention
	ABCO and Sampling

	Final Remarks

	Imitating Unknown Policies via Exploration
	Sampling Method
	Exploration
	Experimental Results
	Results

	Discussion
	Self-Attention
	Sampling
	Exploration over Maximization

	Final Remarks

	Resilience over sub-optimal samples
	Experimental Design
	Results
	Discussion
	Final Remarks

	Combined Reinforcement and Imitation Learning
	Reinforcement and Imitation Learning
	Self-Supervised Imitation Learning
	Exploration with Neural Networks and q-values

	Combining Imitation and Reinforcement Learning
	Experimental Results
	Policy Optimization Behavior
	Reinforcement Learning
	Quantitative Results
	Final Remarks

	Self-supervised Adversarial Imitation Learning
	Adversarial Approach
	Goal-aware function
	Generative model

	Experimental Results
	Results

	Discussion
	Sample Efficiency
	Imitation Behavior

	Final Remarks

	Conclusion
	Limitations
	Future Work
	Published Work
	On Going Work

	References

