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I dedicate this work to my family.

“We’ve all got both light and dark inside us.

What matters is the part we choose to act

on. That’s who we really are.”

(Harry Potter and the Prisoner of Azkaban)
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MELHORANDO A AVALIAÇÃO DA PROGRAMAÇÃO PARALELA:

DESAFIOS, MÉTODOS E OPORTUNIDADES NA PRODUTIVIDADE DE

CODIFICAÇÃO

RESUMO

O desenvolvimento de aplicações paralelas não é uma tarefa fácil, pois os de-

senvolvedores devem lidar com várias questões como a implementação da sincronização

de dados, a divisão do problema de computação entre as threads e a exploração da con-

corrência. Para facilitar essa tarefa, surgiram novas Interfaces de Programação Paralela

(IPPs). Ao avaliar essas IPPs, a maioria dos estudos na área de programação paralela se

concentra na avaliação do tempo de execução e desempenho dessas IPPs. Entretanto,

a produtividade é um fator importante que, juntamente com a eficácia e a satisfação

do usuário, são indicadores de usabilidade. A partir da avaliação da produtividade e da

usabilidade, é possível continuar aumentando as abstrações do paralelismo e criar IPPs

melhores e simples de usar sem comprometer o desempenho das aplicações. Logo, o

principal objetivo dessa tese de doutorado é prover metodologias e técnicas para me-

lhorar e suportar a avaliação da produtividade na área de programação paralela. Para

atingir esse objetivo, inicialmente conduzimos uma revisão da literatura para descobrir

como a usabilidade e produtividade tem sido avaliada na área de programação paralela.

A partir dessa revisão identificamos que a fim de avaliar a produtividade na programação

paralela, alguns pesquisadores estão realizando estudos envolvendo pessoas, geralmente

desenvolvedores de aplicações, os quais demandam certo tempo para serem planejados

e executados. Por outro lado, alguns pesquisadores têm se concentrado no uso de métri-

cas de Engenharia de Software (por exemplo, CCN, COCOMO II e Halstead), as quais não

foram projetadas para avaliar especificamente o desenvolvimento de aplicações parale-

las. Em relação ao processo de experimentação, nessa tese de doutorado, apresentamos

uma metodologia para orientar outros pesquisadores de programação paralela durante o

planejamento, execução e análise dos resultados dos experimentos. Para validar essa me-



todologia, conduzimos experimentos com iniciantes em programação paralela ao explorar

o paralelismo em aplicações de processamento de stream em ambientes multi-core e o

paralelismo de dados em arquiteturas com GPU. Em relação às métricas de codificação,

realizamos um estudo com o objetivo de verificar a eficácia dessas métricas ao avaliar a

produtividade de IPPs. A partir desse estudo, identificamos uma série de métricas popu-

lares na área de Engenharia de Software ainda não exploradas na área de programação

paralela, incluindo o modelo de Putnam, Pontos de Função, Pontos de Casos de Uso e Plan-

ning Poker. Para identificar as limitações e oportunidades de melhorias dessas métricas,

verificamos a acurácia ao estimar o tempo de desenvolvimento de aplicações paralelas.

Além disso, conduzimos uma pesquisa de opinião com desenvolvedores de aplicações pa-

ralelas para identificar os fatores que impactam na produtividade de desenvolvimento.

Nosso objetivo era propor melhorias para as métricas de codificação com base nos fatores

identificados. Os resultados dos experimentos com desenvolvedores iniciantes mostra-

ram que, conforme o esperado, IPPs com um nível mais alto de abstração tendem a au-

mentar a produtividade do desenvolvedor em ambientes multi-core e GPU. Esse resultado

também foi confirmado através da pesquisa de opinião realizada. Além disso, os resulta-

dos desta pesquisa de opinião confirmaram que a experiência do desenvolvedor é um dos

principais fatores que influenciam o desenvolvimento de aplicações paralelas. Os resulta-

dos da avaliação das métricas de codificação mostraram que o Planning Poker se mostrou

uma métrica promissora, pois considera as opiniões de desenvolvedores experientes ao

estimar o esforço de desenvolvimento. Nesse sentido, nós propusemos uma modificação

à métrica Planning Poker ao considerar a opinião de apenas um desenvolvedor ao invés

de uma equipe de desenvolvimento. Os resultados mostraram que o Planning Poker é um

método eficaz e que exige menos esforço para ser utilizado na prática em comparação

com experimentos controlados com estudantes que visam coletar dados de tempo de de-

senvolvimento. Logo concluímos, que essa métrica pode ser usado como um substituto

para medir o tempo de desenvolvimento de aplicações paralelas.

Palavras-Chave: Esforço de desenvolvimento, Computação paralela, GPU, Métricas de

codificação, Multi-core.



IMPROVING PARALLEL PROGRAMMING ASSESSMENT:

CHALLENGES, METHODS, AND OPPORTUNITIES IN CODING

PRODUCTIVITY

ABSTRACT

Developing parallel applications is a challenging task because the developers

must be able to deal with several issues, such as implementing data synchronization, di-

viding the computation problem among threads, and exploiting concurrency. New Parallel

Programming Interfaces (PPIs) have emerged to facilitate this task. When evaluating these

IPPs, most studies in the parallel programming area focus on assessing the execution time

and performance of these IPPs. However, productivity is an important factor that, together

with effectiveness and user satisfaction, are usability indicators. From evaluating produc-

tivity and usability, it is possible to continue to increase the abstractions of parallelism

and create better and simple-to-use PPIs without compromising application performance.

Therefore, the main goal of this Ph.D. thesis is to provide methodologies and techniques

to improve and support productivity evaluation in parallel programming. To achieve this

goal, we initially conducted a literature review to determine how usability and productivity

have been evaluated in parallel programming. From this review, we identified that to as-

sess productivity in parallel programming, some researchers are conducting studies with

people, usually application developers, which require some time to be planned and exe-

cuted. On the other hand, some researchers have focused on using Software Engineering

metrics (for example, CCN, COCOMO II and Halstead), which were not designed to evalu-

ate parallel application development specifically. Regarding the experimentation process,

in this Ph.D. thesis, we presented a methodology to guide other parallel programming

researchers during the planning, execution, and analysis of experiment results. We con-

ducted experiments with beginners in parallel programming to validate this methodology

by exploring parallelism in stream processing applications in multi-core environments and

data parallelism in GPU architectures. Regarding coding metrics, we conducted a study to



verify the effectiveness of these metrics when evaluating the productivity of IPPs. From

this study, we identified some popular metrics in the Software Engineering area not yet

explored in the parallel programming area, including Putnam’s model, Function Points,

Use Case Points, and Planning Poker. To identify the limitations and opportunities for im-

provement of these metrics, we verified their accuracy when estimating the development

time of parallel applications. Furthermore, we conducted a survey with parallel application

developers to identify the factors that impact development productivity. We aimed to pro-

pose improvements to coding metrics based on the identified factors. The results of the

experiments with beginners showed that, as expected, PPIs with a higher level of abstrac-

tion tend to increase developer productivity in both multi-core and GPU environments.

This result was also confirmed by surveying parallel programming developers. Further-

more, the results of this survey confirmed that the developers’ experience is one of the

main factors influencing parallel application development. The evaluation of the coding

metrics showed that Planning Poker proved to be a promising metric because it consid-

ers the opinions of experienced developers when estimating the development effort. In

this regard, we proposed modifying the Planning Poker metric by considering the opinion

of only one developer instead of a development team. The results showed that Planning

Poker is an effective method that requires less effort to use in practice compared to con-

trolled experiments with students that aim to collect development time data. Therefore,

this metric could be used as an alternative to measuring development time for parallel

applications.

Keywords: Coding metrics, Development effort, GPU, Multi-core, Parallel computing.
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1. INTRODUCTION

One of the main reasons for the popularization of parallel architectures in the

last decade has been the limitations faced by the silicon industry in the design of the

CPU and the requirements to increase performance [185, 163]. As such, the multi-core

CPU architectures containing several cores on a single chip, as well as the many-core

Graphics Processing Unit (GPU) co-processors, have emerged [119, 163, 185]. To enable

the parallelism exploration of such architectures, the programmer must use parallel pro-

gramming techniques, libraries, structures, mechanisms, and paradigms to develop the

applications. In addition, the programmer must know the characteristics of the computer

architecture in which they will develop the software, which varies between vendors and

platform types [76, 119]. Developing parallel applications is a complex task for application

programmers, who usually focus on developing business logic code. It is also a challeng-

ing task for system programmers who are experts in parallel programming because they

need to be concerned about several parallelism aspects throughout the parallel applica-

tion development process. For example, they have to think in parallel, implement data

synchronization, split the computing problem among threads, exploit concurrency, and

provide low-level hardware optimization such as memory [152, 204].

New Parallel Programming Interfaces (PPIs) have been created to facilitate the

development of parallel applications. PPIs allow the programmer to deal with low-level im-

plementations and architecture-specific optimizations. In addition, there are PPIs based on

structured and non-structured approaches. Unlike the non-structured approaches, struc-

tured parallel programming is a high-level approach that uses parallel patterns that can

be a receipt/guide for writing efficient parallel software or provided as ready-to-use tem-

plates that already implement lower-level parallelisms, such as the communication and

synchronization threads, regardless of the target architecture [150, 152]. In addition,

these patterns facilitate the exploitation of parallelism in applications such as stream pro-

cessing [77], which are easily available in our daily lives through their execution on per-

sonal computers, cell phones, and servers [43]. Some examples of stream processing

applications include video and audio processing, and data compression and analysis.

Most studies in the parallel programming domain focus on evaluating the execu-

tion time and performance of an application without considering the human effort involved

in the development, making it difficult to determine which PPI offers the best productiv-

ity [96]. Coding productivity is an important factor that, together with effectiveness and

user satisfaction, are usability indicators [108]. Based on productivity and usability indi-

cators, it is possible to give improvement indicators for designing new PPIs and refining

existing ones. As such, it is possible to continue increasing the abstractions of parallelism

and create better and simple-to-use PPIs without compromising the performance of the

applications.
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Productivity is commonly measured by human effort in relation to the results

achieved [108, 107], including the time to develop a software [78]. Experiments should

be conducted in controlled environments to evaluate productivity, in which human sub-

jects (usually students) resolve small programming tasks using different PPIs [78, 173,

171, 189, 211, 94, 96, 158]. However, experimentation is time-consuming because it

must be carefully planned and executed [252], and it is a challenge to find a representa-

tive sample of participants in the parallel programming domain. Therefore, many parallel

programming researchers instead use established off-line code metrics to estimate the

development time and facilitate productivity evaluation.

Different coding metrics, such as those based on code size, complexity evalu-

ation, and development effort, have been used to evaluate productivity in the parallel

programming domain. However, these metrics target the assessment of general-purpose

software without considering the particular characteristics of parallel applications. Usu-

ally, these metrics consider the development of the application from scratch without con-

sidering the parallelization of an existing sequential application. Therefore, there is still a

need to investigate the effectiveness of these metrics to assess the productivity of parallel

applications and opportunities for improvement.

In this work, we aimed to map the parallel programming area to identify the chal-

lenges and opportunities for improvement in evaluating coding productivity. Section 1.1

presents the objectives of this study in more detail. Based on the defined goals, scientific

contributions are provided in Section 1.2. In addition, the organization of this paper is

presented in Section 1.3.

1.1 Research goals

In this doctoral thesis, we address productivity evaluation in developing parallel

applications. We aim to provide methodologies and techniques to facilitate and support

productivity evaluation in the parallel programming domain. The use of coding metrics for

evaluating the productivity of parallel applications is promising since they can provide spe-

cific insights into coding productivity. There are opportunities to propose improvements

to existing coding metrics to make them more suitable for estimating the effort required

to develop parallel applications. Therefore, the research goals can be summarized as

follows:

1. Increase knowledge regarding the evaluation of PPIs productivity in the literature;

2. Improve the execution of software experiments in order to evaluate the productivity

of PPIs;
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3. Identify the factors impacting the coding productivity of parallel application develop-

ers;

4. Identify the limitations of existing coding metrics and opportunities for improvement;

5. Find a less costly method or technique for estimating the effort required to develop

parallel applications.

1.2 Contributions

Based on the goals previously defined, the scientific contributions provided in this

Ph.D. thesis are as follows.

• Categorizations and discussions of metrics and methodologies that have been used

to evaluate the productivity and usability of PPIs (goal 1). More details can be seen

in Chapter 3, where we present a literature review.

• A parallel programming assessment methodology to guide other researchers based

on the limitations found through the literature review (goal 2). In Chapter 4, this

methodology is presented in detail.

• Mapping quantitative and qualitative usability indicators related to parallel program-

ming in stream processing applications for multi-core environments (goal 3). More

details regarding how this study was conducted can be seen in Chapter 4.

• Mapping quantitative and qualitative usability indicators related to parallel program-

ming for GPU environments (goal 3). Chapter 4 shows more details regarding this

study and its results.

• Mapping and qualitatively analyzing developers’ perceptions of productivity in par-

allel programming (goal 3). More details about the survey research results can be

seen in Chapter 6.

• Analysis and evaluation of metrics used to evaluate the programming effort of par-

allel applications (goal 4). In Chapter 5, we describe and discuss this contribution.

• A less costly method for estimating development effort for parallel applications (goal

5). In Chapter 7, we present a methodology for applying the Planning Poker method

in the context of parallel programming.
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1.3 Document organization

The content of this Ph.D. thesis is organized as follows. Chapter 2 presents a

background of this study, where we introduced parallel programming concepts (Sections

2.1, 2.2, 2.3, and 2.4), standard metrics and tools to assess software development (Sec-

tions 2.5.1), and common metrics used to assess the accuracy of software development

estimation models (Section 2.5.2). In addition, Chapter 3 presents a literature review re-

garding usability and productivity evaluation in parallel computing.

Next, after presenting the background and state of the art, Chapter 4 presents a

proposed methodology to help researchers conduct experiments to evaluate the usability

of PPIs. On the other hand, Chapter 5 considers the use of coding metrics for evaluat-

ing parallel programming interfaces and presents their advantages and limitations. Next,

Chapter 6 presents a survey to identify factors that can affect the programming produc-

tivity of parallel applications.

Chapter 7 presents proposed metrics and techniques for evaluating the develop-

ment productivity of parallel applications. Finally, Chapter 8 concludes this work, which

includes concluding observations, limitations, and potential future work.
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2. BACKGROUND

In this chapter, we introduce the main concepts related to the objectives of

our study. In Section 2.1, we start introducing parallel architectures. Next, Section 2.2

presents the main concepts related to structured parallel programming. Section 2.3 in-

troduces the stream processing applications, and Section 2.4 introduces some structured

programming interfaces to explore this applications domain. Next, Section 2.5 shows an

overview of the metrics to evaluate software development. Finally, in Section 2.5.2, we

present the main metrics to measure the accuracy of the estimation development effort

models presented in the previous section.

2.1 Parallel Architectures

Moore’s law [163] is a prediction made by American engineer Gordon Moore in

1965 that the number of transistors on a computer chip was doubling yearly. In practice,

the number of transistors doubled every 18 – 24 months, where hardware manufacturers

significantly increased performance for application programs. However, currently, there

is a physical limitation on the size of the processor chip that limits the number of pins that

can be used, causing a bandwidth limitation between the CPU and the main memory. In

addition, there are other problems that the processor designer will have to face, such as

increasing the complexity of the processor architecture [204].

The inability to increase the speed of processors using traditional techniques has

driven the emergence of new architectures. Two main approaches in the semiconductor

industry have been used to design microprocessors: multi-core CPU and many-core GPU.

Figure 2.1 shows the fundamental differences between these architectures in a simplified

way [119]. Multi-core CPUs integrate multiple processing cores into a single chip [204],

which may be of general purpose or highly specialized in nature [54]. Multi-core CPUs are

designed to increase the performance of sequential codes by executing them in parallel

at multiple cores, even out of their sequential order, while maintaining the appearance

of sequential execution [126, 119]. Multi-core CPU architecture is briefly composed of

control units, Arithmetic and logic units (ALUs), and multiple levels of caches (L1, L2, and

L3) [119]. Each core can have a private L1 cache and share the L2 cache with other cores.

In addition, a shared L3 cache is used frequently for highly used data [204].

In contrast to multi-core CPU architectures, many-core GPUs focus on the through-

put of parallel applications [119]. This architecture comes from the video game industry,

where it processes video graphics and has been increasingly used for programmable com-

puting [54]. A typical Nvidia GPU is organized in a set of highly threaded Stream Multi-

processors (SMs) [179], an architecture of type Single instruction multiple data (SIMD) or
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Figure 2.1: Architectural differences between CPU and GPU. Extracted from [119].

Multiple instruction multiple data stream (MIMD) composed of several Streaming Proces-

sors (SPs) or thread processors [70]. Each SMs performs the computation independently.

However, the SPs within the single SM execute instructions synchronously since they share

control logic and an instruction cache [126, 119]. As illustrated in Figure 2.1, the many-

core GPU architecture is designed in order to have more transistors dedicated to data

processing (SP) instead of cache and control units [179].

There is another difference between the multi-core CPU and the many-core GPU,

which is related to global memory. In Figure 2.1, the global memory is represented as

Dynamic random-access memory (DRAM). GPUs have multiple gigabytes of Graphics Dou-

ble Data Rate (GDDR) DRAM, which, unlike system DRAMs on the CPU motherboard, it is

optimized for higher bandwidth workloads. For graphics applications, the GPU GDDR DRAM

maintains video images and texture information for 3D rendering [119].

(a) Homogeneous architecture. (b) Heterogeneous architecture.
Adapted from [126].

Figure 2.2: Architectural differences between homogeneous and heterogeneous cluster.
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In addition to shared memories, there are architectures with distributed memo-

ries, such as clusters. A computer cluster comprises a collection of two or more computers

(nodes), which are used to execute a particular problem or section. In a computing cluster,

the interconnection network that connects the nodes is usually a Local area network (LAN)

[70]. In this type of computer cluster, the architectures are homogeneous, that is, all

nodes have similar architectures [54]. Figure 2.2a illustrates the architecture of a homo-

geneous cluster, which is composed by several nodes with multi-core CPUs. Nowadays,

many High Performance Computing (HPC) clusters have heterogeneous architectures due

to the flexibility of adding new nodes with different and more updated architectures [54].

Therefore, a homogeneous cluster can become heterogeneous. Figure 2.2b shows an ex-

ample of heterogeneous HPC cluster with both CPU and GPU nodes [126, 119].

2.2 Structured parallel programming

In Section 2.1, the parallel architectures were presented, which are widely avail-

able today. To enable the exploration of parallelism, different IPPs have been designed

over the years. Using these PPIs efficiently is not a simple task for application program-

mers, who usually focus on developing the business logic code. This is also a challeng-

ing task for system programmers who are experts on parallel programming because they

need to be concerned low-level architectural details as well as address parallelism-specific

aspects, such as load balancing, synchronization etc.

In order to provide abstractions and release programmers from dealing with lower-

level implementations and architecture-specific optimizations, new PPIs have been cre-

ated based on structured approaches. Structured parallel programming has a higher-level

approach for writing efficient, structured, and maintainable programs using a set of paral-

lel patterns, also called algorithmic skeletons [152]. This programming model came from

Software Engineering, where design patterns are widely used in object-oriented program-

ming [68]. Such patterns are offered as pre-defined templates that support modeling

business logic code. On the other hand, through the algorithmic skeletons, common par-

allel programming paradigms are captured and made available to the programmer as

high-level programming constructions equipped with well-defined functional and extra-

functional semantics [5].

Figure 2.3 visually presents an overview of the main parallel programming pat-

terns [77], which can be classified mainly into data (e.g., map, reduce, stencil, scan, and

others) and stream (e.g., pipeline, farm, and others) parallel patterns [152]. A pipeline

pattern is used to exploit in the form of a traditional manufacturing assembly line. It has

well-defined tasks to be performed on data to produce transformed data, which are sent

to the next stage/workstation [207, 152, 237, 5]. The pipeline pattern applies a sequence
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of operations simultaneously to each data element, so it is possible to compute each op-

eration in a different data element at each point and in a given time. The parallel activity

graph in Figure 2.3 is a pipeline with three independent stages (kernels or filters) that

communicate explicitly through data channels, where the output of one stage feeds the

input of the next stage, finite or infinitely.

Figure 2.3: Overview of parallel patterns. Adapted from [152].

The farm pattern is also called split-join [237]. This pattern is similar to the

pipeline pattern and can be implemented with two or three stages. The first stage per-

forms as the data item emitter or scheduler. The second stage performs as stage replicas

called workers. Optionally, the last stage acts as a data item collector [5, 77]. The parallel

activity graph in Figure 2.3 is a farm pattern with its three components (emitter, worker,

and collector). In addition, both pipeline and farm patterns are widely used to implement

parallelism exploitation in stream processing applications [77]. These applications com-

prise of collecting, processing, and analyzing high volume, heterogeneous, and continuous

data streams in real-time [13].

The map pattern, also called loop parallelism [150], replicates a function on each

element of a set that can be abstract or associated with the elements of a collection. Since

the replicated function applies to the elements of a real input data collection, it is called

elementary function [152]. The map pattern can be used to replace an independent loop

in a program whose number of iterations is known previously, and the computation only

depends on the iteration count as an index in a collection. The elementary function must

not modify any global data on which other instances of this function depend. In addition,

the map pattern can be used, for example, for correction and thresholding in images, color

space conversions, Monte Carlo sampling, and radius tracing [152].
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There is a generalization of the map pattern called the stencil. In this pattern,

the elementary function can access a set of neighbors and not just a single element in

a collection of inputs, as seen in Figure 2.3. In the stencil pattern, the neighborhoods

are given by a set of relative offsets. The threshold conditions for access to the matrix

need to be considered for this pattern. Moreover, this pattern is frequently used for image

filtering, for example, convolution, median filtering, motion estimation in video encoding,

and isotropic diffusion noise reduction [152].

The reduce pattern uses an associative combinator function to combine each col-

lection element into a single output element. Many different ordinances are possible. In

addition, the reduction pattern is usually used with a map pattern. Reduction applica-

tions include averaging of Monte Carlo samples for integration, convergence testing in

iterative solution of systems of linear equations (e.g., conjugate gradient), image compar-

ison metrics (e.g., video encoding), and dot products and row–column products in matrix

multiplication [152].

The scan pattern, also called prefix sum [119], is considered a special case of

the series pattern called bending. The scan pattern calculates all partial reductions of a

collection. This means that, for every output position, a reduction of the input to that

point is computed. Describing a computation as a mathematical recursion is necessary

to parallelize it using a scan pattern [119]. The scan is often used to convert seemingly

sequential operations, such as resource allocation, work assignment, and polynomial eval-

uation [152].

2.3 Parallel stream processing

Streams are data generated continuously by network services, cameras, sen-

sors, and other data sources. Stream processing is a computing paradigm for collecting,

processing, and analyzing high-volume, heterogeneous, and continuous data streams in

real-time [13, 239]. The data items are processed or consumed by the so-called stream

processing applications. Usually, they are continuously collected and processed as a se-

quence of stages (also called operators) that apply computations (filter and analyze) over

the items, which can later be stored in a permanent file system [237, 13]. In addition,

the stages tend to be organized as a Directed Acyclic Graph (DAG) where the stream item

flows through the graph [118].

Stream processing applications can be found in several domains, including the

stock market, natural systems, transportation, manufacturing, health and life sciences,

law enforcement, defense and cybersecurity, fraud prevention, e-Science, telephony, and

others. Figure 2.4 shows examples of these applications in different domains. Stream pro-

cessing applications can process structured and unstructured data. Most stream process-
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ing applications process structured data (e.g., relational database style records), which

share a common schema or structure with data items organized into names/types/value

triples. On the other hand, commercial stream processing applications usually process

unstructured data like image, audio, and video, mainly executing tasks, such as compres-

sion, filtering, reproduction, etc. [13, 237].

Figure 2.4: Stream applications. Extracted from [239].

Compared to traditional applications, the volume of data to be processed in

stream processing applications is unknown and cannot be calculated. Storing the stream

items in a database and processing it using traditional approaches is not feasible because,

in many cases, this data comes from sensor measurements. Furthermore, there are strin-

gent requirements on latency and throughput of processing these data [33, 106]. There-

fore, parallel computing can be necessary to reach the quality of service requirements

such as real-time response or high throughput [83].

Parallel stream processing applications execute as stream graphs composed of

operators or stages and FIFO (First In, First Out) communication queues [5, 93]. The

stream input is an infinite sequence of items (or data) stream, and the queues contain a fi-

nite number of items waiting to be consumed by each stage [222]. The computation waits

until the batched operator has received enough items. Therefore, when the batch of items

is complete, the operator will perform the entire batch computation at once [93]. In ad-

dition, each operator can process a different item than the previous operator. Figure 2.5a

illustrates this type of parallelism, where the sequence of producer A and consumer B

operators can process different items concurrently.
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Figure 2.4: Types of parallelism in the context of data stream processing.

Source: Extracted from [58].

The classification of [58] can be viewed as a categorization for the processing of

data streams. In a broader view from a stream processing perspective, we adopted and

derived three parallelism types from [118, 46].

Data parallelism is similar to the data-parallel from [58] that can be general-

ized to data parallelism divided into sub-collection or partitions. As stated by [118], data

parallelism can be characterized by the replication of functions and partitioning of data.

Data parallelism usually provides profitability with the parallel processing of loops over

independent read-only data. This technique can decrease execution times in case the

data partitions are mostly independent. In the case of dependencies, an internal state is

usually maintained which then characterizes stateful computations that are very usual in

data stream processing [100, 103, 89].

Stream parallelism can be seen as a combination of pipeline and data paral-

lelism. In this type, sequential and parallel stages run simultaneously over independent

items. The logical view is usually a graph where stages communicate via dedicated chan-

nels. In stream parallelism, heavy stages can be replicated in such a way that the same

computation is performed over different data items.

Task parallelism characterizes the task-parallel definition from [58] where func-

tions are replicated attempting to improve the overall performance.

2.3 Self-adaptation overview

The software engineering field has been evincing that modern software systems

should operate in dynamic conditions without downtime [18, 136, 111]. There, concepts

of self-adaptation are being used in software systems to collect data and to adjust them-

selves. In the context of this work, foundations of self-adaptivity are aimed to be used

for managing parallelism aspects as well as for providing high-level abstractions. Conse-

quently, in this section, we provide an introduction to self-adaptive theories and concepts.
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The classification of [58] can be viewed as a categorization for the processing of

data streams. In a broader view from a stream processing perspective, we adopted and

derived three parallelism types from [118, 46].

Data parallelism is similar to the data-parallel from [58] that can be general-

ized to data parallelism divided into sub-collection or partitions. As stated by [118], data

parallelism can be characterized by the replication of functions and partitioning of data.

Data parallelism usually provides profitability with the parallel processing of loops over

independent read-only data. This technique can decrease execution times in case the

data partitions are mostly independent. In the case of dependencies, an internal state is

usually maintained which then characterizes stateful computations that are very usual in

data stream processing [100, 103, 89].

Stream parallelism can be seen as a combination of pipeline and data paral-

lelism. In this type, sequential and parallel stages run simultaneously over independent

items. The logical view is usually a graph where stages communicate via dedicated chan-

nels. In stream parallelism, heavy stages can be replicated in such a way that the same

computation is performed over different data items.

Task parallelism characterizes the task-parallel definition from [58] where func-

tions are replicated attempting to improve the overall performance.

2.3 Self-adaptation overview

The software engineering field has been evincing that modern software systems

should operate in dynamic conditions without downtime [18, 136, 111]. There, concepts

of self-adaptation are being used in software systems to collect data and to adjust them-

selves. In the context of this work, foundations of self-adaptivity are aimed to be used

for managing parallelism aspects as well as for providing high-level abstractions. Conse-

quently, in this section, we provide an introduction to self-adaptive theories and concepts.

(c) Data parallel.

Figure 2.5: Types of parallelism in the context of data stream processing. Extracted from
[93].

The parallelism can be increased by replicating one stateless operator to process

multiple items simultaneously (data parallelism) or by performing different computations

simultaneously (task parallel) [93]. Figure 2.5b illustrates task parallelism, where the dif-

ferent operators D and E that do not constitute a pipeline can be processed concurrently.

Figure 2.5c shows the data parallelism, where the execution of the stateless operator G is

replicated to process different portions of the same data [93].

As can be noticed, developing parallel stream processing applications is a chal-

lenging activity. Therefore, the structured parallel programming approach presented in

Section 2.2 alleviates these complexities for different application domains. It supports

developers with parallel patterns, which are parallelism strategies to write efficient, struc-

tured, and maintainable programs [152]. The two parallel patterns commonly used when

implementing parallel stream processing are pipeline and farm. The parallelism type

shown in Figure 2.5a is implemented using the Pipeline pattern. However, the number

of operators usually limits the parallelism of stream processing. Therefore, the data par-

allelism could be applied or combined to increase the degree of parallelism [77]. In the

farm pattern, the parallelism can be increased through a combination of pipeline and data

parallelisms. Therefore, the stateless operator can be replicated in order to perform the

same computation on different data items.

2.4 Structured parallel programming interfaces

Different PPIs have been proposed to explore parallel architectures. For multi-

core architectures the well-established models are Open Multi-Processing (OpenMP) and

POSIX Threads (Pthreads) [113], although they are only suitable for data parallelism ex-

ploitation and requires the programmer to implement extra synchronization mechanisms

in the stream parallelism exploitation. For stream parallelism exploitation based on the

structured programming approach, one remarkable PPI is StreamIt [237]. It is an external

Domain-Specific Language (DSL) (new language and compiler), and its research activities

were discontinued in 2013. Maintained by Intel, Threading Building Blocks (TBB) [207,
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244] is an open-source and general-purpose C++ template-based PPI from the industry.

TBB offers a Pipeline pattern constructor that can also perform as the Farm pattern.

FastFlow [5] is a representative PPI from the scientific community. It has a sim-

ilar C++ template-based interface to TBB. However, their runtime parallelism systems

are implemented differently. While the TBB interface works on top of an unchangeable

work-stealing task scheduler and building blocks, the FastFlow interface works on top of

customizable lock-free FIFO queues, building blocks, parallel patterns, and task scheduler.

A research initiative that promises to leverage higher-level and productive stream paral-

lelism on multi-core systems is Stream Parallelism (SPar) [80, 82]. It is an internal DSL

(embedded in the C++ language) in the form of C++ annotation to avoid sequential code

rewriting. SPar explore stream parallelism in multi-core systems through parallel code

generation with FastFlow [79], TBB [98], and more recently with OpenMP [99] runtimes.

For heterogeneous programming, the most popular PPIs are Compute Unified De-

vice Architecture (CUDA) and Open Computing Language (OpenCL) [22]. As low-level

models, they require specific control of coordination and computation, such as controlling

access to different levels of the memory hierarchy [22]. OpenACC is another low-level

model for heterogeneous programming [155]. SkePU is a C++ template library that pro-

vides a higher abstraction level through skeletons building on top of OpenCL and CUDA

for heterogeneous architectures [60]. It provides a task-parallel skeleton (Farm) and a set

of data-parallel skeletons (Map, Reduce, MapReduce, MapOverlap, and Scan). SkePU uses

smart data containers and provides custom data structures resident on the host memory.

However, providing a non-native C++ data structure is one of the SkePU drawbacks. In

addition, when using GPUs, smart data containers automatically manage the memory de-

vice, which may not perform the best choice to optimize memory transfers [48]. A newer

research approach that does not have these drawbacks is GSParLib [208], a structured PPI

for exploiting data parallelism in C++ applications executing in GPU systems. GSParLib

also provides abstraction through CUDA and OpenCL code generation.

In the next sections we will present the workings of TBB, FastFlow, and SPar for

exploiting stream processing parallelism on multi-core architectures. In addition, we will

present the workings of GSParLib for exploiting GPU data parallelism.

2.4.1 Intel TBB

This section describes how to use TBB to expressing stream parallelism in C++

stream processing applications in multi-core CPU systems. In TBB, some stages can oper-

ate in parallel, and others can not (serial). The concept of the stage in TBB is known by

the name filter. Listing 2.1 shows how to create the first stage using TBB. Although TBB

supports modeling stages using the lambda function interface, we concentrate on the de-
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fault interface, in which stages are modeled as classes extending the tbb::filter class,

where one of the following filter types should be specified as an argument to indicate the

stage behavior (line 3) [244]:

• tbb::filter::serial_out_of_order: It is used to process the items one at a time

without preserving the processing order;

• tbb::filter::serial_in_order: It is used to process the items one at a time in the

same order. The processing order is implicitly defined by the first filter and respected

by the other ones;

• tbb::filter::parallel: It is used to process multiple items in parallel and in no

particular order.

Moreover, each stage class needs to implement the virtual operator method (lines 4-11)

in which a task or stream item is processed. Every time this method returns a void pointer

(line 8), it is implicitly sends the stream item to the next stage. When NULL is returned (line

10), it indicates the end of the stream to stop the stream processing [244].

1 class first() : public tbb::filter{

2 public:

3 first():tbb::filter(tbb::filter::serial_in_order) {}

4 void* operator() (void*){

5 while(1){

6 // computation

7 if(stop) break;

8 return item;

9 }

10 return NULL;

11 }

12 };

13 class middle() : public tbb::filter{

14 public:

15 middle(): tbb::filter(tbb::filter::parallel) {}

16 void* operator() (void *item) {

17 // computation

18 return item;

19 }

20 };

21 class last() : public tbb::filter{

22 public:

23 last() : tbb::filter(tbb::filter::serial_in_order) {}

24 void* operator() (void *item) {

25 // computation

26 delete item;

27 return NULL;

28 }

29 };

Listing 2.1: First, middle and last stages using TBB. Extracted from [11].

Listing 2.1 also shows how to create the middle and last stage using TBB. The

middle stage only computes the stream items and sends them to the next stage using
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the return operation (line 19). The programmer can create as many as necessary middle

stages. For the last stage, the programmer has to manage the stream item data, deallo-

cate the memory for the input item (line 28), and return a specific value to skip sending

items to subsequent stages (line 29).

Therefore, to build the parallel activity graph as a Farm pattern in TBB, the pro-

grammer specifies the parallel filter in the middle stage and uses the same Pipeline

object to instantiate a traditional Pipeline pattern, as shown in Listing 2.2. In TBB, the

programmer can also specify how many concurrent threads are created in line 1. The run

method is used to indicate the beginning of the Pipeline execution, receiving as an argu-

ment the number of concurrent tokens (it can also be understood as the number of items

in the shared queue). Moreover, the class object tbb::pipeline is first declared (line 2)

to build a parallel activity graph. Next, the objects of the three stages are declared and

added to the Pipeline object using add_filter (lines 3-6) in the correct sequence. Lastly,

by calling the run method in the pipeline object, the parallel computing will start and

keep executing until a stop condition, which is a NULL pointer [244].

1 tbb::task_scheduler_init init(3);

2 tbb::pipeline pipeline;

3 first S1;

4 middle S2;

5 last S3;

6 pipeline.add_filter(S1);

7 pipeline.add_filter(S2);

8 pipeline.add_filter(S3);

9 pipeline.run(3);

Listing 2.2: Parallel activity graph modeled according to the Farm pattern while

instantiating stages using TBB. Extracted from [11].

2.4.2 FastFlow

This section describes how to use FastFlow for exploiting stream processing on

C++ applications in multi-core CPU environments. Listing 2.3 show how to create the first

stage using FastFlow. In FastFlow, although a stage can be modeled using the lambda

function interface, we focus on the default interface where a stage is modeled as a class

or struct, extending the ff_node class (line 1). Inside the stage, the virtual svc method

has to be implemented (lines 3-10). The first stage may produce tasks (stream items)

inside the svc method and send the produced stream items to the next stage using the

ff_send_out method (line 7). If there are no more stream items, it is possible to return

EOS (line 9) to propagate the end of the stream processing to the subsequent stages [5].
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Listing 2.3 also shows how to create the middle and last stage using FastFlow.

Disassociating the specific syntax and semantics, the principle for modeling the middle

and last stage is similar to the TBB presented previously. The middle stage also computes

the stream items and sends them to the next stage using the return operation (line 16).

For the last stage, the programmer has to manage the stream item data, deallocate the

memory for the input item (line 23). However, unlike TBB, the last FastFlow stage must

return the tag GO_ON (line 24), which is used to inform the runtime support that other

tasks should be expected from the input channel and that the computation is not finished

[5]. Another difference is that in TBB the programmer defines the stage behavior when

writing the class and passing as an argument the filter, while in FastFlow, this is done when

instantiating the parallel pattern.

1 class first : public ff::ff_node_t<int>{

2 public:

3 int *svc (int *){

4 while (1){

5 // computation

6 if(stop) break;

7 ff_send_out(item);

8 }

9 return EOS;

10 }

11 };

12 class middle: public ff::ff_node_t<int>{

13 public:

14 int *svc (int *item){

15 // computation

16 return item;

17 }

18 };

19 class last : public ff::ff_node_t<int>{

20 public:

21 int *svc (int *item){

22 // computation

23 delete item;

24 return GO_ON;

25 }

26 };

Listing 2.3: First, middle, and last stages using FastFlow. Extracted from [11].

Listing 2.4 shows how to build a Pipeline pattern using the ff::ff_Pipe, where

the arguments are stage object classes (line 4). Differently from TBB, in FastFlow there is

a specific object class to build the parallel activity graph for the Farm pattern. Listing 2.5

shows that the three entities of the Farm pattern (Emitter, Worker, and Collector) receive

the class objects declared as an argument. For the Worker entity, we must create a vector

that has many replicas as parallel workers are intended (nthreads) (lines 1-3). After, the

stage object classes are declared (line 4). Next, the ff::ff_Farm template class is used

to build the parallel activity graph, where the Worker entity is passed as an argument (a
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vector of workers) (line 5). The Emitter and Collector entities are added using the respec-

tive routine (lines 6-7). Then, the parallel computing will start and wait until finished at

the call of the run_wait_end routine.

1 first S1;

2 middle S2;

3 last S3;

4 ff:ff_Pipe<int> pipeline(S1, S2, S3);

5 pipeline.run_wait_end();

Listing 2.4: Parallel activity graph modeled according to the Pipeline pattern while

instantiating stages using FastFlow. Extracted from [11].

1 std::vector<std::unique_ptr<ff_node>> S2;

2 for(int i=0; i<nthreads; i++)

3 S2.push_back(std::make_unique<middle>());

4 first S1;

5 last S3;

6 ff::ff_OFarm<int> farm(std::move(w));

7 farm.add_emitter(S1);

8 farm.add_collector(S3);

9 farm.run_wait_end();

Listing 2.5: Parallel activity graph modeled according to the Farm pattern while

instantiating stages using FastFlow. Extracted from [11].

FastFlow allows us to create other parallel patterns, combining Farm and Pipeline

object classes, and reusing the same stage classes. A new parallel pattern can be created

by transforming one or more stages of a simple Pipeline pattern (Listing 2.4) into a Farm.

The example on the Listing 2.6 shows how this can be done. The middle stage becomes

the Worker entity, and the last stage becomes the Collector entity of a Farm. Then, we

build the Pipeline with two stages, where the first is the serial while the second is a Farm.

Other patterns and activity graphs could be created using FastFlow, which does not nec-

essarily optimize the parallelism exploitation. It will depend on several aspects regarding

the environment and application.

1 std::vector<std::unique_ptr<ff_node>> S2;

2 for(int i=0; i <nthreads; i++)

3 S2.push_back(std::make_unique<middle>());

4 first S1;

5 last S3;

6 ff::ff_OFarm<int> farm(std::move(w));

7 farm.add_collector(S3);

8 ff:ff_Pipe<int> pipeline(S1, farm);

9 pipeline.run_wait_end();

Listing 2.6: Parallel activity graph modeled according to the Pipeline pattern and combined

with Farm while instantiating stages using FastFlow. Extracted from [11].
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2.4.3 SPar

This section describes how to use SPar for exploiting stream processing on C++

applications in multi-core CPU environments, which is a scientific DSL proposed by Griebler

[77]. SPar is C++ embedded DSL using standard C++11 attributes annotations to express

stream parallelism, which is parsed by its own compiler to generate parallel code automat-

ically [80]. A C++11 annotation is declared using double brackets ([[attr-list]]) where

there are one or more attributes. In SPar, the first attribute in the list is called an identi-

fier (ID), and the rest are auxiliary (AUX). All attributes are part of the stream parallelism

namespace (named as spar). The SPar ID attributes are ToStream and Stage, while AUX

attributes are Input, Output, and Replicate.

ToStream indicates that a given C++ program region is going to be stream par-

allelism. The annotated region can be a loop or a code block. Stage denotes a phase

within ToStream, where operations are computed over the stream items. At least one

stage must be within a ToStream region. In addition, SPar supports any number of stages

inside a ToStream region. Input is used to indicate the variables that will be consumed by

ID attributes, and Output is used to indicate the variables that will be produced by ID at-

tributes. When using these attributes, at least one argument must be present. Replicate

is used to replicate a Stage. This attribute allows programmers to scale the performance

on stateless stages. This attribute receives a constant value delimiting the number of

workers for the stage as an argument. Moreover, this attribute can also be left empty to

use the environment variable SPAR_NUM_WORKERS.

1 [[spar::ToStream]]

2 while(1){

3 // computation

4 if (stop) break;

5 [[spar::Stage, spar::Input(item), spar::Output(item), spar::Replicate(4)]]{

6 // computation

7 }

8 [[spar::Stage, spar::Input(item)]]{

9 // computation

10 }

11 }

Listing 2.7: Example of Pipeline using SPar. Extracted from [11].

Listing 2.7 presents a pseudocode example of the SPar use. In line 1, note that

ToStream annotation was inserted in front of a loop, indicating the beginning of the stream

parallelism region. Since stream items are not consumed from and produced outside the

region, auxiliary attributes are unnecessary. The codes left between ToStream and the first

Stage annotation (line 5) are always an implicit serial stage that produces stream items

to the following stages. The first Stage annotation will actually be the second Stage of the
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parallel activity graph, where if there is another Stage in sequence, Input and Output are

required. Since this Stage is a stateless computation, we can add the Replicate attribute

to increase the degree of parallelism. By the way, the last stage is stateful and does

not produce anything outside. Therefore, Output is not needed, and Replicate does not

apply.

Additionally, SPar provides compiler flags if programmers want to change the

runtime system behavior, which may improve the performance of the application:

• -spar_blocking: It is used to activate the blocking mode on the scheduler when the

communication queues are full (by default, it is not locked);

• -spar_ondemand: It is used to activate the on-demand scheduler by setting the

queue size to one (by default, it is round-robin);

• -spar_ordered: It is used to allow stream elements to be processed in order (by

default, they are processed without preserving the order).

These flags can be used individually or combined to optimize the code during compilation

and provide speed.

2.4.4 GSParLib

This section describes how to use GSParLib for exploiting data parallelism in GPU

environments, a scientific library proposed by Rockenbach [208]. GSParLib is a C++ li-

brary divided into two layers, a lower-level and a higher-level. The low-level layer of GSPar-

Lib is called Driver Application Programming Interface (API), which acts as a wrapper over

CUDA [179] and OpenCL. The high-level layer, on the other hand, focuses on structured

parallel programming. This layer is called the Pattern API [208].

The goal of the Driver API is to act as a unified interface to the different GPU

PPIs, currently CUDA and OpenCL. In addition, it abstracts from the programmer the com-

plexities of lower-level language constructs, such as C-like error handling. Programming

an application with the Driver API follows the standard GPU programming flow defined by

PPIs such as CUDA and OpenCL. Programming with Driver API can be summarized in four

steps [208]:

• Step 1: initialize the interface and identify the devices;

• Step 2: allocate the device memory and copy the necessary data;

• Step 3: prepare the Kernel object and invoke the GPU kernel;

• Step 4: copy results back to main memory (host) and release resources used.
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1 #if defined(GSPARDRIVER_CUDA) //CUDA gpu kernel

2 #include "GSPar_CUDA.hpp"

3 using namespace GSPar::Driver::CUDA;

4 const char* gpu_kernel_source = GSPAR_STRINGIZE_SOURCE(

5 extern"C"

6 __global__ void matrix_multiplication(int* matix1, int* matrix2, int* matrix3, intN){

7 int i = blockIdx.x * blockDim.x + threadIdx.x;

8 int j = blockIdx.y * blockDim.y + threadIdx.y;

9 for(intk=0; k<N; k++){

10 matrix3[i*N+j] += (matrix1[i*N+k]* matrix2[k*N+j]);

11 }

12 });

13 #elifdefined(GSPARDRIVER_OPENCL) // OpenCL gpu kernel

14 #include "GSPar_OpenCL.hpp"

15 using namespace GSPar::Driver::OpenCL;

16 const char* gpu_kernel_source = GSPAR_STRINGIZE_SOURCE(

17 __kernel void matrix_multiplication(__global int* matrix1,__global int* matrix2,__global int* matrix3,intN){

18 int i = global_id(0);

19 int j = global_id(1);

20 for(int k=0; k<N; k++){

21 matrix3[i*N+j] += (matrix1[i*N+k] * matrix2[k*N+j]);

22 }

23 });

24 #endif

25 int main(){

26 // initialization of the steps

27 Instance* driver=Instance::getInstance();

28 driver->init();

29 auto gpus = driver->getGpuList();

30 auto gpu = driver->getGpu(0);

31 matrix1_device = gpu->malloc(N*N*sizeof(double), matrix1_host); // gpu memory allocation

32 matrix2_device = gpu->malloc(N*N*sizeof(double), matrix2_host);

33 matrix3_device=gpu->malloc(N*N*sizeof(double), matrix3_host);

34 matrix1_device->copyIn(); // memory transfer, copy memory to gpu

35 matrix2_device->copyIn();

36 matrix3_device->copyIn();

37 gpu_kernel = newKernel(gpu, gpu_kernel_source, "matrix_multiplication"); // gpu kernel, compiling

38 gpu_kernel->setNumThreadsPerBlockForX(1024); // gpukernel, setting parameters

39 gpu_kernel->setParameter(matrix1_device);

40 gpu_kernel->setParameter(matrix2_device);

41 gpu_kernel->setParameter(matrix3_device);

42 gpu_kernel->setParameter(sizeof(int),&N);

43 // gpukernel, setting total amount of threads

44 unsigned long dimensions[3] = {N,N,0}; // N*N threads

45 gpu_kernel->runAsync(dimensions); // gpu kernel, running

46 gpu_kernel->waitAsync(); // gpu kernel, wait the finish of computations

47 matrix1_device->copyOut(); // memory transfer, copy memory to cpu (host)

48 matrix2_device->copyOut();

49 matrix3_device->copyOut();

50 }

Listing 2.8: Matrix multiplication with the Driver API of GSParLib. Extracted from [48].

Listing 2.8 presents the matrix multiplication applications using GSParLib Driver

API [48], in which these steps can be seen. First, the GPU kernels with CUDA (lines 1-12)

and OpenCL (lines 13-24) are defined. These definitions allows the programmer to switch

between CUDA and OpenCL only to change the compilation flags. From the lines 27 to 30,
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the Driver API is initialized. Next, the GPU memory is allocated (lines 31-33), and the data

are copied from the host memory to the GPU memory (lines 34-36). The GPU kernel is

compiled in line 37, and the its parameters are set from lines 38 to 42. The total number

of threads used to execute the GPU kernel also must be defined (line 44). Then, the GPU

kernel will start and wait until finished at call of the runAsync and waitAsync routines

(lines 45-46). Finally, the copyOut routine is used to copy the memory from the GPU to the

CPU (lines 47-49).

The Pattern API of the GSParLib provides a higher-level structured programming

interface using the capabilities of the Driver API to support both CUDA and OpenCL. The

Pattern API provides the Map and Reduce parallel patterns, which can also be grouped into

a pattern composition [208].

Listing 2.9 presents the matrix multiplication applications using the Pattern API [48].

From lines 2 to 7, the GPU kernel is defined and the Map pattern is instanced. To do so,

first, the functions provided by the Pattern API abstractions are called (lines 3-4), which

are replaced by CUDA or OpenCL syntax and collect the id of the threads. From lines 8

to 11, the patterns of the GPU kernel are defined, for which are defined the amount of

GPU memory that must be allocated. In addition, it is necessary to define whether the

matrices should be copied to the GPU before running the GPU kernel (GSPAR_PARAM_IN),

or whether they should be copied from the GPU to the CPU after finishing computations

(GSPAR_PARAM_OUT). In line 12, the GPU kernel is compiled and executed. Finally, the Map

pattern is deleted, releasing the related resources.

1 void matrix_multiplication(double* matrix1, double* matrix2, double* matrix3, int N){

2 Map* map = new Map(GSPAR_STRINGIZE_SOURCE(

3 int i = gspar_get_global_id(0);

4 int j = gspar_get_global_id(1);

5 for(intk=0;k<N;k++){

6 matrix3[i*N+j]+=(matrix1[i*N+k] * matrix2[k*N+j]);

7 }));

8 map->setParameter("matrix1", sizeof(double)*N*N, matrix1, GSPAR_PARAM_IN)

9 .setParameter("matrix2", sizeof(double)*N*N, matrix2, GSPAR_PARAM_IN)

10 .setParameter("matrix3", sizeof(double)*N*N, matrix3, GSPAR_PARAM_OUT)

11 .setParameter("N", sizeof(int), N)

12 .run<Instance>({N,N}); //N*Nthreads

13 delete map;

14 }

15 int main(){

16 // initialization of the steps

17 matrix_multiplication(matrix1, matrix2, matrix3, N);

18 }

Listing 2.9: Matrix multiplication with the Pattern interface of GSParLib. Extracted from

[48].
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2.5 Coding productivity assessment

Before actually implementing a given software, one of the main concerns related

to the software design is how much implementation effort (e.g., working hours) will be

required [245]. In order to solve this problem, Software Engineering (SE) researchers

have proposed several quantitative metrics to measure specific software characteristics

and estimate factors such as cost, effort, quality, and reliability [248]. Most coding metrics

use at least one parameter as a basis, such as the number of lines in the source code and

system functional requirements [245]. In addition to these techniques, there are metrics

of complexity based on the information flow of code, which can also be used as indicators

of the development effort. Over the years, several metrics have been proposed. In this

context, this section aims to present some of the classical metrics already well established

in the SE field.

Several coding metrics are available for estimating software development efforts.

Therefore, the use of evaluation metrics is essential to measure the performance and

accuracy of the proposed estimation methods [242]. ISO/TS 24541 [110] defined accuracy

as the “closeness of agreement between a measured quantity value and a true quantity

value of a measurand”. Therefore, from accuracy assessment, we can verify the proximity

between the estimated and actual values, which should be as small as possible [242]. In

this context, this section also presents some classical metrics for accuracy evaluation.

2.5.1 Metrics for estimating development effort

This section presents some coding metrics used to estimate the effort and time

required to develop software applications.

Source lines of code

Source Lines of Code (SLOC) is perhaps the oldest of the software evaluation met-

rics and is the easiest to measure [121, 210]. This technique emerged when programming

languages like FORTRAN were strongly oriented to SLOC. At that time, the programs were

registered on perforated cards, with one line per card. Therefore, the height of the stack

of cards was a very natural metric to evaluate the complexity of a program. This met-

ric evolved to Kilo Source Lines of Code (KSLOC), as the size of most programs is now

measured in thousands of lines of code.

According to Laplante [121], one of the main disadvantages of using SLOC as a

metric is that it can only be measured after the code has been written. However, there is
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a technique for estimating KSLOC. In this technique there is a meeting with the develop-

ment team to discuss the system to be developed, in which the participants will give their

opinions about the number of KSLOC needed to develop the system considering three

values [245]:

• Optimist: the minimum number of lines expected to develop if all conditions are

favorable;

• Pessimistic: the maximum number of lines expected to develop under unfavorable

conditions;

• Expected: the number of lines expected to develop under normal conditions.

The KSLOC can be calculated from from Equation (2.1):

KSLOC =
(4 × KSLOCexpected + KSLOCoptimist + KSLOCpessimist )

6
(2.1)

McCabe’s Cyclomatic Complexity Number

McCabe’s Cyclomatic Complexity Number (CCN) [151] is a widely used metric

to measure program complexity. This complexity metric is based on the graph theory to

measure the number of paths through a program. Measuring the total number of paths

may be impractical since any program with a backward branch potentially has an infinite

number of paths. Therefore, this measure is defined in terms of basic paths, that when

combined, will generate all possible paths.

In the CCN, a program must be represented by a flow graph, in which the nodes

represent all commands and the edges represent the control flows. In addition, condi-

tional (if, else) and repetition (while, do, for) structures should be represented through

distinct nodes with edges indicating decision and repetition.

CCN can be calculated from the Equation (2.2):

CCN = E − N + 2 (2.2)

where E is the number of edges, and N is the number of nodes. Fig. 2.6 illustrates the

flow-graph of a small piece of a program with five nodes (N), and six edges (E). From

Equation 2.2, we achieve CCN equal to 3.

The way a flow graph is defined with a single input and output node results in

all flow graphs having only one connected component. However, for example, if there

is a main program (M) calling a function (F ), there will be two graphs resulting in two

connected components (P). In this case, the complexity will be equal to the sum of the

individual complexities of M and F , calculated from Equation 2.2 [151]. In addition, the
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Figure 2.6: Flow-graph of a piece of code.

CCN of a collection of flow graphs can also be calculated from Equation 2.3:

CCN = E − N + 2 × P (2.3)

where E is the number of edges, N is the number of nodes, and P is the number of

connected components [151].

Information Flow Complexity

In 1981, Henry and Kafura proposed a metric to measure the complexity of a

code based on the information flow concepts [91]. For this measure, a program must be

represented by a flow graph, in which the nodes represent all procedures (or functions),

and the edges represent the connections between these procedures. The fan-in and fan-

out terms are used to determine the connections between the procedures of a program,

which are defined as follows:

• Fan-in: The number of local flows to the procedure plus the number of data struc-

tures from which the procedure retrieves information;

• Fan-out: The number of local flows of the procedure plus the number of data struc-

tures the procedure updates.

The Equation 2.4 defines the complexity value of a procedure:

HK = length × (fanin × fanout )2 (2.4)

where the length of a procedure is defined as the SLOC for the selected procedure [91].

Figure 2.7 shows an example of information flow with six procedures A, B, C, D,

E, and F. This figure also had a data structure DS and the connections among DS and the

procedures. In Figure 2.7, procedure A retrieves information from the DS data structure
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and then calls procedure B, which updates the DS. Procedure F also updates DS. Therefore,

the fan-in of A is equal to 2 because A receives information from B and F. In addition, the

fan-out of A is equal to 1 because A sends information only to B [91].

a                 

A

a                 

D
a                      

F
a                     

C
a                 

B

a            

DS
a                  

E

 Information Flow

 Control Flow (calls)

Figure 2.7: Example of information flow graph. Adapted from [91].

Putnam’s model

Putnam’s model is one of the first to estimate the development effort [201]. This

model is simple and easily calibrated because it estimates the development time in years

based on a Productivity Parameter (PP) and the SLOC. PP can be derived from SLOC,

development effort, and development time (in years) of previous projects using the Equa-

tion 2.5:

PP =
SLOC[

E
B

1
3
]
× T

4
3

, (2.5)

where B scale factor is defined equal to 16. On the other hand, PP can be determined from

the type of development environment according to Pressman [200]: 2000 is used for poor

environments, 8000 is used for environments with adequate documentation and reviews,

and 11000 is used for environments with automated tools and techniques.

Putnam’s model can be used to estimate the development effort in person-years

refactoring the Equation 2.5 [201]:

E =
[

SLOC

PP × T
4
3

]3

× B (person-years) (2.6)

On the other hand, the Equation 2.7 can be used to estimate the minimum time required

to develop an application in years [201]:

td−min = 0.68 × (SLOC/PP)0.43 (years) (2.7)



46

Halstead’s Measures

Halstead introduced several measures for a software evaluation, including pro-

gram length, program vocabulary, program volume (in bits), programming difficulty, de-

velopment effort, and development time [87]. Aiming to perform his evaluations, Hal-

stead initially defined a program as a collection of tokens classified as operators or operands.

However, there is no standardized definition of an operand or operator for all programming

languages [125]. In C++ language, for example, there are arithmetic operators (e.g., +,

−, ∗, /, % ), relational operators (e.g., <, <=, >, >=, ==, !=), logical operators (e.g., !, &&,

||), and bitwise operators (e.g., &, |, ∧, ∼, <<, >>). The keywords of the C++ language are

also considered operators, such as the native functions, the class specifiers (e.g., static

and virtual), type qualifiers (e.g., const and friend), and reserved instructions (e.g.,

for, if, while, struct, and namespace). In addition, “;” and parenthesis are considered

operators. The operands are all those that are not operators, but constants, variables,

typenames, and user-defined identifiers [125, 53].

Then, Halstead proposed the tokens measurement according to [183]:

• n1: number of unique operators;

• n2: number of unique operands;

• N1: total occurrences of operators;

• N2: total occurrences of operands.

Listing 2.10 presents a function in C++ language that calculates the factorial of

a number. Table 2.1 shows the number of operators and operands, their occurrences in

this code, and the total occurrences. This code has 12 operators (n1) with 21 occurrences

in total (N1), and it has four operands (n2) with 11 occurrences in total (N2).

1 int factorial(int n){

2 assert(n >= 0);

3 if(n == 0){

4 return 1;

5 }

6 else{

7 return n * factorial(n - 1);

8 }

9 }

Listing 2.10: Factorial function. Adapted from [180].

From the metrics proposed by Halstead, it is possible to calculate the program

length (N). According to [121], the length can be used to estimate costs, schedule, and

defect rates. The total number of operator occurrences and the total number of operand
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Table 2.1: The number of tokens of a factorial function.

ID Operators Occurrences ID Operands Occurrences
1 int 2 1 factorial 2
2 if 1 2 n 5
3 else 1 3 0 2
4 assert 4 1 1 2
5 return 2 - - -
6 >= 1 - - -
7 == 1 - - -
8 ∗ 1 - - -
9 − 1 - - -
10 ( ) 4 - - -
11 {} 3 - - -
12 ; 3 - - -

Total n1 = 12 N1 = 21 Total n2 = 4 N2 = 11

occurrences can be calculated from Equation (2.8) [87]:

N = N1 + N2 (2.8)

The vocabulary (n) is measured through the total number of unique operators

and unique operands using the Equation (2.9) [87]:

n = n1 + n2 (2.9)

Using Halstead’s metrics, it is also possible to measure the program volume (V )

in bits. The program volume can be calculated from Equation (2.10) using the program

length (N) and program vocabulary (n) [87]:

V = N × log2(n) (2.10)

The program difficulty (D) measures how in terms of difficult it is to deal with the

program, which is calculated from Equation (2.11) [87]:

D =
(n1

2

)
×
(

N2

n2

)
(2.11)

From Halstead’s measures, it is possible to calculate the programming effort (E),

which measures the number of elementary mental discriminations required to create a

program [89]. We refer to elementary mental discrimination as the programmer’s mental

ability to make decisions during development. The programming effort can be obtained
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by multiplying the difficulty and volume of the program:

E = D × V (2.12)

It is also possible to measure the programming time (T ) required to translate the

existing algorithm that is being implemented into the specified programming language.

The programming time is measured in seconds from Equation (2.13) [89]:

T =
E
S

(2.13)

where the Stroud number S is the speed at which the brain makes elementary mental

discrimination defined by the psychology domain as 5 ≤ S ≤ 20 discrimination per second

[75]. In software science, it has been defined that a program requires 18 discrimination

per second to be encoded [75].

Function points analysis

In 1983, Albrecht and Gaffney Jr. [4] proposed a parametric technique to esti-

mate the software development effort called Function Point Analysis (FPA). This technique

is, in principle, independent of the programming language and the technology used in the

development because it is based on the analysis of the functional requirements of the soft-

ware. Therefore, the software does not need to be developed, only the requirements that

define how the software will work. These requirements will be converted into numerical

values, representing the effort needed to develop the application [245].

FPA can be used to measure the size of an application before its development.

This technique can also be used to estimate the maintenance effort of software in case it

is necessary to implement some change or add new functionality. Therefore, initially, it is

necessary to determine the type of function point count among [67, 245]:

• Development: it is used to estimate the effort for the development of a new project;

• Improvement: it is used to estimate the evolution of software, in which features

added, changed, and removed are counted;

• Existing application: it is used to count function points of existing applications.

After defining the function type, the function categories need to be identified [67,

203]. In FPAs, there are five categories mapping how functions and data elements are

supported in an application: External Inputs (EIs), External Outputs (EOs), External In-

quiries (EQs), Internal Logical Files (ILF), and External Interface Files (EIF). EIs, EOs, and

EQs are called transaction functions and represent the functionalities provided to the user

for data processing by an application. Whereas ILF and EIF are called data functions and
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are the structural representation of data [203]. Figure 2.8 illustrates each category and

its functionality. In this figure, the user provides inputs to the system through EIs, receives

outputs through EOs, and interacts with system functions through EQs. The inputs pro-

vided by the user are transformed via ILFs. In addition, the system interacts with other

applications and external systems through EIFs, EIs, and EOs [67].

196  Software Sizing, Estimation, and Risk Management

 External input (EI)
 External output (EO)
 External inquiry (EQ)
 External interface le (EIF)
 Internal logical le (ILF)

As illustrated in Figure 6.3, these functional categories map to the ways
functions and data elements are supported in an application. The user
provides inputs to the system in the form of EIs. The user receives outputs
in the form of EOs and interacts with system functions through EQs.
Inputs are transformed through ILFs and the system interoperates with
other applications and external systems through EIFs, EIs, and EOs.

External Input (EI)

An EI is any function or transaction that moves data into an application.
Generally, this data is used to update an ILF in an application. An EI
should be considered unique if the logical design requires input processing
that is different from other EIs. During EI identication, all items that
update ILFs are identied. For each item identied: (1) consider each
unique format a separate EI; in some cases the same data can be received
in more than one format; (2) count one EI for each data maintenance
activity (e.g., add, change, and delete) performed.

To identify multiple EIs generated by one physical le, look at the
record types on the le. Exclude header and trailer records (unless required
for audit purposes) and record types required due to physical space
limitations. Look at the remaining record types for unique processing
requirements and associate an EI for each unique process. Data received
from outside the subsystem boundary that either maintain (add, change,
maintain, populate, or delete data in) an ILF or provide control functions
are identied as EIs. Data with unique processing requirements are
counted as separate EIs. 

Figure 6.3 IFPUG application user view.14
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Figure 2.8: FPAs function units systems. Extract from [67].

After defining the category of functional requirement, its complexity can be cal-

culated based on the number of following factors [203], according to Table 2.2:

• Record Element Type (RET): is the user-recognizable subset of data within an

internal or external file (any class);

• File Type Referenced (FTR): is an internal or external file used in a transaction (a

class that is not a component of another);

• Data Element Type (DET): is a unit of information, indivisible and recognizable by

the user. It is usually the field of a table, a class attribute, or a function parameter.

After determining the complexity of the functions among low, medium, and high,

the respective value can be obtained from Table 2.3. The number of Unadjusted Func-

tion Points (UFP) for the system as a whole will be the sum of the UFP obtained for each

of the system functionalities. The UFP must be adjusted to take into account the inter-

nal technical complexity of the functions using the Value Adjustment Factor (VAF), which

is calculated based on 14 General Systems Characteristics (GSC): data communications;

distributed processing; performance objectives; operational configuration load; transac-

tion rate; online data entry; end-user efficiency; online update; complex processing logic;

reusability; installation ease; operational ease; multiple sites; and desire to facilitate

change [132]. The Equation 2.14 must be used calculate VAF:

VAF = 0.65 +
(

0.01 ×
∑14

i=1
GSC i

)
, (2.14)

where each of the GSCs should be given a score from zero to five to indicate their influence

on the development process. From Adjusted Function Point (AFP) (Equation 2.15), it is
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possible to estimate the effort (Equation 2.16) needed to develop the application.

AFP = UFP × VAF , (2.15)

E = AFP × PI (person-months), (2.16)

where Productivity Index (PI) is obtained by evaluating previous projects (FPA/E). From

the effort it is possible to calculate the development time using the Equation 2.17:

T = 2.5 × 3
√

E (months). (2.17)

Table 2.2: Complexity of EIs, EOs, EQs, ILFs and EIFs. Adapted from [245].

DET arguments

EIs

FTR classes 1 to 4 5 to 15 16 or more
0 to 1 low low average

2 low average high
3 or more average high high

EOs and EQs

FTR classes 1 to 5 6 to 19 20 or more
1 low low average

2 to 3 low average high
4 or more average high high

ILF and EIF

RET classes 1 to 19 20 to 50 51 or more
1 low low average

2 to 5 low average high
6 or more average high high

Table 2.3: UFP by function type and complexity. Adapted from [245].

Function type Low Average High
EI 3 4 6
EO 4 5 7
EQ 3 4 6
ILF 7 10 15
EIF 5 7 10

Use Case Points

Use Case Points (UCP) [112] is a model inspired by FPA, but focusing on the anal-

ysis of software use cases. First, the model measures the number of actors and use cases

and their complexities (simple, average, or complex). Actors could be, for example, users

or systems with which the application communicates. Use cases could be, for example, a
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customer balance query in a banking system. The complexities of the actors and the use

cases are computed according to the weighting factors in the Table 2.4:

Table 2.4: Weighting factor of actors and use cases. Adapted from [112].

Complexity Definition Weight

Actor

Simple The actor represents another system with a defined ap-
plication programming interface

1

Average The actor is an interaction with another system through
a protocol, or a human interaction with a line terminal

2

Complex The actor interacts through a graphical user interface 3

Use
case

Simple Three or less transactions 1
Average Between four and seven transactions 2
Complex More than seven transactions 3

After define the weight of each actor and use case, the Unadjusted Use Case

Points (UUCP) can be calculated using Equation 2.18 [112]:

UUCP =
6∑

i=1

ni × Wi , (2.18)

where n are the numbers of actors and use cases of the simple, medium and complex

types, and W is their respective weight.

Then, the impact of a series of technical factors (Tfactor) and environmental fac-

tors (Efactor) are evaluated. The set of 13 TFactors is: distributed systems, application per-

formance objectives, end user efficiency (online), complex internal processing, reusability,

installation ease, operational ease, portability, changeability, concurrency, special secu-

rity features, provide direct access for third parties, and special user training facilities.

The set of eight Efactors is: familiar with objectory, part-time workers, analyst capability,

application experience, object-oriented experience, motivation, difficult programming lan-

guage, and stable requirements. Each of the Tfactors and Efactors should be rated from

zero to five, considering its impact on the development of the evaluated project, where

zero means it is irrelevant and five means it is essential. These evaluation is used to get

the Technical Complexity Factor (TCF) and Environment Complexity Factor (ECF) from the

equations below:

TCF = 0.6 + (0.01 × Tfactor ), (2.19)

ECF = 1.4 + (−0.03 × Efactor ), (2.20)

Then the adjusted UCP can be obtained from the Equation 2.21:

UCP = UUCP × TCF × EFC, (2.21)
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Finally, it is possible to measure the development effort from the Equation 2.20:

E = UCP × PI (person-hour). (2.22)

Constructive Cost Model

In 1981, Barry W. Boehm [25] proposed a model to estimate the effort and cost of

software development called Construction Cost Model (COCOMO). This model was created

from an empirical study in 63 projects at TRW Aerospace, where programs with 2 to 100

KSLOC and written in various languages (such as Assembly and PL/I) were examined [245].

COCOMO 81 is already obsolete and replaced by a new version in real applications. In

2000, COCOMO II was proposed by the University of Southern California (USC) to add

more variability and accuracy into the initial version [26].

COCOMO II is designed to measure the effort and size of the development team

for the elaboration and construction phases of the Unified Process, but it can also be used

for the waterfall and Spiral models. Figure 2.9 presents the effort estimation region cov-

ered by COCOMO II. COCOMO II is applied to determine the effort required to develop the

elaboration and construction phases of a project. The duration of the incept and transi-

tion phases of the unified process should be calculated by applying a percentage on the

development effort of the elaboration and construction phases [245].

Figure 2.9: COCOMO II effort estimation region and application timing of early design and
post-architecture models. Adapted from [245].

COCOMO II evaluates the development effort through the number of SLOC. In ad-

dition, through COCOMO cost drivers, it is possible to perform a detailed analysis of the de-

velopment effort according to the application, developers, environment, and other issues

that affect the development cycle. COCOMO II has cost drivers of the post-architecture

and early design model types. Figure 2.9 shows that the Early Design Model should be

applied in the incept and elaboration phases, and the Post-Architecture Model should be

applied in the elaboration and construction phases [245].

The cost divers of the Post-architecture Model are divided into four groups: Prod-

uct Factors, Platform Factors, Personnel Factors, and Project Factors. As seen in Table 2.5,

each cost driver should receive a value from very low to extra high. Each of these cost

drivers is described briefly below:
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• Required Software Reliability (RELY): It evaluates the consequences regarding losses

and risk to human life in case of any software failure;

• Complexity of the Product (CPLX): It evaluates project complexity from the subjec-

tive mean of five descriptors: control operations, computational operations, device-

dependent operations, data management operations, and interface management

operations;

• Required Reusability (RUSE): It evaluates the components produced by the software

in relation to reuse;

• Database Size (DATA): It evaluates the size of the database used to test the program;

• Documentation match to life-cycle needs (DOCU): It assesses the documentation

needed for development is produced;

• Execution Time Constraint (TIME): It evaluates the expected percentage of use of

available processors by the application;

• Main Storage Constraint (STOR): it evaluates the expected percentage of use of the

main memory by the application;

• Platform Volatility (PVOL): It evaluates the update period of the platform (hardware

and software) on which the application is developed;

• Analyst Capability (ACAP): It evaluates the ability of analysts (in percentage) to ana-

lyze and model applications, cooperate, and communicate;

• Programming Capability (PCAP): It evaluates the ability of programmers (in percent-

age) to analyze and model applications, cooperate, and communicate;

• Personnel Continuity (PCON): It evaluates the exchange of developers (in percent-

age) in the development team in one year;

• Applications Experience (APEX): It evaluates the average time of experience of the

team (in years) in developing applications similar to the one that will be developed;

• Platform Experience (PLEX): It evaluates the average time of experience of the team

(in years) in using the development platform, such as hardware, libraries, operating

system, database, and other related items;

• Language and Tool Experience (LTEX): It evaluates the average time of experience

of the team (in years) in the CASE languages and tools used for the development of

the application;

• Use of Software Tools (TOOL): It evaluates the quality of computational support to

the development environment concerning the tools used;
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• Multisite operation (SITE): It evaluates the influence of the distribution of the de-

velopment team concerning the co-location (international, same country, same city,

etc.) and communication (via telephone, e-mail, etc.);

• Required Development Schedule (SCED): It evaluates the percentage of acceleration

of the schedule followed for the development of the application.

Table 2.5: Cost drivers values for the post-architecture and early design models. Adapted
from [26].

Post Architecture Model
Factor Name Very Low Low Nominal High Very High Extra High

Product

RELY 0.82 0.92 1 1.1 1.26 NA
CPLX 0.73 0.87 1 1.17 1.34 1.74
RUSE NA 0.95 1 1.07 1.15 1.24
DATA NA 0.9 1 1.14 1.28 NA
DOCU 0.81 0.91 1 1.11 1.23 NA

Platform
TIME NA NA 1 1.11 1.29 1.63
STOR NA NA 1 1.05 1.17 1.46
PVOL NA 0.87 1 1.15 1.3 NA

Personnel

ACAP 1.42 1.19 1 0.85 0.71 NA
PCAP 1.34 1.15 1 0.88 0.76 NA
PCON 1.29 1.12 1 0.9 0.81 NA
APEX 1.22 1.1 1 0.88 0.81 NA
PLEX 1.19 1.09 1 0.91 0.85 NA
LTEX 1.2 1.09 1 0.91 0.84 NA

Project
TOOL 1.17 1.09 1 0.9 0.78 NA
SITE 1.22 1.09 1 0.93 0.86 0.8
SCED 1.43 1.14 1 1 1 NA

Early Design Model
Name Extra Low Very Low Low Nominal High Very High Extra High
PERS 2.12 1.62 1.26 1 0.83 0.63 0.5
RCPX 0.49 0.60 0.83 1 1.33 1.91 2.72
PDIF NA NA 0.87 1 1.29 1.81 2.61
PREX 1.59 1.33 1.22 1 0.87 0.74 0.62
FCIL 1.43 1.3 1.1 1 0.87 0.73 0.62

The early design models are: Personnel Capacity (PERS), Product Reliability (RCPX),

Platform Difficulty (PDIF), Personnel Experience (PREX), Facilities (FCIL), RUSE and SCED.

RUSE and SCED are the same in post-architecture model. As seen in Table 2.5, each

cost driver should receive a value from extra low to extra high. The values of the cost

drivers of the early design model result from combinations of the cost drivers of the post-

architecture model and other information about the environment1.

1For more details about the evaluation of cost drivers see [26].
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COCOMO II model also implements a series of scale factors. As can be seen in

Table 2.6, each of these scale factors should receive a value that represents very low, low,

nominal, high, very high and extra high. Each one them is described briefly below:

• Precedentedness (PREC): It evaluates if the application developed is similar to appli-

cations previously developed by the same team;

• Development Flexibility (FLEX): It evaluates flexibility in development in relation to

the requirements of the application;

• Architecture/Risk Resolution (RESL): It evaluates the existence of architecture or

support system for risk resolution;

• Team Cohesion (TEAM): It evaluates the cohesion of the development team concern-

ing to their experience and ability in working as a team;

• Process Maturity (PMAT): It evaluates the Capability Maturity Model Integration (CMMI)

maturity level obtained by the company.

Table 2.6: Scale Factors values. Adapted from [26].

Scale Factors Very Low Low Nominal High Very High Extra High
PREC 6.2 4.96 3.72 2.48 1.24 0
FLEX 5.07 4.05 3.04 2.03 1.01 0
RESL 7.07 5.65 4.24 2.83 1.41 0
TEAM 5.48 4.38 3.29 2.19 1.1 0
PMAT 7.8 6.24 4.68 3.12 1.56 0

The scale factors of a project denoted as Fj , are summed across all of the factors

and used to determine a scaling exponent S from Equation (2.23):

S = B + 0.001 ×
5∑

j=1

Fj (2.23)

where B is a constant that must be calibrated according to historical values. According to

[245] the suggested initial value for B is 0.91.

After calculating S value, it is used as an exponent for calculating the develop-

ment effort in person-months from Equation (2.24):

E = A × KSLOCS ×
n∏

i=1

Mi (person-month) (2.24)

where A is a constant that must be calibrated from historical data and Mi is the set of

cost drivers. According to [245] the suggested initial value for A is 2.94. Moreover, it is
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possible to calculate the ideal linear time to develop a project in running months from the

Equation (2.25):

T = C × ED+0.2×(S−B) (months) (2.25)

where B, C, and D are constants that must be calibrated from historical data. According

to [245] the suggested initial values for C and D are 3.67 and 0.28, respectively. Finally,

COCOMO II model also provides the number of people recommended for the development

team. To do so, Equation (2.26) is used:

Team =
E
T

(2.26)

COCOMO II is used to evaluate software development from scratch. However,

variants of the model aim to model the development effort from existing software (reuse

model) and for improvements or corrections to an already developed software (mainte-

nance model). For this purpose, only the post-architecture model cost drivers are em-

ployed, and the size code must be measured again [26]. The maintenance size is cal-

culated from the number of lines added to the original code (Added Source Lines of

Code (ASLOC)) and the number of lines modified in the original code (Modified Source

Lines of Code (MSLOC)) using the Equation 2.27:

SLOCMaintenance = (ASLOC + MSLOC) × MAF . (2.27)

where MAF is the adjusted maintenance factor, calculated from the degree of under-

standing of the existing software and the programmer’s relative lack of familiarity with

the software developed. Finally, to measure the development effort using the COCOMO II

maintenance model, substitute KSLOC for SLOCMaintenance in Eq 2.24.

Unlike the maintenance model, to estimate the development effort from software

reuse, the COCOMO II is based only on the amount of software adapted (ASLOC). The

automatically translated (AT) and adaptive modifier (AMM) factors are also considered

together with ASLOC to calculate the reuse size from Equation 2.28:

SLOCReuse = ASLOC × (1 − AT/100) × AAM, (2.28)

To measure the development effort using the COCOMO II reuse model, substitute KSLOC

for SLOCReuse in Eq 2.24.

SEER Software Estimating Model

SEER – Software Estimation Model (SEER-SEM) [67] is a parametric model devel-

oped by Galorath Inc. to estimate and analyze the effort, cost, staffing, schedule, and

risk of a software project. To make an estimation, SEER-SEM has as input a series of fac-
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tors divided into the following categories: effective size, effective technology, effective

complexity, constraints, and probability. Regarding to development effort and time, their

measures are based on size, complexity, and effective technology factors.

Effective size factor is calculated from the following equation:

Se = Lx × (AdjFactor × size)
Entropy

1.2 (2.29)

where Lx is the language expansion factor, AdjFactor is the adjust factor of the program,

and Entropy ranges from 1.04 to 1.2. To measure size variation, can be used the number

of SLOC, function points, use cases, or other size metrics. In addition, when measuring the

size of program code, it is necessary to consider whether it is new or reused.

Effective technology measures the developer’s propensity for productivity based

on the program’s requirements to be developed. Its is calculated using an intermediate

value called basic technology (Ctb). The intermediate technology is based on some factors

similar to COCOMO cost drivers such: ACAP, PCAP, TOOL, Use of modern programming

practices (MODP), and Application experience (AEXP), Computer turnaround time (TURN),

and Terminal response time (TERM). Each of these factors should receive a value that

represents very low, low, nominal, high, very high and extra high.

The intermediate technology can be calculated using the Eq 2.30:

Ctb = 200 × exp

(
−3.70945 ×

(
ctbx
4.11

)
5 × TURN

)
(2.30)

where ctbx factor is calculate from:

ctbx = ACAP × AEXPAPPL × MODP × PCAP × TOOL × TERM (2.31)

Next, effective technology factor can be calculated using the Eq 2.32:

Cte =
Ctb

ParmAdjustment
(2.32)

where ParmAdjustment is calculated from a set of evaluation factors, such as language

complexity, volatility, quality, and reuse.

Effective complexity measures the programming difficult, and can be calculated

from:

D = K
5
2 × Se

Cte

3

(2.33)
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where K is the total Life-cycle effort (in person years) including development and mainte-

nance. Finally, development time can be achieved from the Equation 2.34:

td = D0.2 × Se

Cte

0.4

(months) (2.34)

Planning Poker

Planning poker is a variation of the Delphi technique [136], created by the RAND

Corporation in the 1950s to refine group judgments. Nowadays, Planning Poker [39] is a

metric commonly used by software agile teams to estimate the user story, which defines

features and requirements that provide information to the user or customer [56]. It relies

on experts’ opinions about the software to be developed to guess the development effort.

Participants in the planning poker method include all persons in the developing team,

such as the developers, testers, engineers, analysts, and others. In addition, there is a

moderator to coordinate the execution of the method.

Before starting, the moderator should prepare a deck of cards with a valid se-

quence of numbers written on each card. Planning poker decks are usually based on

Fibonacci sequence [69], as can be seen in Figure 2.10, which are presented different

options of decks. The original Fibonacci sequence also can be used, although modifying

the Fibonacci sequence allows development team members to estimate projects with de-

velopment effort close to 1/2. In addition, each number must have a meaning, such as

story points, number of Product Backlog, and development time. Next, the moderator or

team leader should explain the requirements of the application or project to be developed.

Then, each participant receives a deck of cards and selects a card representing their esti-

mation opinion. All participants must discuss to justify their choice. If the experts disagree

with the estimates, they can repeat the process until the results converge. On the other

hand, averaging the estimates can be done to avoid too many rounds [39]. Figure 2.11

illustrates the steps required to use the Planning Poker method to estimate story points.

Figure 2.10: Different decks of planning poker cards. Extracted from [156].
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According to Cohn [39], Planning Poker is a metric that works by several factors.

First, it gathers various opinions from estimating experts, who form a cross-functional

team from all stages of a software project. Therefore, they are better suited to the es-

timating task than anyone else. Secondly, estimators are called upon to justify their es-

timates, a factor that improves the estimation’s accuracy. Finally, studies have shown

that individual averaging estimates lead to better results, as well as, does holding group

discussions.

Figure 2.11: Poker planning steps for estimating the number of story points.

2.5.2 Accuracy Methods

It is necessary to measure the accuracy of estimation models to verify the proxim-

ity between the estimated and actual values, which should be as small as possible [242].

This section presents some of the most popular metrics for accuracy evaluation according

to Venkataiah et al. [242]. One of the first metrics to evaluate accuracy was introduced in

1981 by Bohen et al. called percentage error, which measures the percentage of the error

relative to the actual value. The percentage error can be calculated from the Equation

(2.35):

Percentage−Error =
Actual−Effort − Estimated−Effort

Actual−Effort
× 100 (2.35)

Conte et al. [41] introduced two methods to assess the accuracy commonly used:

Magnitude of Relative Error (MRE) and Mean Magnitude of Relative Error (MMRE). MRE can
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be calculated from Equation (2.36):

MRE =
|Actual−Effort − Estimated−Effort |

Actual−Effort
(2.36)

According to [198], MRE is useful because it does not penalize excessively large projects.

Moreover, it is unit-less, that is, it is independent of the scale of the project.

MMRE is a method based on MRE and can be calculated from Equation (2.37):

MMRE =
1
n

n∑
i=1

MRE i (2.37)

where n is the number of projects and i is the project identifier. According to [41], MMRE

≤ 0.25 is considered an acceptable performance level for models and effort estimation.

However, the value of the MMRE can be strongly influenced by some very high values of

MRE, which can be a problem [111].

Median magnitude of relative error (MdMRE) is the median of all MRE’s, which

can be calculated from Equation (2.38) [242]:

MdMRE = median(MRE j) (2.38)

MdMRE has been used as an accuracy criterion instead of MMRE because it is less sensitive

to outliers [176]. In addition, if the estimation model has MdMRE ≤ 0.25 it is considered a

good predicition model [41].

Percentage Relative Error Deviation (PRED) within x is another method based on

MRE, which can be calculated from Equation (2.39) [198]:

PRED(x) =
∑n

i=1

n

{
i if MRE ≤ x
0 otherwise

(2.39)

where n is the number of projects, and the fraction numerator is the sum of the number of

projects that MRE is less than or equal to x. Generally, the accuracy comparison is based

on PRED(0.25) (the percentage of the tasks with MRE ≤ 0.25) [111] [198]. However, some

studies also analyze PRED(0.3) with little difference in results compared to PRED(0.25).

Generally, PRED(0.25) ≤ 0.75 (or PRED(0.3) ≤ 0.75) is considered an acceptable model

accuracy [198].

2.6 Final remarks

This chapter overviewed parallel architectures and patterns in structured paral-

lel programming. We presented the domain of stream processing, in which parallelism
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is exploited from these parallel patterns. We also presented some interfaces based on

structured parallel programming to explore multi-core and heterogeneous architectures.

Furthermore, we presented a set of code metrics used to obtain productivity indicators

and some metrics used to measure their accuracy. In the next chapter, we will review the

literature to understand the process of evaluating productivity in the parallel programming

domain.



62

3. LITERATURE REVIEW

The popularization of parallel architecture in our daily computing systems lever-

aged parallel programming, which is well-known to be a complex task and most reserved

for specialists. Consequently, research and industry have promoted and developed mul-

tiple PPIs to ease this task. Unfortunately, only a few studies aimed to evaluate the

productivity of such PPIs. Most studies focused on evaluating their PPIs regarding the

performance, where only runtime, speedup, and efficiency of the parallel software are

analyzed [15, 134, 227, 230]. It is still a task for experts, as only a few studies care

about productivity. One way to develop more parallel code is to make parallel program-

ming easier for the application developers, who are not experts or specialists in system

programming. Therefore, they could develop parallel applications productively.

According to ISO 9241-11 [108], productivity or efficiency is a subset of the usabil-

ity properties of software. Usability is generically described by ISO 9241-11 [108] how the

“extent to which a system, product or service can be used by specified users to achieve

specified goals with effectiveness, efficiency, and satisfaction in a specified context of

use”. Translating to parallel programming, we describe that usability extent to which

a PPI or tool can be used by developers to make source code execute compu-

tations in parallel with effectiveness, efficiency, and satisfaction in a specified

context of use. Effectiveness is described as “accuracy and completeness with which

users achieve specified goals”. In parallel programming, effectiveness can be measured

by the accuracy of the application developed by the programmer, in other words, whether

the application returns the expected results. Efficiency, also called productivity [107], is

defined concerning the “resources used in relation to the results achieved” [108]. These

resources include the time required to complete a task [18], human effort, costs, and ma-

terials [108]. In the context of parallel programming, development time and development

effort are measures that can be used to evaluate the efficiency of PPIs. Satisfaction is

defined as “extent to which the user’s physical, cognitive and emotional responses that

result from the use of a system, product or service meet the user’s needs and expecta-

tions”. In the parallel programming domain, satisfaction assesses whether the PPIs meets

the programmer’s needs and expectations.

In parallel programming, the development time required by developers to paral-

lelize an application has been a relevant metric used to evaluate productivity [78]. In addi-

tion, metrics commonly used in SE, such as SLOC, McCabe’s CCN, Halstead, and COCOMO,

have been used in the parallel programming domain to evaluate the productivity. Through

initial exploratory research, we have identified some studies that also refer to such met-

rics as usability indicators [38, 173, 171, 186, 233]. In this context, the question we aim

to answer in this chapter is “how are productivity and usability evaluated in the parallel

programming domain?”. Therefore, this chapter presents a literature review to map how
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productivity and usability have been evaluated in parallel programming and the metrics

used for this assessment. In addition, we aim to discover the PPIs considered, the archi-

tectures explored, and the applications type evaluated.

3.1 Search method

In this section, we presented the search method used in the literature review

conducted.

3.1.1 Research questions

We structured the research questions based on three viewpoints according to

Kitchenham and Charters [120]: Population, Intervention, and Outcomes (PIO).

Table 3.1: Research questions structured using PIO criteria.

Population Software/application development
Intervention Methods/techniques/models used for estimating the productiv-

ity and usability of PPIs
Outcomes Methods/techniques/models used for estimating the productiv-

ity and usability of PPIs, architectures and domain evaluated

We aim answer the follow research questions: How is performed the evaluation

of productivity and usability of PPIs? From this research questions we defined the following

three sub-questions:

• RQ1: What approaches are used to evaluate the usability of the PPIs?

• RQ2: What methods and metrics are used to evaluated the productivity of the PPIs?

• RQ3: What are the PPIs evaluated?

• RQ4: What are the architectures evaluated?

• RQ5: What are the applications evaluated?

• RQ6: What are the types of developers?

RQ1 aims to discover the approaches used to evaluate the usability of PPIs. That

is, whether effectiveness, efficiency, and user satisfaction are considered in this evalua-

tion. RQ2 seeks to discover the methods and metrics used to evaluate the productivity
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of PPIs. RQ2 also aims to categorize the types of productivity methods and metrics used.

RQ3 and RQ4 aim to show the already evaluated PPIs concerning productivity and which

architectures they exploit. RQ5 seeks to describe the target applications of productivity

assessment. Furthermore, RQ6 aims to categorize the type of developers of the evaluated

applications, whether they are novice developers in the parallel programming domain or

whether they are experts in the area.

3.1.2 Data bases

We performed the search in the following databases: ACM Digital Library1, IEEE

Xplore2, Scopus3, Engineering Village4, and Web of Science5. We selected the Scopus

database because it is the largest indexing database [20]. ACM Digital Library, Engineer-

ing Village, and IEEE Xplore were selected because they are predominately cited in com-

puter science-related sources [216].

For the selected databases, we considered the search string presented in Ta-

ble 3.2, developed based on the research questions. To compose the search sequence,

we divided the search questions into three main aspects: evaluation, productivity/usabil-

ity, and parallel programming. In addition, we considered the search string in the title,

abstract, and keywords of the studies. In Scopus, Engineering Village, and Web of Sci-

ence, we restricted the search to the Computer domain because they returned studies

from other areas, such as business.

Table 3.2: Search terms used for the literature review.

Search term Related terms
Evaluation ( “assess*” OR “evaluate*” OR “examin*” )
Productivity ( “development effort” OR “programming effort” OR “productiv-

ity” OR “usability” )
Parallel programming ( “parallel programming” OR “parallel computing” OR “hpc” OR

“high-performance computing” )

3.1.3 Studies selection criteria

This section presents the study selection criteria, which aim to identify primary

studies that provide direct evidence about the research questions [120].

1Available at: https://dl.acm.org/
2Availableat:https://ieeexplore.ieee.org/
3Available at: https://www.scopus.com
4Available at: https://www.engineeringvillage.com/
5Available at: https://www.webofscience.com/

https://dl.acm.org/
Available at:https://ieeexplore.ieee.org/
https://www.scopus.com
https://www.engineeringvillage.com/
https://www.webofscience.com/
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We considered the following inclusion criteria in the study:

1. Studies that performed experiments with developers to assess PPIs usability.

2. Studies that use coding metrics to assess PPIs usability or productivity.

3. Journal articles and conference papers because they are reviewed more rigorously.

We considered the following exclusion criteria in the study:

1. Studies that talk about productivity assessment but do not actually assess it.

2. Duplicates studies, when there are many versions of a study in different journals. In

this case, we considered the full version of the study.

3. Studies not available for download.

4. Studies not written in the English language.

5. Abstracts, technical reports, thesis, and books because journal articles and confer-

ence papers are more rigorously reviewed.

3.1.4 Studies selection and extraction process

We selected the studies in five steps according to Figure 3.1: search execution,

duplicate removal, a first filter, a second filter, and snowballing method [228]. The search

on the databases returned 688 studies. We exported them in BibTeX format to the Zotero

tool6 to help us in the review process. Using Zotero, we first removed the duplicate studies,

resulting in 356 studies. In the first filter, we analyzed the studies using the inclusion

criteria from reading the title, abstract, and keywords, resulting in 133 studies. From the

second first, we analyzed the studies’ full text using the inclusion and exclusion criteria,

resulting in 57 studies.

To complement our literature review, we used the snowballing procedure (back-

ward and forward) to include new papers using the inclusion and exclusion criteria [251].

First, we used forward snowballing to identify new papers based on the citations to the 57

selected papers. The citations were analyzed using Google Scholar7. Next, we used back-

ward snowballing to analyze the selected studies’ reference lists to identify new studies.

We used the inclusion and exclusion criteria for backward and forward snowballing to de-

cide if the papers would be included. Finally, we selected 110 studies to analyze and

extract data.

6Available at: https://www.zotero.org/
7Available at https://scholar.google.com.br/

https://www.zotero.org/
https://scholar.google.com.br/
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Figure 3.1: Paper selection process.

3.2 Result analysis and discussion

In this section, we discuss the studies found in the literature.

3.2.1 Overview of the usability approach used

According to ISO 9241-11 [108], three factors must be evaluated to determine

the usability of a system, product, or service: effectiveness, efficiency, and user satis-

faction. In the parallel programming domain, different approaches have been used to

evaluate usability (RQ1). In [233], the authors defined usability as how easy it is for a

graduate student to design, develop, code, test and debug an application. Among the 110

articles from the literature review, we identified only 40 studies that performed experi-

ments with people aimed to evaluate usability. Yet claiming to do usability experiments

with people, [3, 38, 47, 57, 58, 95, 104, 135, 142, 159, 158, 160, 169, 173, 172, 188, 187,

190, 213, 225, 233, 235, 240, 249, 248, 257, 258] performed software experimentation

without taking into account all the best practices, such as develop an experimental plan,

performed a hypotheses test, and evaluate the threats to validity [252]. On the other

hand, [32, 45, 78, 96, 94, 128, 127, 171, 189, 191, 211, 229, 247] considered the best

practices for evaluating their solutions.

ISO 9241-11 [108] describes effectiveness as the precision and completeness

with which users achieve specified goals. In parallel programming, the goal is generally

achieved when performance is obtained by parallelizing an application using a specific

PPIs. In order to evaluate the performance of the target PPIs, works found in the literature

use metrics such as execution time and speedup. In addition, in the studies that conduct

experiments with people, the performance achieved by the participants when performing

the proposed activities is evaluated.
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Different metrics have been used in parallel programming regarding efficiency or

productivity evaluation. On the one hand, some studies perform experiments on people

to collect the actual time taken to parallelize applications. However, experiments with

persons must be well planned and controlled [252] and involve ethical issues. Therefore,

many parallel programming researchers instead use established code metrics to facilitate

productivity evaluation, such as SLOC, Halstead, and COCOMO. We will discuss these

metrics in more detail in the next section.

User satisfaction is the last factor to be evaluated to assess usability. However,

70 of the articles that claim to evaluate PPIs usability do not conduct experiments with

people and consequently do not consider their opinions in the evaluations. On the other

hand, of the 40 studies that conducted experiments with people, only [38, 173, 160, 171,

172, 188, 189, 213, 225, 233, 235] considered the participants’ satisfaction when using

the PPIs evaluated.

3.2.2 Overview of the productivity metrics used

Figure 3.2 summarizes the productivity metrics used (RQ2). The metrics were di-

vided into the following categories: real-time based, number of activities performed, code

correctness, code size, code occurrences, control flow, development estimation metrics,

and productivity increase. The researchers collected the real-time based metrics through

experiments with people, where was measured the actual time spent by the participants

to complete a specific task (i.e., parallelize an application, solve a problem, and solve a

test). Most studies focus on measuring the total time required by the experiment par-

ticipants to complete the target task. While other works evaluate the time necessary to

perform different activities, such as study activity, development, testing, debugging, and

others [57, 95, 187, 190, 248, 258]. On the other hand, some researchers decided to

measure the number of times the experiment participant performed a given task. These

metrics include the number of commits, edits, compiles, and executions of the parallel

application [169, 171, 233]. Furthermore, in [47], a method was proposed to measure

productivity based on the number of steps to complete a given task, the number of con-

text shifts, and the working memory load (that derives from data operations) required at

each step. Danis et al. [47] defined context shifts as the time and mental effort required

to orient to the new context, for example, clicking on the browser icon and changing the

context to a browser window.

Figure 3.2 also presents metrics used to get productivity indicators from the eval-

uation of code correctness, where higher code correctness indicates higher coding produc-

tivity. For this purpose are used metrics such as the number of correct programs, number

of incorrect programs, number of programming errors or bugs in the code, and type of
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errors [235]. The types of errors evaluated by the papers in the literature are divided

between compile-time, logical, hanging, and non-hanging errors [32, 45]. Compile-time

errors are detected while a program is being compiled and are usually caused by syntax

errors [27]. A logical error occurs due to some flaw in the program’s logic and generates

incorrect, unexpected, or unintended output [27]. In addition, Castor et al. [32] defined

hanging and non-hanging errors as errors related to PPIs. Errors such as deadlocks and

infinite loops are hang errors that cause the program to hang. On the other hand, non-

hanging errors are concurrency errors that do not cause the program to hang, such as race

conditions.
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Figure 3.2: Metrics used to evaluate coding productivity in parallel programming assess-
ment.
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Still, regarding the evaluation of parallel application code, some metrics aim to

evaluate code size to obtain productivity indicators. The most classical are SLOC, ASLOC,

MSLOC, Number of Characteres (NOC), Tokens of Code (TOC), and Words of Code (WOC).

In addition, SLOC is the most widely used metric for evaluating code size, which is used

by 76 articles. There are variations of SLOC less used in the literature, such as the SLOC

with parallel directives [155, 168], and the SLOC executed at runtime [129]. Lima and

Domenico [129] defined the SLOC executed at runtime as the number of lines that will be

executed at runtime ignoring comments, blank lines, data declarations and headers.

Some researchers have also measured the occurrence of structures related to the

PPIs used, such as the number of PPI functions [3, 139], number of PPI parameters [139],

number of PPI keywords [139], number of parallel directives, number of synchronization

directives, and number of parallel patterns (pipeline, map-reduce, or other) [181]. Mac-

Donald et al. measured the number of choice points, any point in a program where the

control flow can be altered and no longer be sequential. There are other metrics related to

the sequential code, such as the number of classes, number of attributes, and number of

functions[135, 178]. In addition, some studies use metrics that evaluate code complexity

from its representation as control flow graphs, such as CCN [37, 105, 104, 130, 143, 146,

169, 178, 184, 196, 194, 195, 209, 211], fan-in [195], fan-out [195], and NPath [37].

Some researchers evaluate coding productivity without considering the human

factor in their evaluations. Instead, they have used predictive metrics of development ef-

fort in order to evaluate PPIs. Halstead’s measure has been the most widely used to com-

pare the productivity of PPIs [65, 125, 130, 143, 146, 164, 184, 192, 196, 194, 195, 209].

However, Halstead only evaluates the number of TOC without taking into account factors

that impact the effort of developing parallel applications, such as the programming model

and architecture. A recent study [143] proposed a metric based on the effort estimated

by Halstead’s metric to develop a sequential CPU application to predicts the percentage

of extra effort to develop GPU code. The metrics used as features in the regression pre-

diction model were the number of hotspots, number of SLOC, number of hotspots’ SLOC,

number of hotspots’ statements, distinct and total operators of CPU version, CPU CCN, and

Halstead’s volume, length and difficulty of the CPU version. Different regression models

were used to make the predicition, such as Randon Forest, Bagging Trees, Gradient Boost-

ing, SVR, Bayessian Ridge, Decission Tree, and K-nearest neighboors. The results showed

that Random forest produced the highest accuracy.

Still, due to the limitations of metrics like Halstead, recent studies have aimed

to evaluate PPIs using more robust metrics as some variations of COCOMO: COCOMO 81

organic model [1, 74, 105, 103, 174], COCOMO II [78, 159], and COCOMO II reuse model

[177]. In addition, in [248] was proposed an extension of the COCOMO II. The new model

was built on regression analysis identifying and evaluating effort cost drivers important

in HPC, based on a performance life-cycle through a survey posed to HPC developers.
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The authors identified 11 cost drivers: pre-knowledge of architecture/hardware and par-

allel programming model, pre-knowledge of the numerical algorithm used, code work,

architecture/hardware, parallel programming model and compiler/runtime system, tools,

performance, energy efficiency, kind of algorithm, code size, and portability and main-

tainability over code’s lifetime. However, the COCOMO II extension was not evaluated

through accuracy metrics as it is commonly performed in SE (Section 2.5.2). Instead,

Wienke et al. [248] have separately evaluated the factors they consider to most affect the

development effort of parallel applications, such as pre-knowledge (surveys) and parallel

programming model and architecture (student experiment) [247].

To measure the increase in productivity of parallel applications compared to se-

quential applications, some researchers use metrics based on the increase in SLOC, de-

velopment time, and execution time. Some works [8, 44, 50, 124, 155, 181, 231] consider

the increase in the number of SLOC of the parallel application over the sequential appli-

cation as a productivity factor (Eq (3.1)). Kennedy’s productivity [116] is another met-

ric used [73, 257], which calculated a productivity factor for parallel programming from

speedup and the relative effort (Eq (3.4)). The relative effort can be calculated from the

development of the parallel and sequential applications or from their SLOC. In addition,

[257] proposed a modification in Kennedy’s productivity metric. Equation 3.5 presents the

modification method, where r is the number of executions of the program over its lifetime

and varies between 0 and 1 [257].

Gmys et al. [73] used a modification of the productivity model proposed by Snir

and Bader [226], called Utility model (Eq. 3.6). In Gmys et al. [73] modification Sp is the

Speedup, E is the efficiency achieved (Sp/number of threads), A is the availability of the

system, Cs is the software cost measure in SLOC, CM is the machine cost, and Co and

ownership cost. In addition, A was set equal to 100%, and both CM and Co were set equal

to zero. Miller and Arenaz [158] also proposed a new methodology to measure the produc-

tivity based on two key components: the productivity of progress and the productivity of

training. Productivity progress is defined as a ratio between the percentage of milestones

completed during the training event and the cost of the event. Eq. 3.7 can be used to

measure the productivity progress, where T is the number of trainees, M is the number

of milestones, and Mt ,comp is the number of milestones completed by t-th trainee. On the

other hand, training productivity can be calculated using the Eq. 3.8, considering the fol-

lowing factors: total human knowledge improvements (K ), total software improvements

(S), total long-term improvements (L), and associated cost of the training (C).
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Table 3.3: Metrics for quantifying productivity in parallel applications.

Metric Equation

SLOC increase (%) SLOC increase =
Parallel SLOC

Sequential SLOC
× 100 (3.1)

Speedup Speedup =
Sequential execution time

Parallel execution time
(3.2)

Relative effort Relative effort =
Parallel effort

Sequential effort
(3.3)

Kennedy’s productivity Productivity =
Speedup

Relative Effort
(3.4)

Kennedy’s
productivity
modification

Relative effort =
(Parallel effort + r × Sequential effort)
(Sequential effort + r × Parallel effort)

(3.5)

Utility model ψ =
Sp × E × A

Cs × Co × CM
(3.6)

Progress productivity PP =
∑T

t Mt ,comp

M × T × Cost
(3.7)

Training productivity TP =
∑

(ακi × κi) +
∑

(αSi × Si) +
∑

(αLi × Li)
Cost

(3.8)

3.2.3 Studies overview and their evaluation environments

In the section 3.2.2, we showed an overview of the metrics used to evaluate the

usability of PPIs. On the one hand, some researchers have conducted empirical studies

to assess usability, measuring the real-time required by developers to parallelize applica-

tions. On the other hand, some studies claimed to do usability evaluation without actually

performing software experimentation with people. In this context, this section presents an

overview of these studies divided between studies that perform controlled experiments

with people and studies that do not consider the human factor in their evaluations.
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Parallel programming evaluation through software experimentation

Table 3.4 presents the studies that perform experiments with people, which con-

tain the PPIs evaluated, participants, metrics used, target architecture, and the activity

performed by the participants. These studies are sorted by publication year. In 1996,

Szafron et al. [233] conducted one of the first controlled experiments with graduate stu-

dents to evaluate the usability of PPIs. In this experiment, Szafron et al. [233] aimed

to evaluate the usability of two PPIs for programming in distributed memory computing

environments, which are the Enterprise PPS interface and the PVM-like (NMP) library of

message-passing routines. Using a similar approach, Singh et al. [225] compared the

development effort of Enterprise and PVM with a commercially available tool that allows

loop iterations to be done in parallel (PAMS). After the initial studies by Szafron et al. [233],

other researchers have also conducted empirical studies with students to evaluate the us-

ability of PPIs.

Still, on usability evaluation of interfaces to distributed memory systems, a study

was performed to evaluate the effort spent by novices to develop Message Passage In-

terface (MPI) programs in [3]. Patel et al. [191] aimed to compare the performance and

productivity of MPI and Unified Parallel C (UPC) programs. In [57], another experiment

was performed to compare the productivity of C+MPI, UPC, and the x10 language of the

IBM PERCS project. In [57], productivity was evaluated through an experiment with un-

dergraduate students with little or no parallel programming experience. In [235], the au-

thors presented a methodology for evaluating UPC programmability against MPI through

classroom studies with a group of novice programmers. Speyer et al. [229] evaluated the

productivity and usability of Charm++, UPC, SCOOP, MATLAB+Star-P, and SHMEM through

an experiment with computer science and engineering students.

Zhang et al. [258] proposed a methodology for determining heuristics to identify

the workflow of parallel application programmers from captured low-level data. To evalu-

ate the accuracy of this heuristic, Zhang et al. conducted two case studies with graduate

students using MPI to develop the applications. In [169], a pilot study was conducted to

assess the usability of MPI when implementing design patterns in contrast to alternative

implementations of the parallel program. Zelkowitz et al. [257] evaluated the productiv-

ity of MPI in developing three different applications using a series of measures, including

Kennedy’s productivity model. In addition, they proposed a modification to Kennedy’s

productivity assessment model.

The main goal in [96] was to evaluate the effort of beginners in parallel program-

ming to develop parallel applications in MPI and OpenMP. The authors concluded that

MPI requires more programming effort when compared to OpenMP based on the number

of SLOC and the time required for participants to develop the applications. To comple-

ment the previous study, Hochstein et al. [95] combined two techniques for collecting the
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data regarding development time: self-reported and automatically collected. In addition,

Hochstein et al. [95] evaluated the time spent by the participants to perform different de-

velopment tasks, such as understanding the target problem, thinking about the solution,

debugging the code, among others. This was a way to increase the accuracy of the data

collected, because the self-reported data was not always correct.

In [188] the main goal was to evaluate the effort of graduate students to de-

velop an actual program for multi-core computers using OpenMP and Pthreads. Coblenz

et al. [38] compared Cilk Plus and OpenMP to evaluate the design trade-offs in the usabil-

ity and security of these approaches. In [142], Pthreads and OpenMP were compared to

OpenMP _XN programming model. OpenMP _XN is an extension of OpenMP with Atomic

Sections of code code executed atomically and mutually exclusive from other conflicting

atomic operations.

In [213], an empirical study was conducted with novice and expert Java program-

mers to identify multithreaded bugs in Java Threads code examples. The results were ob-

tained through self-evaluation questionnaires, where feedback from the participants was

also collected. In [171], the authors compare Java Threads and SCOOP for comprehend-

ing and debugging existing programs and writing correct new programs. The participants

were undergraduate students in the software architecture course. In [189], an experiment

was conducted with Master’s students who are, on average, in their fourth year of Com-

puter Science studies to compare the development of parallel applications for multi-core

systems using Scala and Java Threads. MacDonald et al. [135] evaluated the usability of

CO2P3S, a tool that implements the parallel design patterns process, to build correct and

functional parallel programs. To do so, MacDonald et al. [135] performed a study with 20

undergraduate students divided into two groups. The first group used non-CO2P3S Java

(with a barrier class provided), and the other group used CO2P3S.

Rossbach et al. [211] performed a study with 237 undergraduate students of

an Operating System course. The main goal of this study was to verify and compare

the different techniques used in transactional memory programming with Java Threads:

using coarse- and fine-grain locks, monitors, and transactions. In [187], a study was per-

formed to compare teams of programmers developing a parallel program from scratch

using Pthreads and Intel Software Transactional Memory (STM) compiler. Similar to the

previous study, the experiment performed by Castor et al. [32] also aimed to evaluate the

use of locks and transactional memory. Castor et al. [32] evaluated the effort spent by

novices to develop a simple program with mutual exclusion and synchronization require-

ments using Halskell’s transaction memory and lock-based concurrency control mecha-

nisms.

Nanz et al. [173] compared Chapel, Cilk, Go, and TBB in a study based on a se-

quential and parallel implementation of six benchmarks created by notable programmers

with more than six years of experience, while Nanz et al. [172] performed an experiment
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that explores the claimed gap between expert and novice parallel programmers. In [172],

the fraction of the original development time spent on implementing the corrections sug-

gested by experts was also measured. Moreover, in [173], the Wilcoxon signed-rank test

(two-sided variant) was used to evaluate the results.

In [240], the goal was to evaluate three types of platforms in terms of application

performance, programming effort, and cost: generic multi-core CPU, GPU, and STI Cell

Broadband Engine (a heterogeneous multi-core processor, designed by Sony, Toshiba and

IBM). The participants in this study used Pthreads to evaluate the multi-core environment,

Cell to evaluate STI Cell Broadband Engine, and CUDA to evaluate the GPU [240]. Li et

al. [128] conducted an empirical investigation to compare the productivity of the Ope-

nACC and CUDA GPU programming interfaces when used by undergraduate students in a

classroom environment. In 2018, the previous study was complemented by evaluating the

performance and code size [127]. Another more recent study was conducted to compare

the scheduling productivity of CUDA with Thrust library [45].

Wienke et al. [249] compared the effort required to develop parallel applications

for multi-core environments versus GPU environments through hackathons with beginners

students. To do this, the students parallelized the applications using OpenCL and OpenACC

for GPU, and OpenMP and a combination of OpenMP and Intel’s Language Extensions for

Offload (LEO) in multi-core. In [247], the goal was to evaluate and compare the effort re-

quired by hackathon participants to parallelize applications using OpenMP, OpenACC, and

CUDA. In 2016, Wienke et al. [248] proposed an extension of the COCOMO II to evaluate

parallel programming development. However, the proposed method was not evaluated in

the present study because according to Wienke et al. [248] it is difficult to translate the

COCOMO cost drivers to the parallel programming area. Finally, Wienke et al. [248] in-

troduced EffortLog, a tool that allows comprehensive data collection of development time

and performance measures with little overhead. Aiming to evaluate EffortLog, Wienke et

al. [248] assess the productivity of OpenACC and CUDA through hackathons with beginner

students in this domain.

In [159], an experiment was conducted with undergraduate students to compare

the accuracy of the development time reported by the participants with the development

time estimated by COCOMO II. Initial results showed that the development time estimated

by COCOMO II showed inaccuracy. Miller et al. [158] also conducted a study to quan-

tify the impact of HPC training by measuring learners’ productivity in heterogeneous sys-

tems. Miller et al. [158] compared applications developed by beginners students using

MPI, OpenMP, OpenACC, and OpenMP+OpenACC to assess productivity. To evaluate train-

ing effectiveness, the authors proposed a new methodology with two key components:

progress productivity and training productivity.

In [78], the authors aimed to evaluate the performance and usability of the pri-

mary/secondary pattern of the Domain-Specific Language for Pattern-Oriented Parallel
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Table 3.4: Studies performing human experimentation to evaluated PPIs usability and pro-
ductivity.

Work PPIs Participants Metrics Architecture Activity
[233] Enterprise PPS

and PVM-like
Graduate stu-
dents

Login hours, SLOC, number of edits,
number of compiles, and number of ex-
ecution

Cluster of Work-
stations

Transitive closure

[225] Enterprise, PVM
and PAMS

Graduate stu-
dents

Login hours, and SLOC Distributed Graph theory related,
sorting and tree search-
ing

[135]-
2002

CO2P3S, and
non-CO2P3S
Java

Undergraduate
students

SLOC, number of classes, and number
of choice points

Multi-core Laplace and reaction-
diffusion problems

[96]-
2005

MPI and
OpenMP

Graduate stu-
dents

SLOC and development time per LOC Cluster Game of life and grid of
resistors

[95]-
2005

MPI and
OpenMP

Graduate stu-
dents

Development time, time understanding
the problem, time designing a solution,
time experimenting, time adding func-
tionality, time parallelizing, time tun-
ing, time debugging, time testing, and
other specific activity

Multi-core and
distributed

small programming
problem

[142]-
2005

OpenMP,
OpenMP _XN
and Pthreads

Undergraduate
and graduate
students

Development time Multi-core Benchmark applica-
tions

[257]-
2005

MPI Graduate stu-
dents

SLOC, development time, relative ef-
fort (SLOC and development time),
Kennedy’s productivity (SLOC and de-
velopment time), Kennedy’s productiv-
ity modification

Distributed Game of life and Buffon
Laplace needle problem

[57]-
2005

MPI, UPC and
IBM PERCS x10

Undergraduate
students

Time executing the application, clean-
ing time, parallelization time, debug-
ging time, authoring time, and time ac-
cessing documentation

Distributed Smith-Waterman algo-
rithm

[58]-
2006

- Undergraduate
and graduate
students

Cards organization - Use the card sorting
method to organize
twenty-four parallel
problems

[3]-
2007

MPI+C Undergraduate
students

Development time, and number of MPI
functions divided into basic functions,
non-blocking functions, and collective
functions

Cluster Game of life

[229]-
2008

Charm++, UPC,
SCOOP, Star-P,
and SHMEM

Groups of both
novice and
expert pro-
grammers

Development time (hrs), SLOC, and
SLOC increase (%)

Distributed N-body problem and Pi
using a Monte Carlo
method

[94]-
2008

PRAM-like and
MPI

Graduate stu-
dents

Number of correctness programs and
development time reported, instru-
mented and combined

Linux clus-
ter and class
server

Sparse matrix and
dense vector multipli-
cation

[47]-
2008

IBM PPIs Novices and ex-
perts develop-
ers

Development time, the number of steps
to complete the activity, number of con-
text splits, and the number of data
items operated

Workstation Use of an MPI function

[191]-
2008

MPI and UPC Graduate stu-
dents

SLOC Multi-core and
Linux cluster

Power method algo-
rithm

[240]-
2009

Pthreads, Cell,
and CUDA

Graduate stu-
dents

Development time Multi-core, STI
Cell/B.E., and
GPU

Optimizing the gridding
kernel

[235]-
2009

UPC and MPI Undergraduate
students

SLOC, development time, number of
correct and incorrect implementations

Cluster Minimum distance
problem

[188]-
2009

Pthreads and
OpenMP

Graduate stu-
dents

SLOC, SLOC with parallel constructs,
and development time

Multi-core Bzip2

[258]-
2009

MPI Undergraduate
students

Time thinking/problem, time thinking/-
solution, functionality tim, parallelizing
tim, debugging time, testing time, tun-
ing tim, and other time

Linux cluster Small parallel program-
ming problems

[211]-
2010

Java Threads Undergraduate
students

Design time, development time, debug
time, programming errors, and CCN

Multi-core Implement sync-gallery
Java program using
coarse and fine-grain
locks, monitors, and
transactions.

[213]-
2010

Java threads Students and
professionals

Number of errors Multi-core ArchivalList, IntList and
StringBuffer
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Table 3.5 continued from previous page
Work PPIs Participants Metrics Architecture Activity
[32]-
2011

Haskell Undergraduate
students

Logic and Compilation errors, hanging
and non-hanging errors, development
time, and SLOC

Multi-core Program with synchro-
nization and mutex

[189]-
2012

Scala and Java
Threads

Masters stu-
dents

Development time, SLOC, NOC, func-
tional styles (%), imperative style (%),
and number of errors

Multi-core Dining Philosophers,
mergesort, and Parallel
DRC Project

[173]-
2013

Chapel, Cilk,
Go, and TBB

Experts in each
PPI tested

SLOC, and development time Multi-core Six micro-benchmark
programs

[172]-
2013

Chapel, Cilk, Go
and TBB

Experts and
non-expert de-
velopers

SLOC, development time, and correc-
tion time

Multi-core Randmat, thresh, win-
now, outer, product,
and chain problems

[171]-
2013

Java Threads
and SCOOP

Graduate stu-
dents

Time to complete the test, error types,
number of classes, number of at-
tributes, number of functions, and SLOC

Multi-core Not informed

[169]-
2013

MPI Undergraduate
students

SLOC, CCN, development time, and
number of compilations

Linux cluster Game of Life

[249]-
2013

OpenCL,
OpenACC,
OpenMP, and
OpenMP+LEO

Hackathons
participants

Total SLOC, MSLOC, and development
time (days)

Multi-core CPU
and GPU

KegelSpan and Neuro-
magnetic Inverse prob-
lems

[187]-
2014

Pthreads and
Intel STM

Graduate stu-
dents

SLOC, reading time, design time, dev.
time, testing time, debugging time,
number of parallel constructs, and
number of critical sections

Multi-core Parallel desktop search
engine

[78]-
2014

DSL-POPP and
Pthreads

Graduate stu-
dents

Development time, SLOC, and COCOMO
II

Multi-core Matrix multiplication

[38]-
2015

CilkPlus and
OpenMP

Master stu-
dents

Number of correct programs, and devel-
opment time

Multi-core Program that finds ana-
grams

[160]-
2015

Patty and Paral-
lel Studio

Experienced
developers

Clarity, complexity, perceivability,
learnability, correctness, and develop-
ment time

Multi-core RayTracing benchmark

[247]-
2015

OpenMP, Ope-
nACC, and
CUDA

Hackathons
participants

Development time Multi-core and
GPU

Not informed

[128]-
2016

OpeanACC and
CUDA

Undergraduate
and graduate
students

Development time GPU Heat transfer and mes-
sage encryption

[248]-
2016

OpenACC and
CUDA

hackathons
participants

EffortLog metrics: Break time, think-
ing time, serial time, parallelizing time,
testing time, debugging time, tuning
time, experimenting time

Hybrid multi-
core CPU and
GPU

Not informed

[127]-
2018

OpeanACC and
CUDA

Undergraduate
students

SLOC, and SLOC increase (%) GPU Heat transfer and mes-
sage encryption

[159]-
2018

OpenACC Undergraduate
students

Development time and COCOMO II GPU CG solver and Aeroa-
coustics simulation ap-
plication ZFS

[158]-
2019

MPI, OpenMP
and OpenACC

Hackathons
participants

Development time, process productiv-
ity, and training productivity

Multi-core and
GPU

Two real-world training
activities

[45]-
2020

CUDA and
Thrust

Graduate stu-
dents

Development time, number of compiler
errors, and number of successful results

GPU Six programs

[190]-
2021

OpenMP, CUDA,
OpenCL, MPI,
SkePU, StarPU,
StarPU-MPI,
EXA2PRO

Senior engineer Training time, Development time, and
SLOC

CPU and GPU CO2 capture , Metal-
walls , Brain modeling,
ODE solver

[104]-
2022

Taskflow,
oneTBB,
StarPU, HPX,
and OpenMP

Ph.D. level SLOC, TOC, CCN for a single function,
CCN for the whole program, develop-
ment time, and percentage of bugs

CPU and GPU Micro-benchmarks and
two real-world applica-
tions

Programming (DSL-POPP) in comparison to the Pthreads library. In [160], a new pattern-

based process model called Patty was introduced. Patty was compared with Intel Parallel

Studio in an experiment with experienced developers to evaluate its effectiveness and

productivity. Papadopoulos et al. [190] proposed EXA2PRO, which is a framework to im-

prove developers’ productivity for parallelizing applications in several environments, such

as GPU and FPGA. In order to assess the productivity of the EXA2PRO, Papadopoulos et al.
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[190] compared it with other models such as OpenMP, CUDA, OpenCL, MPI, SkePU, StarPU,

and StarPU+MPI. In addition, Huang et al. [104] performed a quasi-experiment with five

Ph.D. level C++ programmers to compare the expressiveness and programmability of a

set of task graph computing systems: Taskflow, oneTBB, StarPU, HPX, and OpenMP.

In [47], the authors proposed a methodology for measuring the complexity of

programming-related tasks in HPC. Complexity Metrics (CM) was proposed to help de-

termine the productivity impact of new PPIs developed by IBM through a series of real-

world observations with HPC experts and experiments with novice programmers. Given a

task that the programmer must perform, [47] defines productivity as the performance to

complete that task. Although the CM method has shown promise, it does not include de-

velopment time, which is a key productivity measure. Differently from the other studies,

Eccles and Stacey [58] performed an experiment using the open card sorting method. In

this experiment, the participants were required to sort 24 index cards with typical paral-

lel problems. The participants organized the problems into categories and ranked them

according to the difficulty of their solving.

Parallel programming evaluation only using coding metrics

Some works claimed to do usability evaluation of PPIs without actually perform-

ing software experimentation with people. Table 3.5 presents a summary of these works,

which contain the PPIs evaluated, metrics used, target architecture, and the applications

evaluated. In addition, these studies are sorted by publication year. As seen in this table,

most of these works evaluate the usability of PPIs for multi-core environments. Okur et al.

[181] analyzed the productivity of Microsoft’s parallel libraries Task Parallel Library (TPL)

and Parallel Language Integrated Query (PLINQ) in comparison with C++ threads and .NET

in the development of large-scale multi-core applications. In [8], Pthreads productivity was

compared with OpenMP Superscalar (OmpSs) that combines advanced features, such as

automated runtime dependency resolution, while maintaining simple programming using

pragmas. Danelutto et al. [46] evaluate the effort required by the number of SLOC to de-

velop parallel applications using FastFlow, TBB, OpenMP, and OmpSs. In [157], Pthreads,

OpenMP, Cilk Plus, TBB, SWARM, and FastFlow were compared in developing a series of

numerical linear algebra problems.

Griebler et al. [79] also proposed a new PPI for exploiting stream parallelism in

multi-core environments called SPar, which supports parallel code generation with the

FastFlow runtime. In order to evaluate the productivity of SPar, Griebler et al. [79] com-

pared it to FastFlow in terms of the SLOC. Other studies has been done to evaluate the

productivity of SPar against other parallel programming models. In [82], the main goal

was to asses the programmability and performance of SPar, FastFlow, TBB, and Pthreads

considering a set of real-world streaming applications, of which only the versions with the
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best performance were chosen to perform the productivity evaluations. In [98], a new

version of SPar that supports parallel code generation with both FastFlow and TBB run-

times was compared with FastFlow, TBB, and Pthreads. In addition, Hoffmann et al. [99]

implemented a new compiler algorithm in SPar for automatically generating parallel code

in the OpenMP runtime using source-to-source code transformations. This modification

was compared with the other SPar runtime versions (FastFlow and TBB), TBB, FastFlow,

OpenMP, and Pthreads.

Huang et al. [105] introduced Cpp-Taskflow, which is a gereral-purpose parallel

task programming system to facilitate the construction of large and complex parallel appli-

cations using task dependency graphs. In order to evaluate the usability of Cpp-Taskflow,

Huang et al. [105] compared it with OpenMP and TBB. Huang et al. [103] also developed

a new version of OpenTimer, which is a high-performance timing analysis tool for Very

large scale integration (VLSI) systems. The goal of Huang et al. [103] was to evaluate the

usability of the two versions of OpenTimer, where OpenMP tasking clauses were adopted

to implement the pipeline-based incremental timing in the first version and Cpp-Taskflow

to implement the task-based incremental timing in the second version. In [130], the pro-

ductivity of a proposed new version of the Cpp-Taskflow was compared to the TBB.

The effort required to develop a cryptographic algorithm based on the Brahmagupta-

Bhaskara equation using OpenMP was evaluated in [174]. In order to evaluate the effort

into learning and using a new programming language, Gmys et al. [73] compared the per-

formance, scalability and productivity of Chapel, Julia, Python and C with OpenMP. Schmitz

et al. [221] proposed Parallel Pattern Language (PPL), which closely follows mathematical

notations. Schmitz et al. [221] evaluated the usability of PPL against OpenMP. In [148], a

new framework for developing parallel simulations called Pyne was compared to PETSc in

order to evaluate its productivity.

Legaux et al. [125] designed and developed Orléans Skeleton Library (OSL), a

new C++ algorithmic skeleton library. Aim to evaluate the productivity of OSL, Legaux

et al. [125] used Halstead’s measures. In 2016, del Rio Astorga et al. [50] proposed a

Generic Reusable Parallel Pattern Interface (GrPPI) for stream-based C++ applications.

GrPPI allows users to easily explore parallelism in sequential applications using existing

frameworks (e.g., threads C++, OpenMP and TBB) thanks to its high-level C++ PPI. Aim-

ing to evaluate the usability of GrPPI, the authors evaluated the increase in lines of code

compared to the C++ threads, OpenMP and TBB versions [50]. Guo and Agrawal [85]

evaluated the programmability of MapReduce interface against two proposed variations

called MR-like and Reduction Object. Adornes et al. [1] proposed a unified MapReduce

domain-specific language to reduce the programming effort and improve code reuse be-

tween multi-core and distributed environments. Adornes et al. [1] compared their solution

to Phoenix++ and Hadoop MapReduce. In addition, Hadoop productivity was compared to
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Parallel Social Data Analytics (ParSoDA), a high-level library to reduce the programming

skills needed for implementing scalable social data mining applications [21].

Pankratius [186] assessed the productivity of Java threads to develop multi-core

applications. Kepner [117] also evaluated Java threads against OpenMP, MPI, and High Per-

formance Fortran (HPF) to compare parallel application development for multi-core and

distributed environments. In addition, other studies also aim to compare the usability

and productivity of PPIs for multi-core environments against distributed environments. In

[220], OpenMP and MPI applications were evaluated to show the applicability and function-

ality of a proposed tool called Pattern Instrumentation Tool (PInT). This tool automatically

calculates pre-implemented metrics (e.g. SLOC, CCN, and the number of pattern occur-

rences) from instrumented source code. In [164], MPI productivity was compared with a

new framework called Trasgo, which was used to generate automatically MPI applications

from abstract data-parallel expressions.

There are several other studies aimed to evaluate MPI productivity and compared

it to other PPIs. Hochstein et al. [97] evaluated the use and productivity of MPI in a project

of Flash Center at the University of Chicago. In 2004, UPC was analyzed and compared

to MPI in parallelizing applications for distributed environment [31]. In [14], a domain-

specific language proposed to automate the generation and insertion of code required

for parallelization into an existing sequential application (High-Level Parallelization Lan-

guage (Hi-PaL)) is compared to MPI. Baek et al. [17] evaluated the productivity of Cilk

and MPI. The productivity of Collective Asynchronous Remote Invocation (CARI) a collec-

tive variant of the paradigm to distributed systems Remote Method Invocation (RMI) was

compared to MPI by Ahmad et al. [2]. In [86], a version of MPI with Fortran, MPI together

OpenMP, and basic OpenMP were compared in terms of SLOC to evaluated the produtiv-

ity. In [145], the productivity of the parallelization of divide-and-conquer algorithms using

two libraries developed for this purpose (parallel_recursion and parallel_stack_recursion),

OpenMP and Cilk. An updated version of these libraries (dparallel_recursion and dparal-

lel_stack_recursion) was also compared with MPI and MPI+OpenMP [146].

Some new approaches have been proposed to exploit parallelism in distributed

systems. Tejedor et al. [236] introduced Cluster Superscalar (ClusterSs), a runtime for Java

applications based on automatic function-level parallelism designed to execute on clusters

of symmetric multiprocessors. Cid-Fuentes et al. [37] introduced PyCOMPSs to propose a

solution for distributed big data processing in HPC infrastructures, which is a task-based

programming model for Python. O’Donncha et al. [184] proposed AllScale, which is a

toolchain that aims to simplify the development of highly scalable parallel applications

by dividing development responsibilities into silos. Löff et al. [131] proposed DSParLib,

which is a high-level parallel programming abstraction to exploit stream parallelism in

distributed environments. In addition, Cid-Fuentes et al. [37], O’Donncha et al. [184], and

Löff et al. [131] compared their solutions with MPI to evaluated the productivity.
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Some researchers also compared MPI productivity to PPIs for GPU programming.

In [65], an experimental study was conducted to compare the MPI and Hitmap libraries

for the implementation of a GPU-based algorithm to solve the hyperspectral image regis-

tration. In [84], MPI, OpenSHMEM, Charm++, and Legion were compared regarding their

productivity, performance, scalability, and load-balancing capacity on homogeneous clus-

ters with GPUs. Nakao et al. [168] performed a study to evaluate a rective-based language

for accelerated clusters (XACC) compared to CUDA with MPI and OpenACC with MPI in clus-

ters with GPUs.

Several other studies have aimed to evaluate the productivity of interfaces to

GPU systems. Herdman et al. [92] evaluated the productivity of OpenACC, OpenCL, and

CUDA. Malik et al. [139] evaluated the productivity of CUDA, OpenCL, PGI, and Matlab.

Wienke et al. [250] compared OpenCL, PGI Acc, and OpenACC to develop GPU applications.

In [177], the effort required to used OpenACC for developing an aeroacoustics simulation

framework was evaluated. Memeti et al. [155] assessed the productivity of OpenCL, Ope-

nACC, OpenMP, and CUDA to GPU programming. CUDA was compared to OpenCL C++

and Python versions to develop a Mandelbrot application by Holm et al [101]. In [165],

OpenACC was compared to a new approach called Hybrid Fortran, which enables a re-

duction in the code changes required to achieve parallelization in hybrid architectures.

In addition, Marantos et al. [143] evaluated CUDA productivity using a proposed estima-

tion metric based on effort estimated by Halstead’s metric to develop a sequential CPU

application to predict the percentage of extra effort to develop GPU code.

GPU PPIs have also been compared to multi-core CPU PPIs to evaluate productiv-

ity. In addition, Lee and Vetter [124] evaluated the increase in SLOC of the Rondina bench-

marks developed with OpenMP compared to the versions developed with PGI Accelerator,

OpenACC, HMPP, OpenMPC, and R-Stream. In [44], the authors’ goal was to compare the

productivity of the C++ heterogeneous programming paradigms C++ AMP and OpenACC

with OpenMP for multi-core CPU and OpenCL for GPU systems. Wei et al. [246] compared

multi-core OpenMP applications with CUDA and OpenACC applications concerning SLOC.

In [144], the productivity of a set of PPIs for CPU, GPU, or hybrid (both CPU and GPU) sys-

tems were compared: OpenMP 3.0, OpenMP 4.0 (support to GPU), OpenACC, RAJA, Kokkos

(lambdas, functors and nested), CUDA (only GPU), and OpenCL. Sakdhnagool et al. [214]

compared the productivity of PPIs running on systems with multi-core CPUs (OpenCL and

LE-OpenMP) versus systems with GPU (OpenCL, CUDA, and OpenMP). In [231], CUDA was

compared with OpenACC versions for multi-core and GPU systems concerning increasing

the number of SLOC. Di et al. [51] evaluated the productivity of parallelizing C benchmark

applications using CUDA and OpenACC and Python benchmark applications using Numba.

Pennycook et al. [197] evaluated the productivity of Kokkos, mxhMD, OpenMP 4.5, and

OpenMP 5.0.
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Table 3.5: Studies evaluation of PPIs productivity without considering the human factor.

Work PPIs Metrics Architecture Application
[31]-
2004

UPC and MPI SLOC, NOC, and CCN Distributed NAS Benchmark (C and For-
tran)

[17]-
2004

Cilk and MPI SLOC Heterogeneous Work-
stations

Fibonacci, Travelling Sales-
man, Matrix Multiplication,
N-Queens, Laplace problems

[117]-
2004

MPI, OpenMP, HPF, and
Java Threads

SLOC Multi-core and Cluster NAS parallel benchmarks

[97]-
2008

MPI SLOC, number of commits, number of
MPI function calls, median developer
activity

Distributed FLASH code

[36]-
2010

OpenCL, XLC, and
CUDA

Kernel SLOC, and host SLOC GPU and Cell Broad-
band Engine

Vector application

[2]-
2011

MPI and CARI SLOC Cluster Gadget-2 code

[186]-
2011

Java Threads Parallel constructs Multi-core 40 Java projects

[181]-
2012

C++ threads, .NET 4.0,
TPL and PLINQ

SLOC, SLOC increase (%), number of
parallel directives, number of parallel
patterns, number of synchronization
directives, and number of constructs
misused

Multi-core 655 open-source applications
found in GitHub

[14]-
2012

MPI and Hi-PaL SLOC Cluster Circuit satisfiability, game of
life, Poisson solver, image pro-
cessing, and prime numbers

[236]-
2012

Java ClusterSs and X10 SLOC Cluster Matmul, Sparse LU, and K-
means

[124]-
2012

OpenMP, PGI, Ope-
nACC, HMPP, OpenMPC,
and R-Stream

SLOC Increase (%) Multi-core (OpenMP)
and GPU

Thirteen OpenMP programs

[92]-
2012

OpenACC, OpenCL and
CUDA

Number of words of code (WOC) (To-
tal, device and host)

GPU Hydrocode benchmark

[8]-
2012

OmpSs and Pthreads Increase of SLOC Multi-core K-type benchmarks

[139]-
2012

CUDA, OpenCL, PGI,
Matlab

SLOC, NOC, number of PPIs functions,
number of PPIs parameters, and num-
ber of PPIs keywords

GPU Four of the five NAS Parallel
Benchmark kernels: EP, CG,
FT, and MG

[250]-
2012

OpenCL, PGI Acc, and
OpenACC

MSLOC GPU Simulation of Bevel Gear Cut-
ting, and Neuromagnetic In-
verse Problem

[125]-
2014

OSL Halstead distinct and total operators,
distinct and total operands, length,
vocabulary, difficulty, and effort

Multi-core Low-level and high-level BSP
implementations

[44]-
2015

OpenMP, OpenCL, C++
AMP, and OpenACC

SLOC, and Kennedy’s productivity Multi-core CPU, GPU,
and heteregeneous
system

Five proxy applications: read-
benchmark, LULESH, CoMD,
XSBench, and miniFE

[1]-
2015

Phoenix++, Hadoop,
and Unified domain-
specific language

SLOC, and Basic COCOMO model Multi-core and dis-
tributed

Word Count, Word Length, His-
togram, K-means and Linear
Regression applications

[79]-
2015

SPar, and FastFlow SLOC Multi-core Sobel and prime number appli-
cations

[50]-
2016

GrPPI, C++ Threads,
OpenMP and TBB

SLOC increase (%) Multi-core OpenCV video stream process-
ing application with two filters:
Gaussian Blur and Sobel

[157]-
2016

Pthreads, OpenMP, Cilk
Plus, TBB, SWARM, and
FastFlow

SLOC and development time Multi-core Nine benchmark applications

[177]-
2016

OpenACC SLOC, ASLOC, COCOMO II, and CO-
COMO II reuse model

Multi-core and GPU ZF aeroacoustic simulation
software kernels

[246]-
2016

OpenACC, CUDA, and
OpenMP

SLOC Multi-core and Hybrid
(multi-core and GPU)

GTC-P application

[86]-
2016

MPI (Fortran), OpenMP,
and MPI+OpenMP

SLOC Hybrid cluster NAS BT benchmark

[155]-
2017

OpenCL, OpenACC,
OpenMP, and CUDA

SLOC, SLOC with parallel directives,
and SLOC increase (%)

GPU Rodinia benchmark suites

[144]-
2017

Kokkos, RAJA, Ope-
nACC, OpenMP 3.0,
OpenMP 4.0, CUDA,
and OpenCL

SLOC Multi-core CPU and
GPU

Tealeaf miniature proxy appli-
cation

[82]-
2018

Pthreads, TBB, FastFlow
and SPar

SLOC and CCN Multi-core Dedup, Ferret and Bzip2
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Table 3.6 continued from previous page
Work PPIs Metrics Architecture Activity
[220]-
2018

OpenMP and MPI SLOC, Fan-In, Fan-Out, CCN, and num-
ber of pattern occurrences collected
from PInT

Multi-core and dis-
tributed

Breadth-first Search (OpenMP)
and LAMMPS (MPI)

[192]-
2018

PHAST, CUDA, OpenCL,
Kokkos, and SYCL

SLOC, Halstead’s development effort,
and CCN

GPU Triad, DCT8x8, Black-scholes,
and N-Body

[85]-
2018

MapReduce, and MR-
like, and Reduction Ob-
ject

SLOC Multi-core K-means, Support vector ma-
chine algorithm (SVM), Linear
Regression, and Logistic Re-
gression

[165]-
2018

Hybrid Fortran and
OpenACC

ASLOC GPU weather prediction model

[197]-
2018

Kokkos, mxhMD,
OpenMP 4.5, OpenMP
5.0

SLOC Heteregeneous
(multi-core CPU and
GPU)

miniMD benchmark from the
Mantevo suite

[159]-
2018

OpenMP, CUDA, and
MPI

SLOC Multi-core and GPU Boltzmann Transport Equation

[164]-
2019

MPI and Trasgo SLOC, Halstead’s development effort,
and CCN

Hybrid cluster and
multi-core

Ronate, Cannon, and NAS MG
benchmark

[214]-
2019

OpenCL, LE-OpenMP,
OpenMP, and CUDA

SLOC Multicore and GPU seven Rondina Benckmarks
applications

[46]-
2019

FastFlow, TBB, OpenMP,
and OmpSs

SLOC, and MSLOC Multi-core Parsec benchmark

[254]-
2019

Ruler and OpenCL SLOC Multi-core and GPU Seven micro-benchmark pro-
grams

[65]-
2019

MPI and Hitmap SLOC, TOC, CCN, and Halstead’s de-
velopment time

GPU Hyperspectral image registra-
tion problem

[231]-
2019

CUDA and OpenACC Execution time, speedup, SLOC, SLOC
increase (%)

multi-core CPU (Ope-
nACC) and GPU (Ope-
nACC and CUDA)

Multiple Flow Direction (MFD)
algorithm

[130]-
2019

Cpp-Taskflow v2 and
TBB

SLOC, Halstead’s development effort,
and CCN

Multi-core Parallel machine learning hy-
perparameter search and a
Very-large-scale integration
(VLSI) circuit timing analysis.

[168]-
2019

XACC, CUDA+MPI, and
OpenACC+MPI

SLOC with parallel directives, total
SLOC, ASLOC, MSLOC, and delete
SLOC

Cluster with GPU LQCD mini-application

[148]-
2019

Pyne and PETSc SLOC Multi-core Fluid simulation application

[196]-
2019

PHAST and CUDA SLOC, Halstead’s development effort,
and CCN

Multi-core CPU and
GPU

Cache-timing-attack resistant
AES-based pseudo random
number generator application

[193]-
2019

PHAST and SYCL SLOC, Halstead’s development effort,
and CCN

Heterogeneous
(multi-core and GPU)

Histogram-stretch application

[194]-
2019

PHAST and SYCL SLOC, Halstead’s development effort,
and CCN

Heterogeneous
(multi-core and GPU)

Histogram-stretch application

[84]-
2019

MPI, OpenSHMEM,
Charm++, and Legion

SLOC Cluster with GPUs Five open-source application

[129]-
2019

HPSM, OpenMP, and
StarPU

SLOC, and SLOC that will be exe-
cuted at runtime (it ignores com-
ments, blank lines, data declarations
and headers)

Multi-core (OpenMP)
and heterogeneous
(multi-core and GPU)

AXPY program

[21]-
2019

ParSoDA library and
Hadoop

SLOC Cluster Parallel social data analysis ap-
plications based on the Par-
SoDA library

[37]-
2020

PyCOMPSs and MPI SLOC, CCN and NPath Multi-core Cluster Cascade SVM and K-means

[73]-
2020

Chapel, Julia, Python
and OpenMP

SLOC, Kennedy’s productivity, and
Utility model

Multi-core 3D Quadratic Assigment Pro-
gram

[184]-
2020

AllScale, and MPI SLOC, Halstead’s development effort,
average CCN across all modules, and
the sum total CCN

Cluster AMDADOS and iPIC3D

[238]-
2020

Fleet and CUDA SLOC FPGA and GPU Six micro-benchmark pro-
grams

[103]-
2020

OpenMP and Cpp-
Taskflow

SLOC and COCOMO 81 organic model Multi-core OpenTimer v1 and v2

[105]-
2020

Cpp-Taskflow, OpenMP,
and TBB

SLOC, CCN, maximum CCN, COCOMO
development effort, time and cost ($)

Multi-core wavefront computing and
graph traversal

[178]-
2020

OpenCL and EngineCL SLOC, CCN, C++ TOC, number of
structs/classes and methods used,
and number of sections with error
checking

Heterogeneous
(multi-core and GPU)

Five benchmarks
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Table 3.6 continued from previous page
Work PPIs Metrics Architecture Activity
[98]-
2020

SPar, TBB, FastFlow,
and Pthreads

SLOC Multi-core Bzip2, Ferret, Lane Detection,
and Person Recognition

[101]-
2020

CUDA and OpenCL for
C++ and Python

SLOC and subject development time
(medium or fast)

GPU Mandelbrot

[145]-
2021

parallel_recursion, par-
allel_stack_recursion,
OpenMP and Cilk

Multi-core cluster SLOC and Halstead’s
development time

T2XL, N Queens, fib, floorplan,
and knapsack benchmarks

[221]-
2021

OpenMP and PPL SLOC Multi-core 19 benchmarks of the Rodinia
OpenMP benchmark suite

[209]-
2021

Controller model, Intel
oneAPI, and OpenCL

SLOC, TOC, CCN, and Halstead’s de-
velopment effort

Heterogeneous sys-
tem with multi-core
CPU and FPGA

Hotspot, Matrix Pow, and Sobel
Filter

[195]-
2022

PHAST, PHAST SA (sin-
gle architecture), and
SYCL

SLOC, Halstead’s Mental Discrimina-
tions, CCN, Fan-in, and Fan-out

multi-core CPU and
GPU

Six benchmarks

[174]-
2022

OpenMP basic COCOMO (effort, time, and team
size)

Multi-core CPU Brahmagupta-Bhaskara Equa-
tion Based Algorithm

[146]-
2022

MPI, MPI+OpenMP,
dparallel_recursion,
and dparal-
lel_stack_recursion,

SLOC, Halstead’s development effort,
and CCN

Multi-core cluster uts, N Queens, fib and topsorts
benchmarks

[131]-
2022

MPI (on-demand and
round-robin) and DSPar-
Lib

SLOC Cluster Mandelbrot, prime numbers,
face recognition, lane detec-
tion, and PBzip2

[143]-
2022

CUDA Number of hotspots, SLOC, number of
hotspots’ SLOC, number of hotspots’
statements, CPU distint and total op-
erations, CPU CCN, and Halstead’s
measures of CPU version: volume,
length, and difficulty

Multi-core CPU and
GPU

Hotspots from Polybench and
Rodinia benchmark suites

[74]-
2022

Verilog, OpenCL, and
oneAPI

Kernel SLOC, host SLOC, total SLOC,
and COCOMO development time

FPGA Sobel filter program

[51]-
2022

CUDA and OpenACC
for C, and Numba for
Python

SLOC for operations type Multi-core CPU and
GPU

NPB kernels

[195]-
2022

PHAST, PHAST SA (sin-
gle architecture), and
SYCL

SLOC, Halstead’s development effort,
and CCN

multi-core CPU and
GPU

Several benchmarks

[99]-
2022

SPar, TBB, FastFlow,
OpenMP, and Pthreads

SLOC Multi-core Bzip2, Ferret, Lane Detection,
and Person Recognition

[147]-
2022

HDNN, DeepDSL, and
oneAP

SLOC Multi-core CPU, GPU,
and TPU service in
Google Cloud Platform

Softmax layer

Some new interfaces have been proposed to exploit parallelism on heteroge-

neous architectures. In [254], Ruler was presented, which is a core language that eases

the conflict between productivity and performance with quantitative parallelism expres-

sion. To evaluate the productivity of Ruler, it was compared to OpenCL regarding the

number of SLOC [254]. In [129], HPSM was introduced, a high-level C++ framework to

enable the execution of parallel loops and reductions simultaneously over multi-core CPUs

and GPUs. To evaluate HPSM, Lima and Domenico compared its productivity with OpenMP

for multi-core CPU systems and StarPU for heterogeneous systems. Nozal et al. [178]

present EngineCL, a new OpenCL-based C++ PPI for heterogeneous systems. To evaluate

the productivity of their solution, Nozal et al. [178] compared it to OpenCL.

Peccerillo and Bartolini [192] proposed a framework for multi-core CPU and GPU

systems called PHAST library. Peccerillo and Bartolini [192] evaluated the productivity

and complexity of their approach compared to CUDA, OpenCL, Kokkos, and SYCL. In [196],

PHAST was compared to CUDA in developing a cache-timing-attack-resistant AES-based
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pseudo-random number generator, which is a challenging real-world application with sev-

eral solutions available. PHAST receives a series of updates, which enables task-agnostic

fashion coding [193], is automatically optimized for a specific platform [194], and allows

the choice of the architecture at runtime [195]. The effort required to use these new

features was evaluated against the old PHAST version and SYCL.

Finally, the productivity of PPIs for Field-Programmable Gate Array (FPGA) sys-

tems has been less explored in the literature. Thomas et al. [238] proposed a framework

for massively parallel streaming on FPGAs called Fleet, whose productivity in developing

six micro-benchmarks was compared with the sequential CPU and CUDA GPU version. In

[209], a new Controller model for FPGAs was presented based on OpenCL for GPUs. The

effort of developing the controller model was compared to the effort of developing applica-

tions with Intel oneAPI and the reference codes programmed directly with OpenCL [209].

Gondhalekar et al. [74] evaluated the effort required to develop the Sobel filter program

using Verilog, OpenCL, and Intel oneAPI for FPGA systems. In addition, only one study

evaluates development productivity in environments with Tensor Processing Unit (TPU)

accelerators. Martinez et al. [147] proposed a domain-specific language to exploit paral-

lelism in CPU, GPU, and TPU systems called Heterogeneous Deep Neural Network (HDNN).

The productivity of HDNN was compared to a DSL for deep learning (DeepDSL) and oneAPI

interfaces.

3.3 Final remarks

This chapter aimed to determine how productivity and usability have been eval-

uated in parallel programming. For this purpose, we conducted a review of the literature

regarding the usability and productivity evaluation of PPIs. From this literature review, we

identified that there are studies that claim to perform a usability evaluation, but do not

actually do so. Since only a few studies consider the opinion of the participants in their

evaluations. In addition, the vast majority of studies do not conduct experiments with

people. Although some of these studies mention usability, in fact they only evaluate pro-

ductivity by considering metrics such as SLOC, CCN, COCOMO, and Halstead’s measures.

These classical metrics can rapidly provide some programming indicators based on code

size, complexity assessment, and development effort estimation. However, they are de-

signed to evaluate general-purpose software and do not consider factors that impact the

parallel programming effort. As these metrics are widely used in the literature, verifying

their effectiveness when evaluating parallel applications is necessary.

We identified only two effort estimation model in the context of parallel program-

ming. Wienke et al. [248] proposed a COCOMO II extension to parallel programming, con-

sidering factors that affect the development cycle of such applications. However, this is
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a conceptual model and it has not been validated in practice, so its accuracy cannot be

confirmed. This prevent a fair comparison with the original COCOMO II model. On the

other hand, Marantos [143] proposed a model to estimate the percentage of extra effort

to parallelize an existing sequential CPU application with CUDA and the energy efficiency.

This model performs its estimations using different machine learning algorithms based on

Halstead, CCN, and SLOC measures of the target sequential application. Marantos [143]

designed a dataset for training and testing its models. However, there needs to be docu-

mentation regarding this data, making it difficult to replicate the study results.

We have also identified some productivity metrics specific to parallel applications,

such as Kennedy’s productivity [73, 257], Utility model [73], Progress productivity [158],

and Training productivity [158]. These metrics have proven helpful in comparing parallel

interfaces concerning increased productivity. However, these metrics perform evaluations

based on programming effort and other factors such as speedup, efficiency, and the num-

ber of threads. Usually, the programming effort is measured by SLOC or development

time. Therefore, to use such metrics, it is necessary to know the development effort of

the evaluated applications.

Regarding the studies conducted with people, we observe several challenges

to be addressed in the future. We observed that few studies [32, 45, 78, 96, 94, 128,

127, 171, 189, 191, 211, 229, 247] considered the practices recommended by Wohlin

et al. [252] when conducting software experiments, such as developing an experimen-

tation plan, and conducting hypothesis testing. Furthermore, we observe that there are

some studies evaluating the productivity of developing parallel stream processing appli-

cations [46, 50, 79, 82, 98, 99, 131], none of them conduct experiments with people for

this purpose. On the other hand, Huang et al. [104] performed a quasi-experiment with

five participants to evaluate the expressiveness and programmability Tasflow, oneTBB,

StarPU, HPX, and OpenMP in developing task-graph applications.

We also observed that few studies aim to analyze the productivity of PPIs target-

ing FPGA architectures [238, 209, 74], and none of them have conducted experiments with

students. While there are a series of studies that evaluate the productivity of developing

parallel applications for GPU and heterogeneous environments, few perform experiments

on people for this purpose [240, 249, 247, 128, 248, 127, 159, 158, 45, 190]. Only one

study has been conducted to evaluate the productivity of PPIs for systems with cloud TPU,

which is an accelerators developers by Google to machine learning. Moreover, there is a

gap in evaluating emerging PPIs for HPC clusters, such as HPX and Apache interfaces for

big data processing (e.g., Spark and Flink). Since few studies explore such architectures,

there is also room for creating methodologies to assist parallel programming usability ex-

perimentation.
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4. ASSESSMENT OF PARALLEL PROGRAMMING PRODUCTIVITY

From usability assessments, it is possible to create better and simpler-to-use PPIs

and manage their quality [52]. Usability is defined by ISO 9241-11 [108] as the extent

to which specific users can use a system, product, or service to achieve specific goals

with effectiveness, efficiency, and satisfaction in a specific context of use. In parallel

programming literature, we observed that most authors claim to perform usability eval-

uations of PPIs without considering users in their evaluations. Furthermore, among the

studies with users, most claim to conduct usability assessments of PPIs without consid-

ering all the recommended practices (e.g., develop an experiment plan, perform a hy-

potheses test, and evaluate the validity) [3, 38, 47, 57, 58, 95, 135, 142, 159, 158, 160,

169, 173, 172, 188, 187, 190, 213, 225, 233, 235, 240, 249, 248, 257, 258]. Only few

works consider it [32, 45, 78, 96, 94, 128, 127, 171, 189, 191, 211, 229, 247]. Among

these papers, only a few works considered programmers’ satisfaction when evaluating

usability [38, 173, 160, 171, 172, 188, 189, 213, 225, 233, 235].

In this context, the research question we aim to answer in this chapter is: “How

to improve usability evaluation of PPIs?”. The limitations found in the literature led us to

present a methodology to help other researchers evaluate usability in parallel program-

ming based on the experimentation practices recommended by Wohlin et al. [252]. Ac-

cording to Wohlin et al. [252], one of the advantages of conducting a planned experiment

is the control of subjects, objects, and instrumentation, ensuring that more general con-

clusions can be drawn. In addition, a further advantage is the ability to perform statistical

analysis using hypothesis testing methods and opportunities for replication of the exper-

iment. To ensure that the experiment is performed correctly, a process is required to

prepare and conduct the experiment and analyze its results [252]. In addition, accord-

ing to ISO 9241-11 [108], our methodology proposes the evaluation of usability based on

three factors: efficiency, effectiveness, and user satisfaction. Finally, we aim to provide

this methodology to guide other parallel programming researchers in usability analysis,

which is presented in Section 4.1.

In this chapter, experiments were also conducted with students to demonstrate

the use of the methodology presented. Section 4.2 presents an experiment to assess

the usability of three PPIs based on structured parallel programming for expressing paral-

lelism in stream processing applications targeting multi-core systems. From the literature

review, no studies were identified aiming to evaluate the usability of structured PPIs for

parallel stream processing. Moreover, Section 4.3 presents an initial effort to evaluate

the usability of a new parallel programming model for GPU against classical models. Un-

like studies that perform experiments with experienced developers on parallel program-

ming [172, 173], participants of these studies were intentionally beginner developers to

understand the challenges faced by them.
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This chapter is an abridged version of the results presented in the paper [11]1,

and has been reproduced here in accordance with the signed copyright agreement and the

copyright holder. The results of the study with GPU PPIs (Section 4.3) have been added in

this chapter to complement the results in [11]. In addition, the studies were approved by

the Pontifical Catholic University of Rio Grande do Sul (PUCRS) research ethics committee

with CAAE number 52635421.3.0000.5336.

4.1 Research Methodology

To ensure that the experiment is performed correctly, a process is needed to

provide steps to support the activity execution. A process can be used as a checklist and

guideline on what to do and how to do it [252]. Figure 4.1 presents the methodology

proposed to evaluate the usability of PPIs. The first step is called the planning phase. In

this phase, the problem to be solved and the experiment plan must be defined. The target

problem can be defined through a gap found in a literature review. In addition, the goals,

context, hypothesis, procedure, study activity, and instruments must also be defined in

the planning phase.

Still, in the planning phase, the study goals are formulated from the problem to be

solved and should reflect the purpose of the experiment. The context of the experiment is

also defined in planning phase, which can be characterized according to four dimensions

as [252]:

• Offline versus online: Defines the environment of the experiment. Whether the

experiment is being conducted in a laboratory under controlled conditions or is a

real-world project;

• Student versus professional: Defines the degree of knowledge of the experiment

participant;

• Classroom (or toy) versus real problems: Defines the size of the problem being

evaluated in the experiment;

• Specific versus general problem: Defines whether the results of the experiment

will be valid in the general context of the area studied or in a specific context.

The next step in the planning phase is the hypothesis formulation. Usually, the

definition of the experiment is formalized into two hypotheses:

• Null hypothesis (H0): there is no statistically significant relationship between cause

and effect;

1A Parallel Programming Assessment for Stream Processing Applications on Multi-core Systems, Computer
Standards & Interfaces - ®2022 Elsevier
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• Alternative hypothesis (H1): there is statistically significant relationship between

cause and effect.

H0 asserts that there are no real underlying trends or patterns in the experiment environ-

ment, and the differences between the observations are coincidental [252]. For example,

suppose an experiment is conducted to compare a new failure inspection method with the

old method. When defining the hypotheses, the H0 defines that a new inspection method

finds, on average, the same number of failures as the old one (H1 : µNold = µNnew ). On the

other hand, the H1 defines that a new inspection method finds, on average, more faults
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Figure 4.1: Research method flowchart.
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than the old one (H0 : µNold < µNnew ) [252]. Therefore, the goal of an experiment is to reject

H0 in favor of the H1.

After formulating the hypotheses, the study activity and the procedure are also

defined in the planning phase. The procedure presents all the rules and steps to be fol-

lowed by the participants when performing the study activity. For example, whether par-

ticipants will be able to access the Internet during the activity or whether there will be

materials available for access, how much time they will be given to complete the activity,

and other considerations to ensure there is no bias.

In the planning phase, the experimenters also choose and develop the instru-

ments for the study, which can be objects, guidelines, or measuring instruments [252].

The experience objects can be, for example, specification documents or code. Guidelines

are used to guide participants and may include, for example, procedure description and

checklists. Measuring instruments are used for data collection, which can be done through

forms, interviews, and instrumentation of the machines used by the participants, such as

scripts to record the participants’ screens and capture log files [252]. Also, before con-

ducting the experiment, a pilot study is performed to test the experiment plan.

After the planning phase, the experiment is conducted, and the results achieved

are analyzed. Effectiveness, efficiency, and user satisfaction must be evaluated to deter-

mine the usability of a PPI [108]. Effectiveness should assess the accuracy and complete-

ness with which participants achieve the goals specified in the study [108]. Descriptive

statistics used to organize and summarize a data set [100] can be applied to evaluate

effectiveness. For example, using the percentage, it is possible to express the proportion

of participants who achieved the study goal concerning the total number of participants.

Efficiency or productivity can be evaluated through the effort spent to develop an

application [108]. Descriptive statistics or hypothesis testing can be applied to evaluate

the development effort results. Although descriptive statistics help to organize and sum-

marize the evaluated data set, just the average time spent by the participants to develop

a parallel application may not be enough to determine which PPIs provide the best produc-

tivity. Then, through a hypothesis test, it is possible to determine if there is a significant

difference between the average times needed to develop the applications with each of the

PPIs evaluated. If a hypothesis test is necessary, a normality test should first be performed

to verify whether the sample has a normal distribution. A parametric test is applied if the

sample has a normal distribution. Otherwise, the non-parametric test is applied [34, 224].

Participants’ satisfaction can be evaluated both qualitatively and quantitatively

using forms [19]. For qualitative data, a textual analysis can be performed using a subset

of the procedures for coding from Grounded Theory (GT) [42], which is a specific method-

ology developed with the objective of building theory from data [49]. However, this study

did not fully explore the GT methodology, since we were not interested in generating the-

ories. Since this metric has been popularly used in software engineering for qualitative
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analysis [223], we aimed to use it to evaluate the qualitative perception of the partici-

pants over the activity performed [49]. Therefore, our methodology approached only a

textual analysis based on the open and axial coding steps of GT methodology (Figure 4.2).

Open coding is an interpretive process by which data is analytically divided. At this step,

responses are analyzed accurately, and relevant events, actions, or interactions are com-

pared to identify similarities and differences. Those quotes that are conceptually similar

are grouped and receive conceptual labels (code) and form categories and subcategories,

as illustrated in Figure 4.2. Figure 4.2 also illustrates the axial coding, where the categories

are related to their subcategories (codes) [42].

Figure 4.2: Open and axial coding from GT procedures.

After analyzing the effectiveness, development effort, and participants’ satisfac-

tion, the conclusions over the results are presented. In addition, the study’s limitations

and threats to validity are discussed, and lessons learned are presented.

4.2 Experiment to evaluate the usability of PPIs for CPU environments

Stream processing is one of the programming paradigms that has gained promi-

nence over the years [13]. Stream processing applications are present in our day-to-day

life, for example, on the Internet, where millions of data sources collect and exchange

information through devices and social media [77]. The literature review in the previous

chapter (Chapter 3) showed that the evaluation of developer productivity in the stream

processing domain had been explored [46, 50, 79, 82, 98, 99, 131]. However, studies that

perform controlled experiments with people have yet to be conducted for this purpose.

Therefore, this section presents an experiment to assess the usability of three PPIs based

on structured parallel programming from academia and industry for expressing parallelism

in stream processing applications targeting multi-core systems: FastFlow, SPar, and TBB.

TBB [207, 244] is an open-source and general-purpose C++ template-based PPI

from the industry, which provides patterns for stream parallelism exploration. FastFlow [5]



91

is a representative PPI from the scientific community, which has a similar C++ template-

based interface to TBB. A more recent research initiative for high-level stream parallelism

in multicore systems is SPar [80, 82], an internal DSL (embedded in the C++ language) in

the form of C++ annotation to avoid sequential code rewriting.

Some other PPIs can be used to exploit parallelism in multicore systems, of which

OpenMP and Pthreads are the most popular. However, this study aims to use the struc-

tured programming approach to explore parallelism in stream processing applications.

Therefore, as mentioned in Section 2.4, OpenMP and Pthreads were not used because it is

only suitable for data parallelism exploitation and requires the programmer to implement

extra synchronization mechanisms for stream parallelism exploitation. On the other hand,

StreamIt is a remarkable PPI for stream parallelism exploitation based on the structured

programming approach. However, the activities with StreamIt were discontinued in 2013,

so this language was not used in this study. Therefore, in this study, a comparison of

usability considered only SPar, FastFlow, and TBB.

This section is organized as follows. Section 4.2.1 presents the experimenta-

tion plan, Section 4.2.2 presents the results evaluation, and Section 4.2.3 presents some

threats to validity.

4.2.1 Experimentation plan

This section presents the experimentation plan for this study, which was designed

according to the methodology presented in Section 4.1. The experimentation plan in-

cludes the variables, the objectives, the hypotheses, the context, the activity given to the

participants, the procedure followed, and the instruments used during this study.

Independent and dependent variables

The PPIs evaluated in this study are independent variables. In this study, we eval-

uated the usability of three PPIs for stream processing on multi-core systems: FastFlow,

SPar, and TBB. Each of them has specific characteristics that influence the development of

the applications. The experience of the programmer is one of the important independent

variables [96]. In our study, the participants were intentionally beginners developers in

the parallel programming domain to consider the impact of learning and help us under-

stand the challenges faced by beginners. The study environment is also an independent

variable. Our study is conducted in a university and not in an industrial environment.

Therefore, the study is not affected by factors in the industry environment. Even so, a

deadline of one day was set for the participants to complete the activity.
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To evaluate the usability of PPIs, we assess the learnability, the effort required

to parallelize a stream processing application, user errors, and satisfaction. The partici-

pants’ learnability was assessed by the time accessing the material provided. The effort

required to develop the parallel application includes the following activities: reading the

procedure description, understanding the sequential application code, coding, debugging,

and testing. The time in seconds was considered to evaluate the first five activities. How-

ever, the time testing the application was not considered because the participants left the

application running and continued to perform other activities. Therefore, the number of

executions was measured.

Goals

This section presents the objectives of this study, which were formulated from the

problem to be solved according to the methodology presented in Figure 4.1. The main goal

of this study is to compare the usability of SPar, TBB, and FastFlow PPIs for implementing

stream parallelism in C++ applications for multi-core systems. The specific goals are as

follows:

• Measure the learnability;

• Measure the time spent to exploit parallelism;

• Report the implementation errors;

• Report the users’ satisfaction.

Hypothesis

We consider the following seven hypotheses in our experiment based on the

goals. The first four refer to learnability, and the others to the development effort.

• H0−answer : The time to answer the form is the same for FastFlow, SPar, and TBB;

• H0−study : The time to access and study the material provided is the same for FastFlow,

SPar, and TBB;

• H0−under : The time to understand the code is the same for FastFlow, SPar, and TBB;

• H0−read: The time to read the procedure description is the same for FastFlow, SPar,

and TBB;

• H0−dev : The development time is the same for FastFlow, SPar, and TBB;

• H0−debug: The debugging time is the same for FastFlow, SPar, and TBB;

• H0−exec: The number of execution is the same for FastFlow, SPar, and TBB.
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Context of study

The participants were 15 graduate students from the Graduate Program in Com-

puter Science (PPGCC) of the PUCRS, in Porto Alegre city South of Brazil. This study was

part of the parallel programming course at PUCRS. Moreover, this study is conducted with

participants having experience in the industry but beginners in parallel programming. The

environment of this experiment is offline because it was conducted in an academic envi-

ronment under controlled conditions and not in the industry. This study is specific because

it focuses on assessing the usability of PPIs for stream processing in an academic environ-

ment. In addition, this study addresses a real problem common in the stream process-

ing area: a video Open Source Computer Vision Library (OpenCV) processing application,

which aims to extract a RBG channel from a video.

Activity of study

The activity given to the participants was to implement stream parallelism in an

OpenCV video processing application, which aims to extract an RGB channel from a video.

Listing 4.1 presents a piece of the RGB channel extraction application. The video process-

ing application receives an input video and reads each video frame (line 6). A frame is

processed through a series of operations to extract only the green channel (lines 9-18).

Next, the frame with the green channel is written to the output video (line 19). This pro-

cess is repeated until all frames have been processed (line 7) [182].

1 int main(){

2 // initialization of the steps

3 while (1){

4 Mat src, res;

5 total_frames++;

6 input Video >> src; // read frame

7 if (src.empt y()) break; // check if end of video

8 vector<Mat> spl;

9 split (src, spl); // process - extract only the correct channel

10 for(int i =0; i < 3; ++i){

11 if (i != channel){

12 spl[i] = Mat ::zeros(S, spl[0].t ype());

13 }

14 }

15 merge(spl, res);

16 cv::GaussianBlur(res, res, cv::Size(0, 0), 3);

17 cv::addWeight ed(res, 1.5, res, -0.5, 0, res);

18 Sobel(res,res,-1,1,0,3);

19 outputVideo << res; // write frame

20 }

21 }

Listing 4.1: RGB channel extraction application. Adapted from [182].
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Experimental setup

The study participants used multi-core workstations with an Intel® CoreTM i7-

4790 processor with eight cores (four physical), 3.6 GHz, and 15.6 GB of RAM. The oper-

ating system was Linux Mint 17.3 and G++ compiler version 5. The OpenCV version used

was 3.1.0. The PPIs used were FastFlow 2.1.3, TBB 4.4.6, and SPar 1.

Procedure and execution

A folder with materials about each evaluated PPI was provided for the participants

to access during the activity. Therefore, it was forbidden to consult any material on the

Internet and use a cell phone to have more control over the material accessed by the

participant. The measuring instruments used were questionnaires and a script to record

the screens of the participants’ machines. In addition, we defined some criteria for the

activity to be considered complete: The participants could only complete the activity if

the parallel application achieved a speedup greater than or equal to 3; if the parallel

application produced the same result as the sequential version; and if the questionnaires

were correctly filled out.

Initially, a pilot study was conducted to to adjust environmental problems and fix

software issues, which was not included in the final results. Next, the selected participants

answered a questionnaire to characterize them (Table 4.1). The characterization question-

naire was used to evaluate the participants’ experience with parallel programming, video

processing, and others. The participants should report their level of experience among:

• 0: None, because I have never participated in such activities;

• 1: I studied it in the classroom or in a book (I have only theoretical knowledge);

• 2: I have practiced it in classroom projects (I have theoretical knowledge applied

only in the university);

• 3: I used it in personal projects (I have theoretical knowledge and individual practical

experiences);

• 4: I used it in some projects in industry or research (I have theoretical knowledge

and little practical experience);

• 5: I have used it in many projects in industry or research (I have theoretical knowl-

edge and many real practical experiences).

The participants were divided into three groups (each group with five students),

varying the sequence of using the PPIs to parallelize the same OpenCV video processing

application. The first group used SPar, TBB, and FastFlow; the second group used TBB,

SPar, and FastFlow; and the third group used SPar, FastFlow, and TBB. After finishing the
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Table 4.1: Questionnaire used to characterize the experiment participants in a multi-core
environment.

ID Question
Q1. Which is your academic background?
Q2. Which is the name of your course?
Q3. Which is your level of experience with command line and text editor on the Linux

operating system? (From 0 to 5)
Q4. Which is your level of experience with the C++ programming language? (From 0 to

5)
Q5. Which is your level of experience with PPIs? (From 0 to 5)
Q6. If you have any experience in Q5, please inform the PPIs for multi-core systems you

have used and the features explored in your previous experiences:
Q7. Which is your level of experience with developing stream processing applications

(reading, writing, and processing files, network, video, audio etc.)? (From 0 to 5)
Q8. If you have any experience in Q7, please specify which one you worked on:

Table 4.2: Questionnaire used to collect the results achieved by the participants.

ID Question
Q1. Which time did you start your activity?
Q2. Which time did you finish your activity?
Q3. Does the parallel program produce the correct result (the same as the sequential

program)? (Yes/No)
Q4. Which is the execution time of the sequential program (in seconds)?
Q5. Which is the parallelism degree that reached the shortest execution time in the par-

allelized version? (From 0 to 8)
Q6. Which is the execution time of the parallel program (in seconds)?
Q7. Was the manual helpful in performing the activity? (Yes/No)
Q8. Was the activity successfully completed? (Yes/No)
Q9. Which were your main difficulties in implementing parallelism in this activity?

activity, the participants should report the results achieved and their satisfaction with

each PPIs used through questionnaires (Tables 4.2 and 4.3). Finally, the participants’ an-

swers to questionnaires and screen-capture videos were analyzed to obtain data that can

be used to evaluate the usability of the PPIs.

4.2.2 Evaluation

This section presents the results of this experiment, including the participants’

profile, effectiveness analysis, productivity analysis, and satisfaction analysis. In addition,
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Table 4.3: Questionnaire used to evaluate the satisfaction of the participants.

ID Question
Q1. With which PPIs did you perform your first activity?
Q2. With which PPIs did you run your second activity with?
Q3. If you had problems understanding the video application, what were they (please

provide details)?
Q4. Did you become uncomfortable with the screen-capture during the activity? Yes/No)
Q5. Do you consider yourself able to perform activities with this PPI after completing this

activity? (From 0 to 5)
Q6. Do you consider yourself capable of performing activities with TBB after completing

this activity? (From 0 to 5)
Q7. Do you consider yourself capable of performing activities with FastFlow after com-

pleting this activity? (From 0 to 5)
Q8. Which is your level of experience with the C++ programming language after com-

pleting this activity? (From 0 to 5)
Q9. Which is your level of experience with developing stream applications after complet-

ing this activity? (From 0 to 5)
Q10. Which PPI did you find the hardest?
Q11. Justify your choice for question Q10 (please provide details):
Q12. Which PPI did you find the easiest?
Q13. Justify your choice for question Q12 (please provide details):
Q14. If you need to parallelize an application similar to the application used in the activi-

ties, which interface would you choose?
Q15. Justify your choice for question Q14 (please provide details):

we used the methodology shown in Figure 4.1 to perform the analysis of the effectiveness,

productivity, and satisfaction of the participants.

Participants’ profile

This section presents the profile of the participants in this study. All participants

are graduate students familiar with command line and text editor in the Linux operating

system, using it in the classroom and personal, industry or research projects. Most of

the participants (9 participants) have experience in developing applications with the C++

programming language. However, three participants have no experience developing C++

applications, and three have only theoretical knowledge. In addition, most of the partici-

pants (10 participants) have no experience developing stream processing applications or

only theoretical knowledge (three participants). Although two participants had practical

experience in developing stream processing applications, they are not considered experi-

enced developers in this domain because they usually focus on developing the business

logic code and not on developing these types of applications. Therefore, the participants

in this group are considered beginners in the stream processing domain and satisfy the

target sample of this experiment.
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Figure 4.3: PPIs already used by the participants of the experiment.

Figure 4.3 shows that only one participant has no experience with PPIs. Most of

the participants have already used PPIs for multi-core (OpenMP, Pthreads, and Cilk), and

distributed (MPI) systems. Only two participants have already developed GPU applications

using CUDA. However, these participants are not experts in parallel programming because

they have had a short time in contact with the PPIs, developing only basic activities in

classroom, personal and research projects. In addition, only two participants have never

used PPIs, having only theoretical knowledge about them.

Effectiveness analysis

This section presents the effectiveness evaluation, which refers to the accuracy

and completeness in which the participants achieve the specified objectives [108]. In this

study, the participants’ objective was to parallelize a video processing application using

FastFlow, SPar, and TBB. Furthermore, this goal would only be achieved if the participant

met the three criteria presented in Section 4.2.1: performance, program correctness, and

the correct completion of the questionnaire (Table 4.2).

Figure 4.4a shows that all participants could reduce the execution time of the

parallel applications. Figure 4.4b shows that all applications developed by the partici-

pants achieved the minimum required performance (speedup ≥ 3) using the three PPIs.

Each participant used a certain number of threads shown on each bar’s label in the graph.

However, this speedup is not necessary the optimal performance. To achieve more per-

formance would require the participants to have more knowledge about the architecture,

which is beyond the scope of this study. Therefore, we did not ask for the maximum

speedup but only the minimum speedup as an indicator of parallelization success and the

conclusion of the activity.

To evaluate the correctness of a program, it was necessary to verify if its execu-

tion against a known input generates the expected output [94]. Our results showed that

all participants were able to parallelize the application in order to produce the expected
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(a) Average execution time of the sequential applica-
tions and execution time of the parallelized applica-
tions by the participants.

(b) Speedup achieved by the applications parallelized
by each participant using FastFlow, SPar and TBB. The
labels on each bar represent the number of threads
used to run each of the versions.

Figure 4.4: Execution time and performance achieved by each participant using FastFlow,
SPar, and TBB.

output using the three PPIs. In addition, the questionnaire was adequately filled out by all

participants. Therefore, FastFlow, SPar, and TBB showed effectiveness in this study.

Productivity analysis

To assess the productivity, eight factors were collected from the screen-captured

videos: time to answer the form (in seconds), time accessing the material available (in sec-

onds), time to understand the application code (in seconds), time to read the procedure

description (in seconds), development time (in seconds), debugging time (in seconds),

and number of executions. Figure 4.5 shows the box plots for each of the metrics evalu-

ated. Based on the box plots, it can be seen that the lowest medians for the time to answer

the form, time to access the provided material, development time, debugging time, and

the number of executions were obtained when participants used SPar. On the other hand,

when they use FastFlow, the lowest medians were obtained for the time spent under-

standing the application code and reading the procedure description. Since the value of

the medians alone can not determine which PPI provides the best usability, it is necessary

to perform a hypothesis test.

We performed the hypothesis test according to the methodology presented in

Figure 4.1. Initially, we performed a normality test to verify whether the data collected had

a normal distribution or not, in order to decide whether a parametric or non-parametric

test would be performed. A parametric test should be used if the sample has a normal

distribution (P-value ≥ 0.05). Otherwise, a non-parametric test is applied (P-value <

0.05) [34, 224]. Therefore, we used the Shapiro-Wilk test at the conventional significance

level (α = 0.05) [224] to verify whether the collected data had a normal distribution. In
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(a) Time to answer the form. (b) Time accessing the material
provided.

(c) Time to understand the appli-
cation code.

(d) Time to read the procedure
description.

(e) Development time. (f) Debugging time.

(g) Number of executions.

Figure 4.5: Box Plot for the times collected in the experiment.



100

Table 4.4: P-value of shapiro-wilk, wilcoxon and students’s t tests.

Shapiro-Wilk
SPar FastFlow TBB

p-value p-value p-value
Time to answer the form 0.5166 0.0033 0.0286
Time accessing the material provided 0.4828 0.0085 0.0811
Time to understand the application code 0.3586 0.0001 4.06E-07
Time to read the procedure description 0.0010 0.0002 0.0001
Development time 0.0003 0.0004 4.82E-05
Debugging Time 0.5247 0.0333 0.2026
Number of Executions 0.0003 0.1289 0.0068

Wilcoxon and Student’s t tests
SPar x FastFlow SPar x TBB FastFlow x TBB

p-value p-value p-value
Time to answer the form 0.0353 0.1914 0.6788
Time accessing the material provided 0.0026 0.0147 1.0000
Time to understand the application code 0.0170 0.2524 0.2524
Time to read the procedure description 0.0618 0.1959 0.8753
Development time 0.0006 0.0067 0.6788
Debugging Time 0.0730 0.0012 0.1688
Number of Executions 0.7257 0.2778 0.1015

addition, we chose this test because it is one of the most efficient tests and is independent

of sample sizes [205].

Table 4.4 shows the results of the Shapiro-Wilk test, where P-values greater than

α (in bold) indicate data with a normal distribution and P-values less than α indicate the

opposite. In order to compare the PPIs, we performed a paired hypothesis test for two

samples [212] considering the hypotheses presented in the Section 4.2.1: SPar versus

FastFlow, SPar versus TBB, and FastFlow versus TBB. The hypothesis test between SPar

and TBB was performed using the parametric Student’s t-test for the time to consult ma-

terial and debugging time because the samples have a normal distribution. For all other

cases, the non-parametric Wilcoxon test was performed.

The results in the Table 4.4 showed a significant difference only between the

time spent by the participants to answer the form in the activities using SPar and FastFlow

(P-value < α). This time may have been shorter for the SPar activity due to the lower

volume of information reported by the participants. Similarly, there is a significant differ-

ence only in the time spent by the participants to understand the sequential application

when comparing SPar with FastFlow (P-value < α). These results highlight that the effort

to understand the sequential application was the lowest in the activity using FastFlow be-

cause two groups finished the activity using it. Moreover, there is no significant difference

between the efforts spent by the participants to understand the procedure in each of the

activities because P-value is greater than α in all cases.

The hypothesis test showed a significant difference between the time spent by

the participants studying SPar versus FastFlow and TBB, confirming the results in Figure
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4.5b. Therefore, SPar is the easiest language to use for parallel stream processing because

it presented a lower learning curve in relation to the other PPIs. There is a significant

difference in the time required to develop an application using SPar regarding FastFlow and

TBB (P-value < α). with a short time of access to the material provided, the participants

were already able to parallelize the application using SPar with less effort. Although, from

the hypothesis test, it was possible to show that there is a significant difference only

between the debugging times of SPar and TBB (P-value = 0.0012 < 0.05). There is no

significant difference between the debugging times of SPar and FastFlow, highlighting that

the effort to correct programming errors is lower for SPar and FastFlow. Although, due to

SPar’s programming model, many programming errors were avoid. With both FastFlow and

TBB there were compile-time errors caused by syntax errors in the use of C++ pointers

and classes. Many participants had difficulty in passing a variable as a parameter to a

FastFlow and TBB stage. In addition, some participants had difficulties in instantiating

the stages, and running the pipeline using FastFlow and TBB. For more details about the

challenges faced by the participants in this experiment, see the following paper [11].

The time testing the application was not considered because the participants left

the application running and continued to perform other activities. Instead, the number

of runs was measured to evaluate the effort to test the parallel applications. The results

showed that the effort to test the applications parallelized with FastFlow, SPar, and TBB

after fixing the debugs was equal (P-value ≥ α).

Satisfaction analysis

We performed qualitative and quantitative analyses to evaluate the participants’

satisfaction according to the methodology shown in Figure 4.1. On the one hand, for the

qualitative analysis, we constructed pie charts. On the other hand, for the quantitative

analysis, we used the initial procedures (open coding and axial coding) of the GT method-

ology to perform a textual analysis of the participants’ answers.

In the evaluation experiment questionnaire (Table 4.3), participants were asked

which PPI they had more difficulty performing the activity. Figure 4.6a shows that none

TBB − 67%
(10  participants)

FastFlow − 33%
(5  participants)

(a) More difficult PPI to use.

TBB − 13%
(2  participants)

FastFlow − 13%
(2  participants)

SPar − 73%
(11  participants)

(b) Easiest PPI to use.

TBB − 7% 
 (1 participant)

FastFlow − 7% 
 (1 participant)

SPar − 87% 
 (13 participants)

(c) PPI chosen by the participants.

Figure 4.6: Participants’ opinion regarding the PPIs used.
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Figure 4.7: Reasons reported by participants for why they find it more difficult to program
stream processing applications with FastFlow and TBB.

of the participants found SPar more challenging to program than FastFlow and TBB. On

the other hand, ten participants found it more difficult to program with TBB, and five with

FastFlow. From a qualitative analysis of the participants’ answers using the initial coding

procedures of GT it was possible to identify the main reasons reported by the participants.

Figures 4.7a and 4.7b show the graphical representations created using ATLAS.ti tool2. In

these figures, a red line represents the relationships between codes and categories, and a

black line represents the relationships between the codes. Moreover, the black lines have

a label describing the type of relationship.

Figure 4.7a shows that participants found it more difficult to program with TBB

due to their difficulties in programming pointers and structures with C++, understanding

the TBB logic, and identifying the program’s parallel region. Moreover, some participants

needed more time to complete the activity since TBB was the first PPI used. In summary,

the main difficulty reported by the participants was to understand the communication

among the stages. The quotes below highlight that it may be related to their difficulty

with C++:

“I took time to understand how to correctly pass the values through pointers among

the TBB stages.”

[Participant 1]

“My biggest difficulty was to notice the details in the definition of the variables shared

among the stages. For example, it was necessary to instantiate the shared variable

with new in the first stage. In the following stages, the static_cast was used. I was

having problems because I was not doing Mat res = new Mat in the first stage.”

[Participant 2]

2ATLAS.ti is a software used for qualitative data analysis and mixed methods research in academic, mar-
ket, and user experience research. Available at: https://atlasti.com/.

https://atlasti.com/
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Figure 4.7b shows that regarding FastFlow, the participants found it more diffi-

cult due to their lack of practice with C++ programming and difficulties understanding

the logic required to implement the Farm pattern, communication, and operations division

among the stages. Due to the lack of practice with C++ programming, there were difficul-

ties in using C++ pointers. In addition, participants reported that due to the lack of more

FastFlow code examples available, it became more difficult to use than the TBB.

Participants were also asked which PPI they found easiest to perform the activity.

Figure 4.6b shows that 11 participants found it easier to program with SPar. Figure 4.8

shows the reasons given by the participants. In summary, SPar has a simple syntax,

where there is no need for significant code changes, such as creating a class or structure

for each stage. The quotes below highlight this aspects:

“Its syntax is extremely simple, it does not require the use of structure or classes as in

FastFlow and TBB, making the code easier to understand and apply parallelism.”

[Participant 4]

“With SPar, there were no major changes in the code, only new annotations for the

parts that can be parallelized.”

[Participant 6]

Despite these advantages, two participants found it easier to program using FastFlow or

TBB because these were the last PPIs they used and consequently made the activity easier

to perform.
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Figure 4.8: Reasons reported by participants for why they find SPar easier to program
stream processing applications than FastFlow and TBB.

Participants also should inform which PPI they would choose to parallelize a stream

processing application in a real-life situation in the future. Figure 4.6c shows that most

participants would have chosen SPar. The main reason reported by the participants to
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choose SPar are presented in Figure 4.9. In summary, the participants chose SPar due to

its annotation-based model, where the programmer only inserts annotations in the code

to enable parallelism without requiring significant code changes. Despite the SPar advan-

tages pointed out, TBB was chosen by one participant due to its simplicity, programma-

bility, reliability, Intel support, number of users, and number of tutorials and examples

available on the Internet. In addition, FastFlow was chosen by one participant due to its

versatility, maturity, and learnability close to SPar.
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Figure 4.9: Reasons reported by the participants for choosing SPar if they needed to de-
velop a stream processing application in a real-life situation.

The evaluation of the participants’ satisfaction confirmed the results concerning

productivity. When using SPar, the participants did not have to make significant modifi-

cations to the code to provide parallelism. With FastFlow and TBB, it was necessary to

create structures (class and struct) for each stage, resulting in errors related to the

C++ programming language. In addition, the need for the return command on a stage

implemented through C++ structures is related to one of the main programming logic er-

rors made by the participants using FastFlow and TBB. From the satisfaction analysis, we

observed that using C++ structures and pointers is one of the main difficulties reported

by the participants when performing the activity using FastFlow and TBB. In addition, par-

ticipants found it easier to use SPar (11 participants) and would choose it if they needed

to solve a real problem in future activities (13 participants) since it is not necessary to use

pointers and create structures to implement parallelism with this PPI.

4.2.3 Discussion and threats to validity

The results show that SPar, FastFlow, and TBB offer effectiveness in solving the

activity given to the participants because all applications produced the output video cor-

rectly with a minimum speedup of 3. However, SPar is the easiest language to use for

parallel stream processing because it presented a lower learning curve in relation to the
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other PPIs and provided more productivity to the developers. With a short time of access

to the material provided, the participants could already parallelize the application using

this DSL. In addition, the learning curve for SPar is shorter since the simplicity of this PPI.

When using SPar, the participants did not have to make major modifications to

the code to provide parallelism. With FastFlow and TBB, it was necessary to create struc-

tures (class and struct) for each stage, resulting in errors related to the C++ program-

ming language. In addition, the need for the return command on a stage implemented

through C++ structures is related to one of the main programming logic errors made by

the participants using FastFlow and TBB. From the satisfaction analysis, we observed that

the use of C++ structures and pointers is one of the main difficulties reported by the par-

ticipants when performing the activity using FastFlow and TBB. In addition, participants

found it easier to use SPar (11 participants) and would choose it if they needed to solve a

real problem in future activities (13 participants) since it is not necessary to use pointers

and create structures to implement parallelism with this PPI.

From the participants’ point of view, SPar is easier to use PPI because of its

annotation-based programming model. This feature allowed the participants to develop

parallel stream processing applications with less effort. Evaluating the participants’ satis-

faction confirmed the results concerning the development effort and productivity. There-

fore, SPar offers the best usability in developing stream processing applications for multi-

core systems because it provides the best productivity indicators and user satisfaction.

This study showed promising results. However, some threats to validity remain.

The learning effect is a threat to internal validity because no group started the activity

with FastFlow, and it was the last PPI used by two groups. Therefore, participants may

have learned faster how to solve the problem with FastFlow, which is a threat to internal

validity. Another threat to internal validity is related to instrumentation. The participants

may enter incorrect data into the self-assessment questionnaire, such as the activity start

and end time. To face this threat, in addition to the questionnaires, the machine screens

used by the participants during the study were automatically recorded using a monitoring

script and later checked. However, using a human observer has some challenges because

it is time-consuming and requires double-checking. One approach that could reduce this

effort is automatically generating logs from the experiment execution. However, none of

the tools available met our requirements.

As a threat to external validity, it is not possible to generalize the results as only

stream processing in multi-core environments was evaluated. The design of the experi-

ment may be a threat to construct validity because the SPar programming model is dif-

ferent from the TBB and FastFlow programming models. However, all of them are based

on structured parallel programming and support stream parallelism. Finally, a threat to

conclusion validity is the sample size, which may need to be more representative. There-

fore, an experiment with a larger sample of participants may be required to confirm the
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results. However, these threats to validity do not discredit our research and the conclu-

sions, where several lessons-learn were taken from qualitative and quantitative results.

4.3 Initial study to evaluate the usability of PPIs for GPU environments

This section presents a initial study to investigate the usability of the PPIs in the

GPU environment. GSParLib is recent approach proposed by Rockenbach [208] that pro-

vides programmers with abstractions through CUDA and OpenCL code generation (see

Section 2.4.4). Therefore, this study aims to assess the usability of GSparLib compared to

well-established GPU programming interfaces. For this purpose, we evaluate the develop-

ment of parallel applications for GPU in a graduate course using different PPIs: CUDA [35],

GSPaLib [208], OpenACC [61], and OpenCL [166]. Section 4.3.1 presents the experimen-

tation plan, Section 4.3.2 presents the results evaluation, and in Section 4.3.3 are some

discussions and threats to validity.

4.3.1 Experimentation plan

This section presents the experimentation plan for this initial study, which was

designed according to the methodology presented in Section 4.1. This experimentation

plan presents the variables, the objectives, the hypotheses, the context, the activity given

to the participants, the procedure, and the instruments used for data collection.

Independent and dependent variables

The following metrics used in this study to evaluate GPU programming are con-

sidered dependent variables: development time, SLOC, difficulties faced by students, and

participant satisfaction. Unlike the experiment in the multi-core environment presented in

Section 4.2, the participants’ machine screens were not recorded in this study. This study

presents an initial effort to evaluate the usability of GPU PPIs. Therefore, the total de-

velopment time was considered for the productivity evaluation instead of the time spent

by the participants to complete each activity performed, such as the time to consult and

study the material, development time, and debugging time. Therefore, to complement

our analysis, we included the metric the number of SLOC. The PPIs used in this study are

independent variables because they have specific characteristics that may impact the de-

velopment effort. The students’ experience can also affect the development effort as they

do not have extensive experience in GPU programming. The study environment is also an

independent variable.
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Goals

The main goal of this study is to compare the usability of CUDA, GSParLib, Ope-

nACC, and OpenCL PPIs for implementing parallelism in C/C++ applications for GPU. The

specific goals are as follows:

• Measure the time spent to exploit parallelism;

• Measure the number of SLOC;

• Report the implementation errors;

• Report the users’ satisfaction

Hypotheses

Based on the goals, we consider the following two hypotheses in our experiment:

• H0−effort: The effort required to implement parallelism is the same for CUDA, GSPar-

Lib, OpenACC, and OpenCL

• H0−sloc:The number of SLOC required to implement parallelism is the same for CUDA,

GSParLib, OpenACC, and OpenCL

Context of study

This study is offline because it was conducted in an academic environment under

controlled conditions. The participants were graduate students from the Heterogeneous

Parallel Programming course of the PPGCC at the PUCRS in Porto Alegre city, South of

Brazil. This study is specific because it focuses on assessing the usability of PPI for GPU

programming in an academic environment.

Activity of study

The activity given to the students was to implement parallelism in the Animal

Rescue with Drones Problem program to accelerate the calculations. This problem uses

drones to find environments to reintroduce animals into the wild rescued from various

adverse situations. There are three groups of animals, based on where they need to be

introduced: a place with the lowest possible height from sea level, a place with the highest

possible height from sea level, or a specific height from sea level. The drones perform a

series of computations to find the most suitable environment to reintroduce them.
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Experimental setup

To perform the activity using CUDA, one of the students used a machine equipped

with an Intel® CoreTM E5-2698 v3 processor (16 physical cores and 32 threads) with 2.40

GHz, 16 GB of RAM memory, and a GPU NVIDIA V100 Volta (5,120 CUDA cores) with 32

GB of VRAM memory. The operating system was Ubuntu 18, GCC compiler 7.3, and NVCC

compiler 11.3. For the other PPIs, this same participant used a machine equipped with

an Intel® CoreTM i7-6700k (4 cores/8 threads) with 32 GB of RAM, and a GPU NVIDIA GTX-

1070 Pascal (1,920 CUDA cores) with 8 GB of DRAM. The operating system was Linux Mint

20.2, GCC compiler 9, and NVCC compiler 11.

The other students used a machine equipped with an Intel® CoreTM E5-2620 v3

processor (6 cores) with 2.40 GHz, 64 GB of RAM memory, and a GPU Nvidia Titan X Pascal

(3,584 CUDA cores) with 12 GB of VRAM memory. The operating system was Ubuntu 20.04,

GCC 9.3, and NVCC compiler 11.3. The -O3 compiler flag was set when compiling all the

applications. The PPIs used were CUDA 11.4, GSParLib 1, OpenACC, and OpenCL 1.2.

Procedure and execution

Initially, the students answered a questionnaire to characterize them. Table 4.5

shows the questions asked of the participants. This questionnaire was refined from the

questionnaire used in the previous experiment (Table 4.1) in order to assess the partici-

pants’ level of specific experience in different programming environments, such as multi-

core, GPU, cluster, and FPGA.

Before starting the activity, an order was established for the participants to use

each PPI to parallelize the Animal Rescue application: CUDA, OpenACC, OpenCL, and

GSParLib. For GSParlib, students were given the option of using the Driven or Pattern

interface. During the activity, the students could access any online material to study and

learn about the PPIs and help them perform the activities. Unlike the previous study (Sec-

tion 4.2), where internet access was prohibited, in this study, it was allowed due to the

added complexity of developing parallel applications for GPU. After paralleling the appli-

cation with each PPI, the students were to answer a questionnaire to report productivity

data and evaluate the activity, which is showed in Table 4.6. This questionnaire was de-

signed by merging and reformulating the questionnaires of the Tables 4.2 and 4.3 used in

the experiment in the multi-core environment. Moreover, the students had one semester

to finish the activities.
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Table 4.5: Questionnaire used to characterize the experiment participants in a GPU envi-
ronment.

ID Question
Q1. What is your nationality?
Q2. Which is your academic background?
Q3. What is your affiliation (company or educational institution)?
Q4. In which country is your affiliation located?
Q5. Which is your level of experience with command line and text editor on Linux

operating system? (From 0 to 5)
Q6. Which is your level of experience with the C++? (From 0 to 5)
Q7. Which is your experience level with parallel programming for multi-core sys-

tems? (From 0 to 5)
Q7.1 If your answer in Q7 was other than “none”, please inform which PPIs for multi-

core systems (e.g. Pthreads and OpenMP) you have used, and the features
explored in your previous experiences:

Q8. Which is your experience level with parallel programming for GPU systems?
(From 0 to 5)

Q8.1. If your answer in Q8 was other than “none”, please inform which PPIs for GPU
systems (e.g. CUDA and OpenACC) you have used and the features explored in
your previous experiences:

Q9. Which is your experience level with parallel programming for cluster? (From 0
to 5)

Q9.1. If your answer in Q9 was other than “none”, please inform which PPIs for cluster
(e.g. MPI) you have used and the features explored in your previous experi-
ences:

Q10. Which is your experience level with parallel programming for FPGA?
Q10.1.If your answer in Q10 was other than “none”, please inform which PPIs for FPGA

systems (e.g. OpenCL) you have used and the features explored in your previ-
ous experiences:

4.3.2 Results evaluation

This section presents the evaluation of the results: profile of the participants,

effectiveness analysis, productivity analysis, and satisfaction analysis. In addition, we

used the methodology shown in Figure 4.1 to analyze the effectiveness, productivity, and

satisfaction.

Participants’ profile

The students have experience with the GNU/Linux operating system, command

line, and C++ application development. They have experience in developing parallel ap-

plications for multi-core systems, mostly using OpenMP, Pthreads, and TBB as can be seen
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Table 4.6: The questionnaire used to collect the results achieved by the participants and
assess their satisfaction.

ID Question
Q1. In how many hours could you parallelize the application?
Q2. Which PPI do you use?
Q3. Were you successful in doing the activity? That is, did the parallel application

produce the expected result (the same as the sequential application)?
Q4. What is the execution time of the sequential application (in seconds)?
Q5. What was the shortest execution time of the parallel application (in seconds)?
Q6. What was the degree of parallelism (number of workers) that achieved the short-

est execution time in the parallelized version?
Q7. How easily were you able to perform the activity?
Q8. What were your main difficulties in implementing parallelism in this activity?
Q9. If you have accessed any documentation/materials during the activity, please

provide the references or links used:
Q10. How helpful was the documentation/material?
Q11. Overall, how satisfied or dissatisfied are you with the parallel programming inter-

face used?
Q12. What are the reasons for your satisfaction or dissatisfaction?
Q13. How likely are you to recommend this parallel programming interface to friends

and colleagues?
Q14. What are the reasons why you would or would not recommend this PPI to friends

and colleagues?

in Figure 4.10. They have prior knowledge about parallel programming for cluster using

PPIs, such as MPI, OpenMPI and HPX (Figure 4.10). However, one of the students has only

theoretical knowledge about MPI. Only two students have experience with GPU. One of the

students has done simple classroom activities using CUDA, and the other has done class-

room activities using OpenACC and OpenCL and has done research activities with CUDA.

In addition, none of the students developed parallel applications to FPGA.
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Effectiveness analysis

In this study, the participants’ objective was to parallelize a video processing ap-

plication using CUDA, GSParLib, OpenACC, and OpenCL. Inicially, the study had six partici-

pants, whose were enrolled in the Heterogeneous Parallel Programming course. However,

only four students were able to complete the activity with correctness, where the parallel

application produced the same result as the sequential version.

Table 4.7 shows the average execution time obtained by the four participants.

CUDA was the PPI that provided the best performance based on a sequential application

execution time of 165.94 seconds (average of the four participants). On the other hand,

when using OpenACC the participants had the worst results regarding performance. This

happened because the execution time with OpenACC was five times longer than the se-

quential version for one of the participants because he was not able to implement GPU op-

timizations using this interface. Despite the poor result regarding OpenACC performance,

this participant was considered able to complete the activity because the parallel appli-

cation produced the correct result for the Animal Rescue problem, which was the same as

the sequential application. However, since the sample size is very small (four participants)

further study is needed to conclude which interfaces provide the best performance since

CUDA, GSParLib, and OpenCL showed close speedups.

Table 4.7: Results (mean and standard deviation) of the execution time, SLOC and devel-
opment time for the GPU study.

CUDA GSParLib OpenACC OpenCL

Execution time (s)
Mean 4.35 5.67 146.06 4.75
σ 2.09 4.67 261.14 3.17

SLOC
Mean 999.75 1005.25 803.00 998.50
σ 481.38 189.82 183.48 288.51

Development time (hr)
Mean 18.33 6.17 9.25 9.25
σ 3.56 5.45 4.27 5.74

Productivity analysis

The metrics used to evaluate the productivity were SLOC and development time

measured in hours. Table 4.7 presents the mean and standard deviation of the four grad-

uate students’ results for the SLOC and development time. The results showed that Ope-

nACC required fewer SLOC to parallelize the application. On the other hand, GSParLib

required more SLOC, since the participants chose to use the Driven interface for paral-

lelization. GSParLib’s Pattern interface would have reduced the number of SLOC, as seen

in section 2.4.4. However, the participants chose the Driven interface over higher levels

of abstraction because of the flexibility to manipulate GPU resources.
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Table 4.8: P-value of the Shapiro-Wilk test and Students’ t-test.

GSParlib OpenACC OpenCL CUDA
p-value p-value p-value p-value

SLOC 0.3018 0.4050 0.1092 0.0622
Dev. time 0.5041 0.0657 0.4162 0.2041

GSParLib x
OpenACC

GSParLib
x OpenCL

GSParLib
x CUDA

OpenACC
x OpenCL

OpenACC
x CUDA

OpenCL x
CUDA

p-value p-value p-value p-value p-value p-value
SLOC 0.0212 0.9330 0.9733 0.0760 0.2885 0.9920

Dev. time 0.2992 0.0076 0.0052 1 0.0443 0.0099

The project size is usually related to the effort needed to develop it. However,

as can be seen, the shortest development time was achieved using GSParLib. CUDA also

requires fewer SLOC to parallelize the application than GSParLib and presents the longest

development time. Therefore, fewer SLOC does not indicate less development effort but

can be an indicator of verbosity. Nevertheless, averages of the SLOC and development

time alone can not determine which PPI is more verbose and provides the best productivity

and a hypothesis testing is necessary.

We performed the hypothesis test according to the methodology presented in

Figure 4.1. Initially, to verify which type of hypothesis test must be conducted (parametric

or non-parametric), we performed the Shapiro-Wilk normality test at the conventional sig-

nificance level (α) of 0.05 [224]. We chose this test because it is one of the most efficient

tests for all distribution types and can be used regardless of sample size [205].

The results in Table 4.8 shows that all samples have a normal distribution, since

for all cases the P-value is greater than α (in bold). Therefore, we performed a paired

Student’s t-test for two samples: GSParLib versus OpenACC, GSParLib versus OpenCL,

GSParLib versus CUDA, OpenACC versus OpenCL, OpenACC versus CUDA, and OpenCL

versus CUDA. Table 4.8 also shows the results achieved for the Student’s t-test at the

conventional α equal to 0.05. For the SLOC metric, the hypothesis test showed a significant

difference only between GSParLib and OpenACC (P-value = 0.212). Therefore, statistically,

it could only be confirmed that OpenACC is less verbose than GSParLib because in all other

cases the P-value is greater than α.

Regarding development time, when we analyzed only the average of the partic-

ipants, GSParLib required less development effort. However, the hypothesis test showed

no significant difference between the average development times for GSParLib and Ope-

nACC (p-value > α). This occurred due to the large data spread, as can be seen from the

standard deviation in Table 4.7. This result may have occurred due to the sample size,

which is composed of only four students. Therefore, more students are needed to ob-

tain more concise conclusions. Moreover, there is also no significant difference between
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OpenACC and OpenCL (P-value = 1) because the average development time required by

the participants to complete the activity was the same for both PPIs. For all other cases

(P-value < α), the hypothesis test showed that there is a significant difference between

the effort employed by the participants to perform the activity. These results confirm that

developing an application with CUDA requires more effort and lower productivity.

Satisfaction analysis

We performed qualitative and quantitative analyses to evaluate the participants’

satisfaction according to the methodology shown in Figure 4.1. For the qualitative analy-

sis, we constructed stacked charts. On the other hand, for the quantitative analysis, we

used the initial procedures of the GT methodology to perform a textual analysis of the

participants’ answers.

In the evaluation questionnaire (Table 4.6), the participants were asked which

PPI they found most challenging to complete the proposed activity, which provided the

most helpful documentation, which they were most satisfied using, and which they would

recommend for friends and colleagues to use. GSParLib was the easiest-to-use PPI for

developing applications for GPU systems from the participants’ opinion (Figure 4.11a), and

consequently the PPI with which the most students were satisfied to use (Figure 4.11c).

From a qualitative analysis we identified the main reasons for the participants’ satisfaction

with GSParLib, which can be seen in Figure 4.12. This library is already designed to make

it easier to develop applications by abstracting CUDA and OpenCL code. This advantage

was one of the main reasons reported by the students to justify their satisfaction with

GSParLib. In addition, the students pointed out that GSParLib provides several resources

to implement the parallel strategy, such as functions and synchronization.

The students also pointed out the verbosity of this interface as a negative point,

which may explain why parallel applications with GSParLib have more SLOC. Nevertheless,

Figure 4.11d shows that 75% of the participants find it very likely to recommend GSParLib

to others looking to develop parallel applications for GPU environments. In addition, Fig-

ure 4.11b shows that all participants felt the material available for consultation regarding

GSParLib made programming easier when using it.

CUDA was the most challenging PPI to use from the students’ opinion, as can

be seen in the Figure 4.11a. Nevertheless, most of the participants felt satisfied to use

it (Figure 4.11c). Figure 4.13 presents the main reasons for the participants’ satisfac-

tion. The students found CUDA easy to use, although it requires an initial learning curve.

Furthermore, they found it very powerful and very flexible to program. In addition, the

participants found CUDA simpler because it is similar to C, since it is an extension of this

programming language.
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(a) Participants’ difficulty level with GPU PPIs.
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(b) Participants’ satisfaction level with the material
available on GPU PPIs.
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(c) Participants’ satisfaction level with GPU PPIs.
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(d) Recommendation level of GPU PPIs by the par-
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Figure 4.11: Evaluating the satisfaction level of participants in a GPU study.
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Regarding the dissatisfaction with CUDA, the main reason reported was partici-

pants’ difficulty in restructuring the code to remove dependencies. The students also had

difficulties debugging the code, dealing with architecture-specific details, understanding

the programming logic, and choosing the parallelization strategy. Although, the documen-

tation available on CUDA was useful for doing the activity in the opinion of most partici-

pants (Figure 4.11b).

The participants had a lot of difficulties when programming with OpenACC and

OpenCL (Figure 4.11c). These were the interfaces that the students were least satisfied us-

ing (Figure 4.11c), and consequently were the least recommended by them (Figure 4.11d).

Only one student was somewhat satisfied with OpenCL because of its portability. On the

other hand, the other three participants pointed out several reasons for their dissatisfac-

tion with OpenCL, such as the lack of code readability and verbosity (Figure 4.14). Further-

more, students highlighted that they spent much time implementing the applications due

to OpenCL verbosity.

Regarding OpenACC, one student was somewhat satisfied because of its similar-

ity with OpenMP. On the other hand, Figure 4.15 shows that the other students reported

dissatisfaction with OpenACC due to their difficulty implementing GPU optimization, ma-

nipulating the code flexibly, and understanding the code generated. The main reason

for the lack of flexibility was that OpenACC is a very high-level PPI. Hence, it is not as

flexible as CUDA and OpenCL. Moreover, the students could not use the same parallelism
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Figure 4.14: Reasons for participants’ dissatisfaction with OpenCL.
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strategy used in the parallelized versions with CUDA and OpenCL, resulting in a higher

development effort.

4.3.3 Discussion and threats to validity

The results show that CUDA, GSParLib, and OpenCL effectively solved the activ-

ity given to the participants because all applications produced the output correctly and

reduced the execution time required. On the other hand, OpenACC presented the worst

results regarding performance. However, we have not aimed to evaluate the execution

time or the speedup achieved by the students when parallelizing the applications in this

empirical study since not all students advanced in this regard. They were beginning GPU

programming students, so they needed to learn about the architecture to perform opti-

mizations to get the best performance.

From the results, we conclude that GSParLib provides the best productivity in

developing parallel applications for GPU systems. GSParLib productivity occurred because

the library is designed to make it easier to develop applications by abstracting CUDA and

OpenCL code. This GSParLib feature was the main reason the students reported to justify

their satisfaction with using GSParLib. In addition, more students were satisfied with it

compared to the other PPIs. Therefore, we concluded that GSParLib provides the best

usability in developing parallel applications for GPU environments.

This empirical study has some threats to validity. The learning effect threatens

internal validity due to the order in which the participants use the PPIs: CUDA, OpenACC,

OpenCL, and GSParLib. Therefore, the development time of GSParLib may be affected

because the students already knew the target problem before using it. Another threat

to internal validity can be the self-assessment questionnaires used to collect students’

results, as they may report incorrect data. We cross-checked the students’ responses to

overcome this limitation.
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The developer profile can be also considered a threat to external validity since

the results cannot be generalized. However, our goal was to evaluate the learning of be-

ginning students in parallel programming for GPU (context-specific). Finally, the sample

size is a threat to the conclusion validity. Several lessons were learned from the qualitative

and quantitative results, although only four students may not be as statistically represen-

tative. This study was conducted remotely during the COVID-19 pandemic. The remote

activities during the pandemic period made obtaining participants for our empirical study

difficult, justifying the participant sample size. Therefore, it is necessary to conduct a new

experiment with a larger sample of participants to confirm this study’s results.

4.4 Final remarks

This chapter proposed improving the usability evaluation of PPIs. For this pur-

pose, we presented a methodology to encourage and support the conduct of experiments

with people in order to determine the usability of PPIs. The proposed methodology was

used to conduct two studies with graduate students. This methodology supported the

experimentation process in all stages of the experiments: planning, execution, and anal-

ysis of results. Therefore, our experiments were conducted more easily since we used

the proposed methodology to guide what should be done and how it should be done. In

addition, this methodology can also serve as a guide to other researchers in the parallel

programming field.

In this chapter, a controlled experiment was conducted to assess the usability

of three PPIs for expressing parallelism in stream processing applications that execute on

multi-core CPU environments: FastFlow, SPar, and TBB. From the results, we concluded

that SPar offered the best usability in developing stream processing applications for multi-

core systems. The results showed that SPar offers efficiency, the best productivity indi-

cators, and the highest user satisfaction. This occurred due to SPar’s annotation-based

programming model, which required a few code changes by the programmer. In addition,

our results may also help in teaching parallel programming because the participants were

beginners in this domain, and we identified the main challenges faced by them.

An initial study was also conducted to evaluate usability of four PPIs for explor-

ing parallelism in GPU environments: CUDA, GSParLib, OpenACC, and OpenCL. From the

results obtained we concluded that GSParLib provided the best usability in developing par-

allel applications for GPU environments. Our results showed that GSParLib obtained the

best productivity indicators and the highest user satisfaction, although it does not show

the best results regarding performance. However, the execution time results are very

close to CUDA and OpenCL. Therefore, GSParLib reduces the development effort without
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significant loss in performance. These initial results give indications that high-level ab-

stractions can reduce the effort of developing parallel applications.

The results showed that parallelizing applications for multi-core CPU environ-

ments requires less programming effort than for many-core GPU environments. The to-

tal development time, including all tasks performed by the 15 participants, was around

1.72 hours for FastFlow, 1.67 hours for SPar, and 2.17 hours for TBB. The efforts required

to parallelize applications in a multi-core environment were at least 64.83% lower when

compared to the GPU results. Although preliminary, these results confirm the ease of pro-

gramming for multi-core environments. In addition, FastFlow, SPar, and TBB are structured

PPIs, which may influence the ease of programming. Nevertheless, further investigation is

necessary since the results of only four students were considered in the GPU study. In ad-

dition, the applications evaluated in the studies for multi-core CPU and GPU are different.

Therefore, a new experiment is also needed to compare the effort required to develop a

parallel application for multi-core CPU systems versus many-core GPU systems.
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5. CODING PRODUCTIVITY METRICS EVALUATION

Coding productivity is a factor that, together with effectiveness and users’ sat-

isfaction, are indicators of usability [108]. Based on usability or productivity indicators,

it is possible to give improvement indicators for designing new parallel PPIs and refine

existing ones. As such, it is possible to continue increasing the abstractions of paral-

lelism and create better and simple-to-use PPIs without compromising the performance of

the applications. However, obtaining productivity indicators is time-consuming because

empirical studies such as those presented in Sections 4.2 and 4.3 must be performed.

Moreover, an experiment must be planned and executed, and finding a representative

sample of participants in the parallel programming domain is quite a challenge, as seen

in the initial study presented in Section 4.3. Coding metrics may not be the final solu-

tion, but they at least provide specific coding productivity insights that can be compara-

ble in certain parallel programming scenarios and taken into account for usability analy-

sis [31, 96, 188, 181, 172, 78, 170, 159, 82, 65].

Although coding metrics provide productivity indicators, they were designed for

general purposes without considering factors that impact the development of parallel ap-

plications, such as characteristics of the PPI, the programming model, and the target ar-

chitecture. We aimed to identify whether existing coding metrics provide valuable insights

for the parallel programming domain, as well as highlight their limitations. Therefore, one

of the research questions we aim to answer in this chapter is “how effective are existing

coding metrics for evaluating the coding productivity of parallel applications?”. Aiming to

answer this question, we selected a set of metrics commonly used to evaluate the coding

productivity of parallel applications, which we identified from a literature review presented

in Chapter 3.

From the literature review, we identified three types of commonly used coding

metrics, which are based on code size evaluation, complexity evaluation, and those that

estimate development effort. In Section 5.1, we present a study to evaluate the feasibility

of these coding metrics for assessing the coding productivity of parallel applications. This

section is a slightly modified version of the paper [9]1, in [9] the interested reader can

access the version in an article format.

Since we have identified metrics to estimate the effort and time required to de-

velop applications, the other research question we aim to answer in this chapter is: “How

accurate are the effort estimates produced by existing metrics when evaluating paral-

lel applications?”. Therefore, in Section 5.2, we aim to compare the development effort

estimated by a set of coding metrics with the actual effort spent by the programmers

to develop parallel applications. This section is a slightly modified version of the paper

1Assessing Coding Metrics for Parallel Programming of Stream Processing Programs on Multi-cores, 2021
Euromicro Conference on Software Engineering and Advanced Applications (SEAA) - ®2021 IEEE
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[12]2, in [12] the interested reader can access the version in an article format. Finally,

Section 5.3 presents the final remarks.

5.1 Assessing coding metrics for parallel programming

Different offline coding metrics have been used in parallel programming to ob-

tain productivity indicators. From the literature review (Section 3), we identified the met-

rics most commonly used by researchers in the parallel programming domain to eval-

uate programming productivity. There are metrics based on size code analysis (SLOC,

NOC, and TOC), complexity evaluation (CCN), and development effort estimation (Hal-

stead, COCOMO 81, and COCOMO II). Since these coding metrics are designed to evaluate

general-purpose software development, we aim to identify whether they provide helpful

information for the parallel programming domain and highlight their limitations and op-

portunities for improvement.

5.1.1 Methodology

In this study, we evaluated the use of SLOC, NOC, TOC, CCN, Information Flow

Complexity (IFC), Halstead and COCOMO II coding metrics applied to parallel program-

ming. Moreover, our evaluations did not consider COCOMO 81 because it is obsolete.

To evaluate these metrics, our experiments aim to verify the productivity of FastFlow,

Pthreads, SPar, and Intel TBB PPIs for multi-core systems in the development of the fol-

lowing C++ stream processing applications:

• Bzip2: It is an application designed for data compression and decompression in

Bzip2 format [82];

• Dedup: It is a PARSEC application designed to compress data streams based on the

deduplication method, where it combines local and global compression to achieve

high compression ratios [82];

• Denoiser: It is a filter application designed to restore digital images with salt and

pepper noise [6];

• Person Recognition: It is a video application designed to recognize people [81];

• Lane Detection: It is a video application designed for detecting road lanes on video

feeds [81].

2Analyzing Programming Effort Model Accuracy of High-Level Parallel Programs for Stream Processing,
2022 Euromicro Conference on Software Engineering and Advanced Applications (SEAA) - ®2022 IEEE
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We used SLOCCount3 tool to get SLOC and COCOMO, Notepad++4 to get NOC,

Lizard5 tool to get CCN and IFC, and Commented Code Detector (CCD)6 to get TOC and

Halstead’s measures. To compare the estimated development time between Halstead

and COCOMO II, we converted both measures to days needed to develop the applications.

Moreover, IFC and CCN were measured as the sum of individual complexities from each

function in the source code.

Table 5.1 presents the values of the cost drivers and scale factors used for COCOMO

II. These values were chosen because the applications evaluated in this study are data

compression and video processing applications, which require more than 95% of the main

memory due to the large volume of data they process. The parallel codes use more than

95% of the available processors to achieve high performance. The development team

has some experience developing these types of applications and has been able to use

the evaluated PPIs effectively and efficiently. In addition, the programmers could develop

3Available at: https://dwheeler.com/sloccount/.
4Available at: https://notepad-plus-plus.org.
5Available at: http://www.lizard.ws/.
6Available at: https://github.com/dborowiec/commentedCodeDetector.

Table 5.1: COCOMO II cost drivers and scale factors.

Post Architecture Model Early Design Model

Name Option Value Name Option Value

RELY Low 0.92 PERS Low 1.26

DATA Very high 1.28 RCPX Nominal 1

DOCU Nominal 1.00 PDIF High 1.29

CPLX High 1.17 PREX Very high 0.74

RUSE Nominal 1 FCIL Nominal 1

TIME Extra high 1.63

STOR Extra high 1.43

PVOL Low 0.87 Scale Factors

ACAP Very High 0.71 Name Option Value

APEX High 0.88 PREC High 2.48

PCAP Very high 0.76 FLEX Nominal 3.04

PLEX Very high 0.85 RESL Nominal 4.24

LTEX High 0.91 TEAM Very high 1.1

PCON Nominal 1 PMAT Nominal 4.68

TOOL Very high 0.78

SITE Nominal 1

SCED Nominal 1

https://dwheeler.com/sloccount/
https://notepad-plus-plus.org
http://www.lizard.ws/
https://github.com/dborowiec/commentedCodeDetector
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the applications without worrying about deadlines, since there were no deadlines for de-

livery to customers in this experimental study. For more details about the parameters of

COCOMO II, see Section 2.5.1 of Chapter 2.

5.1.2 Results analysis

Table 5.2 presents the results for each application implemented using the tar-

get PPIs, and the sequential version. Our results showed that SPar presented the lowest

number of SLOC, NOC, and TOC compared to the other PPIs for all applications evaluated.

This is because the SPar’s programming model requires only to insert annotations in the

code without major changes. Compared to the sequential version, the SLOC value is only

5.80% greater for Dedup, 4.31% greater for Lane Detection, and 6.62% greater for Per-

son Recognition. For Bzip2 and Denoiser, more code changes were required, where the

SLOC value increased by 35.34% and 28.40%, respectively. Bzip2 is an application for

compressing and decompressing data in the bzip format. This application required more

modifications in the code since it was necessary to implement two pipelines for it, one

for the compress stages (read, compress, and write) and one for the decompress stages

(read, decompress, and write) [82]. Similarly, Bzip2 application also required a greater

number of NOC and TOC than the other applications. In addition, NOC was not impacted

by the developers’ verbosity since it is not necessary to create any data structures to

parallelize the application using SPar .

There was a minor difference between the SLOC, NOC, and TOC values when

comparing the sequential version and the SPar version for Lane Detection and Person

Recognition. These results occurred because there is only the main function in the se-

quential versions of the Lane Detection and Person Recognition applications. Given the

programming model of SPar (annotation-based), it was not necessary to make many mod-

ifications to the codes to provide parallelism.

FastFlow and TBB showed similar results, as seen in Table 5.2. The greatest dif-

ference was for Dedup, where the SLOC, TOC, and NOC values are 38.75%, 35.40% and

36.25% lower for TBB. This is due to the structures required for building the Farm pattern

in FastFlow. However, both PPIs have similar programming models. For both FastFlow and

TBB, the application used similar data structures (class/struct) for each stage of the

Farm pattern. In addition, communication among the stages is also performed in a similar

way, where the current stage returns it as a pointer to be processed by the next stage

after processing a task. This number could be improved if the application would be written

using lambda functions [5, 244], but it does not prove better productivity.

As expected, Pthreads presented the worst result among the PPIs, with the high-

est value of SLOC, NOC, and TOC (Table 5.2). In the worst case, it achieved SLOC, NOC,
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Table 5.2: Results on productivity and complexity.

SLOC NOC TOC
CCN IFC

Sum Mean Sum Mean

Bzip2

Sequential 1327 35087 9592 288 24 1005 561.02
FastFlow 1991 54071 14184 431 12.3 5341 145.04
Pthreads 2312 61223 16199 473 21.5 6289 641.20
SPar 1796 49270 13148 392 26.1 5118 800.11
TBB 1868 51136 13732 404 13.9 7234 180.47

Dedup

Sequential 569 18346 3902 111 10.1 2960 59.41
FastFlow 1027 32688 6833 192 5.3 3726 8.60
Pthreads 1052 35243 7322 196 12.2 1164 139.69
SPar 602 20261 4313 119 10.8 3088 62.28
TBB 629 21121 4356 116 6.8 24 6.94

Denoiser

Sequential 176 7778 1590 28 5.6 30 11.55
FastFlow 243 9699 2006 35 2.9 643 3.55
SPar 226 9660 1942 34 3.4 792 42.34
TBB 271 10718 2195 39 2.6 592 5.20

Lane
Detection

Sequential 116 3344 979 13 13 0 0
FastFlow 166 4384 1256 22 3.1 49 8.54
Pthreads 360 9639 2187 41 3.2 888 23.33
SPar 121 3496 1024 13 13 0 0
TBB 168 4648 1331 22 2.4 49 6.53

Person
Recognition

Sequential 136 5064 1172 18 9 0 3.66
FastFlow 194 6586 1557 28 2.8 49 9.07
Pthreads 393 11250 2476 46 3.3 888 23.03
SPar 145 5687 1239 18 9 0 3.94
TBB 193 6808 1560 25 2.8 49 7.27

and TOC values 171.03%, 175.71%, and 113.57% greater than SPar, respectively. This is

because of its low-level programming model and programmers are required to explicitly

implement and manage parallelism techniques, strategies, and mechanisms. The paral-

lel stream processing applications execute as stream graphs composed of operators or

stages and FIFO communication queues [5]. Since Pthreads is an unstructured PPI, the de-

velopers must implement this communication manually through chained queues, where it

was necessary to manually create the mechanisms to order the insertion of the item into

the chained queues.

Although program length is used as a predictor of maintainability and reability

[31], it is not possible to predict how a parallel application will behave based on its length

alone. There are other factors that directly impact the development effort of parallel

applications. Relevant examples are programming model, architecture, and developers’

experience. Each of these factors has its own particular characteristics that impact on the

development effort differently. While experienced parallel programmers are more aware

of the problems faced, novice parallel programmers may not know to follow the correct

path for parallelizing the code. Moreover, code size alone does not guarantee that the
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application is concise and delivers better performance. Therefore, SLOC, NOC and TOC

are only useful for measuring the manual exercised effort of developers if they are used

together with other coding metrics.

Table 5.2 also presents the results of the CCN and IFC complexity metrics, in

which the complexity of an application is evaluated from its representation in a flowchart

(see Section 2.5.1 of Chapter 2). Our results show that the applications parallelized

with SPar present the smaller CCN for Bzip2 (36.11% greater than sequential), Denoiser

(21.43% greater than sequential), Lane Detection (same as sequential), and Person Recog-

nition (same as sequential). Dedup parallelized with TBB has CCN 2.52% lower than SPar.

It occurs because the CCN metric considers the annotations of SPar as nodes with possible

paths. Similarly as with the length metrics, Pthreads shows the worst result for the CCN

metric.

According to Felton et. al [62], a procedure or function with CCN value greater

than 10 can be problematic. The results in Table 5.2 shows that the average CCN per

function in the parallelized applications is highest for the Bzip2 and Dedup applications,

which are data compression and decompression applications. If we consider the sum of

the complexities of the functions of the application codes, all analyzed case obtained CCN

in such situation. It confirms that parallel applications are more complicated to implement.

Considering IFC, the results regarding complexity are different from those ob-

tained with CCN. For Bzip2, Lane Detection (same as sequential) and Person Recogni-

tion (same as sequential), SPar presented the smaller IFC. For Dedup, TBB presents the

smaller IFC, which is 99.22% lower than SPar. For Denoiser, Fastflow presents the smaller

IFC, which is 18.81% lower than SPar. Moreover, IFC presents results related to complexity

equal to zero. It occurs Lane Detection and Person Recognition applications, in which the

sequential application has only the main function. When parallelizing Lane Detection and

Person Recognition, the application structure is maintained because it is not necessary to

create any data structure to parallelize the application with SPar - we just need to insert

the annotations in the code. If the program contains only the main function in the code,

IFC is equal to zero even though there is a complexity in adding the parallel directives. In

order to get overcome this limitation, we calculated the IFC by considering the average

number of SLOC, fan-in, and fan-out.

Table 5.2 also presents the results for the average IFC. FastFlow presented the

smaller IFC for Bzip2, Dedup, and Denoiser. On the other hand, SPar continued to show

the lowest IFC for the Lane Detection and Person Recognition applications. However, SPar

complexity continued equal to zero only for Lane Detection application using IFC metric.

Moreover, IFC does not consider any parallelism factor when evaluating code. This metric

only considers the code size and flow in each function of the application. Despite the

results obtained, this metric did not prove to be as effective when evaluating parallel

applications.
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Figure 5.1a shows the results of Halstead’s development time. Results show that

SPar presents the smaller estimated development time for Bzip2, Dedup, Lane Detection,

and Person Recognition. Denoiser implemented with Fastflow has a estimated develop-

ment time 0.72% lower than SPar. Although very small, such difference is due to the

way the programming difficulty is calculated in Eq. 2.11 presented in chapter 2. While

the FastFlow version has more number of operands and total occurrences of operands

than the version implemented with SPar, the estimated programming difficulty is lower

for FastFlow. This may have occurred because the tool used to calculate the Halstead’s

measures does not consider the keywords of the PPIs such as operators. Thus, SPar and

FastFlow presented the same number of operators (n1 = 47).

Fig. 5.1b presents the results of COCOMO II for each application implemented

by the PPIs and the sequential version. Results shows that SPar presents the smaller

estimated development time using COCOMO II for all the applications. As COCOMO II

evaluates the development effort based on the SLOC and SPar presents the smallest SLOC

for all applications, SPar then should present the smallest development time. On the

other hand, Pthreads requires the larger times to develop a parallel application, as it has

the greater SLOC value in comparison to the applications with other PPIs.

Although we converted the development time estimated by Halstead and COCOMO

II to days, the metrics showed different results. Lane Detection required approximately 85

days to develop the SPar application, according to COCOMO II. On the other hand, accord-

ing to Halstead, Lane Detection could be developed in around one day (≈ 99.52% lower).

A complex application like this could not be developed from scratch in just one day, even

if the developer had several years of experience in C++ and SPar. These results occur be-

cause the Halstead model does not consider essential aspects of software development,

such as the developers’ profiles. Hence, COCOMO II seems to be a more complete model

than Halstead because COCOMO II considers some parameters in its evaluation, such as

the project’s complexity, the documentation, the experience and skill of the developer,
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Figure 5.1: Results of development time estimated using Halstead and COCOMO II metrics.
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and others. However, it was not developed to evaluate the development of parallel appli-

cations. In addition, COCOMO II considers that the application will be implemented from

scratch disregarding the insertion of parallel directives in the code. Therefore, further

investigation of this metric is necessary.

5.1.3 Discussion and threats to validity

In this study, we investigated and assessed different coding metrics applied to

parallel programming of stream processing applications on multi-cores systems, consider-

ing different well-known PPIs. From these PPIs, SPar showed the best results in the most

coding metrics used. We conclude that the values of SLOC, NOC and TOC tends to be

lower with the SPar programming model since it requires minor code changes due to its

high-level abstraction. CCN has been more effective than IFC for measuring the complex-

ity of a parallel program since none of the metrics consider parallel directives. However,

both proved to be limited when evaluating parallel applications because, in some cases,

the complexity of the parallel applications was lower than the complexity of the sequential

application. A possible cause of the CCN and IFC results is how these metrics evaluate the

complexity of applications, which should be represented as a flow graph.

Halstead’s measures are widely used in the parallel programming literature [65,

125, 130, 143, 146, 164, 184, 192, 196, 194, 195, 209]. This metric can help determine

code size (TOC), programming difficulty, and development effort. This metric is based only

on analyzing operators and operands in the code to perform its estimations. However,

there is yet to be a consensus on what should be considered an operator or operand in

a code. In addition, there is yet to be a consensus on whether the keywords of parallel

programming models should be evaluated as code operators. However, further analysis

of the Halstead metric is required.

COCOMO II proved to be the most promising metric for evaluating the produc-

tivity of PPIs. Unlike other metrics, COCOMO II has a collection of cost drivers and scale

factors to be calibrated according to the software development cycle in order to estimate

the programming effort. Moreover, only the CPLX cost driver considers the evaluation

of task synchronization operations and complex parallel computing operations. There

are other COCOMO II cost evaluation factors as seen in Chapter 2, such as the skills of

the programmers (PCAP), the programmer’s experience in developing applications similar

to the target application (APEX), the programmer’s knowledge of the target architecture

(PLEX), and the programmer’s expertise in using the target languages and tools (PLEX).

However, COCOMO II considers that the application will be implemented from scratch.

There are other COCOMO II variations called reuse and maintenance models presented in

Chapter 2. COCOMO II reuse model was designed to evaluate development from existing



127

applications. While the maintenance model was build to estimate the effort required to

implement improvements or corrections to already developed software. In the literature

review, we identified only one study using the COCOMO II reuse model to evaluate GPU

programming effort [177]. Therefore, it is still necessary to investigate the use of these

COCOMO variations in parallel application evaluation.

Despite the results provided in this section, some threats to validity remain. The

learning effect can threaten internal validity because we specified no order for the use of

the PPIs evaluated. Another threat to internal validity relates to instrumentation, such as

using the CCD tool, which does not recognize PPI keywords as operators. The study design

can be a threat to construction validity because FastFlow, SPar, and TBB are pattern-

based PPIs, unlike Pthreads. Finally, a threat to the conclusion validity is the size of the

applications evaluated, although they are real-world stream processing applications.

5.2 Productivity Estimation with Cross Analysis

In the previous section, the results obtained showed that while code metrics

based on code size and complexity can be helpful for evaluating PPIs, it is impossible to

predict the effort required to develop a parallel application based on these factors alone.

Other factors influence the parallel development cycle, such as the development environ-

ment, and developer experience. Thus, Halstead and COCOMO II showed more promise

for evaluating PPIs, although they also have limitations. In this section, we presented a

initial efforts to overcome some of these limitations. We proposed an approach to evalu-

ate parallel applications using Halstead and a refined version of COCOMO II reuse model.

There are other predictive metrics that, to our knowledge, have not yet been used to eval-

uate parallel applications: FPA, Planning Poker, Putnam, SEER-SEM, and UCP. Therefore,

the goal of this study is to evaluate the accuracy of such metrics compared to the actual

effort required to develop parallel stream applications using FastFlow, SPar, and TBB.

5.2.1 Development Effort Metrics for Parallel Programming

Parallel Halstead

In the Section 5.1, we used the CCD7 tool to obtain Halstead’s measures [9]. This

tool allows the analysis of code written in the C, C++, and Java programming languages.

However, we identified some limitations while using it to evaluate parallel stream pro-

cessing applications developed in C++. There is a lack of user support since CCD has not

7Available at: https://github.com/dborowiec/commentedCodeDetector.

https://github.com/dborowiec/commentedCodeDetector
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received updates since 2014. This is a CCD limitation because the C++ language has re-

ceived two update versions since 2014 (C++17 and C++20), in which new attributes and

operators have been added. In addition, the CCD tool does not consider any of the PPIs’s

keywords as operators (e.g., spar, ff_node, tbb, and pipeline), because its focus is not

on evaluating parallel applications. Figure 5.2a illustrates the operand and operator count

performed by the CCD tool for the SPar interface, where all SPar keywords are considered

as operands (in red). However, since C++ keywords can be considered as operators [53],

we also consider the keywords of the PPIs as operators.

From the literature review, we have identified 14 studies using Halstead’s mea-

sures to evaluate PPIs. However, only two of them cited the tools used for this purpose.

CMetrics8 tool was used by [192, 184], which is a tool to measure SLOC, CCN, and Halstead

development effort in applications developed with C programming language. There are

other more recent tools for getting Halstead measurements on code written in C++, such

as Testwell CMT++9 and IBM Rational Test RealTime10. However, like the CCD tool, these

other tools were not developed to evaluate parallel code. To overcome these limitations,

we developed the Parallel Halstead (PHalstead)11 tool, a Python script to obtain Halstead’s

measures in C++ applications parallelized with FastFlow, SPar, TBB. Figure 5.2b illustrates

the operands and operators count performed by the CCD tool for the SPar, where all SPar

keywords are considered as operators (in blue), as well as the C/C++ keywords. In ad-

dition, the current version allows the analysis of Java code parallelized using Flink and

Storm, and C/C++ applications parllelized with GrPPI, OpenMP, and C++ threads.

1. [[spar::ToSt ream]]
2. while (1){
3.     / /   computat ion
4.     [[spar::Stage,spar::Input (item),spar::Output (item),spar::Replicate(4)]]{
5.          / /   computat ion
6.    }
7.    [[spar::Stage,spar::Input (item)]]{
8. / /  computat ion
9.   }
10.}

Pipeline using SPar

OperatorOperand

(a) Operators and operands from Halstead metric.

1. [[spar::ToSt ream]]
2. while (1){
3.     / /   computat ion
4.     [[spar::Stage,spar::Input (item),spar::Output (item),spar::Replicate(4)]]{
5.          / /   computat ion
6.    }
7.    [[spar::Stage,spar::Input (item)]]{
8. / /  computat ion
9.    }
10.}

Pipeline using SPar

OperatorOperand

(b) Operators and operands from PHalstead metric.

Figure 5.2: Difference between Halstead and PHalstead.

Parallel COCOMO II Reuse Model

From the results presented in the Section 5.1, we identified COCOMO II as a good

metric for evaluating parallel applications [9]. However, some of its parameters are not

8Available at: https://github.com/MetricsGrimoire/CMetrics.
9Available at: http://www.verifysoft.com/en.html.

10Available at: https://help.blueproddoc.com/rationaltest/rationaltestrealtime/8.3.0/index.html.
11Available at: https://github.com/GMAP/phalstead .

https://github.com/MetricsGrimoire/CMetrics
http://www.verifysoft.com/en.html
https://help.blueproddoc.com/rationaltest/rationaltestrealtime/8.3.0/index.html
https://github.com/GMAP/phalstead
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usually applied in the development cycle of parallel applications. Some efforts have been

made by Wienke et al. [248] in order to extend COCOMO II to evaluate parallel appli-

cations. However, this model is challenging to apply in practice because it uses linear

regression and the dataset used was not available. In addition, it is not easy to translate

the parameters of COCOMO II to the parallel programming scenario [159].

In this study, we also make an initial effort to refine the COCOMO II reuse model.

Initially, we identified some scaling factors without impacting the development cycle of

parallel applications. The scale factors identified were the following:

• RESL: evaluates whether there is good support for resolving risks;

• TEAM: evaluates the cohesion of the development team;

• PMAT: evaluates the CMMI maturity level.

.

To do our modification, we removed these three scale factors from the Eq. 2.23,

which is used to generate the S scaling exponent. In other words, the new set of scale

factors will consist only of the following scale factors:

F new = {PREC, FLEX} (5.1)

. Consequently, the new equation to calculated the S scaling exponent will be:

5∑
j=1

F new
j = PREC × FLEX (5.2)

S = B + 0.001 ×
5∑

j=1

F new
j (5.3)

Since the reuse model applies only the cost drivers of the post-architecture model,

we also identified some of these cost drivers that are not relevant in parallel application

development:

• RUSE: evaluates whether the project is designed to generate components to be

reused;

• ACAP: evaluates the software analysts’ ability to analyze and model applications,

efficiency, and effectiveness;

• PCON: evaluates the percentage of developer changes in a one year.
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To do this modification, we removed the three cost drivers identified from the

multiplication performed in Eq. 2.24. Thus, the new set of cost drivers M to be used is:

Mnew = {RELY , CPLX , DATA, DOCU, TIME , STOR, PVOL,

ACAP, PCAP, APEX , PLEX , LTEX , TOOL, SITE , SCED}
(5.4)

Consequently, the new equation to calculate the development effort will be:

n∏
i=1

Mnew
i = RELY × CPLX × ... × SCED (5.5)

Effort = A × KSLOCS ×
n∏

i=1

Mnew
i (5.6)

We refer to this modification of the COCOMO II Reuse model, which does not

include these cost drivers and scale factors in its evaluations, as the Parallel COCOMO II

Reuse Model (PCRM).

5.2.2 Methodology

We aimed to evaluated the accuracy of development effort estimation models ap-

plied to the parallel programming domain: Putnam’s model, Halstead’s measures, PHalstead,

COCOMO II using early design and post-architecture models together, COCOMO II using

post-architecture model alone, COCOMO II reuse model, COCOMO maintenance model,

PCRM, FPA, UCP, SEER-SEM, and Planning Poker. For the COCOMO II, we did not use the

early design model alone because the applications developed are not in the design phase

since the architecture was already defined (multi-core).

We used the following tools to measure the code metrics: CCD to get Halstead,

PHalstead12 to get Halstead, SLOCCount to get COCOMO II variations, Function Point Cal-

culator13 to get FPA, Use Case Point Calculator14 to get UCP, SEER-SEM 8.415 trial version,

and a spreadsheet for the other metrics. We used the modified Fibonacci sequence (0, 1/2,

1, 3, 5, 8, ...) for the Planning Poker method to perform the estimation. The Planning Poker

estimates were obtained by averaging the guesses of three stream processing experts. In

addition, for Putnam’s model we considered a development environment with adequate

12Available at: https://github.com/GMAP/phalstead.
13Available at: https://w3.cs.jmu.edu/bernstdh/web/common/webapps/oop/fpcalculator/

FunctionPointCalculator.html
14Available at: http://groups.umd.umich.edu/cis/tinytools/cis375/f17/team9-use-case-pts/Use_Case_

Point_Calculator/
15Available at: https://galorath.com/seer-for-software/.

https://github.com/GMAP/phalstead
https://w3.cs.jmu.edu/bernstdh/web/common/webapps/oop/fpcalculator/FunctionPointCalculator.html
https://w3.cs.jmu.edu/bernstdh/web/common/webapps/oop/fpcalculator/FunctionPointCalculator.html
http://groups.umd.umich.edu/cis/tinytools/cis375/f17/team9-use-case-pts/Use_Case_Point_Calculator/
http://groups.umd.umich.edu/cis/tinytools/cis375/f17/team9-use-case-pts/Use_Case_Point_Calculator/
https://galorath.com/seer-for-software/
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documentation and reviews (8000), and and there is no use of automated development

tools and techniques.

We applied each metric described above to estimate the time required to de-

velop the RGB channel extraction application, described in the Section 4.2.1. To compare

the results, we converted the times estimated by each of the metrics to development

hours. According to Boehm et al. [26], we considered 152 working hours per month al-

ready excluding weekends and holidays. To evaluate the accuracy, we used the data

of the experiment conducted with beginners in parallel programming presented in Sec-

tion 4.2. Therefore, we compared the actual development time with that estimated by

each model. For this purpose, we used MMRE and PRED accuracy metrics [198].

5.2.3 Results analysis

Table 5.3 presents the average of SLOC, ASLOC and MSLOC for the RGB channel

extraction applications developed using FastFlow, SPar, and TBB. Our results showed that

SPar presented the lowest number of SLOC. Compared to the sequential application, the

SLOC value is only 6.66% greater for SPar. As seen in this table, SPar requires adding

only five lines (average) to explore the parallelism. In addition, only two lines (average)

were modified in the original application to parallelize it using SPar. These results occurred

because of the high-level abstraction provided by SPar’s annotation-based programming

model. On the other hand, for FastFlow and TBB more code changes were required, where

the SLOC value increased by 44% and 57.33%, respectively.

Table 5.3 also shows the average time taken by each of the 15 participants to

implement stream parallelism. These results showed that SPar requires less effort to de-

velop parallel stream processing applications than the other PPIs (see Section 4.2). Table

5.3 also shows the average development times estimated by each of the models used in

this study. To verify the accuracy, we converted the development times estimated by each

metric into development hours. This time represents the average estimated development

time from the applications developed by the participants using FastFlow, SPar, and TBB.

The Planning Poker metric got the best result than the other estimation met-

rics. However, the estimated value is considered acceptable only for FastFlow and TBB.

Table 5.4 shows the MMRE, MdMRE, and PRED for these results. According to Port and

Korte [198], MMRE and MdMRE less than or equal to 0.25, and PRED greater than or equal

to 0.75 are values considered an acceptable accuracy level for models and effort estima-

tion [198] (see Section 2.5.2 of Chapter 2). The estimated development times for SPar are

close to the actual times, although they do not meet the accuracy criteria. These results

occurred because we obtained Planning Poker estimations from the opinions of three pro-

grammers experienced in developing stream processing applications. This also explains
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Table 5.3: Results obtained for the number of SLOC (total, added and modified), as well as
the actual development time (in hours) and the estimated development times for each of
the metrics evaluated (in hours).

Code Metric Sequential FastFlow SPar TBB
SLOC 75 108 80 118
ASLOC - 33 5 43
MSLOC - 21 2 20
Actual development time - 1.72 1.01 2.17
COCOMO II (post-archit.) 264.34 570.44 525.75 582.90
COCOMO II (early and post-archit.) 198.24 550.12 507.74 562.11
COCOMO II maintenance model - 506.81 287.41 526.80
COCOMO II reuse model - 428.50 253.15 454.30
Parallel COCOMO II reuse model - 447.32 267.69 473.57
FPA - 127.54 101.62 137.32
PHalstead - 12.96 9.18 13.74
Planning Poker - 1.00 0.50 2.00
Putnam’s model - 195.06 171.20 202.05
SEER-SEM 31.00 58.07 42.60 63.33
UCP - 162.06 129.72 175.14

why the estimated time for FastFlow and SPar was shorter than that of beginner develop-

ers. Since the experts are already used to developing this type of application, they thought

they would need less effort to develop the evaluated video processing application.

The results show that PHalstead’s development effort was the second-best result,

although it does not meet the accuracy criteria (MMRE and MdMRE ≥ 5.59 and PRED = 0).

This metric considers only the number of tokens in its evaluation without considering any

factors that impact the development effort of parallel applications. Therefore, this metric

can help measure code size, just as the SLOC.

The FPA and UCP models showed similar results, where both did not meet the ac-

curacy criteria (MMRE and MdMRE ≥ 67.92 and PRED = 0). This behavior is because these

models were designed to evaluate user interaction systems in which there is an interface

where users enter, delete, and query data. They also do not consider any aspect of the

programming language used, so they are not suitable for evaluating parallel applications.

Putnam’s model showed results close to FPA and UCP (MMRE and MdMRE ≥
100.26 and PRED = 0). Despite this, the evaluation of Putnam’s model differs from the

FPA and UCP models. It uses the Productivity Parameter (PP) obtained through develop-

ment effort, development time, and SLOC of previously developed applications. However,

we use the PP value suggested by Pressman [200], which was applied in the Equation 2.7

to estimate the minimum time required to develop the target application. The PP value

may have been a factor that increased the estimated development time. If we consider

an ideal development environment (PP equal to 11000) the development time reduces by

about 13%: 149.29 hours for SPar, 170.10 hours for FastFlow, and 176.20 hours for TBB.
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Table 5.4: Accuracy results for the development times estimated by each of the code
metrics evaluated using MMRE, MdMRE, and PRED metrics.

FastFlow SPar TBB
MMRE MdMRE PRED MMRE MdMRE PRED MMRE MdMRE PRED

COCOMO II
(post-archit.)

533.68 420.49 0.00 600.63 573.93 0.00 442.27 297.98 0.00

COCOMO II
(early and post-
archit.)

511.71 388.83 0.00 577.85 572.82 0.00 427.99 283.84 0.00

COCOMO II
maintenance
model

472.12 374.99 0.00 330.96 319.74 0.00 398.90 268.42 0.00

COCOMO II
reuse model

398.97 321.54 0.00 291.19 286.27 0.00 344.74 229.29 0.00

Parallel CO-
COMO II reuse
model

416.46 342.60 0.00 307.65 302.07 0.00 358.94 238.50 0.00

FPA 133.02 96.57 0.00 115.25 107.72 0.00 102.61 67.92 0.00
PHalstead 11.11 10.04 0.00 9.54 8.37 0.00 9.61 5.59 0.00
Planning Poker 0.53 0.71 1.00 0.50 0.50 0.00 0.31 0.08 2.00
Putnam’s
model

182.61 146.93 0.00 195.10 182.30 0.00 151.74 100.26 0.00

SEER-SEM 53.38 46.82 0.00 47.79 45.01 0.00 46.97 30.62 0.00
UCP 169.29 122.98 0.00 147.40 137.78 0.00 116.07 86.90 0.00

However, the actual development time of the RGB channel extraction application remains

about 99% shorter than the values estimated by Putnam’s model.

The worst results were observed with the traditional COCOMO II, using the cost

drivers of the post-architecture model and early design and post-architecture models to-

gether. The conventional COCOMO II estimates the effort required to develop an appli-

cation from scratch [9]. Therefore, we already expected that these results would be

higher than the actual ones (MMRE and MdMRE ≥ 283.84 and PRED = 0). As seen in

Section 2.5.1, the original COCOMO II model evaluates the effort to develop software from

scratch. Therefore, we used the COCOMO II maintenance and reuse models to address this

limitation because the developers implemented the parallel applications from a sequential

application rather than from scratch.

The COCOMO II reuse model showed better results compared to the maintenance

model. There is still a big difference between the development time estimated by the

reuse model and the actual development time (MMRE and MdMRE ≥ 229.29 and PRED =
0). Therefore, we refined the reuse model, removing the cost drivers and scale factors that

do not apply to parallel application development. However, this increased development

time because adapting existing models to the parallel programming domain is a complex

task. It is not possible to just remove some of their parameters.
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The SEER-SEM method considers several factors that impact the software devel-

opment cycle in its evaluation, such as complexity and effective technology. SEER-SEM

also uses a database of already developed software to calibrate its parameters, requiring

further analysis. There are video processing applications in its database, but not parallel

applications. Refrain from considering such applications in its evaluations may be one of

the reasons why the model also fails to estimate a development time close to the real one

(MMRE and MdMRE ≥ 30.62 and PRED = 0). In addition, this is a proprietary tool, making

it difficult to adapt for parallel programming evaluation.

5.2.4 Discussion and threats to validity

Our results showed that Planning Poker showed the best results because it relies

on the experts’ opinions to guess the development effort. However, finding professionals

to apply this method in practice can be challenging. On the other hand, using PHalstead

can be an alternative for studies where it is impossible to conduct controlled experiments

with students and parallel application developers. PHalstead has proven to be a helpful

metric for evaluating parallel code, although it does not get the best results. The current

PHalstead version considers other PPIs, such as GrPPI, OpenMP, C++ threads, Flink, and

Storn. In the future, we aim to extend PHalstead to consider other PPIs, such as Pthreads

for multi-core programming and CUDA, OpenCL, OpenACC, and GSParLib for heteroge-

neous programming.

Putnam’s model has yet to prove a suitable method for estimating the effort to

develop parallel applications, which use data from previously developed applications to

calibrate its PP parameter. Our results showed that a better development environment

tends to increase the PP value, and consequently reduce the estimated development time.

However, the development time estimated by Putnam’s model continued at about 99%.

These results may have occurred due to the PP value used, which was established by

Pressman [200]. In their original model, Putnam and Myers [201] suggested deriving the

PP value from the development time, effort, and SLOC of previously developed projects.

However, the development effort also depends on the PP value to be estimated (Equa-

tion 2.6). Therefore, we chose to estimate the minimum development time in this study,

which does not consider the development effort in its equation (Equation 2.7). Deriving

the PP value from other projects can be a challenge since there is no available dataset

composed of such data. In addition, the main Putnam’s limitation is to evaluate the de-

velopment time of an application based on the code size [215], which analysis performs

better for larger projects [141].

SEER-SEM uses a similar technique to calibrate its parameters, although this

method did not show the best result. Several public domain data sets are available in the
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software engineering area to evaluate the effort estimation models. However, no such

data set is available in the parallel programming domain, making it difficult to use and

evaluate these techniques. A data set is also important to make it easier for researchers

in the parallel programming area to propose new methods for estimating development ef-

fort. This avoids the need to perform further experiments to validate these metrics, which

is a time-consuming process.

Our results showed that the actual time to develop an RGB channel extraction

application using SPar, FastFlow and TBB is about 99.6% less than the values estimated

by the different variations of COCOMO II evaluated. Since the parallel applications evalu-

ated were developed from sequential applications, we evaluated the use of the COCOMO

II reuse and maintenance models. However, the actual development time remained about

99.6% less than the values estimated by reuse and maintenance model. Since the devel-

opment cycle of parallel applications could be one of the reasons for these results, we have

identified some cost drivers and scale factors without impacting the development cycle of

parallel applications. Despite our efforts, our adaptation of the COCOMO II reuse model

(PCRM) was not suitable for parallelization using high-level PPIs since the estimated effort

is much higher than the actual effort. Moreover, refining its parallel application develop-

ment scenario parameters is difficult. Therefore, creating a parallelism-sensitive model

(e.g. a COCOMO extension) to evaluate applications in this domain is necessary since

its development involves factors that are not addressed by the models considered in this

chapter.

This study has some threats to validity. The learning effect is a threat to internal

validity because of the order in which the participants use the PPIs. Therefore, the time

spent by the participants developing applications using FastFlow may have been affected

since two of the three groups already knew the target problem before using it. In addition,

there is no control group since the three groups used all three PPMs (construct validity).

The study design is a threat to construct validity because SPar is an annotation-based

PPI, unlike FastFlow and TBB. The application size is another threat to construct validity,

although it is a standard application in real-world stream processing. In addition, the

sample size of 15 participants and the participants’ experience level are threats to the

conclusion validity. Therefore, it is not possible to generalize the results.

5.3 Final remarks

In this chapter, we aimed to evaluate the feasibility and accuracy of coding met-

rics for assessing productivity when applied to the parallel programming domain. Initially,

we presented a study aimed at evaluating the feasibility of coding metrics commonly used

to assess productivity in parallel programming: SLOC, TOC, NOC, CCN, IFC, Halstead, and
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COCOMO II. Our results showed that while code metrics based on code size and complex-

ity can be helpful for evaluating PPIs, it is difficult to predict the effort required to develop

a parallel application based on these factors alone. On the other hand, Halstead and

COCOMO II showed promise for evaluating parallel applications development, although

they also have some limitations. Therefore, we proposed variations of these metrics to

overcome some of these limitations, called PHalstead and PCRM.

To evaluate the proposed modifications, we conducted a second study to deter-

mine their accuracy against the actual effort required to develop parallel stream appli-

cations using FastFlow, SPar, and TBB. In addition, we compared the results with other

predictive metrics that have not yet been used to evaluate parallel applications: FPA,

Planning Poker, Putnam, SEER-SEM, and UCP. Our results showed that Planning Poker was

an approach that showed the most promising results among the metrics evaluated. This

metric showed the best development time estimation results over the other estimation

metrics evaluated. The Planning Poker accuracy was because its estimates were derived

from experts’ opinions in parallel stream processing applications. In addition, these results

showed that the developer’s expertise can directly influence the development effort.

PHalstead has proven a helpful metric for evaluating parallel code, although it

does not get the best results. Our results showed that this metric could be a simpler

alternative for estimating the development time of parallel applications because it is based

only on source code analysis. Unlike Planning Poker, it is not necessary to consider the

opinion of other developers to use PHalstead. Moreover, it is simple since the user should

only inform the source code and the interface targeted for analysis as input to this metric.

PCRM proposed was not suitable for parallelization using high-level PPIs since the

estimated effort is much greater than the actual effort. Moreover, refining the COCOMO

II parameters to evaluate the development effort of parallel applications is a challenge.

Therefore, creating a parallelism-sensitive model to evaluate applications in this domain

is necessary since its development involves factors that are not addressed by the models

considered in this chapter. Such factors may include programmer experience, architec-

ture, and programming model [248]. Performance of applications is another idea from

Wienke et al. [248] that can be included in these factors as well as the number of activi-

ties that will be executed simultaneously or even the amount of data shared and accessed

concomitantly between threads. Therefore, in the next chapter, we will survey parallel

application developers in order to identify the factors that most impact the development

effort of such applications. By identifying these factors, we can propose and design a new

model to estimate the effort of parallel application development.
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6. PRODUCTIVITY SURVEY RESEARCH

In the last chapter, we discussed the limitations of standard offline coding metrics

for evaluating the programming productivity of parallel applications. From the preliminary

investigation presented in Section 5.1, we can conclude that the assessed metrics are

not suitable for evaluating the usability of parallel applications. However, these metrics

can be improved and used in parallel programming. SLOC, NOC, and TOC are valuable

metrics for measuring code size. However, they have limitations in providing productiv-

ity indicators in developing parallel applications because the development of this type

of application involves other factors besides the code size. Similarly, CCN and IFC are

not effective metrics for measuring the complexity of parallel programs because none of

these metrics consider the complexity of the parallel directives. Therefore, in Section 5.2,

we proposed some modifications to Halstead and COCOMO metrics because we identified

some potential to evaluate parallel applications, which were called PHalstead and PCRM.

PHalstead has proven to be a helpful metric for evaluating parallel code than PCRM, al-

though it does not get the best results compared with Planning Poker. Despite our efforts,

the PCRM was not suitable for parallelization using high-level PPIs since the estimated ef-

fort is much higher than the actual effort. Moreover, it is not easy to refine its parameters

for the parallel application development scenario.

Creating a parallelism-sensitive model to evaluate applications in the parallel

programming domain is necessary since its development involves factors that are not ad-

dressed by the models considered in the last chapter. Relevant examples are the PPI used,

the programming model, and the target architecture because each of these factors has its

own particular characteristics that influence the development effort differently. For exam-

ple, programming with Pthreads requires several subroutines for threads management,

synchronization, and mutex [28]. On the other hand, in OpenMP, there are directives to

control the distribution of tasks among threads [149]. In structured parallel programming,

there are concerns that are not considered in non-structured parallel programming. For

example, a developer must be aware of the communication between data channels where

the output of one stage feeds the input of the next stage [5]. In addition, the scheduling

on multi-core CPU is easier, due to flexible PPIs that bind the threads to a specific core.

However, on the many-core GPU this task is more complicated due to the hierarchy of

threads, in which some threads compose a warp, some warps compose a block of threads,

and some blocks of threads compose a grid [253].

In this context, this chapter presents an international survey research to iden-

tify “what are the factors impacting the coding productivity of parallel applications?”. In

parallel programming, different surveys and interviews have already been conducted to

determine the community’s opinion on a specific issue. Meade et al. [154] conducted an

exploratory study and a survey to investigate the tools and practices used by experts to
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perform data decomposition when parallelizing applications. Meade et al. [153] also con-

ducted a multi-method empirical study (interview study, participant-observer case study,

focus group study, and a sample survey) to understand the task of data decomposition

as part of applications parallelization and identify the main requirements for tools to as-

sist developers in this task. In [138], a survey was conducted to discover the energy and

power-aware job scheduling and resource management techniques used in nine HPC cen-

ters in the United States, Europe, and Asia. Amaral et al. [7] conducted a survey with

experts to evaluate the mapping study results that address High-Performance Modeling

and Simulation for Big Data applications. Ferdinandy et al. [63] conducted a survey with

researchers not in the Information and Communication Technology field to identify the

main advantages and drawbacks these researchers face when having their first contact

with HPC.

Lynn et al. [133] identified the determinants of cloud computing adoption for HPC

by surveying 121 HPC decision-makers worldwide. Schlagkamp and Renker [219] used a

questionnaire survey to investigate cluster users’ satisfaction regarding the waiting time

required to execute parallel applications. Schlagkamp et al. [218] also investigated sev-

eral influences on the work behavior of computer cluster users based on the Computer

Cluster User Habits Questionnaire (QUHCC), including the impact of slow responses on

work times, strategies for dealing with high contention and poor performance, user expe-

rience, and user satisfaction. In [23], a survey was conducted to identify the use of MPI

among applications and software technology efforts in the United States Exascale Com-

puting Project. Hori et al. [102] conducted an international online questionnaire survey to

analyze the adoption of MPI in parallel application development.

Regarding parallel programming productivity, Danis et al. [47] interviewed tool

developers to identify the tools that offered the most significant potential to increase pro-

grammer productivity. Based on these interviews, Danis et al. [47] created a spreadsheet

related to tools, availability, users, and workflows to guide the development of their CM

approach (presented in Chapter 3), which is based on the number of steps to complete

a given task, the number of context changes, and the working memory load required at

each step. Wienke et al. [248] performed a series of surveys with experienced developers

to identify the factors that most impact the development of parallel applications. From the

survey results, Wienke et al. [248] made an initial effort to propose a model to estimate

the effort required to develop parallel applications based on COCOMO II (presented in the

Chapter 3). Although the results of Wienke et al. [248] provided valuable insights into par-

allel productivity, the COCOMO II extension is only a conceptual model and cannot be used

in practice. Therefore, creating a parallelism-sensitive model to evaluate applications in

this domain is still necessary.

Our survey also focuses on identifying factors that impact the productivity of

parallel application development. However, differently from Wienke et al. [248], we also
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aim to discover “what can be done to increase developer productivity?”. In addition, we

also aim to find the PPIs that can increase the productivity of novice and experienced

developers. This chapter is an updated version of the paper [10]1, in [10] we considered

only the Brazilians’ opinion. In addition, this survey was approved by the PUCRS research

ethics committee with CAAE number 52635421.3.0000.5336.

Section 6.1 discusses the methodology applied to the survey in detail. Next,

Section 6.2 presents the quantitative and qualitative results. Finally, Section 6.3 presents

the final remarks.

6.1 Research method

From survey research, it is possible to statistically quantify the opinion of a cer-

tain population [72]. We aimed to discover the factors that prevent the development of

parallel applications productively from the developers’ opinion. For this purpose, our sur-

vey was built from three stages: planning, execution, and analysis of the results. Each of

the stages is detailed below. In addition, the study was approved by the PUCRS research

ethics committee.

6.1.1 Planning

The first stage of the survey research was the planning phase. To define the

research instrument we used the Goal Question Metric (GQM) approach [29], which is a

measurement system for planning which metrics will be used to interpret the data based

on a set of questions and specific goals. GQM is a hierarchy with three levels, as shown

in Figure 6.1: measurement goals (G), questions (Q), and evaluation metrics (M). In this

survey, three goals were defined based on this approach:

• G1: Identify the factors that impact the development effort of parallel applications;

• G2: Profile parallel application developers;

• G3: Classify the parallel applications developed.

Table 6.1 presents the 18 questions derived from the goals. The questionnaire

have two types of questions: closed-ended questions (Q1 to Q13), and open-ended ques-

tions (Q14 to Q18). Closed-ended questions were classified as single answer (Q1 to Q6),

1Opinião de Brasileiros Sobre a Produtividade no Desenvolvimento de Aplicações Paralelas, 2022 Sympo-
sium on High Performance Computing Systems (WSCAD) - ®2022 SBC
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Figure 6.1: GQM approach used.

and multiple choice questions (Q7 to Q13). These questions were used to facilitate read-

ing and synthesize the information required to characterize the participants and the ap-

plications developed by them. On the other hand, the open-ended questions allowed the

participants to describe their opinions and experiences regarding parallel application de-

velopment productivity. In addition, only Q18 was not mandatory.

The survey questionnaire was constructed using the Google Forms platform. The

questionnaire was divided into four sections. The first section has a brief presentation

of the survey context, and the term of free and informed consent. The second section

presents the closed questions for the characterization of the participants and the third

section presents the closed questions for the characterization of the developed applica-

tions. Finally, the fourth section presents the open questions related to the productivity of

developing parallel applications.

A pilot study was conducted with eight participants before making the question-

naire available. These responses served to evaluate and refine the questionnaire and

were not included in the final result. The questionnaire was then sent to the PUCRS Re-

search Ethics Committee for evaluation. After the approval of the research by the ethics

committee we started the selection of the participants.

Initially, we identified the study’s target population from their attendance at HPC

conferences, such as Simpósio em Sistemas Computacionais de Alto Desempenho (WS-

CAD), Symposium on Computer Architecture and High-Performance Computing (SBAC-

PAD), and Euromicro Workshop on Parallel, Distributed and Network-based Processing

(PDP). The participants were also identified by analyzing the editorial board of journals

in the HPC area, such as the Journal of Parallel and Distributed Computing, IEEE Transac-

tions on Parallel and Distributed Systems, International Journal of Parallel of Programming,

and ACM Transactions on Parallel Computing. Moreover, the participants’ Google Scholar2

profiles were also evaluated to select the participants.

2Available at: https://scholar.google.com.br

https://scholar.google.com.br
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Table 6.1: Survey questionnaire.

Section ID Question

Participants’
characteri-
zation

Q1. What is your nationality?
Q2. What is your academic background? (High school, Technical course,

Undergraduate, Specialization, Master’s degree, or Ph.D. degree)
Q3. What is your affiliation (company or educational institution)?
Q4. In what country is your affiliation located?
Q5. What is your experience with parallel programming (in years)?

(From 0 to 1, from 1 to 2, from 2 to 5, from 5 to 10, or more than 10
years)

Q6. What type of developer do you consider yourself? (Beginner, Inter-
mediate, Expert, or Other)

Applications’
characteri-
zation

Q7. What type of appplications do you develop?
Q8. What is the domain of these applications?
Q9. Can you specify the applications’ names or describe what the ap-

plications do?
Q10. How do you develop the applications?
Q11. In what are the programming languages in which the applications

are developed?
Q12. What PPIs or tools do you use to parallelize applications?
Q13. In what architectures do you implement parallelism in your appli-

cations?

Productivity
features

Q14. In your opinion, what affects the productivity of parallel application
development?

Q15. In your opinion, what can be done to make parallel programming
more productive?

Q16. In your opinion, what PPIs would you recommend for a beginning
programmer to develop parallel applications more productively?
Please justify your choice.

Q17. In your opinion, what PPIs do you think a developer needs to be
more experienced in parallel programming to be able to parallelize
an application more productively? Please justify your choice.

Q18. If you have any other opinions about productivity in PPI, please send
us an audio file.

6.1.2 Execution

We selected 725 participants to this survey. However, for 42 of the selected

participants the e-mail address was incorrect or could not be found. We have also tried to

contact them through other social media (e.g., Linked In) but without success. Therefore,

we sent this survey to 683 people via e-mail, Linked In or Research Gate. In addition,

we sent this survey to 30 research labs in the HPC area. The survey was available from

January 28th, 2022, to November 31st, 2022. During this period, we sent some reminders

to the participants. After this deadline, we had 131 responses, representing a response

percentage of around 19.18%.



142

6.1.3 Analysis

In this study, we performed a quantitative and qualitative analysis of the data

(Figure 6.1). We used descriptive statistics to summarize and describe the data obtained

through the closed-ended questions. We used GT procedures to analyze the qualitative

data: open coding to create codes related to specific excerpts from the responses and

axial coding to identify the categories and subcategories and create relationships between

them [42]. The qualitative analysis was performed using ATLAS.ti tool3, in which graphical

representations were generated to represent the relationships identified.

6.2 Results evaluation

This section presents a quantitative (Section 6.2.1) and qualitative (Section 6.2.2)

analysis of the results of this survey.

6.2.1 Quantitative analysis

This section presents this study’s variables, objectives, hypotheses, and context.

This section presents a quantitative analysis of the participants’ responses regarding their

backgrounds and the applications developed by them.

Participants’ profile

This section presents the profile of the 131 participants of this survey, whose are

from 26 different countries. Figure 6.2 shows that most of the participants are Brazilians

(41%). Although in smaller numbers, we also have quite a few Italian (10%), American

(9%), Spanish (8%), German (5%), and French (3%). About 2% of the participants are

Argentinian, Austrian, Colombian, British, Dutch, Mexican, Portuguese, Romanian, and

Venezuelan. Finally, the smallest part of the participants is from Costa Rica, Cuba, Greece,

India, Lebanon, Norway, Peru, and Poland (1% each).

Figure 6.3a shows that most participants have Ph.D. and Master’s degrees (89

and 35). Only one participant has a specialization, and six participants have an undergrad-

uate degree. Figure 6.3b shows that most participants work in educational intuitions, such

as universities and technological institutes from different (Figure 6.4). Most of these par-

ticipants work at universities in Brazil, Italy, Spain, United Kindgdom, and United States of

3Available at: https://atlasti.com/.

https://atlasti.com/
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America. Twenty-one participants work in research centers, such as Argonne National Lab-

oratory, Barcelona Supercomputing Center, Galicia Supercomputing Centre, Laboratório

Nacional de Computação Científica, Lawrence Berkeley National Laboratory, National Re-

search Council of Italy, and others. Only seven participants work in companies, which are

Google, HPE, Intel Corporation, Nvidia, Pagonxt, and SERPRO.

Figure 6.2: Nationality of survey participants.

Figure 6.3c shows that most of the participants are parallel programming devel-

opers with many years of experience: 29 have between two and five years of experience,

22 have between five and ten years of experience, and 77 have more than ten years of

experience. Only two participants have worked in parallel application development for

one to two years. In addition, one participant has little expertise in parallel programming,

having worked in this field for less than one year. However, years of experience can not

prove the developer’s expertise. Therefore, we asked the participants to rate their level of

knowledge in parallel programming between beginner, intermediate, and expert. As seen

in Figure 6.3d, most participants consider themselves expert developers (84 participants),

and 41 participants believe they are intermediate developers in the field. Only three re-

spondents feel that their level of expertise is between intermediate and expert, and two

consider themselves beginners. In addition, one of the respondents considers himself a

supervisor, as he only supervises the developed applications and does not develop them.
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64.1%
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Figure 6.3: Survey participants’ profile.

Figure 6.4: Country of participants’ affiliation.
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Application features

This section presents the applications developed by the participants of this sur-

vey. Figure 6.5a shows the type of applications developed by the participants (Q7), of

which most are scientific applications (95%). Smaller in number are business applica-

tions, which 17 participants develop. Benchmarks to evaluate the PPIs, compiler, and

tools/frameworks to exploit parallelism are developed by 2% of the participants each. Only

one participant said that they develop quite variable and heterogeneous applications (be-

tween science and business), and one said that they develop open-source applications. In

addition, 4 participants state that they do not currently develop any parallel application.

They have developed in the past, or they just supervise and teach other programmers.

Figure 6.5b shows the domain of these applications (Q8). Most of the participants

have developed Scientific Computing applications (110 participants). Computer Simu-

lation is the second field more explored, which is developed by 56 participants. Many

participants have explored data processing domains, such as big data (27%), stream pro-

cessing (24%), and data stream (11%). Computer vision field is also explored by a portion

of participants (10%). In addition, the other nine fields are less explored: compilers, HPC,

parallel computing, artificial intelligence, Computational Fluid Dynamics (CFD), data par-

allelism, high intensity servers, system and runtime, and version control.

Concerning exploring parallelism (Q11), most of the respondents (96) have de-

veloped parallel applications from sequential applications. On the other hand, 62% of

them have implemented the parallelism from the beginning of the development process,

as seen in Figure 6.5c. In addition, Figure 6.5d shows that these applications are majority

developed with C and C++ programming languages (71%). Python is another program-

ming language very used (32%), followed by Fortran (17%) and Java (12%). Scala, Go,

Erlang, R, Chapel, DSL, Haskell, Lua, Mathematic, NodeJS, Reference nets, Verilog, and

VHDL are the fewer programming languages used by the participants.

Figure 6.5e shows the PPIs used by the participants to explore parallelism (Q12).

OpenMP is one of the most popular PPIs for multi-core environment and consequently is

the most used (100 participants). Similarly, MPI and CUDA, popular PPIs for distributed

and GPU environment, are the second and third most used (92 and 86 participants each).

OpenMP, MPI, and CUDA are consolidated PPIs, which justifies these results. Consequently,

the most exploited architectures by the participants when implementing parallelism in

their applications (Q13) are multi-core CPU, GPU, and Cluster (Figure 6.5f). Although

Pthreads and OpenACC are also well-established interfaces, they are used by less than

half of the participants (52 and 33 participants each).

TBB, FastFlow, and SPar are PPIs cited by a group of participants who develop

applications for the strem processing domain (16, 14, and 8, respectively). Other PPIs for

data processing, such as Spark, Flink, and Storn, are less frequently mentioned. In addi-
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tion, there are PPIs used only by one participant, such as Vulcan, SkePU, Python Thread-

ing, PHAST, oneAPI, Hitmap, Cilk, Chapel, and others. Therefore, there is a need for more

dissemination of emerging and academic PPIs. Participants will probably choose to use

interfaces such as OpenMP, CUDA and MPI because they have greater support and are

already well-established in parallel programming.
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Figure 6.5: Characteristics of the applications developed by the participants of this survey
research.
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Other architectures are less explored by the participants of this survey. Fig-

ure 6.5f shows that four participants developing parallel applications for FPGA architec-

tures. Supercomputers and cloud environment are explored by three participants each.

Moreover, only one participant develop parallel applications for computational grids, large

shared memory, multi-GPU and vectorial architectures.

6.2.2 Qualitative analysis

This section presents a qualitative analysis of the participants’ opinions regarding

productivity.

Q14. What affects the productivity of parallel application development?

Figure 6.6 shows the factors that prevent productivity according to the respon-

dents’ point of view (Q14). The participants reported different reasons, such as those

related to PPIs and their programming models and architecture. One of the main reasons

given by the respondents was the difficulty in understanding the application to be par-

allelized. In addition, it is necessary to understand the application’s behavior to identify

possible data dependencies, critical regions, etc. It is often necessary to modify and refac-

tor the code to enable parallelization. The quotes below highlight that this is one of the

main factors that complicate application parallelization:

“The need to refactor a large sequential code base which may not be prepared for

parallelism.”

[Participant 23]

“The other fact that impacts the productivity, in my opinion, it is the refactoring of

the serial code. Commonly, an optimized version targeting GPUs is unrecognizable, it

means, you see the code and it is completely different from the serial code.”

[Participant 46]

“Some algorithms are recursive and difficult to parallelize without extensive changes.”

[Participant 62]

The participants also reported problems related to the difficulties they face when

debugging and testing parallel applications, an activity on which they spend a lot of time.

There are different factors that hinder the testing and debugging activities of parallel ap-

plications, such as lack of proper testing and debugging tools and environments, difficulty

and lack of knowledge to use existing profiling tools, difficulty to interpret profiler output,

and benchmarking setup. In addition, the occurrence of low-level errors makes it difficult
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Figure 6.6: Factors that prevent programmers from developing parallel applications pro-
ductively.

to debug applications because it increases their complexity. The use of PPIs that provide

high-level abstractions also affects the debugging of applications, as they can make it

difficult for programmers to understand the low-level details needed for parallelization.

Therefore, when the programmer has to deal with lower-level details such as memory

management, they will have difficulty debugging the application. Some quotes highlight

these issues:

“Lack of debugging support to detect race conditions and other ill concurrency phe-

nomenon.”

[Participant 35]

“The second obstacle is the time spent needed for testing and debugging, e.g., devel-

oping test cases, troubleshooting crashes..”

[Participant 61]

“The lack of a good debugging environment.”

[Participant 104]

The developer’s expertise was also one of the main factors identified to an ex-

tensive development effort. The participants highlight that it is challenging to perform

optimizations to obtain high-performance without knowing about the PPIs used and the

target architecture. It is difficult for the programmers to choose the right programming
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model for each case since there are different programming interfaces available with dif-

ferent programming models.

“Different options of parallel programming tools.”

[Participant 3]

“Choosing the proper model.”

[Participant 24]

“Diversity in hardware and programming models.”

[Participant 91]

One of the main reasons pointed out by the survey participants for the lack of

experience of programmers is the lack of documentation about PPIs and the lack of courses

that address parallel programming properly during undergraduate studies. The lack of

proper documentation hinders students’ learning, and consequently their understanding

of parallelism concepts. Furthermore, due to poor documentation, the interfaces are not

user-friendly, and installation issues can be occurred. The following quotes highlight the

importance of documentation for efficient use of PPIs:

“Like in any other software development team, lack of documentation cause delays

etc.”

[Participant 13]

“Lack of documentation, especially for open source libraries.”

[Participant 93]

Q15. What can be done to make parallel programming more productive?

Figure 6.7 shows possible solutions pointed out by the participants to improve

developer productivity (Q15), such as more expressive and concise PPIs in order to avoid

rewriting code. The use of PPIs with higher-level abstractions, based on annotations or

templates, tends to make them easier to learn and use. In addition, standardized and

cross-platform PPIs are some of the solutions pointed out by respondents to provide porta-

bility to applications.

The participants point out that developing smarter PPIs that automatically paral-

lelize the entire code would be a perfect solution. However, there are limitations to the

design of such a tool. A solution proposed to address this problem is the development of

tools to support the development, debugging, testing of parallel applications. If such tools

do not further affect developer productivity, they can avoid programming errors, reduce

the time spent debugging code, and facilitate parallelization of applications. The quotes

below indicate these aspects:
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Figure 6.7: Possible solutions to increase the productivity of parallel application develop-
ment.

“Tools that read the code and visualize the dependencies would greatly help.”

[Participant 1]

“Tools that aid in debugging libraries and frameworks that smartly takes care of many

of the responsibilities of the programmer (Like communication, data copies, schedul-

ing).”

[Participant 4]

“Develop programming support tools, which perform low-level tasks such as data par-

titioning and distribution or workload balancing.”

[Participant 128]

The use of profiling tools also contributes to increasing developer productivity.

According to the participants in this survey, proposed improvements to profiling tools help

develop high-performance applications. These improvements include simplifying data ex-

traction for accelerator environments and providing more detailed explanations in the

output of profiling tools. In addition, participants reported that developers should be in-

structed how to use such tools effectively in order to increase their productivity.

Regarding the education of parallel programmers, increasing their expertise also

allows them to better understand the concepts of parallelism and how to use PPIs effi-

ciently. It is necessary to improve the programmers’ knowledge about architectures in

order to better exploit their potential to provide performance either by using only one PPI
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or mix-and-match PPIs of different abstraction levels. It is also necessary that program-

mers know how to recognize the characteristics of the application to be parallelized, un-

derstanding the behavior of the code at runtime, and acquiring more knowledge about its

domain. Furthermore, the participants pointed out different ways to improve the teaching

of programmers, such as conducting hackathons and training, improving the teaching of

parallel programming in undergraduate courses (from the beginning), and adopting good

software development practices. The quotes below highlight ways to improve program-

mers’ learning.

“An internship that begins right at the beginning of an undergraduate course. You need

to shape parallel computational thinking early on in your study career.”

[Participant 12]

“Teach parallelism from the very beginning. There’s a need of mindset change in the

community.”

[Participant 68]

“I think that Hackathons and events where people can get exposed to these problems

in a hands on matter and talk to experts help. ”

[Participant 131]

According to the survey participants, improving the teaching of parallel program-

ming is also a way to increase the HPC community. It is also important to have more

interactions between developers to exchange experiences, either through scientific re-

search or by promoting companies. In addition, improving the documentation of available

PPIs and provide more usage examples can make them easier to understand and use.

Q16. What PPIs would you recommend for a beginning programmer?

We asked the participants which PPI they would recommend for beginners to de-

velop parallel applications productively (Q16). Figure 6.8 shows the PPIs indicated. Most

participants (≈ 64%) suggest that beginners start developing parallel applications using

OpenMP. MPI, OpenACC, and CUDA also were recommended for more than 11% of the

participants. Other PPIs (e.g., Pthreds, SPar, TBB, etc.) were less recommended, which

were recommended for less than eight participants. In addition, some participants did not

suggest the use of any specific PPI by beginners (14 participants), of which two did not

feel able to answer this question. For three participants, the PPI used for parallelization

depends on the goals of the developer and the target platform. Some participants indi-

cated the use of PPIs with certain characteristics such as ease of use, low and high level

of abstractions, and the use of new PPIs not attached to the sequential language. Three
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Figure 6.8: Recommended PPIs for beginner to develop parallel applications more produc-
tively.

participants suggested improving the training of developers initially. Moreover, one par-

ticipant thought that beginners should not deal with parallel applications, contrary to the

opinion of most other participants.

As previously mentioned, OpenMP was the PPI majority indicated by the survey

participants to beginners develop parallel applications productively. Figure 6.9 presents

the main reasons for the survey participants suggest OpenMP, such as ease of under-

standing and use. It is easier for novice developers to develop parallel applications for

multi-core environments. In addition, using pragmas is simpler for beginner programmers

because it provides high-level abstractions with a basic syntax and less vocabulary. Since

OpenMP provides high-level abstractions, its learning curve is shorter and consequently

allows developers to quickly understand the essential concepts of parallelism. Therefore,

OpenMP allows developers to quickly parallelize a block of code without the need to modify

and restructure all the sequential code in order to provide parallelism. The quotes below

highlight these aspects:

“I recomend C+OpenMP, since the use of pragmas are considered easy for beginners.”

[Participant 12]

“OpenMP because this tool offers resources allowing to implement a parallel code

based on the serial code (incremental parallelism) So, this makes the programming

easier than other tools that apply an approach based on the all-or-nothing conversion

of an entire program.”

[Participant 31]

“Annotation-based approaches such as OpenMP pragmas and SPar tend to be easier

to use.”

[Participant 49]
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Figure 6.9: The reasons why survey participants recommend OpenMP for beginners to
develop parallel applications more productively.

Other factors related to the popularization of OpenMP make it easier for beginners

programmers to use it, such as good support provided, many code examples available on

the Internet, and its portability. OpenMP portability allows it to be used on both personal

computers and hybrid platforms consisting of multi-core CPUs and GPUs. Therefore, the

survey participants think that it is better for beginners programmers to start developing

parallel applications with OpenMP because it allows heterogeneous programming and is

easier to learn than other interfaces like OpenACC. In addition, OpenMP is the PPI most

used by the participants as seen in Section 6.2.1, which may explain its recommendations.

Q17. What PPIs would you recommend for a experts programmer?

Figure 6.10 shows the PPIs indicated by respondents for experts to develop par-

allel applications productively. They indicated that experienced developers should explore

architectures other than the traditional multi-core, such as GPU and Cluster. The two PPIs

most indicated were CUDA and MPI (both 34%), as they require more experience to be

used efficiently by the developers. CUDA and MPI are also widely used by the partici-

pants, as seen in Section 6.2.1, which may explain their recommendations. OpenMP and

Pthreads were recommended for more than 11% of the participants. Other PPIs (e.g.,

OpenACC, OpenCL, etc.) were for fewer than five participants. In addition, 23% of the

participants did not indicate any specific interface because the PPI to be used for paral-

lelization depends on the goals of the developer and the target platform.

Figure 6.11 presents the main reasons pointed out by the respondents to indi-

cate CUDA. One of the main reasons given by the participants for using CUDA is to exploit

the processing power of GPU architectures to achieve high performance, mainly in NVIDIA

GPUs. However, developing efficient parallel applications using CUDA requires the devel-
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Figure 6.10: Recommended PPIs for experts to develop parallel applications more produc-
tively.

oper to have more experience in parallel application development. The developer must

know the properties of the hardware in order to exploit concurrency. The following quotes

give reasons why developers should have knowledge about GPU operation in order to de-

velop parallel applications with good performance:

“I think CUDA requires more specialization, since it is necessary to adjust the data

structure to fit the hardware.”

[Participant 30]

“In my opinion, CUDA is one of the best parallel frameworks, but it requires experi-

ence to produce good speedups When using CUDA, developers need to understand

the process of writing and reading from a GPU memory. These GPU communications

are time-consuming processes, which can surpass the parallel speedup of the GPU par-

allel execution.”

[Participant 33]

According to the survey participants, developing applications with CUDA requires

more effort from the programmer and more debugging time because CUDA is a lower-

level interface. CUDA has several advantages, although the learning curve is higher. One

of the advantages pointed out by the participants is the use of CUDA in conjunction with

other interfaces, such as OpenMP and MPI, to exploit parallelism in hybrid architectures.

In addition, CUDA enables efficient parallelization of more complex applications, such as

robotics, computer vision, and machine learning applications.

“Today, I think CUDA is very important Real-time applications in computer vision and

robotics demands efficient parallel execution Also, training deep learning models re-
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Figure 6.11: The reasons why survey participants recommend CUDA for experts develop-
ers.

quires fast implementations once it uses a massive amount of data”

[Participant 26]

“CUDA and GPU’s are becoming more used with the spread of the machine learning.

CUDA parallelizing optimizations are not widespread and many frameworks haven’t

this into account.”

[Participant 121]

Figure 6.12 presents the main reasons pointed by the respondents to indicate

MPI. This is a standard PPI for distributed memory. Running in clusters can bring advan-

tages for data-intensive processing applications. The participants point out that the use of

MPI can bring good performance results for scientific and big data processing applications,

as can be seen in the following quotes:

“In addition to OpenMP, and optionaly OpenACC and CUDA, it is necessary to know MPI,

because some applications processing large data and could be run in a cluster.”

[Participant 8]
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“MPI and OpenMP is essential for scientific computing”

[Participant 36]

Despite the MPI advantages, it requires more experience from the developer.

MPI is not very user-friendly and is harder to program because it has a complex paral-

lel programming model, which provides low-level abstractions and requires more knowl-

edge about the distributed hardware. In addition, there are code optimization possibilities,

which can be better explored by more experienced programmers. The quotes below high-

light these aspects:

“For top performance, specific solutions may need to be developed in a more low-level

(more hardware details exposed) and thus more complex parallel programming model,

such as MPI for clusters.”

[Participant 86]

“I think that conventional approaches like MPI, OpenMP, CUDA, etc. require more ex-

perience to use effectively because they use disparate concepts and syntactic forms

to express the same basic ideas (e.g., parallelism, locality), simply at different levels

of granularity.”

[Participant 57]

The participants also highlighted the flexibility of MPI, which now allows the explo-

ration of shared memory architectures. In addition, two respondents indicated using MPI

combined with CUDA to get more performance. As can be seen in the following quotes,

it is necessary for the programmer to have enough experience to know how to use the

hardware resources efficiently.

“MPI+CUDA. Bad code can be made. But to truly use it and create a decent MPI+CUDA

application, the developer needs to understand a lot about the specific hardware, man-

ually optimize things like memory/cache in all devices, DMA communications, the net-

work conditions that they are in, what can be done in CPU or GPU, and general distri-

butions and scheduling problems tailored for their application.”

[Participant 16]

“If a set of multiple interacting levels of parallelization is required (i.e. the common

MPI+CUDA) then that needs further experience on part of the developer.”

[Participant 46]

6.3 Final remarks

In this chapter, we aimed to identify the factors that hinder the productivity of

parallel programming, as well as identify ways to improve the productivity of program-

mers. For this purpose, we conducted an international survey with developers of parallel
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applications. Our results showed that lack of experience is one of the main reasons for

the increased development effort. These results showed a gap in teaching parallel pro-

gramming in universities, where concepts related to parallel computing are covered only

at the end of undergraduate courses. The survey participants suggest teaching parallel

programming from the beginning of undergraduate courses to overcome this problem.

Teaching programming to beginner students can be a complex task. However, the results

of Conte et al. [40] showed that it is possible to teach parallel programming to students

with no prior knowledge of computing, obtaining high scores and interest in this learning.

The HPC community can also promote hackathons and training events to improve pro-

grammers’ education and improve the interaction between developers to encourage an

exchange of experiences. Moreover, the designers of the PPIs must improve documenta-

tion to facilitate the students’ learning process.

The results show that GPU programming is more complex than multi-core pro-

gramming from the participants’ perspective of this survey. The survey results confirm the

results presented in Chapter 4, where the efforts to explore parallelism in multi-core envi-

ronments were approximately 64.83% lower than for GPU environments. The developer’s

experience with the architecture and programming model used also negatively impacted

the development effort. Developing effective GPU applications requires more understand-

ing and knowledge of how the architectures work to perform optimizations that exploit

their full processing power. PPIs that provide higher-level abstractions also facilitate the

development of parallel applications for multi-core environments.

From this survey, we also identified possible solutions to improve productivity

based on the participants’ opinions. While high-level abstractions can increase developer

productivity, their use makes it difficult to understand the low-level details required for

parallelization. For more complex architectures, such as GPU, the developer needs to

know architecture detail to avoid programming errors and perform the necessary opti-

mizations to achieve performance. The results of the GPU study presented in Chapter 4

confirm these assertions. In this study, the students used the GSParLib Driver API instead

of the Patterns API. Patterns can increase the productivity of the developers. However,

they chose to program at a lower level due to the flexibility to manipulate the architec-

ture. In parallel programming, programmers can only develop applications faster if they

achieve the expected performance. Therefore, coding productivity and application perfor-

mance must be complementary.

Understanding how sequential code works is also essential to achieve good per-

formance in the parallel version. When developers understand the behavior of the se-

quential application, they can avoid many programming errors. Moreover, profiling tools

can help programmers identify bottlenecks in the application and facilitate parallelization

since they know how to use them without further hindering their productivity. Therefore,

we concluded that the developer’s experience level is the main factor that impacts produc-
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tivity. The greater their knowledge about parallel architectures, PPIs, and programming

skills, the higher their development productivity.

According to most participants, OpenMP is one of the easiest PPIs for parallel pro-

gramming, while CUDA and MPIs require more experience from developers to be used

efficiently. We have identified some studies from the literature review that show the

productivity-related advantages of OpenMP over other interfaces, such as CUDA [247],

FastFlow [46, 157], Kokkos [197], LE-OpenMP [214, 249], mxhMD [197], MPI [117, 96],

OpenCL [155, 249], OpenACC [249], and Pthreads [157]. However, Hoffmann et al. [99]

implemented an update in SPar to automatically generate parallel code at the OpenMP

runtime, which in previous versions only generated parallel code at the FastFlow and TBB

runtimes. Hoffmann et al. [99] showed that in addition to reducing the SLOC number,

SPar reduced the complexity of switching between runtime versions (FastFlow, TBB, and

OpenMP) since the SPar annotations were the same for each of these PPIs. Furthermore,

the performance of the SPar versions was very similar to their handwritten implemen-

tations, with performance differences of less than 2.49%. Therefore, these results show

that using interfaces with a higher level of abstraction can increase developer productivity

without significant performance losses.

This study presents some threats to validity. The collection method may threaten

the study’s internal validity, as participants may report incorrect data. The participants’

profiles can be considered a threat to external validity, as most participants are from the

American and European continents. There are no participants from the African continent.

Therefore, we cannot generalize this study to the international level. In addition, the sam-

ple of participants can be considered a threat to the conclusion validity, as most partici-

pants are from academia and not industry. This study provides valuable insights regarding

productivity in parallel programming despite these limitations. In future investigations, we

plan to include more participants from industry and other nationalities.
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7. PLANNING POKER APPLIED TO PARALLEL PROGRAMMING

Over the years, some effort has been dedicated to improving metrics for estimat-

ing development effort in the SE [243]. On the one hand, some researchers have proposed

extensions and improvements to already established models, such as COCOMO and FPA,

using bio-inspired algorithms [71, 114, 115], fuzzy logic [88, 175], and machine-learning

techniques [16, 122, 206, 256]. On the other hand, new models are also conceived based

on these algorithm techniques [55, 59, 217, 241]. From a literature review, we identified

only two studies aiming to propose models for estimating parallel programming effort.

The first is an extension of COCOMO II [248], which presents only a conceptual model. The

other study uses machine learning algorithms to estimate the increase in effort required

to convert C++ applications to CUDA using Halstead’s measures.

To create a model to estimate the effort required to develop applications is neces-

sary to create a dataset to train the model. However, collecting datasets is a challenging

task. In the SE domain, there are several public domain datasets available to evaluate

effort estimation models. One of the most used is the PROMISE repository, which includes

a collection of datasets based on COCOMO (COCOMO81, COCOMO NASA, COCOMO NASA

2) and FPA (Desharnais) models and tools to help researchers aim to build predictive soft-

ware models. In the parallel programming domain, no dataset is available to evaluate the

effort estimation models. Wienke et al. [248] performed a research survey with experts to

collect factors impacting the development of parallel applications. However, the datasets

produced by Wienke et al. [248] are not available. On the other hand, Marantos et al. [143]

provided the dataset used to train the regression models they used. However, Marantos

et al. [143] still need to provide a data dictionary to facilitate the replication of the study.

In addition, Marantos et al. [143] did not consider other factors that may impact the de-

velopment effort of parallel applications, such as the developer’s experience, the target

architecture, and the programming model used. The previous chapter provided a more

detailed discussion regarding the impact of these factors on developer productivity.

In our work, we conducted an experiment with 15 beginners in parallel program-

ming to understand the main challenges in implementing a video processing application

(Section 4.2). This experiment was performed to evaluate specific PPIs (SPar, FastFlow,

and TBB), which were used to develop a stream processing application. In addition, we

conducted a initial study with four graduate students who were beginners in GPU program-

ming to understand the challenges of developing parallel applications in architecture with

accelerators (Section 4.3). To do so, we compared the effort required to program the An-

imal Rescue problem using CUDA, GSParLib, OpenACC, and OpenCL. However, the two

studies were conducted with a tiny sample concerning the population of parallel applica-

tion developers. Therefore, only these experiments cannot be considered a dataset to
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assess the accuracy of a technique for development effort estimation. New experiments

are needed to build a dataset for the parallel programming domain.

Performing an experiment with people is challenging because the experimenta-

tion process takes time to be planned and conducted. The investigation must be well-

planned to minimize threats to its validity. We presented a methodology based on the

best experimentation practices in Section 4.1 to facilitate the experimentation process.

Moreover, one primary difficulty when carrying out experiments in the parallel program-

ming domain is finding experienced developers in that area. Experiments can be carried

out with beginner students in parallel programming to overcome this problem. Thus, it is

possible to evaluate the ease of learning, which according to ISO/IEC 25010 [109], is one

of the main characteristics of software usability. However, the small number of partici-

pants in our experiments showed that finding participants for this type of study in parallel

programming is still challenging.

In this context, the research question we aim to answer in this chapter is: How to

reduce the effort devoted to collecting development time in parallel programming?. The

results presented in Chapter 5 showed the effectiveness of the Planning Poker method in

estimating the development effort of parallel stream processing applications. Although

this method requires input from expert developers, it requires less effort to be applied

in practice than experiments that collect the actual development time. Therefore, we

proposed a new methodology in this chapter to measure the effort required to develop

parallel applications based on the Planning Poker method.

Based on the following literature reviews [56, 64], the Planning Poker is the most

widely used metric for estimating software projects’ complexity and development effort

based on the Scrum methodology. Regarding development effort, Moloken et al. [161,

162] conducted empirical studies to compare the Planning Poker estimation with the es-

timation performed by individual experts, which showed similar accuracy. Finco [66] pro-

posed the combination of Planning Poker with machine learning to assess the development

effort required for software development teams. Haugen [90] investigated whether using

the Planning Poker estimation process could improve the ability of XP teams to estimate

story points. Tamrakar and Jorgensen [234] conducted an empirical study to estimate

software development effort using Planning Poker with a linear scale instead of the usual

Fibonacci sequence. Gandomani et al. [69] evaluate the use of average or consensus

opinion in Planning Poker to estimate user stories.

In order to produce more accurate effort and time estimates using Poker Plan-

ning, Zahraoui and Idrissi [255] proposed an adjustment to the story point calculations

using priority, size, and complexity factors. Power [199] presented a technique called

Silent Clustering, which can complement Poker Planning to size large sets of user stories

quickly. Sudarmaningtyas and Mohamed [232] proposed a new model to improve the ac-

tual performance of planning poker by modifying the estimation process and the consen-
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sus process of this method. Mahnivc et al. [136] conducted an experiment with students

and experts to estimate the number of user stories through the Planning Poker method,

whose results showed that the experienced participants’ estimates were more accurate

than the students’ estimates. Mahnic et al. [137] performed an empirical study with stu-

dents to identify the essential practices for successful Scrum-based software projects,

among which Planning Poker was evaluated. Raith et al. [202] evaluated the accuracy of

the effort estimates using the Planning Poker method, which led them to develop a proto-

type to apply this method to a student project. In addition, there are other studies aiming

to provide tools to support Planning Poker method execution [30, 167].

Unlike previous works, our study aims to apply a modification of the Planning

Poker method to the parallel programming domain, which is discussed in further detail in

Section 7.1. Next, Section 7.2 evaluates parallel stream processing applications in order

to validate the proposed Planning Poker methodology. Finally, Section 7.3 presents the

final remarks.

7.1 Planning poker for parallel programming estimation

The planning poker method was presented in Section 2.5.1, which is usually used

by software agile teams to estimate the development effort from experts’ opinions about

the software to be developed. In Section 5.2, we showed the accuracy of the Planning

Poker method to estimate the time required to develop parallel applications for stream

processing when comparing the estimated time to the actual time collected from an ex-

periment with beginners’ programmers. These results lead us to create an extension of

the Planning Poker method to evaluate the development of parallel applications.

In the original Planning Poker (see Figure 2.11), the estimation is performed for

all the people who compose the development team, such as the developers, testers,

engineers, analysts, and others. In parallel programming, mainly in academic environ-

ments, the application will be developed by only one developer. The researchers usually

develop their applications without being in a development team, although there are re-

search groups. In other words, the same person will be responsible for the coding, de-

bugging, testing, and evaluating an application. Therefore, the Planning Poker adaptation

estimation will be performed only by a developer, as seen in Figure 7.1. Furthermore,

the research results presented in Chapter 6 highlight developer experience as an essen-

tial factor impacting the parallel application development effort. These results led us to

consider only the opinion of experienced developers for the Planning Poker method.

Unlike the original Planning Poker method, which aims to estimate the number of

story points or Product Backlog, our goal is to estimate the number of hours required for

parallel application development. Furthermore, we will not perform our estimations based
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on a non-linear sequence like the Fibonacci sequence. The Tamrakar and Jorgensen [234]

study showed a decrease in estimated development effort by up to 60% when using a Fi-

bonacci scale instead of the traditional linear scale. Using a Fibonacci scale and other non-

linear scales probably affect development effort estimates because they induce people to

make biased estimates, especially when the uncertainty is substantial. When considering

the modified Fibonacci sequence (0, 1, 1/2, 2, 3, 5, 8, 13, 20, 40, 100), a developer may be

in doubt when estimating the number of development hours for a particular application.

For example, in the developer’s opinion, a specific application requires about 60 hours to

develop. Therefore, they might choose the value 100 from the Fibonacci sequence, result-

ing in an inaccurate estimate. On the other hand, the developer could choose the specific

value of the evaluation (60 hours in this case) if a linear scale was used.

The estimators will be also freer to choose their estimates and can compare the

estimated values between the evaluated interfaces considering their possible difficulties.

There are more straightforward applications where parallelization can be realized within

one to two hours of development time, such as the RGB channel extraction application

presented in Section 4.2. Therefore, a linear scale can accurately estimate development

time for more straightforward applications like this.

Figure 7.1: Poker planning method for estimating parallel development time.

In the proposed Planning Poker adaptation, there is still a moderator to coordi-

nate the execution of the method. Figure 7.1 presents the step-by-step to be followed

through the proposed methodology. Initially, the moderator should show the code to be

parallelized with a given PPI. Soon after, the developer should analyze the code and give
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the estimate. If there are any inconsistencies with the estimate made by the developer,

a discussion should occur between the developer and the moderator. For example, the

development time estimated by the developer was only two hours to parallelize a stream

processing application with OpenMP. During the discussion, the moderator should give the

developer reasons to disagree with the estimate. For example, the moderator should ex-

plain that the OpenMP programming model is not based on structured programming (such

as TBB). Therefore, the developer should consider the time needed to implement extra

synchronization mechanisms when using OpenMP to exploit stream parallelism. From the

moderator’s exposition, the developer should make a new estimate. Moreover, the es-

timation will be based only on the developer’s opinion, and the moderator should only

explain the characteristics of the application to be parallelized and the PPI to be consid-

ered in parallelization.

7.2 Planning Poker evaluation

This section evaluated the Planning Poker adaptation applied to parallel program-

ming. To evaluate this metric, we performed an experiment to verify the productivity of

FastFlow, OpenMP, Pthreads, SPar, and Intel TBB PPIs for multi-core systems in the devel-

opment of the following C++ stream processing applications: Bzip2, Person Recognition,

Lane detection, and Ferret. The following sections present the experimentation plan and

the results obtained.

7.2.1 Experimentation plan

Independent and dependent variables

The development time estimated using the Planning Poker method is a depen-

dent variable. The independent variables include the PPIs evaluated, the parallel appli-

cations evaluated, the participant’s experience, and the study environment because they

impact the dependent variable tested.

Goals

The main goal of this study is to use the Planning Poker method to estimate the

development effort required for implementing parallelism in C++ stream processing ap-

plications for multi-core environments using FastFlow, SPar, TBB, OpenMP, and Pthreads.

The specific goals are as follows:
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• Measure the effort required to exploit parallelism using the Planning Poker method

for Bzip2 compress and decompress, Person Recognition, Lane Detection, and Ferret

applications.

Hypotheses

Based on the goals, we consider the following hypothesis in our experiment:

• H0−bzipC: The effort required to implement parallelism on the Bzip compress applica-

tion is the same for FastFlow, SPar, TBB, OpenMP, and Pthreads;

• H0−bzipD: The effort required to implement parallelism on Bzip decompress applica-

tion is the same for FastFlow, SPar, TBB, OpenMP, and Pthreads;

• H0−person: The effort required to implement parallelism on the Person Recognition

application is the same for FastFlow, SPar, TBB, OpenMP, and Pthreads;

• H0−lane: The effort required to implement parallelism on the Lane Detection applica-

tion is the same for FastFlow, SPar, TBB, OpenMP, and Pthreads;

• H0−ferret: The effort required to implement parallelism on the Ferret application is the

same for FastFlow, SPar, TBB, OpenMP, and Pthreads.

Context of the study

This study is offline because it was conducted in an academic environment under

controlled conditions. The participants were five graduate students from the PPGCC at the

PUCRS in Porto Alegre city, South of Brazil. They are experts in parallel-stream process-

ing programming. Furthermore, this is a specific study because it focuses on evaluating

the productivity of PPIs for parallel programming of stream processing applications in an

academic environment.

Activity of study

The activity given to the participants was to estimate the time required to de-

velop a series of parallel stream processing applications using FastFlow, OpenMP, Pthreads,

SPar, and Intel TBB. The following C++ stream processing applications for multi-core sys-

tems were evaluated: Bzip2 data compression and decompression application, Person

Recognition application, Lane detection application, and a PARSEC application called Fer-

ret, whose goal is to content similarity search in data such as video, audio, and images

[24]. In addition, we evaluate the effort to develop the compression and decompression

of the Bzip2 application data separately.



165

Procedure and execution

Participants should estimate the time required to develop the parallel applica-

tions considering an existing sequential application. Participants should also consider that

it is their first time parallelizing the application regardless of the PPI used. They also

should not consider reusing code from another parallel version to avoid contaminating the

experiment with the learning effect. After analyzing the target application, the develop-

ers reported their estimates according to the instrument shown in Table 4.6. From this

questionnaire, only Q1 and Q2 were applied to the participants because the goal of this

experiment is only to collect the estimated development time and not to evaluate user

satisfaction or usability.

7.2.2 Productivity evaluation

Table 7.1 presents the development time estimated using the Planning Poker

method by five graduate students (anonymized) who are expert developers in the par-

allel stream processing domain. Figure 7.2 shows the box plots of the estimated Planning

Poker development time for each application evaluated. As seen in in the Table 7.1, our

results presented the smallest averages for the parallel applications developed using SPar.

FastFlow and TBB showed similar results, requiring slightly more development effort than

SPar. OpenMP and Pthreds required more development effort, of which Pthreads showed

the worst results. OpenMP and Pthreads also showed close results. Therefore, it was nec-

essary to perform a hypothesis test to see if there was a significant difference between

the results obtained.

Initially, we performed a normality test to verify that the data collected had a

normal distribution. A parametric test should be performed if the samples have a nor-

mal distribution (P value ≥ 0.05). Otherwise, a non-parametric test should be performed

(P-value < 0.05) [34, 224]. Therefore, we used the Shapiro-Wilk test at the conventional

significance level (α = 0.05) [224] to verify whether the collected data had a normal dis-

tribution. Moreover, we chose the Shapiro-Wilk test because it is an efficient test for all

distribution types and can be used regardless of sample size [205].

Table 7.2 shows the results achieved for the Shapiro-Wilk tests. As seen in this

table, only the SPar results for the Bzip2 compress and decompress applications do not

show a normal distribution since, for these cases, the P-values are close to zero (in bold).

Therefore, we used the non-parametric Wilcoxon test to compare the results of the SPar

with the results of the other interfaces for the Bzip2 compress and decompress applica-

tions. We performed a Student’s t-test for two samples in all other cases. In addition, we
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performed paired tests as the samples were not independent since we collected the data

from the same participants.

Table 7.3 shows the results for the Students’ t and Wilcoxon tests. The average

time to develop the applications with SPar is shorter due to the annotation-based program-

ming model of this DSL. However, through hypothesis testing, it was possible to observe

that there is no significant difference between SPar and FastFlow development times for

the applications Bzip2 Compress, Bzip2 Decompress, Person Recognition, and Ferret. This

was because the FastFlow development model is based on the use of templates for de-

signing parallel patterns. The results presented in section 4.2 showed that FastFlow could

provide similar productivity for developers as SPar.

Regarding Bzip2 compress and decompress applications, when we analyzed only

the participants’ average, SPar required less development effort. However, the hypothe-

sis test showed no significant difference between the average development times for SPar

and the others PPIs evaluated. This may have happened because the SPar samples for the

Bzip compress and decompress applications do not have a normal distribution. In these

Table 7.1: Planning poker estimated development time in hours.

Application PPIs Dev. 1 Dev. 2 Dev. 3 Dev. 4 Dev. 5 Average

Bzip2
compress

SPar 1 1 1 1 0.75 0.95
FastFlow 3 4 1 4 2 2.80
TBB 3 4 2 4 2.50 3.10
OpenMP 20 15 12 20 11 15.60
Pthreads 20 18 15 16 12 16.20

Bzip2
decompress

SPar 1 1 1 1 0.75 0.95
FastFlow 3 4 1 4 2 2.8
TBB 3 4 2 4 2.50 3.1-
OpenMP 20 15 12 20 11 15.60
Pthreads 20 18 15 16 12 16.20

Lane
Detection

SPar 1 0.50 1 1 0.75 0.85
FastFlow 2 1 1 2 2.50 1.70
TBB 2 1 2 2 3.33 2.07
OpenMP 20 13 12 22 12 15.80
Pthreads 20 15 15 14 13 15.40

Person
Recognition

SPar 1 0.31 1 1 0.66 0.78
FastFlow 2 0.75 1 3 2.50 1.85
TBB 2 0.75 2 3 3.25 2.20
OpenMP 20 12.50 12 22 11.50 15.60
Pthreads 20 14.50 15 14 12.50 15.20

Ferret

SPar 6 3 2 1 2 2.80
FastFlow 4 6 2 4 3.50 3.90
TBB 8 6 4 4 3.75 5.15
OpenMP 25 18 14 20 13 18
Pthreads 25 20 17 16 14 18.40
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(a) Bzip2 compress application.
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(b) Bzip2 decompress application.
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(c) Lane detection application.
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(d) Person recognition application.
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(e) Ferret application.

Figure 7.2: Box Plot for the development times collected using the planning poker method.

cases, it was necessary to use the Wilcoxon test to compare them with the results of the

other interfaces. We normalized these data using the Min-Max normalization [123] to over-

come this limitation. With the normalized samples, we used the t-test to compare them.

Table 7.3 shows that when comparing the normalized samples, the SPar development time

differs statistically from FastFlow TBB, OpenMP, and Pthreads (P-value ≤ 0.0217).

FastFlow and TBB showed close results, as shown in Figure 7.2. For all the appli-

cations evaluated, the hypothesis test showed that there is no significant difference be-

tween the development time of FastFlow and TBB, as shown in Table 7.3 (P-value > 0.05).
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Table 7.2: P-value of the shapiro-wilk test for planning poker evaluation.

Bzip2 com-
press

Bzip2 de-
compress

Lane detec-
tion

Person
recog.

Ferret

p-value p-value p-value p-value p-value
SPar 0.0001 0.0001 0.05 0.05 0.22
FastFlow 0.42 0.42 0.20 0.61 0.68
TBB 0.38 0.38 0.28 0.55 0.10
OpenMP 0.21 0.21 0.07 0.08 0.70
Pthreads 0.99 0.99 0.12 0.18 0.64

Table 7.3: P-value of the student’s t-test and wilcoxon test for planning poker evaluation.

Wilcoxon
Bzip2 com-
press

Bzip2 de-
compress

Lane de-
tection

Person
recog.

Ferret

p-value p-value p-value p-value p-value
SPar x FastFlow 0.0975 0.0975 - - -
SPar x TBB 0.0579 0.0579 - - -
SPar x OpenMP 0.0579 0.0579 - - -
SPar x Pthreads 0.0625 0.0625 - - -

T-test - P-value
Bzip2 com-
press

Bzip2 de-
compress

Lane de-
tection

Person
recog.

Ferret

p-value p-value p-value p-value p-value
SPar x FastFlow 0.0217 0.0217 0.0434 0.05272 0.3131
SPar x TBB 0.0036 0.0036 0.0265 0.0224 0.0009
SPar x OpenMP 0.0012 0.0012 0.0021 0.0024 0.0008
SPar x Pthreads 0.0002 0.0002 0.0002 0.0003 0.0002
FastFlow x TBB 0.2080 0.2080 0.1803 0.1836 0.1855
FastFlow x OpenMP 0.0012 0.0012 0.0024 0.0023 0.0022
FastFlow x Pthreads 0.0003 0.0003 0.0004 0.0007 0.0013
TBB x OpenMP 0.0018 0.0018 0.0036 0.0034 0.0012
TBB x Pthreads 0.0004 0.0004 0.0006 0.0009 0.0003
OpenMP x Pthreads 0.6657 0.6657 0.8486 0.8486 0.7572

In addition, both interfaces require less programming effort than OpenMP and Pthreads

(P-value < 0.05). These results occurred due to the programming models of both inter-

faces. Intel TBB [244] is an open-source and general-purpose C++ template-based PPI

from the industry, which provides a Pipeline pattern constructor that can also perform as

the Farm pattern. While FastFlow [5] is a representative interface from the scientific com-

munity with a model-based C++ interface similar to the TBB. However, each model has

particularities, although parallelism is implemented similarly. Nevertheless, the results

showed that they require the same programming effort.

OpenMP and Pthreads also presented similar results, as seen in Table 7.3. There

is no significant difference in development time when comparing OpenMP with Pthreads
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for all applications evaluated (P-value > 0.1018). Moreover, developing the applications

with OpenMP and Pthreads requires more programming effort, in the participants’ opinion.

The OpenMP and Pthreads interfaces have unstructured programming models, each with

its characteristics. Parallelization in OpenMP is exploited through compilation directives or

pragmas defined in the C and C++ standards. The Pthreads library is based on the POSIX

specification that defines a set of types, functions, and macros for creating and controlling

multiple threads. Therefore, they do not have parallelism patterns implemented to de-

velop stream processing applications (e.g., Pipeline and Farm), unlike the FastFlow, TBB,

and SPar PPIs. In the stream processing applications evaluation, ordering the items before

sending them to the next stage was necessary. Therefore, with Pthreads and OpenMP, it

was required to manually create mechanisms like ordered insertion into chained queues,

increasing the development effort.

7.3 Final remarks

In this chapter, we aimed to find a way to reduce the effort devoted to collecting

development time in parallel programming. For this purpose, we proposed extending the

Planning Poker method to estimate the time required to develop parallel applications. It is

already a well-established method in agile development, widely used and spread among

agile development teams. In Chapter 5, we evaluated the accuracy of the Planning Poker

method for estimating the time needed to develop parallel stream processing applica-

tions using three PPIs: FatsFLow, SPar, and TBB. Through this analysis, we concluded

the method’s effectiveness since the estimates made by experts in the area showed re-

sults close to those of an experiment conducted with 15 beginner in parallel programming

(Section 4.2). Among the metrics evaluated, Planning Poker was the only one that met

the accuracy criteria, although these values were considered acceptable for FastFlow and

TBB. The potential of Poker Planning motivated us to create a methodology for its use in

the parallel programming area.

This chapter evaluated the proposed methodology through a quasi-experiment

with five developers experienced in developing stream processing applications. The par-

ticipants used the Planning Poker method to estimate the time required to develop five par-

allel stream processing applications using the FastFLow, SPar, TBB, OpenMP, and Pthreads

interfaces. The Planning Poker results were similar to the experiment results with 15 stu-

dents for FastFlow, SPar, and TBB. The results showed that SPar is the interface that re-

quires the least programming effort to use, followed by FastFlow and TBB. However, for

the applications Bzip2 compress, Bzip2 decompress, Person Recognition, and Ferret, the

hypothesis test did not show a significant difference between FastFlow and SPar develop-

ment times. The same also occurred in the experiment with novice students due to how
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the experiment was conducted. Many participants parallelized the RGB channel extrac-

tion application with FastFlow after already parallelizing it with SPar and TBB. In this way,

parallelizing with FastFlow was easier because they already knew how to parallelize the

application. Therefore, developers with some experience can develop applications using

FastFlow as productively as SPar.

The hypothesis test also showed no significant difference between the estimated

development times for FastFlow and TBB due to the similarities in their programming mod-

els. The same occurred in the experiment with beginner developers. The hypothesis test

also showed no significant difference between the estimated development times for Fast-

Flow and TBB due to the similarities in their programming models. The same behavior

also occurred for OpenMP and Pthreads, which require at least 85% more effort to paral-

lelize the applications evaluated from the opinion of the participants of this study. OpenMP

and Pthreads do not have similar programming models as FastFlow and TBB. Despite the

differences between OpenMP and Pthreads, both have similar programming efforts to par-

allelize stream applications by not providing a structured programming model. It is nec-

essary to implement parallelism patterns like Pipeline and Farm, which are composed of

different processing stages, to parallelize stream applications. Therefore, to implement

stream parallelism with Pthreads and OpenMP, it is necessary to develop mechanisms

such as ordered insertion into chained queues manually. Experienced developers would

only realize such features. Therefore, considering the opinion of beginner developers in

the Planning Poker method could result in incorrect estimates.

Planning Poker has proven to be a promising method for estimating the time re-

quired to develop parallel applications since applying it in practice requires less effort.

However, its use still has some limitations. By performing an experiment with people to

collect the real-time needed to develop a given application, it is possible to collect informa-

tion about the difficulties and challenges faced by them during the execution of the task.

This experiment allows us to collect the participants’ opinions about their satisfaction with

the interfaces. A qualitative analysis of the participants’ answers can also provide valu-

able insights, such as those presented in Chapter 4. To address this limitation, we propose

using a questionnaire for the participants to report the reasons for the programming effort

related to a given interface, its limitations, and problems. In addition, it is essential that

participants also report their satisfaction with the evaluated PPIs.
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8. CONCLUSION

In this Ph.D. thesis, we discussed opportunities, methods, and techniques to im-

prove the evaluation of parallel programming productivity. This work began with a litera-

ture review aimed at mapping the techniques and metrics for evaluating the productivity

and usability of parallel programming interfaces (Chapter 3). We found that most studies

that claim to evaluate usability in parallel programming do not assess user satisfaction.

Furthermore, to simplify the evaluations, most studies use only coding metrics to mea-

sure productivity rather than conducting experiments with people. We have seen that

there are different metrics to evaluate coding productivity. Therefore, in Chapter 3, we

also presented a classification of these metrics. Furthermore, due to the limitations found

in the literature review, we introduce a methodology to guide other parallel programming

researchers in experimenting with people (Chapter 4).

Chapter 4 details two studies to assess parallel programming usability using soft-

ware engineering methodologies [252] for a quantitative and qualitative investigation.

The scope of this study comprised three PPIs (FastFlow, SPar, and TBB) based on struc-

tured parallel programming to express parallelism in stream processing applications tar-

geting multi-core systems. SPar showed the best usability indicators in this study because

of its annotation-based programming model. In Chapter 4, we also presented an initial

study with beginners developers in parallel programming for GPU systems to identify the

usability of different PPIs (CUDA, GSParLib, OpenACC, and OpenCL). In this study, GSParLib

showed the best usability indicators due to its programming model that abstracts the par-

allelism complexity by generating CUDA and OpenCL code. These findings suggest that

PPIs with a higher level of abstraction can reduce the effort required to develop parallel

applications.

Unlike studies that perform experiments with experienced developers on parallel

programming [172, 173], the participants of the studies presented in Chapter 4 were in-

tentionally beginner developers to consider the impact of learning, difficulties faced, and

programming errors. These results may also help teach parallel programming because we

identified the main challenges they faced in the study. In addition, through these studies,

it was possible to test and validate the proposed methodology to facilitate the evaluation

of the usability of PPIs.

Conducting experiments on people is essential to evaluate development produc-

tivity, although time-consuming. An alternative evaluation is the use of offline coding

metrics. In Chapter 5, we assessed the feasibility of different coding metrics (SLOC, NOC,

TOC, CCN, IFC, Halstead, and COCOMO II) when evaluating parallel applications. The re-

sults showed that Halstead and COCOMO II metrics were more promising for evaluating

parallel applications, although they also have limitations. Therefore, in Chapter 5, we also

tried overcoming some Halstead and COCOMO II limitations.
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We proposed an approach to evaluate the development effort of parallel applica-

tions using Halstead and a refined COCOMO II reuse model version. We identified other

predictive metrics that have not previously been used to estimate the development effort

of parallel applications, such as FPA, Planning Poker, Putnam’s model, SEER-SEM, and UCP.

Aimed to evaluate such metrics, we measured their accuracy against the effort required to

develop parallel stream applications. Our results showed that Planning Poker got the best

result than the other estimation metrics from the accuracy evaluation (MMRE, MdMRE,

and PRED values). In addition, Planning Poker showed the best results because it relies on

the experts’ opinions to guess the development effort.

Our results also showed that PHalstead has proven to be a helpful metric for

evaluating parallel code, although it does not get the best results. PHalstead may be an

alternative for studies for which it is not possible to conduct controlled experiments with

students and developers of parallel applications. This tool can be easily used by users, who

only have to provide the source code and the target PPI. In addition, currently, PHalstead

can be used to estimate the effort to develop C and C++ applications with FastFlow, SPar,

TBB, OpenMP, C++ threads and GrPPI, and Java applications with Flink and Storn.

Our adaptation of the COCOMO II reuse model (PCRM) did not prove adequate

for estimating the time required to develop parallel applications due to a lack of accuracy

since the estimated effort was much higher than the actual effort. Moreover, it is not easy

to refine the parameters of COCOMO for the parallel application development scenario.

Therefore, we identified the need to create an estimation model based on evaluating fac-

tors not considered in COCOMO.

Our initial idea was to design a model for estimating the development effort of

parallel applications based on COCOMO II. For this purpose, initially, we conducted an

international survey to identify the factors hindering parallel application developers’ pro-

ductivity (Chapter 6). This survey also identified some possible solutions based on the

participants’ opinions to improve developer productivity in parallel programming. Our re-

sults showed that lack of experience is one of the main reasons for the extensive effort to

develop parallel applications. These results showed a gap in teaching parallel program-

ming in the universities, where concepts related to PPIs are covered only at the end of un-

dergraduate courses. Better PPI documentation also helps the students’ learning process.

Using profiling and debugging tools can help develop parallel applications more produc-

tively. Finally, the results confirm the importance of creating programming models that

can abstract away the complexities of parallelization and increase developer productivity.

From the survey presented in Chapter 6, we identified some factors that impact

the development time of parallel applications, including developer experience, program-

ming model, architecture, development environment, and documentation. Using a ma-

chine learning model, we could predict development time from the factors identified by

the survey. However, building a dataset containing such information for training the model
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is a complex task since it is necessary to perform experiments with people to collect the

development time. Furthermore, due to the events of COVID-19, it was not possible to

conduct more experiments to collect such data. Instead, an alternative approach was to

focus on proposing improvements to coding metrics that did not require many participants

to use.

Planning Poker was the most effective method for estimating parallel application

development time among the coding metrics evaluated. Planning Poker’s accuracy oc-

curred because it relied on the opinions of experienced parallel application developers

to make the estimates. In addition, the survey results highlight the developer’s experi-

ence as one of the main factors impacting productivity. Therefore, in Chapter 7, we have

proposed a modification of Planning Poker to estimate the development effort of parallel

applications based on the opinion of an experienced developer instead of a development

team. We performed an experiment with experienced parallel programming developers

to validate the proposed methodology. The participants used the modified Planning Poker

method to estimate the development time of stream processing applications. Our re-

sults showed that the Planning Poker method has promising results comparable to the

actual development time collected through controlled experiments like those presented

in Chapter 4. In addition, Planning Poker requires less effort to use in practice than such

experiments. Therefore, we concluded that this method is a more effective and less costly

alternative for measuring development time, which is the main contribution of this Ph.D.

thesis.

Finally, there is potential to expand and evolve the methodologies and techniques

presented above. There are many research opportunities to be explored regarding the

productivity of coding parallel applications. Therefore, we discuss relevant existing limita-

tions and opportunities for future work in section 8.1.

8.1 Limitations and future work

From the literature review, we identified some little or not yet explored parallel ar-

chitectures to evaluate productivity from the literature review. Most of the studies explore

multi-core environments. On the other hand, few studies assess the coding productivity

of parallel application systems with cloud TPU and FPGA architectures [238, 209, 74]. Fur-

thermore, no studies have been conducted to evaluate emerging PPIs for HPC clusters,

such as HPX interfaces and Apache Spark and Flink. Hence, there is an opportunity to

explore such architectures.

We presented a methodology to guide and help researchers evaluate the usabil-

ity of PPIs. This methodology was used for an initial study and a controlled experiment

with graduate students. These studies showed promising results. However, one of the
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limitations found is related to the size of the samples evaluated. It is not easy to find a

representative sample of participants in the parallel programming area to perform experi-

ments like those in this work. To try to overcome this problem, we proposed using Planning

Poker. However, the problem related to sample size still needs to be solved.

On the other hand, PHalstead is a solution proposed for when it is impossible to

conduct experiments with people, although it still has limitations. There is a need to de-

sign coding metrics evaluating factors other than lines of code and the number of tokens.

Other factors, such as developer experience, the target architecture, the programming

model, and the application domain, should also be considered when proposing a parallel

application evaluation model.

By conducting experiments with people, it is possible to collect information about

the difficulties and challenges faced by the participants during the activity, and their sat-

isfaction or dissatisfaction with the interfaces used. It was not possible to collect such

information from participants using the proposed modification of Planning Poker. Conse-

quently, it was impossible to perform a qualitative analysis using Grounded Theory pro-

cedures, such as those presented in Chapters 4 and 6. To overcome this limitation, we

proposed modifying this method, in which we request further information from the partic-

ipant. Besides the estimated development time for a given interface, it is possible to ask

the developer the reasons for this development time and the PPIs’ problems and limita-

tions. It is also possible to ask participants to report difficulties that a less experienced

programmer might face during parallelization. Furthermore, it will also be possible to

evaluate user satisfaction.

We have identified a model from the literature review to estimate the percent-

age of extra effort to develop CUDA applications [143]. Using different machine-learning

algorithms, this model performs its estimations based on code metrics (Halstead, CCN,

and SLOC). There needs to be documentation regarding the dataset used for training

and testing the models, making it difficult to replicate the study results. In addition, this

dataset comprises only the CUDA interface. We initially tried composing a dataset, includ-

ing the applications evaluated in this study. Unfortunately, the experiments with people

presented in this paper show a sample that needs to be more representative to compose

a dataset. Designing a dataset with more PPIs is still necessary to train a machine learn-

ing model. A dataset is also essential to make it easier for researchers in the parallel

programming area to propose new methods for estimating development efforts. It avoids

the need to perform new experiments with students to validate these metrics, which is

time-consuming. In addition, this data must be made available to the HPC community in

a repository online with well-documented documentation.

We evaluated several metrics for estimating the development effort of parallel

applications, among which Planning Poker was the most prominent. Agile development

teams widely use this method. Several other estimation models for agile projects are avail-
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able, such as t-shirt sizing, dot voting, bucket system, large/uncertain/small, and affinity

mapping [140]. Therefore, the evaluation of such models in the parallel programming

domain still needs to be explored.

8.2 Publications

The following are research papers published during the doctoral period that are

directly related to this Ph.D. thesis:

• Andrade, G.; Griebler, D.; Santos, R.; Danelutto, M.; Fernandes, L. G. “Assessing

Coding Metrics for Parallel Programming of Stream Processing Programs

on Multi-cores”. In: 47th Euromicro Conference on Software Engineering and Ad-

vanced Applications (SEAA), 2021 [9];

• Andrade, G.; Griebler, D.; Santos, R.; Kessler, C.; Ernstsson, A.; Fernandes, L. G.

“Analyzing Programming Effort Model Accuracy of High-Level Parallel Pro-

grams for Stream Processing”. In: 48th Euromicro Conference on Software Engi-

neering and Advanced Applications (SEAA), 2022 [12];

• Andrade, G.; Griebler, D.; Santos, R.; Fernandes, L. G. “Opinião de Brasileiros

Sobre a Produtividade no Desenvolvimento de Aplicações Paralelas”. In:

Symposium on High Performance Computing Systems (WSCAD), 2022. [10];

• Andrade, G.; Griebler, D.; Santos, R.; Fernandes, L. G. “A parallel programming

assessment for stream processing applications on multi-core systems”,

Computer Standards Interfaces, vol. 84, March 2023 [11].
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