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ARCABOUÇO DE PROGRAMAÇÃO DE SISTEMAS DE CONTROLE
SOBRE UMA PLATAFORMA MPSOC

RESUMO

Com a crescente complexidade de sistemas robóticos, diversos aspectos de seu
controle tornam-se desafiantes. O sensoriamento gera agregados de dados volumosos a
coletar e processar; atuadores demandam a rápida manipulação de sinais, e controladores
evoluem para usar algoritmos sofisticados. Tal progressão de demanda exige um aumento
do poder de processamento. Novas tecnologias de processadores podem introduzir limi-
tes energéticos. Esses limites, implicam em reduzir que a totalidade de recursos intra-chip
seja simultaneamente empregada no seu máximo de desempenho. Dada esta limitação
física, alternativas são necessárias para aumentar o desempenho do hardware. Soluções
apontam para o paralelismo e a computação heterogênea. Um sistema de computação he-
terogênea distribui dados, processamento e execução de programas em diferentes proces-
sadores. Esta Tese propõe aplicar sistemas de controle digital em sistemas de computação
heterogênea e paralela para aumenta a eficiência do controle, permitindo adicionar múlti-
plas técnicas a este. Exemplos são a descentralização da arquitetura de controle, a auto
adaptação do controlador, técnicas de tolerância à falhas e a gestão de energia. A Tese
propõe um arcabouço de programação para implementar sistemas de controle sobre siste-
mas multiprocessados on-chip (MPSoCs). O arcabouço foi desenvolvido de forma genérica,
visando servir a múltiplos artefatos robóticos. O estudo de caso de aplicação usado é um
veículo aéreo não-tripulado quadrirrotor. Tal tipo de veículo possui uma dinâmica rápida e
alta sensibilidade à falhas e demanda por gestão de energia e controladores poderosos. O
arcabouço de software foi embarcado em um ambiente de simulação habilitado a simular
tanto o MPSoC quanto o quadrirrotor. Um conjunto de experimentos valida a hipótese geral
da tese. Eles testam itens como requisitos temporais, descentralização do controle, capaci-
dade de realizar controles com baixo impacto no desempenho, tolerância à falhas e gestão
de energia e adaptatividade dos controladores.

Palavras-Chave: Sistemas de controle, Sistemas embarcados, Computação heterogênea,
Robótica, MPSoC.



SOFTWARE FRAMEWORK OF CONTROL SYSTEMS ON AN MPSOC
PLATFORM

ABSTRACT

With the increasing complexity of robotic systems, many aspects of their control
system architecture also become more complex. Sensing produces huge data aggregates
to collect and process; actuators demand rapid signal manipulation, and controllers evolve to
include highly complex algorithms. This progression in processing demand requires comput-
ing power to keep up. However, new processor technologies introduce power limits. These
limits, implies that the dissipation of energy inside the chip prevents all its resources from
being used simultaneously at their maximum performance rate. With this physical limitation,
a distinct method is needed to continue to increase hardware performance. One way to deal
with such high processing demands is through the use of heterogeneous computing. A het-
erogeneous computing system distributes data, processing, and program execution across
different processors. The basic idea of this thesis is that the application of a digital control
system in a heterogeneous computing system increases the efficiency of the controller, while
allowing multiple techniques to be added to the control. Examples are the decentralization of
the control architecture, the self-adaptation of the controller, fault tolerance techniques and
the energy management. This thesis actually proposes a software framework for the imple-
mentation of control systems in a multiprocessor embedded system (MPSoC). This frame-
work was developed in a generic way to serve multiple robotic artifacts. The application case
study employed herein is a quadrotor unmanned aerial vehicle. Such an example of robotic
equipment is considered due to its fast dynamics, its sensitivity to faults and its high demand
for energy management and powerful controllers. The software framework was embedded
in a simulation environment capable of simulating both the processor and the quadrotor. Six
sets of experiments validate the general hypothesis of the thesis. These experiments tested
the time requirements, the decentralization of the control architecture, the ability to process
complex control algorithms without impacting the performance, the intra-chip fault tolerance,
not forgetting the power management applications and the self-adaptation of controllers.

Keywords: Control systems, Embedded systems, Heterogeneous computing, Robotics,
MPSoC.
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1. INTRODUCTION AND MOTIVATION

Embedded systems are application-specific systems that contain hardware and
software tailored for a particular task. They are generally part of a larger system, and em-
ploy at least one microprocessor [GS98]. The embedding of microprocessors into equipment
such as consumer appliances started before the appearance of the personal computer and
takes up most of the currently manufactured microprocessors. Embedded microprocessors
are deeply ingrained into everyday life, more than any other electronic circuit [Hea02]. They
can be found in automobiles, in the medical field, in industrial control systems, in enter-
tainment electronics, and even in prosaic elements such as household appliances’ remote
controls [TAK06].

Some embedded systems are often used in life-critical situations, where reliability
and safety are more important criteria than performance [ELLSV97]. Safety-critical systems
are systems whose failure could result in loss of lifes, significant property damage, or dam-
age to the environment [Kni02].

Modern technological systems heavily rely on sophisticated control systems to
meet increased safety and performance requirements. To prevent fault-induced losses and
to minimize potential risks of use, new control techniques and design approaches need to
be developed to cope with system component malfunctions, while maintaining the desired
degree of overall system stability, and performance levels [Jia05].

Control theory and embedded systems are typically treated separately in electrical
engineering programs. The implementation of control algorithms in digital logic targets is
often only indicated at the block diagram level [Ben20]. Concepts of control theory deal with
the basic principles underlying the analysis and design of control systems. To control an
object means to influence its behavior to achieve a desired goal. To implement this influence,
engineers build devices that incorporate various mathematically defined techniques [Son13].

In reality, control theory and embedded systems are intertwined. A fundamental
requirement of a control system is to complete all its assigned real-time tasks within design-
time specified timing constraints (usually referred to as deadlines), even in the presence
of faults [YDG04]. Embedded digital controllers are increasingly designed and built using
commercial off-the-shelf (COTS) hardware and software components, due to the availabil-
ity of high-performance, low-cost microcontrollers, specialized embedded processors, and
various real-time operating systems (RTOSs) [Li05].

When referring to embedded systems and control theory, the merging of these top-
ics creates two separate areas: control systems running in embedded systems and the con-
trol of embedded systems. Figure 1.1 illustrates both concepts. Control systems running in
an embedded system, illustrated in Figure 1.1a, refer to an algorithm running in a computing
element that controls an external system (external to the computing element). Meanwhile,



26

the control of embedded systems (see Figure 1.1b) refers to a computing element running
a control algorithm that is responsible for managing one or more of its inner parameters,
such as energy consumption, temperature control, quality-of-service (QoS), and real-time
constraints of the computing element.

(a) Representation of a robotic control system run-
ning in an embedded system.

(b) Representation of the control of an embedded
system.

Figure 1.1: Representations of: (a) control systems running in embedded systems and (b)
the control of embedded systems.

Control systems running in embedded systems and the control of embedded sys-
tems are the subject of extensive investigation. However, there are, for example, few studies
on how the internal management of a computing element energy can affect a robotic appli-
cation control. See Chapter 2 of this Thesis for a more extensive discussion and examples
of fields where the integration embedded computing and control systems requires further re-
search. One of the motivations of the work proposed herein is to bridge the communication
gap between control systems running in embedded systems and the control of embedded
systems. This motivation is further explained in Section 1.1.

While embedded systems are mostly associated with microprocessors and micro-
controllers, they can encompass a variety of components employing other technologies
such as digital signal processors (DSPs), complex programmable logic devices (CPLDs),
application-specific integrated circuits (ASICs), field-programmable gate arrays (FPGAs),
and graphical processing units (GPUs) [Arm10]. Furthermore, recent developments in high-
speed digital communication make it possible to connect a distributed suite of these distinct
high-performance components to provide a more powerful computing platform, often called
a heterogeneous computing system [HJ03]. Heterogeneous systems can provide low-cost
and high-performance computing whenever computational applications can be broken into
tasks distributed to the various components for parallel execution [BH05].

As control theory and embedded system design are often seen as two distinct
fields, most control applications in embedded systems are specifically implemented for some
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given hardware architecture. Therefore, implementing control theory principles in an embed-
ded system demands a particular knowledge, which the control engineer might not have or
can cause the process of embedding the control to take a significant amount of time.

In this manner, it is noticeable a lack of a single, high-level control software frame-
work aimed towards embedded systems in today’s literature. Such a software framework
can guarantee robust and stable control, and address computing machines’ inner concerns,
such as energy awareness, fault tolerance, and the fulfillment of real-time constraints.

The central statement behind this Thesis is that systematically applying digital con-
trol systems into a heterogeneous computing framework increases control efficiency and
facilitates the opportunity to apply other techniques, such as decentralized control and con-
troller self-adaptation. Also, this is expected to be achievable while taking into account pa-
rameters such as energy consumption, fault tolerance, and real-time constraints. The idea is
to consider the digital control of dynamic systems and the control of computing components
in a single unified paradigm. To demonstrate the validity of the proposed Thesis, a sys-
tem composed of an heterogeneous computing environment is embedded in a Quadrotor
Unmanned Aerial Vehicle (UAV), which is, by its own nature, a critical system.

1.1 Motivational example

It is evident in the literature that there is a mainly untapped area of research in-
volving control theory: the adaptation of computational resources to benefit the controller
implementation. The conventional way of implementing a digital controller for a dynamic
system consists in defining a processing module and embed the theorized controller into the
system. Later, the designer evaluates if the controller delivers an expected performance.
This is usually done while ignoring other aspects of the computational environment.

Topics such as energy consumption, fault tolerance, and performance are generally
treated as either a control theory or a computational problem, not as part of an intertwined
system. To illustrate this point, consider the following example: a sensor fusion software
is running in a single-core processor; this software is responsible for gathering data from
inertial sensors and estimating a rigid body’s attitude.

Figure 1.2 shows what a control engineer would look for, the performance of the
software, evaluating if the quaternion representing the body’s pose reflects the real-world
representation with a satisfying response.

Figure 1.3 presents an estimation of the processor energy profile running the sen-
sor fusion task for a pre-defined frequency. This is the information usually considered by
computer scientists and/or computer engineers. Figure 1.4 shows the accumulated energy
use throughout the process of running the task.
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Figure 1.2: Quaternion representation of a rigid body attitude.
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Figure 1.3: Energy consumption profile of a sensor fusion task running in a processor core.

However, what would happen to the precision of the attitude representation if the
processing frequency was lowered in the interest of saving energy? Or, if it was decided to
enhance performance by raising the frequency of operation? Practically, how is it possible
to keep the result shown in Figure 1.2 and at the same time manage to decrease the slope
of the curve presented in Figure 1.4.

In a real-time system, it is usually assumed that the computing machines are work-
ing at their maximum frequency to simplify the worst-case execution time (WCET) analysis,
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Figure 1.4: Accumulated energy consumption of a sensor fusion task running in a processor
core.

to enable verifying that system deadlines are never missed. This practice can causes un-
intended losses elsewhere. More complex embedded systems that use Dynamic Voltage
and Frequency Scaling (DVFS), when applied to real-time systems, the Operational System
(OS) is set to the maximum frequency. Would not it be possible to consider the pairing of
control theory and computer science to achieve an optimum result?

These topics are, mostly, unexplored.

1.2 Thesis Hypothesis

The central thesis hypothesis here is that using a heterogeneous computing frame-
work aimed at control systems does not only yields better results than the usually imple-
mented, traditional, centralized, single processing control systems, but it can simultaneously
integrate different topics from research areas of control theory and embedded systems un-
der an umbrella of a single software framework. Joining these topics together is an approach
that is often overlooked in the literature.

On the one hand, issues like intra-chip energy management, fault tolerance, and
other embedded systems topics can impact an implemented controller output. On the other
hand, distributed computation and self-adaptive processing can positively influence the de-
velopment of a control system. These two areas of study can mutually help each other and
create opportunities for new and improved systems.
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1.3 Thesis Goals

This Thesis’s strategic goal is the proposition of in-depth research on the integration
of two research fields: control theory and embedded systems. An expected outcome is
to create a software framework for the implementation of control systems based on multi-
processor systems-on-chip (MPSoCs).

The specific goals of the Thesis are as follows:

1. Develop a base software framework capable of implementing control systems into a
multi-processed system on chip (MPSoC), based on an open source processor archi-
tecture;

2. Incorporate functional features related to control theory and computation into the pro-
posed software framework. Example features that are to be included are decentralized
control, online controller update, energy estimation, and control and fault detection and
mitigation;

3. Link the proposed system to an operational system aimed at robotic applications;

4. Deploy the overall system into a robotic application, in this case, an UAV quadrotor,
validating the Thesis propositions;

5. Compare the obtained results of the conducted tests and experiments with cases se-
lected from the literature.

1.4 Thesis Contributions and Originality

The main original contributions of this Thesis are:

1. An integrated environment for the development of robotic applications targeting MP-
SoCs. This environment eases the evaluation of non-functional requirements (such as
energy and reliability) by combining cycle-accurate simulations from RTL models with
behavioral simulations from robotics 1;

2. An overall basic software framework written in the C programming language; This
framework gathers a set of the most valuable functions for control applications, which
allows the deployment of a large number of controllers for robotic applications;

1This environment was described in [VDP+20]
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3. An environment that can evaluate and control the energy consumed by each processor
core at runtime; this framework enables evaluating the effects of actuation in energy
control, which impacts the output of the application control;

4. Application of a system capable of breaking apart a fully centralized control architecture
into the proposed software framework system and running it in multiple cores, later
comparing performance and efficiency;

5. Fault tolerance is another topic approached by the framework. In critical systems, a
core failure can result in catastrophic consequences. This software framework pro-
poses a task migration technique to guarantee a continuous and correct operation and
also fulfilling energy consumption constraints;

6. Lastly, the decentralized nature of the MPSoC is used to create a control system that
can be updated on-chip at runtime. The main application controller runs in a core, while
in parallel, another task running in a different core analyses the output and updates the
system.

1.5 Research Workflow

The research workflow, as depicted in Figure 1.5, comprises three distinct areas:
literature review, implementation and evaluation.

The literature review divides the research into three sub-phases: the first consists
of a state-of-the-art compilation of works regarding the core idea of this thesis: the union
between heterogeneous computing systems and control theory. This phase takes the pre-
defined robotic application (Quadrotor) in the second sub-phase, then research its main
characteristics and related scientific works. The third sub-phase is realized by defining our
overall system idea. This, takes what was considered the main ideas of the heterogeneous
computing systems and control theory areas and define the target software framework ar-
chitecture. This process is detailed in Chapters 2 and 3.

The Implementation phase build the target software framework, defining the nec-
essary tools and subsystems. In the same way as the Literature Review, this area is divided
into sub-phases. First phase defines computational and control system and the software
basis used (C libraries and functions). Next phase ports this infrastructure into the proces-
sor’s architecture chosen (RISC-V). The base simulation that validates the entire thesis is
the third sub-phase, unifying the robotic simulation with the system. Lastly, all of the features
devised by this thesis are implemented in this software framework. This process is detailed
in chapters 4 and 5.
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Figure 1.5: Diagram representing the research workflow

In parallel with the Implementation phase, the Validation phase evolves; as the de-
velopment of the implementation progresses, the validation of the results are put in Chapter
6.

1.6 Document Structure

This document is structured in the following manner: Chapter 1 presents the mo-
tivation behind this thesis, present the research problem, define goals and explain its con-
tribution and originality. Chapter 2 brings the literature review on which this thesis is based.
Topics like the history of the application of control theory in embedded systems and hetero-
geneous computing characteristics and architectures are discussed. It also brings selected
works currently being developed in related areas that are viewed as essential to contextual-
ize this thesis (State-of-the-Art). Chapter 3 reviews all topics related to the quadrotor study
case: presentation of the topics of physical dynamics, flight modes, mathematical modeling,
most commonly used controllers, and available computational simulations of quadrotors.
Still, Chapter 3, chooses three controllers to create our study case and apply them to the
thesis. The theory behind these controllers is explained. Moreover, different theories neces-
sary to develop this work are explained. Chapter 4 details the required infrastructure to run
the software framework proposed. Presenting topics on MPSoCs, the RISC-V architecture,
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the Hellfire OS, ORCA platform, URSA simulator, created C libraries, and energy estimation
intrachip. Chapter 5, explains how the software framework is implemented and how the sim-
ulations are created. Also explains the entire system’s architecture (Quadrotor simulation
+ MPSoC simulation), the experimental setup, and the implementation and description of
the algorithms used in the control system. Chapter 6 contains the details and results of the
experiments used to validate this thesis. All along, commenting and analyzing the results.
At the end of this chapter, a recap of these results is brought, and a conclusion is given.
Chapter 7 takes the entirety of this thesis, give an overall conclusion, and propose future
works based on the observations made.
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2. BACKGROUND AND STATE-OF-THE-ART

This chapter presents, in Section 2.1, background information required to under-
stand concepts related to control theory, heterogeneous computing, and embedded sys-
tems of special importance to this work. Section 2.1.1 reviews basic concepts of control
theory and how these apply to embedded systems, approaching some seminal works. Sec-
tion 2.1.2 covers several concepts on heterogeneous computing and a few relevant papers.
Section 2.2 reviews the state of the art in the intersection of control theory and embedded
systems. The Chapter ends in Section 2.3, where a brief analysis of the revised literature
takes place.

2.1 Background

This section brings preliminary research on control theory applied in embedded
systems and topics on heterogeneous computing. It serves as a basis for the methodology
used to gather works for state-of-the-art research on Section 2.2.

2.1.1 Control Theory and Embedded Systems Early Work

This section reviews the basic concepts of control theory required to understand
this thesis. Also, it gives historical background, reviewing some of the first works made
combining control and embedded systems.

DiStefano et al. [DISW14] define a control system as an arrangement of physical
components connected or related in such a manner as to command, direct, or regulate
itself or another system. We can categorize control systems into two distinct groups in
control theory: open-loop systems and closed-loop systems. An open-loop (control) system
consists of an algorithm that performs changes to the target process solely based in the
input. An open-loop control system distinguishing characteristic is that it cannot compensate
for any disturbances that add to the controller driving signal [Nis20]. A representation of an
open-loop control system appears in Figure 2.2.

A closed-loop control system, in simple terms, is a mechanism that seeks to min-
imize the difference between the actual value of a system (i.e. the process variable) and
the desired value of the system (i.e. the setpoint). To better explain, the controller sends an
actuator signal to the system it controls, and sensors measure the effect generated by these
inputs.
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Figure 2.1: Block diagram representation of an open-loop control system.

The sensors outputs are compared to the system desired state, and that informa-
tion is fed into the controller. Afterward, the cycle repeats itself. Figure 2.2 shows a block
diagram of a simple closed-loop control system.

This work focus exclusively on closed-loop control systems. A simple example can
illustrate the idea of such a system: consider a water tank level control. The plant is the
water tank itself, the sensor is a float placed inside the tank, and the actuator is the output
valve.

The controller objective is to keep the water level around a fixed value, independent
of the system water flow variations. To achieve this objective, the control engineer must
calculate a control law that modifies the system to satisfy the proposed constraints and the
desired output.

Figure 2.2: Block diagram representation of a closed-loop control system.

There are many ways and techniques to create and implement a control law, de-
pending on the nature of the system dynamics, on the desired performance defined by the
engineer, and on the available resources to apply in the controller. In the case of this work,
it is assumed digital processing power is at hand.

It is possible to trace the beginning of control theory to the Hellenic period [Ben96],
but here attention is placed the digital era of control theory. The idea of using digital com-
puters for process control emerged in the mid-1950s. Serious work started in March 1956
when the aerospace company Thomson Ramo Woodridge (TRW) contacted Texaco to set
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up a feasibility study. After preliminary discussions, it was decided to investigate a poly-
merization unit at the Port Arthur refinery in Texas. A computer-controlled system for the
polymerization unit was designed based on the RW-300 computer, and the control system
went on-line on March 12, 1959 [ÅW13].

The implementation of control algorithms in microcontrollers and embedded sys-
tems has been reported ever since these were introduced on the market [Ben20]. Figure 2.3
represents how usually a control system is implemented in the context of a computational
processing unit. The system structure is programmed as a serial algorithm inside a single
processor (the processing unit). At each end of the processing unit, there is the integration
of digital and analog dynamic systems: analog-to digital (AD) and digital-to-analog (DA) con-
verters. An AD converter takes physical measurements of sensors and translates these to
digital form for sensoring processing. Later, a DA converter takes the digital controller output
and reintroduces the actuator signal to the analog system, that way closing the loop. Today,
it is not uncommon for sensors and actuators to get or to furnish information on digital form.

Figure 2.3: Representation of a traditional implementation of a digital control system.

It is possible to highlight a few relevant early works on embedded control. These
works were selected based on their focus regarding control theory and how to apply it to
embedded systems. All of these were published in the late 1970s and early 1980s.

A first paper worth mention is that by Seim [Sei75], in which a production braz-
ing machine was adapted for embedded control in an Intel 8008 microprocessor. Even a
slower processor for the time, the 8008 microprocessor was fitted for controlling a stepping
motor that regulates the power applied to an induction heating coil in the brazing process.
The controller chosen for this task was a Proportional-Integral-Derivative Control (PID) that
ultimately proved more than adequate for the control task.

Johnson [Joh77] proposes, analyses, and simulates experiments with a discrete
control algorithm for optimal control of a solar energy system for heating buildings. The
dynamic system is based on two controllers utilizing a solar space heater with a conventional
furnace as an auxiliary heat source. The optimal control deals with finding a control law
based on minimizing a cost function modeled for the system. A MOS Technology 6502
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eight-bit microprocessor computed this minimization. Moreover, as later was shown, this
project was an improvement over previous work.

Reed et al. [RM77], proposed a general-purpose industrial process controller de-
signed to use the Motorola M6800 microprocessor. A discrete form of the PID control algo-
rithm was implemented in software and used to control a second-order system having time
constants on the order of half a second.

Approaching the topic of an embedded nonlinear control system, there is the work
of Klein et al. [KM79]. Authors demonstrate the implementation of the sliding mode control
method with a microprocessor through the example application of controlling one leg of a
six-legged walking vehicle called Hexapod. They used a computer system to control the leg
three joints, and the heart of the system is an IMSAI microcomputer, which is based on the
Intel 8080 microprocessor.

Furthermore, in 1982 Ohlson et al. [OWJ82] published a work based on a micro
processor-based feedback controller of a medical, mechanical ventilator. Interestingly, the
controlled continuous process is not a machine but a living creature. The system comprises
a servo ventilator as the actuator, a CO2 analyzer combined with a lung mechanics calcu-
lator serves as the measurement unit, and an IMSAI PCS 80/30 microcomputer is used to
implement the control algorithm and to collect and tabulate data. The processor board is
based on an Intel-8085 microprocessor.

As shown, for most Embedded Control Systems (ECSs) lifetime, controllers were
based on microprocessors. Although providing most of the basic features to implement
basic control systems (processor, input/output, converters), these microcontrollers usually
provide low levels of computing power and only support simple applications [ACVR05]. Fast-
forwarding a few decades into the future, new control applications start to appear, and these
demand much higher computational complexity, functionality, and reliability than the tradi-
tional computational processing paradigm can deliver. Therefore, the search for new com-
putational architectures leads naturally to the domain of heterogeneous computing.

2.1.2 Heterogeneous Computing

Moore’s law describes the trend over time of the number of transistors in an in-
tegrated circuit (IC) and the associated IC cost. It was first announced as an observation
by Gordon Moore and was published in 1965 [Ma19]. Moore predicted that the number of
transistors integrated in a single chip would double every two years, without a significant
increase on the cost of such IC. This trend followed for over thirty years [BDH+10]. In the
last few years, this exponential transistor increase allows the production of ICs with several
billions of transistors. However, as wires and logic gates become smaller, the advance of
miniaturization becomes harder to achieve.
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Reaching this physical limitation of processors, the need for a different way to con-
tinue increasing hardware performance according to increasing software demands keeps
climbing [AC18]. So, one possible way to handle such performance requirements is through
heterogeneous computing. This thesis employs heterogeneous computing due to:

• to the physical space availability of the IC, granting the ability to implement multiple
tasks;

• the extensive repository of intellectual property to solve many problems: network ac-
cess, general and specialized processing, storage, and multiple interfaces for many
systems;

• the wide range of digital, computational, and control systems construction methods.

These characteristics enable the implementation of devices dedicated to compos-
ing the various parts of a control system.

A heterogeneous computing system (HCS) distributes data, processing, and pro-
gram execution among different processors, such that each is best suited for one or for a
few specific computational tasks. An HCS can be a super-computing system with hetero-
geneous cores or a cluster of heterogeneous processors or a system composed by multiple
distinct processors associated to specific accelerators (such as floating or fixed point arith-
metic units, dedicated neural networks, etc. A processor here can be a general-purpose
processor (GPP), a special-purpose processor (e.g., a digital signal processor (DSP) or a
graphics processing unit(GPU)), or a co-processor [ZWT+18]. The system is called hetero-
geneous because the (co-)processors are different from some main device; they may have
different instruction sets, or the programming languages and environments may be differ-
ent. The (co-)processors can achieve performance and energy efficiency with specialized
processing capabilities to handle particular tasks [Ma19].

An HCS is generally used for the execution of a large number of applications. The
advantage of HCSs lies in the different structures of multiple processing units in the system,
which are suitable for executing different types of applications [HGL+20].

Today, there is a wide variety of system architectures, ranging from homogeneous
multicore processors to graphics processing units (GPU) combined with CPUs. The following
sections discuss some such system architecture structures.

Multicore

The first architecture possible to highlight is the multicore. A de facto definition of
a core, according to Zahran [Zah19] is a CPU and its level-1 caches (for instructions and for
data).
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Below the L1 caches are different designs. One design has a shared L2 and L3
cache, where L3 is usually the last-level cache (LLC) before going off-chip. An L2 cache is
typically physically distributed and logically shared to increase scalability with the number of
cores. Figure 2.4 shows a representation of the multicore architecture

Figure 2.4: Diagram of a multicore architecture. Adapted from [Zah19].

Multicore architectures typically evolved from general-purpose cores, employing a
low number of rather heavy-weight, highly complex cores and multilevel cache hierarchies
with complete cache coherence across all cores in a node [BHKW12]. All multicore archi-
tectures aim to either exploit concurrency, increase computing density, handle partitioned
workloads, or achieve some combination of these objectives [LC09].

In the case of multicore architecture applied to control theory, the work of Youness
et al. [YMK14] serves as an example. In this paper, authors present a detailed case study
of an embedded real-time(RT) self-tuning PID controller for a 1-degree-of-freedom (1DOF)
aerodynamical system. To test the multicore architecture parallel processing capabilities,
three control algorithms were implemented. The first one, a master task, spawns three slave
tasks. Each of these computes one of proportional, integral, and derivative gains. In the
second implementation, each core of the multicore architecture executes a separate PID
controller, producing a multi-PID digital controller. A master thread manages up to seven
worker threads. Each the worker threads implements an independent or cooperative PID
control algorithm. The third algorithm comprises a self-tuning PID based on fuzzy logic.
Here, a master task manages two slave tasks running in different cores: the first one is the
PID controller, and the second is the fuzzy logic tuner.

Another multicore architecture application the Kalray-256 processor. It integrates
256 user cores and 32 system cores on a chip with 28nm CMOS technology. The MPPA-
256 chip [DDAB+13] integrates 16 compute clusters and 4 I/O subsystems located at the
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periphery of the processing array to control all the I/O devices. Each I/O subsystem contains
an SMP quad-core with a shared D-cache, on-chip memory, and a DDR controller to access
up to 64GB of external DDR3-1600 [DDAB+13]. Figure 2.5 shows a representation of the
MPPA architecture.

Figure 2.5: MPPA multicore architecture. Adapted from [DDAB+13].

The big.LITTLE Architecture

The big.LITTLE architecture is designed to employ separate cores with different
computing capabilities within the same CPU. Figure 2.6 illustrates the block diagram of a
representative CPU designed using the big.LITTLE architecture [CECK12]. This architecture
was introduced to give a better energy performance trade-off in a single silicon. Two types
of cluster cores are embedded: performance-driven big core and energy efficiency-driven
LITTLE core [CKC12].

At its core, the big.LITTLE architecture is the first step in the creation of hetero-
geneous computing. This architecture creates a trade-off between hardware and software
complexity and performance. With only one ISA and hardware/software performance levels,
tasks like code migration become possible. That more heterogeneous cannot deliver.

Both cores implement precisely the same processor architecture and are capable
of executing the same instructions. As said before, the only difference lies in the way cores



41

Figure 2.6: Diagram of the big.LITTLE architecture. Adapted from [CECK12].

handle execution. While the “big” core is designed with performance as its primary goal, the
“LITTLE” core is designed with energy efficiency as its principal target [CECK12]. The "big"
core is implemented to achieve high performance by running more instructions in parallel
on a more extensive and more complex pipeline. The "LITTLE" core pipeline is simpler and
targets high energy efficiency. Its performance is lower than that of the big core, but can be
sufficient for most common usage scenarios executed by modern mobile devices [Gre13].

In the first big.LITTLE system from ARM, a ‘big’ ARM Cortex-A15 processor, is
paired with a ‘LITTLE’ Cortex-A7 processor to create a system that can accomplish both
high and low computational demand tasks in the most energy-efficient manner.

By connecting the Cortex-A15 and Cortex-A7 processors via the CCI-400 coherent
interconnect, the system is flexible enough to support various big.LITTLE use models, which
can be tailored to the processing requirements of the tasks [Gre11].

The work of Mishra et al. [MILH18] proposes a resource manager that learns key
control parameters to meet latency requirements with minimal energy in complex, dynamic
environments. Later, testing this manager’s ability to deliver reliable latency on heteroge-
neous ARM big.LITTLE architectures in both single and multi-application scenarios.

That goal was achieved by using learning to model complex resource interaction
and control theory to manage system dynamics.

CPU and GPU Combination

Though the primary reason for introducing GPU was for graphical purposes, it is
now being used for general-purpose parallel computing [RC18]. This development’s main
reason is that more transistors are devoted to data processing rather than data caching, flow
control, and error correction. Furthermore, GPUs are comparatively cheap because of their
high fabrication volume [BHKW12].
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According to Mittal and Vetter, 2015 [MV15], computer architects, programmers,
and researchers are moving towards a CPU and GPU paradigm where the best fea-
tures of both can be intelligently combined to achieve even further computational gains.
This paradigm aims to match each application’s requirements to CPU/GPU architectures’
strengths and achieve load balancing by avoiding idle time for both the Processing Units
(PUs).

Fei et al. [LLW16] divides this architecture into fused CPU+GPU and discrete
CPU+GPU. In a discrete system, the CPU has dependent memory space to GPU, and there
is a large amount of overhead such as communication time and memory bandwidth to com-
municate between CPU and GPU, which make it not efficient enough. In a fused system,
the CPU can share memory space with GPU, and the communication overhead is avoided.
Figure 2.7 shows a GPU with 32 highly multi-threaded SIMD accelerator cores combined
with a standard multicore CPU in a discrete architecture.

Figure 2.7: Discrete CPU + GPU architecture. Adapted from [Aro12].

In Chitchian et al. 2013, [CSvAK13] the authors present the design, analysis, and
real-time implementation of a distributed computation particle filter on a graphic processing
unit (GPU) architecture that is especially suited for fast real-time control applications. The
controlled plant, in this case, is a three-jointed robotic arm. Each joint has a sensor to
measure its angle. There is a camera mounted at the end of the arm. This camera is used
for tracking an object which is moving on a monitor on a fixed yz plane. The control objective
is to track a moving object with the robotic arm while it traverses the screen. The particle filter
application based on the CPU-GPU paradigm is divided into a host and device side. The
host refers to the CPU connected to one or more devices (i.e., the GPUs). The algorithm is
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divided into four steps running in each of the computing units of the architecture’s accelerator
side (GPUs).

A practical example of this CPU and GPU combination is the Jetson TK1 Devel-
opment Kit, designed around the 192-core NVIDIA Tegra K1 mobile processor. There are
two versions of Tegra K1 mobile processors: 32-bit version and 64-bit version, which are
pin-compatible 1. The 32-bit version uses a quad-core Cortex-A15 CPU, which runs at clock
rates up to 2.3GHz, is 3-way SuperScalar, and has 32KB L1 Instruction Cache and 32KB L1
Data Cache. The 64-bit version uses a custom dual-core Denver CPU, which runs at clock
rates up to 2.5GHz is 7-way SuperScalar and has 128KB L1 Instruction Cache and 64KB L1
Data Cache [LSN14]. Figure 2.8 shows a high-level scheme of the NVIDIA Tegra K1 mobile
processor (32-bit version).

Figure 2.8: NVIDIA Tegra K1 mobile processor (32-bit version). Adapted from [LSN14].

CPU and FPGA Combination

FPGAs can be viewed as user-defined application-specific integrated circuits
(ASICs) that are reconfigurable. They offer fully deterministic performance and are designed
for high throughput, for example, in telecommunication applications [BDH+10].

FPGAs are unique kinds of chips that are configurable by the end-user, but FPGA
resources are of a fixed size and have limited flexibility. FPGAs are programmed using high-
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level synthesis (HLS), circuit schematics, or a hardware description language like VHDL or
Verilog. The essential components of FPGA are configurable logic blocks (CLBs) or logic
array block (LAB) and look-up-tables (LUTs) [TDSP19].

Among various heterogeneous acceleration platforms, the FPGA-based approach
is considered to be one of the most promising directions, since FPGAs provide low power
and high energy efficiency and can be reprogrammed to accelerate different applications
[CCF+16]. A typical PCIe-based CPU-FPGA platform features direct memory access (DMA)
and private device DRAM. To interface with the device DRAM as well as the host-side CPU-
attached memory, a memory controller IP and a PCIe endpoint with a DMA IP are required to
be implemented on the FPGA, in addition to user-defined accelerator function units (AFUs)
[CCF+19].

Figure 2.9: CPU + FPGA architecture. Adapted from [CCF+19].

The trend towards tighter integration of CPUs and FPGAs enables more collabora-
tive execution between devices. Rather than executing an entire kernel on the FPGA while
the CPU is idle, collaborative execution makes better use of the overall system resources by
involving both CPU threads and FPGA in the execution [HCEH+19].

Rui et al. [RFXP12] present a control system designed to reduce an elevator’s
energy consumption by transforming the energy from the motor working at the generating
state to the power grid using a Fuzzy Logic PID controller. The proposed system adopts
dual-PWM control to implement the energy feedback, 32-bit ARM CPU and a 32 bit DSP
CPU + FPGA structure, two CPU to exchange data in a high-speed through the parallel
communication, lift master board and calling landing workstation, and ceiling assembling
workstation to exchange information through the CAN bus serial.

As an example of a CPU-FPGA combination, the Xilinx Zynq-7000 device is high-
lighted. These products integrate a dual-core Arm CortexTM-A9 MPCoreTM based process-
ing system (PS) and Xilinx programmable logic (PL) in a single device. The Arm Cortex-A9
MPCore CPUs are the heart of the PS, including on-chip memory, external memory inter-
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faces, and a set of I/O peripherals [Xil18]. Figure 2.10 shows a high-level scheme of the
ZYNQ Architecture.

Figure 2.10: A Block Diagram of the ZYNQ Architecture. Adapted from [MWH13].

Digital Signal Processors (DSP)

As of now, there are many others processing nodes more than what was mentioned
before. One of them is the DSP (digital signal processor). These target small niches of ap-
plications, however, are not as versatile as the ones mentioned earlier [Zah17]. As with any
specialized circuits, DSPs are more energy-efficient than general-purpose processors for
analog signal processing applications. That is why we see DSPs in many portable devices.
However, they can also be used in high-performance computing for scientific applications
when needed [Zah19].

In Li et al. 2012 [LHL+12] the authors explore the DSP-GPU heterogeneous com-
puting architecture and propose a communication implementation. A Master-slave model
is designed for a heterogeneous computing system. DSP and GPU are defined as master
core and slave core separately. The computing task-parallel analysis and assignment are
processed in DSP, and the independent parallel computing task is transferred to the GPU
unit by a message control unit. Figure 2.11 shows a representation of DSP-GPU heteroge-
neous computing system structure.
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Figure 2.11: DSP-GPU heterogeneous computing system structure. Adapted from [LHL+12].

The work of Sousa and Meloni, 2012 [SM12] proposes a reconfigurable and hetero-
geneous computing architecture for digital signal processing on embedded systems, based
on the cooperative code execution between DSP and FPGAs. Validating this approach by
processing FFT (Fast Fourier Transform) and DCT (Discrete Cosine Transform) algorithms.

This work highlights the Qualcomm Snapdragon 800 as a commercial application
of the DSP-CPU combination architecture. The Qualcomm Snapdragon 800 is an ARM-
based SoC for tablets and smartphones. The CPU portion is based on Qualcomm’s Krait
architecture, which is compatible with ARMv7 ISA [Che21]. This system-on-chip has two
instances of the Hexagon digital signal processor (DSP). The modem (mDSP) is dedicated
and customized for modem processing, whereas the application DSP (aDSP) is used for
multimedia acceleration [CAV+14]. Figure 2.12 shows a block diagram of the Snapdragon
800 Architecture.

2.2 State-of-the-art

This section focuses on the related works in the intersection of both fields of study
(control theory and heterogeneous embedded systems), covering a vast research topic.
Figure 2.13 shows which topics were selected for guiding the scope definition of this state-
of-the-art review.

With the topics selected, the next step is to create our research questions.

1. Are the fields of heterogeneous embedded systems and control theory integrated?

2. Which topic of control theory, the system is applied (e.g. embedded controller, embed-
ded sensor processing)?

3. Which heterogeneous computing architecture are being used ?
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Figure 2.12: Snapdragon 800 block diagram. Adapted from [CAV+14].

4. Does the controller developed acts intra-chip? Only in an external application? Or
both? See the example on Figure 1.1

5. Does the study deals with energy management? If yes, How ?

6. Does the study deals with fault tolerance? If yes, How ?

7. Does any of these studies propose any form of unifying these topics (e.g., energy
management, fault tolerance) under a single processing framework? How?

The remainder of this section presents a summary of the selected works.

2.2.1 Bulat Khusainov et al.

The work of Khusainov et al. [KKSC18] proposes an implementation of an interior-
point-based nonlinear predictive controller on a heterogeneous processor where the work-
load can be split between a general-purpose CPU and an FPGA. A continuous-time optimal
control problem demands that the nonlinear time-invariant system be described as an ordi-
nary differential equation (ODE). And then, to solve this control problem, two main stages
must be resolved: integration and optimization.

The authors find that splitting the workload between a CPU and FPGA was the
best course of action due to: the fact that integration, i.e., solving the ODE, is not desirable
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Figure 2.13: Topics selected to start the state-of-the-art research

in an FPGA because ODEs may involve mathematical expressions, like sines and square
roots, that require plenty of computational resources, more resources (LUTs, DSP, internal
memory) than those available in the FPGA and could be unsuitable for pipelining. On the
other hand, optimization algorithms can benefit from hardware acceleration because they
have an iterative nature, which is beneficial for reusing computational logic and the fact that
underlying linear algebra algorithms can be efficiently mapped onto hardware.

The interior-point-based nonlinear predictive controller is based on a Primal-dual
interior-point method algorithm, which uses a Minimum Residual solver. The entire algo-
rithm is implemented in software, in an ARM Cortex-A9 processor. The matrix-associated
problems, like matrix-vector multiplications and the linear system solver, are accelerated in
hardware.

A proprietary software tool called Protoip was used to allow the quick prototyping
and processor-in-the-loop verification of optimization algorithms on a Xilinx Zynq system-on-
a-chip (SoC), which contains an ARM processor and FPGA fabric. The experimental setup
represents a closed-loop system that consists of a gantry crane model and a heterogeneous
computer running the predictive controller. Processor-in-the-loop testing implies simulating
the controlled plant in a Matlab environment on a PC while performing computations on the
embedded platform, as shown in figure 2.14.

What makes this paper relevant for the thesis is the fact that this implementation
shows that the performance of a heterogeneous computer-based controller can be efficiently
traded off against resource usage by shifting the computational workload between the CPU
and the FPGA, while varying the amount of parallelism for a given part of an algorithm might
be less efficient or even without any benefits.
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Figure 2.14: Processor-in-the-loop test. Adapted from [KKSC18].

2.2.2 Kasra Moazzemi et al.

Moazemmi et al. [MMY+19] explores the need for runtime resources managers to
efficiently, dynamically, and robustly manage shared resources in the heterogeneous com-
puting field. The authors addressed this through HESSLE-FREE (Heterogeneous Systems
Leveraging Fuzzy Control for Runtime Resource Management): an approach leveraging
fuzzy control theory that combines classical control theory’s strengths with heuristics to form
a runtime resource manager for heterogeneous systems.

HESSLE-FREE is a lightweight monitoring system that captures power and perfor-
mance metrics from each computing unit in the system and makes runtime resource alloca-
tion and tuning decisions using fuzzy control theory with low overhead. It controls various
knobs in this system, such as the operating frequency of CPU clusters and GPU separately,
and decides on the active core in the heterogeneous multiprocessor. Figure 2.15 shows an
abstract view of HESSLE-FREE architecture.

The platform chosen for this architecture application was an NVIDIA Jetson TX2
development board, which contains a heterogeneous multiprocessor (HMP) and an NVIDIA
GPU. The HMP contains a quad-core ARM Cortex A57 cluster and a dual-core NVIDIA
Denver cluster. NVIDIA Pascal CUDA cores power the GPU. The controllers used in the ex-
periments were implemented as Linux userspace daemons that execute in the background
with the applications. CPU and GPU runtime energy are separately measured on-board
alongside current and voltage using sensors present on the JetsonTX2 development board.
The experiment devised to validate the system was based on the CPU and GPU simultane-
ously execute their workloads (a face detection algorithm), while HESSLE-FREE optimizes
the user metrics, like frames per second delivered by the GPU or QoS metric delivered by
the CPU, as well as the energy consumption of the entire system.



50

Figure 2.15: HESSLE-FREE architecture. Adapted from [MMY+19].

The article demonstrated the simplicity and effectiveness of the proposed archi-
tecture. The paper evaluations show that HESSLE-FREE successfully managed complex
systems in an energy-efficient manner while achieving QoS targets. The authors claimed
that their system shows the usefulness of fuzzy control for resource management in hetero-
geneous computer systems and their increasing complexity.

2.2.3 Michael Giardino et al.

Giardino et al. [GKFF20] address the topic of intra-chip resources management
impacting the quality-of-service delivered by the application controller.

In the paper, the authors propose developing a software architectural framework
for implementing compute-aware control systems. In this case, the term "compute-aware"
describes controllers that can modify existing low-level computing platform power managers
in response to the physical system controller’s needs.

The framework allows bidirectional guidance between the computing system’s
hardware layer and the physical system controller’s application layer. This means that the
application layer is aware of its hardware-defined power constraints and can adjust its al-
gorithms accordingly, and can adjust computing resources as needed. In this case, the
framework tries to balance quality-of-service and energy management.

This software framework is built upon three main components: compute-aware
physical system controllers, computer power and performance controller, and a quality-of-
service manager (see Figure 2.16). Compute-Aware Physical System Controllers (CAPSCs)
are standard software controllers reformulated into algorithms that can be stopped or recon-
figured at any time due to sudden limitations in the computer resources. The QoS Manager
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(QoSM) receives monitored metrics and converts this into a QoS that can be passed to the
computer power and performance controller (CPPC). The CPPC takes the desired QoS,
converts it into available physical power/performance modes, and relays them to the hard-
ware/OS.

Figure 2.16: A high level view of the software framework architecture. Adapted from
[GKFF20].

The performance target in this work is not a computational metric but rather the
physical system’s performance. In the experimental example, the performance is how
closely a mobile robot can track a desired path. As mentioned before, the framework’s
test platform is a custom mobile robot. The computational unit is a hybrid, stacked, hetero-
geneous architecture consisting of two primary computational units. The lower level CPU
is an ATmega328/P responsible for running the PID motor controllers and odometry; this
is connected via SPI to the upper-level CPU. This is an ODROID XU4, based upon the
Samsung Exynos5422 Cortex-A15/A7 Octacore SoC, responsible for the path planning, tra-
jectory planning, and running the framework. This ARM big.LITTLE heterogeneous multi-
processing architecture allows for transparent thread scheduling between high-performance
higher-power cores and lower-performance lower-power cores and per-cluster DVFS.

A situation-aware (SA) governor was proposed to change the CPU clock frequency
in response to situations perceived by the physical control system application. In this case,
if the control system perceives that it is in a situation that requires high performance or
that it is in a computationally intensive region, it sets the CPU performance state to the
highest power/performance mode. In other circumstances, the SA governor attempts to
reduce the power by feeding back the performance error. In other words, the algorithm puts
downward pressure on the frequency of the processor, reducing the energy consumption
until the reduction in performance causes an increase in the measured error, which then
puts upwards pressure on the frequency, keeping the performance high enough to meet
error targets.

Figure 2.17 shows the experimental results showing the obstacles and paths taken
by the robot when the computing platform is running under one of four cases: The static-
low-power and static-high-power settings, the situation-aware (SA) governor, and a standard
Linux on-demand governor.
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Figure 2.17: Experimental results showing the obstacles and paths taken by the robot in
each case [GKFF20].

Based on the analysis of the performance and the energy profiles generated
through the experiments, the authors concluded that the governor could respond to the phys-
ical system controller’s needs, reducing power significantly. In a complex scenario, power
was reduced by 26.9% over static high power and 20.6% of the existing power-management
governor. At the same time, it maintains a performance similar to the high-power case.

2.2.4 Markus Ulbrict et al.

Sensor processing is a critical part of control theory; in Ulbricht et al. [USK19], the
authors propose an approach for designing a sensory system based on multicore systems
that target automated driving. The system can be controlled to support low power, fail-safe,
fail-operational, and distributed execution of different tasks, all while keeping the strict timing
and safety constraints crucial in the automotive area, therefore also approaching the topic of
fault tolerance in heterogeneous computing.

In this work, a triple-core system was chosen for the basis of the implementation.
This system facilitates the ability to support many different ways of executing tasks, like in a
low power mode by turning off single cores, a performance mode where tasks are executed
in parallel on multiple cores, or a fault-tolerant mode, where a copy of a task runs on each
core redundantly.

To determine the order in which task runs on each core, the authors determine
three execution modes that determine the level of fault tolerance that the user desire (see
Figure 2.18b). In the SE (single execution) mode, only a master role in an active core is run-
ning critical and non-critical tasks, and this operation mode does not allow error detection. In
the FS (fail-safe) state, two active cores are running the master and active slave roles. In this
mode, it is possible to detect a state mismatch by comparing the other core’s system state to
their own. Lastly, in the FO (fail-operational) mode, the master core runs a comparison task
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that compares the results of the other core’s critical tasks and performs a majority vote on
the state and resetting the faulty core. Figure 2.18a shows a representation of the system’s
roles and phases.

(a) Roles and phases (b) Execution modes

Figure 2.18: The execution modes, roles and phases of the platform. Adapted from [USK19].

The authors use Tensilica Fusion G3 cores to model the multicore system orga-
nized in a mesh network. This system is used to run a configurable fault-tolerant multicore
system for optimized radar signal and data processing, aiming to realize the functions of a
highly automated driving platform. This system’s simulation was based on a SystemC model
of the three cores simulating SE, FS, and FO state design. Several faults, like a permanent
failure of a core, limited execution delay, and temporary corruption of the execution state,
were inserted. Finally, the authors concluded that the system supports different grades of
fault tolerance for faults in the data and control path; it also optimizes the system to be low
power or high performance.

2.2.5 Liu Liu et al.

In Liu et al. [LTL+21] the authors focus on robotics applications enabled by het-
erogeneous computing. They propose π-RT, a robotic runtime framework to manage effi-
ciently dynamic task executions on mobile systems with multiple accelerators and the cloud
to achieve better performance and energy savings. This work is relevant for the literature re-
view because it deals with heterogeneous computing and sensor processing, and the author
considers sensor processing an essential part of control theory.
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The efficient utilization of client-side heterogeneous computing resources and
cloud resources, π-RT enables complete robotic workloads execution on mobile systems
with stringent resource and energy constraints. Figure 2.19a shows the architecture of the
framework. π-RT provides a transparent programming interface for users to submit tasks
without knowing the details in heterogeneous hardware. According to a scheduling policy,
the submitted tasks are appended to the queues of different processing units. Also, π-RT
implements a callback function for each processing unit, such that, when the processing unit
is done with the current task, it triggers its associated callback function; then it dispatches
the first task in its associated queue to the processing unit.

(a) Architecture of π-RT. (b) Implementation of π-RT in SoC

Figure 2.19: Architecture of π-RT and implementation of π-RT in the Snapdragon 820.
Adapted from [LTL+21].

The central scheduler is designed to check whether this task has real-time require-
ments; if not, it is dispatched to the cloud. Then, it checks whether the task consumes im-
ages as input; if so, π−RT dispatches the task to the high priority queue. Otherwise, π−RT
falls back to one of three sub-schedulers: The Latency-Optimal scheduler is responsible
for offloading the tasks to the CPU based on a Round-Robin algorithm. The Throughput-
Optimal scheduler keeps the GPU queue full of loads to achieve high throughput. And the
Energy-Optimal uses the DSP module.

To validate the framework, the π−RT is implemented on the Snapdragon 820 SoC,
which has a Quad-core Kyro ARMv8 processor, an Adreno 530 GPU and a Hexagon 680
DSP processor. With π−RT , an autonomous robot is enabled to perform simultaneously au-
tonomous navigation, obstacle detection, route planning, large map generation, and scene
understanding, all within an 11 W of the computing power envelope. Figure 2.19b shows
a representation of all the robotic applications in the π − RT framework. In conclusion, the
authors stated that π − RT is the first robotic runtime framework that efficiently utilizes the
on-chip heterogeneous computing resources and the cloud to achieve high performance and
energy efficiency.
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2.2.6 Haoyang Deng and Toshiyuki Ohtsuka

Deng and Ohtsuka [DO18] focus on support control software for heterogeneous
computing. Here the authors present a MATLAB software toolkit called ParNMPC, which
can automatically generate parallel C/C++ code and carry out closed-loop simulation for
nonlinear model predictive control (NMPC). NMPC, as the name suggests, is an optimal
control problem for nonlinear systems, and its main drawback is a heavy demand for pro-
cessing due to the need to solve a finite horizon optimal control problem at each sampling
instant.

According to the authors, there are many available software toolkits for NMPC code
generators, but none of them make full use of developing parallel hardware such as multi-
core processors, GPUs and FPGAs. In the proposed system, the control problem is solved
based on a highly parallelizable Newton-type method, which computes the optimal solution
iteratively with at most N cores, where N is the number of discretization grids or the pre-
diction horizon in the discrete-time case. Then the ParNMPC can automatically generate
parallel C and C++ code.

The basis of this software is a solver function called NMPC_Iter performs one it-
eration to solve Karush-Kuhn-Tucker (KKT) conditions. ParNMPC aims to provide an easy-
to-use environment for NMPC problem formulation, initialization, parallel C/C++ code gen-
eration, and deployment. Figure 2.20 shows a high-level description of the workflow of
ParNMPC.

Figure 2.20: Structure and workflow of ParNMPC. Adapted from [DO18].

First, there is the problem formulation issue where the controlled plant and param-
eters such as the discretization method and the Hessian approximation method are defined.
Then, several solvers are provided to solve the first optimal control problem offline to provide
an accurate initial guess. Lastly, a parallel C/C++ code of the solver function is automatically
generated and it can be easily deployed to different platforms.

To validate the system, the performance of ParNMPC was demonstrated by swing-
ing up a double inverted pendulum and controlling a quadrotor for reference tracking. The
simulation was carried out on a desktop computer with an Intel Core i7-8700K processor.
The numerical results showed that ParNMPC could achieve a good control performance and
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a high speed-up in computation, with a speed-up of 3.7x in the pendulum case and 4.6x in
the quadrotor.

2.2.7 Jie Tang et al.

Tang et al. [TLG17] focus on sensor fusion in Simultaneous Localization And Map-
ping (SLAM) applications with heterogeneous computing. The authors propose π − SoC,
a heterogeneous system-on-chip design that systematically optimizes the IO interface, the
memory hierarchy, as well as the hardware accelerator.

The first step taken was to develop a visual-inertial SLAM system called PIRVS.
This system is based on three main components: a highly optimized image processing front-
end extracting image features and matching them with the 3D map. An Extended Kalman
Filter based tightly-coupled visual-inertial tracking with IMU propagation and state update
with 3D-2D feature correspondences. Lastly, mapping with prior poses from the tracking
thread.

This preliminary test was developed to determine whether software optimization
can enable PIRVS to deliver reliable performance with stringent energy constraints. The
SLAM system was deployed on on an ARM v8 mobile SoC. The SoC consists of a four-
core CPU, running at 2 GHz; the four cores share an L2 cache. Besides the CPU, the SoC
consists of a DSP, a GPU. The CPU communicates with the DSP and the GPU through
shared memory.

Figure 2.21 shows a representation of the implementation of PIRVS in the ARMv8
SoC and the results from the performance tests. Due to its nature, the DSP processor was
selected for the feature extraction task. However, a CPU core was still required to relay the
data from the I/O to the DSP. This relay put some pressure on the processing and raising
the energy consumption. As seen in the results presented in Figure 2.21, an acceptable 30
FPS was achieved, but a 9 W energy consumption was still high due to SoC architectural
design constraints.

The authors state that these results indicate that the existing heterogeneous SoC
architecture design is not optimized for SLAM applications. Then π − SoC was proposed;
this is a heterogeneous SoC architecture to optimize the I/O subsystem systematically, the
memory subsystem systematically, and accelerator integration to improve performance and
energy consumption for visual-inertial SLAM. In the previous implementation, the DSP is not
directly connected to the I/O system, and a CPU core has to act as a relay to copy image
data in memory for the accelerator to consume; this wastes CPU resources, leading to extra
energy consumption.
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Figure 2.21: Heterogeneous implementation on an ARM v8 SoC and results. Adapted from
[TLG17].

To resolve the problems, the authors propose three features for the system im-
provement:

1. A direct I/O such that the accelerator gets directly connected to the image sensor I/O
pins, allowing the accelerator to directly consume image data without the involvement
of a CPU core.

2. Design a low-latency ScratchPad memory to directly feed the extracted features to the
CPU cores, significantly improving overall SLAM performance.

3. A mechanism to notify the consumers, including the update thread and the mapping
thread, the SLAM trigger. This mechanism to notify the consumers works with the
Feature Buffer controller that has a register to store the current filled feature memory
bank ID. Once a bank is filled, the bank number is written in this register, and the
Feature Buffer controller would then interrupt the CPU to notify the update thread and
the mapping thread about the incoming new features.

Figure 2.22 shows the representation of the π − SoC architecture and a high-level
description of the workflow. The workflow shows that the accelerator is connected to the
image sensor through Direct I/O such that each time a new image comes in, it triggers
the feature extraction task on the accelerator, and the extracted feature gets written to the
ScratchPad memory. Once the extracted features fill a ScratchPad bank, the ScratchPad
controller interrupts the CPU to trigger SLAM. After implemented π − SoC in an FPGA, the
authors repeated the same tests used in the ARMv8 implementation. With that, they could
find that not only the π − SoC outperformed in every single category but the energy con-
sumption the FPGA implementation consumed 8 times less energy than the ARM baseline’s
energy efficiency.
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Figure 2.22: π − Soc heterogeneous architecture and results. Adapted from [TLG17].

2.2.8 Yu Ma et al.

Ma et al. [MCDH17] proposes an online framework called: reliability-aware utiliza-
tion control (RUC). And is used to improve the lifetime reliability in the presence of wear
caused by failure mechanisms that strongly depend on temperature and temperature vari-
ation. This framework is divided into two central systems: the first is a model-predictive
controller (MPC) that keeps system utilization at the desired value. The utilization setpoint
algorithm incorporates various design considerations, including real-time constraints and
mean time to failure dependency on peak temperature and load balancing. The second is
a heuristic algorithm to adjust the MPC sampling window length dynamically, thereby influ-
encing the system’s reliability via peak temperature and thermal cycle and the MPC compu-
tational overhead. This heuristic algorithm adjusts the sampling window length to balance
these considerations.

The framework goal is to minimize the deviation of the core utilization from a set
point in each time interval; this is called Sampling Window. The Sampling Window length is
chosen so that a core’s temperature can be considered constant within a sampling window.
The RUC consists of two main components: a global utilization controller (GUC) and a
sampling window controller (SWC). The GUC reduces the peak temperature by dynamically
adjusting core frequencies to adhere to the utilization set point. The SWC minimizes thermal
cycling wear by dynamically adjusting the length of the sampling window. Figure 2.23 shows
a high-level overview of the RUC framework.

The evaluation experiments were conducted on a quad-core Cortex-A15 ARM chip:
Nvidia’s TK1. The quad-core ARM Cortex-A15 CPU and 192 Kepler GPU cores provide high
performance with low power requirements. As a low-power chip, TK1 supports 12 different
frequencies from 1.24 to 2.32 GHz. In order to evaluate RUC on different platforms, the au-
thors used a hardware platform simulator. Then extracted the parameters from TK1 to build
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Figure 2.23: High-level overview of the RUC framework. Adapted from [MCDH17].

the power model. In the simulator, the temperature is obtained using Hotspot. The results
revealed that, on all the platforms and with various task setups, this approach effectively
increased the lifetime of soft real-time systems compared with existing temperature-aware
and utilization control approaches.

2.2.9 Davide Zoni et al.

Zoni et al. [ZCF20] presents a control-theoretic scheme to design coordinated
energy-budget and energy-allocation solutions for multicores, implemented into the RISC
processor architecture. It was employed an online power monitoring infrastructure and a
power-cap PID controller. In particular, a cascaded multi-level controller. The controller pro-
poses a seamless integration of energy-budget and energy-allocation constraints from the
applications and the Operating System, therefore addressing the popular runtime frame-
works that support the self-adaptive application paradigm.

Figure 2.24 shows a representation of the structure of this control system. At the
innermost level, a local control loop is implemented for each computing unit. The n num-
bered local controller of this loop regulates the control action to ensure the corresponding
core’s energy consumption follows the local setpoint value. The outer layer is a SISO global
controller that generates a correction factor to the power budget starting from the difference
between the global setpoint and the total consumed power in the considered time epoch.
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The global power setpoint is set by either the operating system or the resource manager,
and it represents the average energy consumption to enforce the required energy budget.

Outside these control loops, a supervisor algorithm implements an energy-
allocation policy by modifying the SIMO box’s coefficients. This controller regulates how
much of the energy budget is assigned to each local controller in setpoint value. The su-
pervisor algorithm can implement schemes or heuristics to shape a performance metric,
ensuring great flexibility in the system’s customization.

Figure 2.24: Closed-loop view of the proposed all-digital coordinated energy-budget and
energy-allocation system. Adapted from [ZCF20].

As a reference computing platform, the proposed control scheme was implemented
in quad- and eight-core Single Instruction Multiple Data (SIMD) RISC processors. The entire
design is synthesized, implemented, and simulated at 50 MHz targeting the Digilent Nexys4-
DDR board equipped with a Xilinx Artix-7 100t FPGA chip. To validate the system, three
metrics were used to assess the quality of the proposed control scheme: the respect of the
imposed energy budget, the performance loss due to the control scheme, and the quality of
how efficiently the granted energy budget is exploited. All the obtained results showed that
all of these metrics show significant improvement.

2.2.10 Tiago Mück et al.

In [MDM+18], the authors present a methodology to design robust MIMO controllers
with rapid response and formal guarantees for coordinated heterogeneous multicore proces-
sors (HMPs). Many times classic MIMO approach leads to controller designs that either lack
robustness or manifest poor responsiveness, mainly due to unmanageable system identifi-
cation complexity. An appropriate dynamic system modeling and decomposition strategy are
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needed to account for the system size, heterogeneity of cores, and scope of the actuators
and sensors in HMPs.

Therefore, this paper presents a methodology to design robust and responsive
MIMO controllers for coordinated management of HMPs with formal guarantees. This objec-
tive is achieved by system modeling guidelines for formulating robust and responsive MIMO
control of complex HMPs, including a set of properties for the system to be controllable,
efficient, and robust. This enables the tuning of the controller by simplifying the identification
of dynamic systems.

This paper develops a Linear Quadratic Gaussian (LQG) MIMO controller, and
its main challenge is defining a system to identify and control this processor. The overall
MIMO control design methodology for HMPs is proposed to achieve such a system, includ-
ing guidelines for ensuring a more robust and stable closed-loop system. Figure 2.25 shows
a representation of the methodology.

Figure 2.25: MIMO design methodology for HMPs. Adapted from [MDM+18].

This work divides the methodology into five distinct phases: Specifications, System
Decomposition, System Identification, Controller Design, and Robustness Analysis. Next,
the paper explains into greater details of these phases:



62

• Specifications: First, there is the necessity of specifying the management objectives
of the system, the computer system structure, the compute unit description, and the
list of sensors/actuators and their scope for the computer system.

• System Decomposition: Then, the user must find all the valid combinations of speci-
fications that compose controllable subsystems for managing the desired objective(s).
This process eliminates potential systems with an uncontrollable number of inputs and
outputs or subsystems with insufficient actuators.

• System Identification: This is the essential step of this methodology. Here, all candi-
dates found during system decomposition are modeled and evaluated in terms of their
residual behavior and their associated fit to measured data and model order. Black-
box system identification is performed to find system models exhibiting an acceptable
fitting value.

• Controller Design: In this phase, the design of the LQG MIMO controller is imple-
mented.

• Robustness Analysis: For Last, it checks if the controller can tolerate disturbance
based on a defined uncertainty level while maintaining the specified confidence.

The proposed approach is evaluated using using the ODROID big.LITTLE HMP
platform by following all steps of the methodology to generate predictable MIMO controllers.
Then, the authors concluded that MIMO control is a promising technique for contemporary
HMPs.

2.2.11 Fardin Abdi et al.

In [ATR+17], the authors propose a controller that enables the system to restart and
remain safe during and after the restart. This system provides fault tolerance and liveliness
in the presence of application-level faults and system-level faults using only one commer-
cial off-the-shelf processing unit. This controller can keep the system inside a subset of the
safety region only by updating the actuator input at least once after every system restart.
After a restart, the system can restart again after only one command is applied to the actu-
ators.

Figure 2.26 shows the logical view of this design, composed of three main compo-
nents: the Base Controller (BC), Mission Controller (MC), and Decision Module (DM).

BC generates a control command that keeps the physical system stable by forcing
its dynamic states to stay at a safety region where all physical constraints are respected.
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Figure 2.26: The logical view of the proposed framework. Adapted from [ATR+17].

Therefore, a BC, without any other components, can keep it that way by updating
the actuator input at least once after every system restart.

The MC is the central controller of the system, which is concerned with mission-
critical requirements. After MC runs and generates an output in every control cycle, the DM
evaluates the safety requirements under this output and decides whether it can be applied
to the actuators. Then, DM writes its output, along with the corresponding MC command
and a timestamp to a fixed memory address.

At the end of each control cycle, the BC runs and generates a control signal output.
Then a flushing task retrieves both control signals, from BC and MC, the DM’s decision, and
the corresponding timestamp from the memory. If the timestamp matches the current cycle,
it updates the actuator commands with any of the signals based on the DM decision and
resets the hardware watchdog timer. Non-matching time stamps indicate that one or both
DM and BC tasks did not execute or missed their deadlines and triggers a restart.

To evaluate the proposed approach, the authors implemented a controller sys-
tem for a three-degree-of-freedom (3DOF) helicopter and empirically verified fault-tolerance
guarantees. It uses an i.MX7D SoC which provides two general-purpose ARM Cortex-
A7 cores capable of running at the maximum frequency of 1 GHz and one real-time ARM
Cortex-M4 core that runs at the maximum frequency of 200MHz.

Then, faults were injected in the control logic, the control application, and the oper-
ating system and demonstrated that the system remains safe, despite the faults, and recov-
ers from these faults.
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When the helicopter’s state approached the states where the safety conditions were
not satisfied, BC took over and prevented the helicopter from hitting the surface underneath.

2.2.12 Wei Li et al.

The central motivation of the study implemented in [LLZ+20] is that one of the
core requirement of self-driving vehicles is environmental awareness. This feature requires
mainly onboard sensors to sense surrounding environmental information and provides infor-
mation support for autonomous driving car navigation and positioning, path planning, data
fusion, and decision control.

This article uses the Tegra X2 embedded heterogeneous computing platform to
process data comming from a LiDAR sensor, that usually present a large number of point
clouds. The structure of the Tegra X2 is represented in Figure 2.27.

Figure 2.27: Tegra X2 architecture diagram. Adapted from [LLZ+20].

Based on Tegra X2’s heterogeneous workflow of CPU and GPU collaborative asyn-
chronous processing, this study implements offloading of LiDAR data processing algorithms
and leaves the feature extraction and obstacle clustering tasks to the GPU. Moreover, the
authors propose a dynamic task allocation method for thread load balancing.

The experiment devised by the authors to validate the system is the testing of the
performance of the LiDAR data processing algorithm using a point cloud collected on an ac-
tual road as the experimental data. The algorithms run in the Tegra platform, and the results
are compared to those obtained by an industrial personal computer (Inter(R) Core(TM),
i7CPU M620). Comparing the proposed system with the industrial computer, the perfor-
mance of the feature extraction step is improved by 4.5 times. Obstacle clustering enables
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GPU optimisation, which improves the performance of this stage by 3.5 times. Finally, the
performance of the overall algorithm is 2.3 times higher.

2.2.13 Zhenhua Jiang et al.

In [JB20], the authors present a multi-layer model predictive control (MPC) frame-
work suitable for aerospace vehicles’ integrated power/propulsion systems. The framework
can decouple system-level energy optimization from dynamic power management in a holis-
tic manner. This control platform can be built on distributed heterogeneous computing hard-
ware, including real-time processors and FPGAs (field programmable gate arrays). The
integral part of the MPC scheme is a real-time quadratic programming (QP) based optimizer
(accelerated by FPGA) used to generate optimal control actions based on model prediction.

Figure 2.28 illustrates the proposed multi-layer model predictive control (MPC)
framework. The framework decouples slow energy optimization from dynamic power man-
agement based on a heterogeneous real-time computing platform. This example considers
a hybrid integrated power/propulsion system consisting of the main generator, an auxiliary
power unit (APU), a battery energy storage system, main engines, and an ancillary electric
propulsion system.

The control system includes:

• a host computer system as the user interface;

• a real-time computer for the higher-level MPC;

• and an FPGA (Field Programmable Gate Array) platform for the lower-level MPC.

The host computer system includes an interface communicating with real-time pro-
cessors and FPGA hardware. The main component of the nonlinear MPC includes a real-
time MPC computational solver that aims to find the solution to a nonlinear optimization
problem based on a physical or a learning-based model.

To validate this framework, the authors chose to implement a simple model pre-
dictive controller in LabVIEW and an example application of the hybrid power system. The
power system simulation model was migrated from MATLAB and redeveloped in LabVIEW.
The MPC schemes perform specific computational steps in parallel to find the optimal control
actions implemented in NI’s CompactRIO modules and PXI FPGA modules. The focus of this
system is a real-time quadratic programming (QP) based optimizer accelerated by FPGAs,
used to generate the optimal control actions based on model prediction. This MPC opti-
mizer aims to minimize a pre-defined quadratic objective function. Subjecting it to equality
and inequality constraints and solving the convex optimization problem using the first-order
optimality conditions.
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Figure 2.28: Multi-layer model predictive control framework that decouples slow energy op-
timization from dynamic power management based on heterogeneous real-time computing
platform. Adapted from [JB20].

The hybrid power system of this study receives two power sources, each through
a power converter, adapting the current and voltage to meet the load. The MPC aimed to
optimize the current sharing between the two sources under reference changes and load
disturbances. The results were compared with those under a PID controller.

Through graphical analysis, the experiment results showed that the MPC performs
better than the PID in terms of voltage and current variations. It is also shown that the
control actions (i.e., the duty cycle) are smoother with the MPC than with the PID. The
simulation results show that the two-layer control system optimizes energy flow and dynamic
current/voltage regulations under dynamic conditions.

2.2.14 Yiming Gan et al.

Exploiting the hardware heterogeneities in mobile SoCs, the authors in [GQC+20]
proposed a proactive computer vision execution model that breaks the sequential execution
of the vision pipeline. Specifically, the system allows the pipeline front-end (sensing and
imaging) to predict future frames. Furthermore, the pipeline back-end (vision algorithms)
then predictively operates on the future frames to reduce frame latency.
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Computer vision systems are bottlenecked by their long frame latency, which their
serialized execution model fundamentally causes. The three major stages in a vision pipeline
– sensing, imaging, and vision computation – process a frame sequentially, leading to high
per-frame latencies. The authors present the PVF, a proactive mobile vision system that sig-
nificantly reduces the end-to-end frame latency with lower energy consumption while mainly
relying on existing mobile SoC hardware. The PVF exploits the hardware heterogeneities
available on mobile SoCs, which naturally exposes different IP blocks (e.g., GPU, DSP, NPU)
to execute multiple outstanding frames concurrently, mitigating resource contention.

The key idea of the predictive execution model is to allow the vision computation
stage to operate speculatively on predicted future frames before the sensing and imaging
stages generate the actual frames. Once an actual frame is generated, it is used to validate
the predicted frame. If the predicted frame is checked to match the actual frame under
specific metrics, the vision task results are likely already available and can be directly used,
reducing the end-to-end frame latency. Otherwise, the speculated work is discarded, and
the system executes the vision stage using the actual frame.

While the predictive execution model reduces the frame latency, it increases en-
ergy consumption for three reasons. First, speculation fundamentally trades energy for la-
tency by performing extra work. Second, using multiple IP blocks while alleviating resource
contention also increases energy consumption because CPU/GPU/DSP are less energy-
efficient than NPU for executing vision algorithms. Finally, misprediction wastes energy on
executing frames whose results are eventually discarded.

Figure 2.29 provides an overview of PVF. The goal of the PVF framework is to
deliver a given latency target using the least energy while meeting the accuracy requirement.
Accordingly, there are two main tasks of PVF: ensuring accuracy and delivering the latency
target in an energy-efficient manner.

Figure 2.29: Overview of the PVF system. Adapted from [GQC+20].
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At run time, a frame predictor first predicts multiple future frames, which are directly
fed to the back end to perform vision tasks without waiting for the vision front-end. While a
predicted frame could be executed by any IP block provided by the hardware, the authors
propose a run-time design that intelligently maps the predicted frames to the IP blocks in a
way that minimizes the overall frame latency while meeting a given energy budget.

The authors developed an in-house simulator with actual hardware measurements
to model the continuous vision pipeline. The baseline model was a typical mobile SoC con-
sisting of key IP blocks, including the CPU, GPU, ISP, and DSP. The ISP power is measured
from the Nvidia Jetson TX2 module.

Compared to other baselines, the PVF provides significant latency reduction due
to the ability to proactively execute future frames without waiting for the front end. Moreover,
the PVF reduced the frame energy consumption under given latency constraints.

2.2.15 Jie Tang et al.

In [TLL+20], the authors proposed a system that enables multiple autonomous driv-
ing services on affordable embedded systems. The LoPECS a Low-Power Edge Computing
System for real-time autonomous robots and vehicle services. According to the authors,
there are three main contributions provided by this study:

• The development of a Heterogeneity-Aware Runtime Layer to schedule autonomous
driving computing tasks to heterogeneous computing units for optimal real-time perfor-
mance;

• The development of a vehicle-edge coordinator to dynamically offload tasks to edge
cloudlet. In order to optimize user experience in autonomous driving in terms of lower
power and extended battery life;

• Integration of the previous components into the proposed LoPECS system and imple-
mentation of it on Nvidia Jetson TX1.

Figure 2.30 shows the LoPECS architecture. At the application layer, LoPECS
supports localization, obstacle detection, speech recognition, and more. These services
support safe, efficient, and real-time driving behaviors. At the top, a layer named QoE
(Quality of Experience) Oriented Service Classification receives the data coming from the
applications. It can classify different autonomous driving services into QoE-Time, QoE-
Insensitive, and QoE-Energy. Such grouping is based on the service’s features in real-time
requirements and demands for energy cost.
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Figure 2.30: LoPECS architecture. Adapted from [TLL+20].

To integrate these services, the authors developed the Realtime OS. This
lightweight operating system manages various services and facilitates communications with
almost zero overheads. Realtime OS serves as the primary communication backbone.

Below Realtime OS is the LoPECS Runtime layer, which implements two func-
tions: first, it provides an abstraction of the underlying heterogeneous computing resources
through and provides acceleration operations. Furthermore, the second function implements
a Heterogeneity Aware Scheduling algorithm to manage the mapping of tasks on heteroge-
neous hardware systems.

Also, to effectively control the energy consumption of autonomous vehicles,
LoPECS contains a Vehicle-Cloudlet Coordinator to dynamically offload some tasks to the
cloud to achieve optimal energy efficiency.

Figure 2.31 shows a representation of the implementation of the runtime layer to
map various tasks onto the underlying heterogeneous computing units dynamically. This
runtime layer is crucial to simultaneously enable multiple autonomous driving tasks on com-
puting and energy resource-constrained edge computing systems.

To manage heterogeneous computing resources was utilized OpenCL. An open
standard for cross-platform, parallel programming of various computing units. OpenCL pro-
vides the interface for LoPECS to dispatch various applications to the underlying computing
resources. On top of OpenCL, it was designed and implemented a Heterogeneity Aware
Scheduler to manage and dynamically dispatch incoming tasks.
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Figure 2.31: The LoPECS runtime design. Adapted from [TLL+20].

To validate this study, as stated before, the LoPECS system was implemented on
an Nvidia Jetson TX1. The experiment consisted of processing three types of sensors: an
IMU, a camera, and a microphone. Later, the system ran SLAM, speech recognition, and
computer vision algorithms. The authors considered the experiments successful based on:

• The SLAM pipeline can process images at 18 FPS. The authors consider that once
the SLAM pipeline can process images at more than 15 FPS, the localization service
is stable;

• 10 FPS achieved in image recognition. For low-speed autonomous driving applica-
tions, the authors consider 10 FPS satisfactory;

• For speech recognition, the system can convert an audio stream into words with 100
ms latency. The authors determined a 500 ms latency baseline for such tasks.

2.3 State-of-the-art Analysis

Tables 2.1 and 2.2 summarizes the reviewed works according the thesis core idea
and subtopics showed in Figure 2.13 and the research questions proposed in Section
2.2. The second column presents the heterogeneous architecture (Multicore, CPU-GPU,
big.LITTLE, and more) used in each work. The table columns are described as:

• 3rd Col: lists the different techniques applied related to control theory;

• 4th Col: the applications selected by each work for the study cases;

• 5th Col: highlights if the work approach intra-chip energy management;
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• 6th Col: classifies if the proposal implements some form of distributed processing
regarding the control environment;

• 7th Col: highlights any form of support software framework or library used to construct
the system in question;

• 8th Col: shows if the work applies any fault tolerance method.

The literature presents an almost even distribution of heterogeneous architecture
between works, as shown in Tables 2.1 and 2.2 (2nd column). It exemplifies the strength
of heterogeneous computing, how many forms and arrangements are possible under this
methodology. This thesis opted for a MPSoC architecture as the platform where the frame-
work was built upon. Like the works in [DO18] and [ZCF20].

The control implementation column (3rd column) exhibits the sense-control-act
paradigm module highlighted in each work. To exemplify this point, we can point at the
works of Kusainov et al. [KKSC18], where a nonlinear model predictive control and how
it is processed is the focal point of the paper, whereas Tang et al. [TLG17] focus on the
distributed processing of a robotic sensory system.

In the control side of this literature review, we can divide the controller by type:
linear control, nonlinear control, and learning-based control. Giardino et al. [GKFF20] and
Zoni et al. [ZCF20] approaches the linear types by applying some form of PI - PID control.
The works of Khusainov et al. [KKSC18], Deng and Ohtsuka [DO18], Jiang et al. [JB20] and
Ma et al. [MCDH17] opted for MPC nonlinear control. Moazemmi et al. [MMY+19] imple-
ment a Fuzzy controller for intra-chip resource management in the learning-based control
category. Lastly, Abdi et al. [ATR+17] does not define a specific controller; the authors give
a requirements guideline for the controller implementation.

Ulbricht et al. [USK19] propose a fault-tolerant multicore system for optimized sen-
sor processing using DSP cores to guarantee different levels of fault tolerance. In Liu et al.
[LTL+21] the authors implement a computer vision and inertial sensors fusion to perform au-
tonomous navigation based Snapdragon 820 processor. Furthermore, Tang et al. [TLG17]
implements a SLAM algorithm in a mobile heterogeneous SoC balancing performance and
energy consumption.

The control application column (4th column) shows which system is controlled in
each work. Each application represents the plant block showed in Figure 2.2. Inside this
category, we can divide it into two distinct subcategories: outer-chip applications and intra-
chip applications. To better explain this choice of categorization, we can describe the outer-
chip category as the "traditional" control paradigm (see Figure 2.3), where the processing
unit only role is to process the sensor’s and controller data, the plant is a dynamic system
outside of the realm of processors. In this review, we can highlight the works that refer
to these kinds of controlled systems. Liu et al. [LTL+21] and Tang et al. [TLG17] use
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heterogeneous processing to control mobile robots in their research. As shown in the Tables
2.1 and 2.2, there are many other implementations of this nature.

In contrast, the intra-chip control makes the processing unit itself the plant to be
controlled. Moazemmi et al. [MMY+19] propose a system based on an NVIDIA Jetson
TX2 platform capable of managing its resources, like the numbers of active cores or its
frequencies, using fuzzy control. Ma et al. [MCDH17] also propose a control system to
manage inner processor resources. Zoni et al. [ZCF20] and Mück et al. [MDM+18] propose
intra-chip energy management control systems.

Combining these two application categories, we can highlight the work of Giardino
et al. [GKFF20] where the authors propose two distinct yet intertwined control systems. The
processor energy budget is controlled, and it is investigated the effects has on the navigation
control of a mobile robot. This thesis has a similar approach to how internal chip control
affects the plant’s control quality-of-service (QoS).

The fifth column shows which papers approach the topic of energy management.
As shown in the fourth column, the works of Giardino et al. [GKFF20], Zoni et al. [ZCF20]
and Mück et al. [MDM+18] focus solely in energy intra-chip control. The works of Moazemmi
et al. [MMY+19] and Ma et al. [MCDH17] approach the topic of energy control among other
resources. Moreover, the research of Liu et al. [LTL+21] does not apply energy control, but
it uses energy sensoring to evaluate the proposed system.

In the decentralized control processing (6th column), we arrange the works by how
the controller or the whole control system is processed. For example: in Khusainov et al.
[KKSC18] the authors break the model predictive control problem into two algorithms, one
running in the CPU and another in an FPGA. In Liu et al. [LTL+21] the sensor fusion for the
robotic system is distributed over DSP, GPU, and multicore system.

The seventh column shows if any of these works use or propose any auxiliary
software or libraries to implement their control systems. In Deng and Ohtsuka [DO18] the
authors presented a MATLAB-based software that generates parallel C/C++ code and carry
out closed-loop simulation for nonlinear model predictive control, built for shared-memory
multicore processors. Giardino et al. [GKFF20] use a C library for scientific computing
called GNU Scientific Library for the mathematical functions and matrix operations needed
by the path planner and trajectory tracking. In this thesis, we propose combining these
two examples to create a software framework to implement different controllers intra and
outer-chip of a multicore system.

Finally, the last column (8th column) presents which work approaches the topic of
fault-tolerance. Ulbricht et al. [USK19] propose a sensory system that targets automated
driving and is fail-safe, fail-operational, and distributed execution of different tasks. All while
keeping the strict timing and safety constraints. Furthermore, Abdi et al. [ATR+17] propose
a controller design that enables the system to restart and remain safe during and after the
restart. This design tolerates faults in the underlying software layers such as RTOS and mid-
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dleware and recovers from them through system-level restarts that reinitialize the software
from a read-only storage.

In this thesis, we chose these categories, spread out into these columns, to propose
a software framework that partially addresses all of these characteristics into one system,
shown in the subsequent sections.
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3. THE QUADROTOR CASE STUDY

The quadrotor control is chosen as a case study, although the proposed software
framework is developed to have the capability to be implemented in many other robotic appli-
cations; this chapter presents various quadrotor-related topics, ranging from the quadrotor’s
fundamental physics to the theory of the algorithms used in the control systems. Section
3.1 gives an introduction, presenting a basic overview of the quadrotor, defining concepts
and motivations. Section 3.2 presents a description of the physics of the quadrotor and its
possible flight modes. Once it was chosen to implement the proposed control system in a
simulated quadrotor, Section 3.3 lists the available quadrotor simulators and explains why
the selected simulator was chosen. Then, Section 3.4 shows the structure of the robotic
operating system (ROS) on which the selected simulation is based.

As an important aspect of a control system, the topic of sensoring, is addressed in
Sections 3.5 and 3.6. Section 3.5 lists the most used sensors in the quadrotor and explains
why specific sensors were chosen for this work. Then Section 3.6 presents the theory behind
the sensor fusion used in the system. Moreover, before developing the control system,
it is necessary to model the quadrotor system mathematically. Section 3.7 presents the
modeling in which the controllers are based followed by Section 3.8 lists the most commonly
used controllers for quadrotors found in the literature. Section 3.9 presents the theory of the
selected controllers used in this work. Therefore, this chapter aims to link the theory related
to the quadrotor with the control theory. These relations are detailed in Section 3.10.

3.1 Introduction to Quadrotors

In recent years there has been a lot of discussion about driver-less cars roaming our
streets, flying drones that deliver our internet purchases right to our doors and autonomous
submarines capable of protecting our shores. But what exactly are these autonomous ve-
hicles? The most common definition of an autonomous vehicle is a transport machine able
to operate itself, perform its required functions without human intervention, and sense and
react to its surroundings. The main advantage of these systems can be seen as the lack of
human interference in its operation. Humans are prone to errors and misjudgments. Such
system can reduce failures.

There is a wide array of possible applications for autonomous vehicles, either mov-
ing over land, across the water or through air. In the ground, driver-less cars take people
from their house to work. Small vehicular robots traverse the factory floor transporting re-
sources and products. In the water, autonomous boats map the shoreline, and sub-aquatic
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vessels inspect pipelines. That been said, one of the main topics in this Thesis is in the aerial
space of autonomous actuation, more specifically in unmanned aerial vehicles or UAVs.

As its acronym suggests, UAVs are aerial vehicles that do not require a human on
board to control it. Even though a remotely-controlled system can sometimes be called a
UAV, in this work considers only autonomous UAVs.

There are many forms and configurations to such vehicles: blimps, balloons, fixed-
wing aircraft, rotary-wing aircrafts and even flapping-wing aircrafts. Again, this work limits
attention to rotary-wing UAVs, more specifically the quadrotor type/kind.

A quadrotor is an aircraft lifted and propelled by four rotors. Its growing popularity
can be attributed to many advantages presented over counterparts, due to reduced mechan-
ical complexity, hover capability, high maneuverability, VTOL (Vertical Take-Off and Landing)
ability, and easy maintenance. The quadrotor is a straightforward mechanical structure due
to its configuration that consists of a rigid cross frame with a rotor placed in each frame end.
The quadrotor fundamental dynamic dictates that the vertical motion is generated by the
increase (upwards) and decrease (downwards) of each rotor at equal speeds. This dynamic
is possible since each spinning rotor creates a perpendicular force in the vertical (z) axis.

Then, what is the motivation behind choosing the quadrotor as a case study for
this Thesis? There is a fourfold answer to this question. First, the author chose a system
that demands fast processing, a feature critical in a quadrotor due to its fast dynamic nature.
Fault tolerance is the second reason to justify the use of quadrotor. Even still, the quadrotor
has its rotors in full actuation, and any fault during flight can result in severe consequences.
The third reason is energy management. As said before, the quadrotor, while on the air,
does not stop consuming energy. In a system where any extra weight put a stranglehold on
performance and adding batteries are not a solution, energy management is crucial.

According to Morbidi et al. [MCL16], the quadrotor system suffers from a significant
limitation: reduced flight endurance, typically between 15 and 30 minutes. Some promis-
ing new applications (package delivery, cinematography, aerial manipulation) have lately
emerged: however, the limited runtime of the existing lithium-ion polymer (LiPo) batteries
strongly restricts the class of missions that a rotorcraft can successfully carry out.

Lastly, the fourth reason is tied to the dynamical modeling of the quadrotor. Due to
its non-linearities, robust non-linear control is necessary to guarantee a safe and effective
performance.

One of the few disadvantages of UAVs, unlike ground vehicles, is that the former
never stop consuming energy, because they must maintain their own weight in the air the
entire time. This is even more critical in rotary-wing UAVs, since they do not have enough
wing surfaces providing a lift phenomenon (as in fixed-wing UAVs), and all the thrust must
be generated by the propulsion system [GSBT16]. Combined with the energy consumption
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of the processing elements responsible for the vehicle’s control, there is a serious problem
that influences a quadrotor design and construction.

The central goal of this thesis is to develop a software framework for the imple-
mentation of controllers in a MPSoC, in the field of robotics. Therefore, this system must
address fault tolerance, energy management, decentralized processing, and high demand
for processing large quantities of sensor data. So, considering the quadrotor’s characteris-
tics listed above, the quadrotor is an adequate study case for this work.

3.2 Quadrotor Dynamics

The quadrotor holds a very simple mechanical structure, while conventional he-
licopters normally retain variable pitch rotors and extremely complex mechanical control
structure [EN18]. The quadrotor configuration consists of a rigid cross frame with a rotor
placed in each of the frame’s end showed in Fig. 3.1. The fundamental dynamics of the
quadrotor dictates that the vertical motion is generated by the increase (upwards) and de-
crease (downwards) of each rotor at equal speeds. This dynamic is possible since each
spinning rotor creates a perpendicular force in the vertical (z) axis.

To cancel the yaw drift movement created by four rotors spinning in the same di-
rection, in the quadrotor, two rotors placed at opposite ends spin at one direction, and the
other pair spin at the other. To achieve the desired yaw movement while maintaining height,
the pair of rotors responsible for a particular spin direction, increase their speeds equally. In
contrast, the other pair decrease their speeds, all the while the total thrust must be the same
to avoid the up-down movement.

The roll movement (ϕ) is done by the rotor pair located in the y axis, one of the
rotors increases its velocity while the other decreases. This dynamic makes the quadrotor
spin around the x axis. Similarly, the pitch movement (θ) is performed by the rotor pair
located in the x axis, one of the rotors increases its velocity while the other decreases. This
dynamic makes the quadrotor spin around the y axis.

A quadrotor has six degrees of freedom and only four actuators, making it an un-
deractuated mechanical system with a degree of underactuation of two [EN18]. Therefore,
a single controller could not control every state.

3.2.1 Flight Modes

This section presents the operating modes of the vehicle that the author deems
to be the most relevant to represent a fully operational quadrotor. Six main categories de-
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Figure 3.1: Diagram of forces and movements of a Quadrotor.

scribe how the vehicle should behave, from the more straightforward modes like hover and
trajectory following to the most complex, like crash recovery and rejection of disturbances.
Ultimately, this Thesis focus only in the hover mode and line trajectory, due to their simplicity.

• Hover mode: In this mode the aircraft hovers above the ground in a controlled en-
vironment, so disturbances like ground effect, chimney effect and wind gusts are not
factors to be considered in the project phase of the control system implementation.

• Line trajectory and circular trajectory: Here the main concern is to guarantee that
the quadrotor can follow a straight line smoothly and a circular trajectory around a
given point in a Cartesian plane.

• Collision avoidance/recovery: A critical feature of an autonomous vehicle is the
ability to navigate a cluttered environment avoiding obstacles and possible hazards.
This capability generally requires that the quadrotor perform some complex maneu-
vers rapidly, demanding specific control schemes. Another essential feature that a
quadrotor project should consider is in the event of a crash, in which the form of con-
trol is more suitable to recover the stability of the drone, considering two scenarios:
when damage to the system has happened (i.e. motor failure), and when the system
remains intact.

• Cargo load/moving/landing: As the research on quadrotors advances, grows the
demand for the use of drones to carry payloads for a number of reasons. This means
drastically changing the quadrotor’s dynamic model. These changes must be dealt
with by the controller in a way that guarantees a satisfactory stability to the system
independent of the weight, size or the way that the cargo is transported.
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• Ground effect/Chimney effect: Operating a quadrotor near ground introduces a new
difficulty in controlling the vehicle that is known as ground effect. Ground effect is an
aerodynamic phenomena which reduces the induced drag of an aircraft and thereby
increases its lift-to-drag ratio. It is the lift increase generated by rotors when an aircraft
is close to a surface [DYZG15]. The wall effect on the aerodynamics of the propulsion
system is similar to the ground effects. The chimney effect happens when a quadrotor
is fully surrounded by walls. Depending on the distance from the wall, the dynamic of
the quadrotor varies due to the changes in aerodynamic coefficient [GAAA16].

• Hover, takeoff and landing under harsh conditions: Besides the operating modes
previously mentioned, it is important to consider that the majority of applications is not
be carried out in a controlled environment that means uncertainties and disturbances
like wind gusts is a factor in the quadrotor control system.

3.3 Computational Simulations

When dealing with a new project with new technologies, it is wise to rely on com-
puter simulations as the first step of development. There are many reasons to use simu-
lations instead of straight prototyping. Simulating guarantees a better design exploration;
it is easier to set up, significantly less expensive, faster and eliminates the risk of possible
injuries due to accidents.

Today, there is a great variety in of choices concerning resources for quadrotors
simulation, each with its strengths and inconvenients. Figure 3.2 abstracts the main simula-
tor resources available for quadrotors at the time of the Thesis writing. Simulation resources
are classified here in four categories: (i) those based on Matlab; (ii) the ones based on ROS;
(iii) those based on the Unreal Engine [Eng20]; (iv) other simulation resources.

Figure 3.2: Main simulators of quadrotors.
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Matlab is a language for technical computing; it integrates computation, visual-
ization, and programming in a simple environment describing problems and solutions in
mathematical notation [Mat05]. In control engineering, Matlab is frequently used due to its
simplicity to describe, model, and simulate dynamic systems. Matlab also enables a simple
interface for data analysis, exploration, and visualization. In the field of quadrotor simulation,
the Simulink Toolbox is an intuitive way to describe the quadrotor dynamic model and also
implement a control system, as seen in [KO19]. Other implementations of quadrotor simu-
lators are QRSim [De 13] and Quad_Sim [HLM+14], These are implemented in a series of
m-files that describe the dynamic models, sensors and environments. This work does not
consider any of these simulators, because although their scripts are open source, Matlab is
not. Another factor that influenced the decision is the computation cost that Matlab puts in
the overall simulation system.

A second category of considered for robotic simulations are those based on video
game engines, more specifically, the Unreal Engine, produced by Epic Games, mainly to
create first-person shooter games. As video game technology progresses, each year, more
realistic games are developed, improving on graphics and physics, it is natural that re-
searchers are reaching for this kind of technology to conduct robotic simulations. Game
engines are general-purpose simulators, the base framework for the development of a vari-
ety of games. In [CLW+07], authors propose a high fidelity robotic simulator built upon the
Unreal Engine 2.0. The simulator is called USARSim (Urban Search and Rescue Simula-
tion). Although it was created for ground vehicles, there are many robotic models imple-
mented using it, including underwater vehicles, humanoid robots, and UAVs. In February of
2017, Microsoft researchers released a simulator for autonomous quadrotors focused mainly
on machine learning called AirSim [SDLK18]. This simulator is built upon the Unreal Engine
4.0, taking advantage of its visual high fidelity to implement sensors like depth-cameras that
produce data for deep learning applications. [MCL+18] and AirSim [SDLK18] propose a
photo-realistic simulator based on Unreal Engine 4.0 for computer vision applications such
as object tracking, object detection, autonomous navigation, and multi-agent collaboration.
The reason for not considering using simulators based on video game engines is the fact
that this kind of simulator demands host systems with heavy-duty GPUs for executing. Also,
the internal structures of these engines are proprietary and third-party interface software is
needed for information exchange.

The Robot Operating System (ROS) [QCG+09] became a de facto standard for
the development of robotic systems. ROS-based systems implement the publish-subscribe
pattern [CDK05], whose organization consists of nodes and topics. A node is a software
that can subscribe to (or publish to) data channels called topics. Typical setups for robot
simulation combine ROS with Gazebo [Fou14]. Gazebo is a robot simulator capable of sim-
ulating environmental physics, e.g., gravity, wind, terrain, and sunlight. Robots interact with
the environment by sensors, which capture data based on the stimuli of the simulated envi-
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ronment. Gazebo can be extended to push data into ROS so that applications can access
sensing information. Then, the behavior of the robot can be programmed and validated as
if the software were deployed to a real robotic platform. In [FBAS16] is shown a multi-rotor
Gazebo simulator developed by Autonomous Systems Lab, ETH Zurich called RotorS. This
simulator simulates a few models of multi-rotor helicopters, such as AscTec Hummingbird
and Crazyflie. It is designed in a modular way that different controllers and state estimators
can be used interchangeably. In [NR19] uses RotorS and Matlab Simulink to implement a
hover control and tracking trajectory. In [HS14], the authors developed an AR.Drone simula-
tor based on the ROS package shown in [MSK+12].

Other simulations that were also considered for this work that doesn’t fit in the first
three categories. In [Oli04] is presented an Open Dynamics Engine (ODE) based simulator
called Webots developed by Cyberbotics Ltd. The FlightGear flight simulator [OMT97] is an
open-source project developed by volunteers since 1997. It supports a variety of popular
platforms (Windows, Mac, Linux, etc.), and its source code for the entire project is avail-
able and licensed under the GNU General Public License. The last simulator considered is
the PX4 developed jMAVSim [Fou20]. This is a simple quadrotor simulator that uses SITL
(Software-In-The-Loop) PX4 autopilot software.

In the next section the author defines and justifies the quadrotor simulation chosen.

3.3.1 Hector Quadrotor

In [MSK+12] is the detailed description of the modeling and implementation of this
simulator. In this work, the author gives an overall explanation of the system and how it was
implemented.

Figure 3.3: Quadrotor mesh-based model - Gazebo screenshot.
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3.4 The Robot Operating System (ROS)

According to [QGS15] the Robot Operating System (ROS) is a loosely-defined
framework for writing robot software. It is a collection of tools, libraries, and conventions
that aim to simplify the task of creating complex and robust robot behavior across a wide
variety of robotic platforms.

The authors in [JC18] refer to ROS as a meta-operating system, since it offers not
only tools and libraries but even OS-like functions, such as hardware abstraction, package
management, and a developer toolchain. Like a real operating system, ROS files are orga-
nized on the hard disk in a particular manner, as seen in Figure 3.4.

Figure 3.4: ROS file system level. Adapted from [JC18].

The authors briefly explain each block of the file system:

• Packages: The ROS packages are the most basic unit of the ROS software. They
contain one or more ROS programs (nodes), libraries, configuration files, and so on,
which are organized together as a single unit. Packages are the atomic build item and
release item in the ROS software.

• Package manifest: The package manifest file is inside a package that contains in-
formation about the package, author, license, dependencies, compilation flags, and so
on. The package.xml file inside the ROS package is the manifest file of that package.

• Metapackages: The term metapackage refers to one or more related packages which
can be loosely grouped together. In principle, metapackages are virtual packages that
don’t contain any source code or typical files usually found in packages.
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• Metapackages manifest: The metapackage manifest is similar to the package mani-
fest, the difference being that it might include packages inside it as runtime dependen-
cies and declare an export tag.

• Messages: The ROS messages are a type of information that is sent from one ROS
process to the other. We can define a custom message inside the msg folder inside a
package (my_package/msg/MyMessageType.msg). The extension of the message
file is .msg.

• Services: The ROS service is a kind of request/reply interaction between processes.
The reply and request data types can be defined inside the srv folder inside the pack-
age (my_package/srv/MyServiceType.srv).

• Repositories: Most of the ROS packages are maintained using a Version Control
System (VCS), such as Git, Subversion (svn), Mercurial (hg), and so on. The collection
of packages that share a common VCS can be called repositories. The package in the
repositories can be released using a catkin release automation tool called bloom.

A process in ROS is called a node, which is responsible for performing computa-
tions and processing data collected from sensors. A ROS system is typically composed of
several nodes (i.e. processes), where each node processes a certain data [Kou15].

The most basic architecture of a ROS system (see Figure 3.5) is composed of three
nodes, which is where processes perform computations. ROS Master is aware of all existing
nodes in the architecture and coordinates them accordingly. A Publisher has the ability to
broadcast messages over a topic for other nodes to receive. A Subscriber is able to receive
a message if a compatible topic is available [PG19].

Figure 3.5: Basic ROS architecture. Adapted from [PG19].

Nodes communicate between each other via topics, which are composed of pre-
formatted messages. They can be standard ones provided by ROS, off-the-shelf ones in-
cluded in any given ROS package or custom ones designed by the user. There are two
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communication protocols in place: to register new nodes in the system (XML-RPC) and to
exchange data between them (TCPROS) [PG19].

3.4.1 Gazebo Simulator

Gazebo, proposed in [KH04], began as a venture in the University of Southern
California. Later on, John Hsu (ROS maintainer) integrated it with the ROS framework.
From then, the Open Source Robotics Foundation (OSRF) has maintained Gazebo along
with ROS [NPRC17].

Gazebo is a 3D simulator that provides robots, sensors, environment models for
3D simulation required for robot development, and offers realistic simulation with its physics
engine. It works as a stand-alone program, but there is also availability to establish a con-
nection with Gazebo using a different type of Application Programmer Interfaces (APIs) and
libraries. ROS is considered one of the most popular API that can be used to connect with
Gazebo and which forms a powerful tool in the robotic field. In order to do that, ROS uses a
set of packages named gazebo_ros_pkgs that provides wrappers around the stand-alone
Gazebo and which can achieve integration with different ROS components. These packages
provide the necessary interfaces to simulate a robot in Gazebo using ROS messages, top-
ics, and services and give the ability to communicate with available sensor models included
in Gazebo such as sonar, scanning laser range-finders and GPS [YB19]. Figure 3.6 shows
a screenshot of the Gazebo environment running the Hector Quadrotor simulation.

Figure 3.6: Gazebo simulator running Hector quadrotor.
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3.5 Sensors

Despite its usually small size, quadrotors are equipped with an array of sensors.
These sensors are typically used to determine the vehicle’s states related to its position in
the world frame, like absolute position and attitude. Other uses for the quadrotors’ sensors
can be highlighted, like obstacle detection and environment mapping. The most common
sensors available for quadrotors include:

• Global Positional System (GPS): for absolute position measurement (x , y , z);

• Gyroscope: for angular rates measurement (gx , gy , gz);

• Accelerometer: for accelerations measurement (ax , ay , az)

• Magnetometer: for magnetic field measurement (mx , my , mz), used for heading deter-
mination;

• Sonar: for the measurement of the relative height above the ground (h);

• Barometer: to measure the air speed or the altitude;

• LIDAR (Light Detection And Ranging): it can be used to measure height, the imme-
diate surroundings, and mapping;

• Visual Sensors: the most versatile sensor can be used to determine absolute position,
attitude, height, heading, environment mapping, and collision avoidance. Its drawback
is the high computational cost it demands.

For this project, five sensors were chosen to determine the quadrotor’s attitude,
height, and xy position. An accelerometer, gyroscope, and magnetometer are used to de-
termine the attitude, a sonar is used to determine the relative to the ground height, and a
GPS (Global Positioning System) coupled with the accelerometer gives the position. These
sensors were chosen due to their simplicity, information data size, and availability in the
Hector-Quadrotor simulator.

3.6 Sensor Fusion

In this work, the author uses a state observer that is capable of performing the
fusion of Inertial Measurement Unit (IMU), and magnetometers information, at the same time
filtering the sensors’ undesirable noises. With the use of an Extended Kalman Filter (EKF)
based on quaternions, the attitude of the quadrotor is determined. The use of quaternions
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for the description of the dynamic equations simplifies the filter equations and eliminates the
need for trigonometric functions that significantly increases the computational cost.

One of the most known techniques for the state estimation of dynamic systems is
the Kalman Filter (KF) [Kal60]. Explaining simplistically, the Kalman Filter gives a recursive
method of state estimation of a dynamic system in the presence of noise. A vital aspect of
this algorithm is that the Kalman Filter keeps estimation of the states vector (x̄) as well of
the covariance matrix of the estimated error. It is possible to assert that the Kalman Filter is
a Gaussian Probability Density Function (PDF) with mean (x̄) and covariance (P) [CHL+05].

The algorithm of the Kalman Filter performs the state estimation in two distinct
phases. The first phase is the prediction phase, where the mathematical model is used to
predict the system’s state in a sample k . In the second phase, the correction is performed,
where the sensors’ gathered information is used to correct the estimation done in the first
phase. This method of estimation can be classified as a parametric Bayesian Filter, that
is, the Kalman Filter parametrizes the system’s and the sensors’ uncertainties as Gaussian
distributions with its means and covariances [TBF05].

3.6.1 Kalman Filter

To build a Kalman Filter (shown in Algorithm 3.1) is necessary for the system to be
estimated to be linear, time-invariant, and effected by additive Gaussian noise. Consider the
linear system in equation 3.1.

xk = Akxk−1 + Bkuk + ϵk

zk = Ckxk + δk
(3.1)

The variable xk ∈ Rn represents the system’s states, uk represents the inputs. The
variable zk ∈ Rp represents the measurements coming from the sensors and the matrices
Ak , Bk and Ck describe the linear system. The element ϵk is a Gaussian signal of mean
equal to zero and covariance Rk that describe the uncertainties of the model. The variable
δk represents the noise that affects the sensors, and this is also a Gaussian signal of zero
mean and has a Qk covariance.

Algorithm 3.1: KF Algorithm.

1 algorithm KF(x , u, Q, R, P):
2 xk = Akxk−1 + Bkuk

3 Pk = AkPk−1A′
k + Rk

4 Kk = PkC′
k (CkPkC′

k + Qk )−1

5 xk = xk + Kk (zk − Ck (xk ))
6 Pk = (I − KkCk )Pk

7 return (Pk , xk)
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Analyzing the algorithm is possible to conclude that in the equations 3.2 and 3.3
the state’s estimation and its covariance P̄k are calculated apriori, meaning, prior to a new
measurement.

xk = Akxk−1 + Bkuk (3.2)

Pk = AkPk−1A′
k + Rk (3.3)

The term Kk represents the correction gain of the Kalman Filter and is calculated
in equation 3.4.

Kk = PkC ′
k (CkPkC ′

k + Qk )−1 (3.4)

The correction phase, the final estimation of the system’s state xk and its covariance
Pk are calculated in the equations 3.5 and 3.6.

xk = xk + Kk (zk − Ck (xk )) (3.5)

Pk = (I − KkCk )Pk (3.6)

3.6.2 Extended Kalman Filter

The assumptions of linear state transitions and linear measurements with added
Gaussian noise are rarely fulfilled in practice. Linear next state transitions cannot describe
most of the robotic vehicles. Then, simple Kalman filters do not apply to most trivial robotics
problems. For this thesis, the Extended Kalman Filter (EKF, shown in Algorithm 3.2) is used
instead, since it allows nonlinear equations.

The space-state description shown in equation 3.7 is now represented as,

xk = f (uk , xk−1) + ϵk

zk = h(xk ) + δk .
(3.7)

To run the EKF is necessary to perform a linearization in equation 3.7. For this, the
f function is approximated as a first-order Taylor series, shown in equation 3.8.
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f (uk , xk−1) ≈ f (uk , x̄k−1) +
∂f (uk , x̄k−1)
∂x̄k−1︸ ︷︷ ︸

:=Fk

(xk−1 − x̄k−1) (3.8)

The Fk matrix is known as the jacobian matrix, and its values depend on uk and
x̄k . This dependence means that Fk is not constant. The same linearization is applied to the
function related to the sensors, as shown in equation 3.9.

h(xk ) ≈ h(x̄k ) +
∂h(x̄k )
∂x̄k︸ ︷︷ ︸
:=Hk

(xk − x̄k ) (3.9)

Algorithm 3.2: EKF Algorithm.

1 algorithm EKF(x , u, Q, R, P):
2 xk = f (uk , xk−1)
3 Pk = FkPk−1F ′

k + Rk

4 Kk = PkH ′
k (HkPkH ′

k + Qk )−1

5 xk = xk + Kk (zk − h(xk ))
6 Pk = (I − KkHk )Pk

7 return (Pk , xk)

Comparing Algorithms 3.1 and 3.2 is possible to identify that both algorithms follow
the same basic structure. Lines 1 and 2 are responsible for the state’s prediction; line 3
calculates the Kalman gain, and lines 4 and 5 perform the correction phase.

3.6.3 Quaternion Representation

In the field of mathematical modeling of dynamical systems, quaternion represen-
tation is a valuable tool as they can represent rotation matrices in three dimensions. As
[KNG05] stated, a rotation of θ radians over an arbitrary unitary vector k ∈ R3 can be
parametrized as shown in equation 3.111.

R(q) = I3 + 2ηS(ε) + 2S(ε)2, R(q) ∈ R3×3 (3.11)

In equation 3.11, I3 is the identity matrix of the third order, η = cos(θ/2), ε = k ·
sin(θ/2) ∈ R3, and q ∈ R4 is defined in equation 3.12.

1The operator S(ε) is the skew-symmetric matrix, represented as:

S(ε) =

 0 −ε3 ε2
ε3 0 −ε1
−ε2 ε1 0

 ∴ S(ε)ε = 0. (3.10)
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q :=

[
η

ε

]
(3.12)

This way, the q vector represents the orientation of a rigid body in relation to the
global coordinate system. Quaternion representation is not just more computationally effi-
cient than Euler angles, but it also avoids kinematic singularities and discontinuities [Sze10].
Deriving the rotation matrix R(q) is obtained the dynamic equations that describe the system
rotation in quaternions, shown in equations 3.13 and 3.14 [XM15].

η̇ = −1
2
εTω (3.13)

ε̇ =
1
2

[ηI3 + S(ε)]ω (3.14)

In equations 3.13 and 3.14, ω ∈ R3 is the angular velocity vector in the local coor-
dinates. This vector is directly measured by the gyroscope attached to the quadrotor body.

For the sake of simplicity, we can represent the rotation matrix shown in equation
3.11 as

R(q) =

R11 R12 R13

R21 R22 R23

R31 R32 R33

 (3.15)

Then, to get back to the quaternion representation. It is used the algorithm pro-
posed by [She78] which yields four possible results as seen in equations 3.16, 3.17, 3.18
and 3.19.

q1 =
1
2


√

1 + R11 + R22 + R33

(R32 − R23)/(
√

1 + R11 + R22 + R33)
(R13 − R31)/(

√
1 + R11 + R22 + R33)

(R21 − R12)/(
√

1 + R11 + R22 + R33)

 (3.16)

q2 =
1
2


(R32 − R23)/(

√
1 + R11 − R22 − R33)

√
1 + R11 − R22 − R33

(R12 + R21)/(
√

1 + R11 − R22 − R33)
(R31 + R13)/(

√
1 + R11 − R22 − R33)

 (3.17)

q3 =
1
2


(R13 − R31)/(

√
1− R11 + R22 − R33)

(R12 + R21)/(
√

1− R11 + R22 − R33)
√

1− R11 + R22 − R33

(R23 + R32)/(
√

1− R11 + R22 − R33)

 (3.18)
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q4 =
1
2


(R21 − R12)/(

√
1− R11 − R22 + R33)

(R31 + R13)/(
√

1− R11 − R22 + R33)
(R32 + R23)/(

√
1− R11 − R22 + R33)

√
1− R11 − R22 + R33

 (3.19)

To obtain the best possible result, avoid division by zero or a minimal number,
or perform the square root of a negative number. The whichever position on vector v =
[(R11 + R22 + R33), R11, R22, R33] has the largest number that correspond to which of the qi is
chosen. For example: if v [1] > v [2] and v [1] > v [3] and v [1] > v [4], then the better result
comes from q1.

Quaternion to Euler Angles Conversion

The PID controller, in this case, calculates each control law based on the Euler
angles of the current quadrotor state. Since the EKF gives the system an estimation of the
attitude based on quaternions, the PID must convert the quaternion into the Euler angles
representation. The reason behind this is two-fold: first of all, using Euler angles simpli-
fies the construction of the control laws of Equation 5.57, and second, since the system is
based on fixed-point arithmetic, the range of possible numbers between 0 and 1 becomes
restricted, making the controller less efficient due to the loss of information. The equations
3.20, 3.21 and 3.22, shows the calculation for the euler angles for the x , y and z respectively.

eax = asin(
−2(qxqz − qyqw )
q2

w + q2
x + q2

y + q2
z

) (3.20)

eay = atan2(2(qyqz + qxqw ),−(q2
x − q2

y + q2
z + q2

w )) (3.21)

eaz = atan2(2(qxqy + qzqw ),−(q2
x − q2

y − q2
z + q2

w )) (3.22)

3.7 State Space Representation

In Section 3.2 we gave an overview of the quadrotor dynamics. This section gives
a mathematical representation of these dynamics. In a 6DOF quadrotor system, we can
define the state vector as a X ∈ R12×1 matrix, as seen in equation 3.23.

X =
[
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

]T
(3.23)
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The representation of equation 3.23 is mapped to the degrees of freedom of the
quadrotor as shown in equation 3.24.

X =
[
ϕ ϕ̇ θ θ̇ ψ ψ̇ z ż x ẋ y ẏ

]T
(3.24)

Where the vector ω = [ϕ θ ψ]T represents the attitude states: roll, pitch and yaw
respectively. Vector ω̇ = [ϕ̇ θ̇ ψ̇]T represents the rate of change of the attitude vector. The
vector p = [x y z]T represents the 3D global position states: x position, y position and height
(z position). Vector ṗ = [ẋ ẏ ż]T represents the rate of change of the position vector.

The control input vector of the system U consists of four inputs, U1, U2, U3 and U4.
And is arranged as shown in the matrix of equation 3.25.

U =


U1

U2

U3

U4

 =


b(Ω2

1 + Ω2
2 + Ω2

3 + Ω2
4)

b(−Ω2
2 + Ω2

4)
b(Ω2

1 + Ω2
3)

d(−Ω2
1 + Ω2

2 − Ω2
3 + Ω2

4)

 (3.25)

U1 is the resulting upwards force of the four rotors responsible for the altitude of
the quadrotor and its rate of change (z, ż). U2 is the difference in thrust between rotors
2 and 4 responsible for the roll rotation and its rate of change (ϕ, ϕ̇). U3 represents the
difference in thrust between rotors 1 and 3, generating the pitch rotation and its rate of
change (θ, θ̇). U4 is the difference in torque between the two clockwise turning rotors and
the two counterclockwise turning rotors generating the yaw rotation and its rate of change
(ψ, ψ̇). The rotors (1 through 4) velocities are represented by Ω1, Ω2, Ω3 and Ω4.

Two subsystems describe the nonlinear dynamics: rotational dynamics and transla-
tional dynamics. The equations 3.26, 3.27 and 3.28 represent the the angular accelerations
of the system.

ϕ̈ = θ̇ψ̇(
Iyy − Izz

Ixx
) + θ̇(

J
Ixx

)Ωr +
La

Ixx
U2 (3.26)

θ̈ = ϕ̇ψ̇(
Izz − Ixx

Iyy
)− ϕ̇(

J
Iyy

)Ωr +
La

Iyy
U3 (3.27)

ψ̈ = θ̇ϕ̇(
Ixx − Iyy

Izz
) +

1
Izz

U4 (3.28)

The equations 3.29, 3.30 and 3.31 represent the linear accelerations of the system.

z̈ = g − (cos(ϕ)cos(θ)) +
1
m

U1 (3.29)



93

ẍ = (cos(ϕ)sin(θ)cos(ψ) + sin(ϕ)sin(ψ))
1
m

U1 (3.30)

ÿ = (cos(ϕ)sin(θ)sin(ψ)− sin(ϕ)cos(ψ))
1
m

U1 (3.31)

Table 3.1 presents the physical parameters of the quadrotor system and its units,
that are represented in the equations 3.26, 3.27, 3.28, 3.29, 3.30 and 3.31.

Table 3.1: Physical parameters of the quadrotor system.

Variable Physical parameters of the quadrotor system
Ixx Moment of Inertia (X axis) - (kg ∗m2)
Iyy Moment of Inertia (Y axis) - (kg ∗m2)
Izz Moment of Inertia (Z axis) - (kg ∗m2)
La Distance between rotor and center of mass - (m)
d Drag constant
b Lift constant
g Gravity - (m/s2)
m Mass of the Quadrotor - (kg)

Ωr
Overall residual angular velocity of the four motors (rad/s)
(−Ω1 + Ω2 − Ω3 + Ω4)

J Moment of inertia of the rotor about its axis of rotation - (kg ∗m2)

Using the equations 3.26, 3.27 and 3.28 of the rotational angular acceleration. And
those of translation, equations 3.29, 3.30 and 3.31, the complete mathematical model of the
quadrotor can be written in a state space representation in equation 3.32:

Ẋ = f (X , U) =



ẋ1 = ϕ̇ = x2

ẋ2 = ϕ̈ = x4x6( Iyy−Izz
Ixx

) + x4( J
Ixx

)Ωr + La
Ixx

U2

ẋ3 = θ̇ = x4

ẋ4 = θ̈ = x2x6( Izz−Ixx
Iyy

)− x2( J
Iyy

)Ωr + La
Iyy

U3

ẋ5 = ψ̇ = x6

ẋ6 = ψ̈ = x2x4( Ixx−Iyy
Izz

) + 1
Izz

U4

ẋ7 = ż = x8

ẋ8 = z̈ = g − U1
m (cos(x1)cos(x3))

ẋ9 = ẋ = x10

˙x10 = ẍ = −−U1
m ((sin(x1)sin(x5)) + cos(x1)sin(x3)cos(x5))

˙x11 = ẏ = x12

˙x12 = ÿ = U1
m ((sin(x1)cos(x5)) + cos(x1)sin(x3)sin(x5))

(3.32)

Euler angles and quaternions were considered in this thesis because in the EKF
algorithm, quaternions are used to simplify the calculations, and Euler angles are used in
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the PID controller for better control of the quadrotor. Quaternions vary in values from 0 to 1,
while the Euler angle goes from 0 to 360 degrees.

3.7.1 Linearization

In order to transform the nonlinear movement equations representation presented
in equation 3.32 into the space state model shown in 3.33, it is necessary to linearize the
system. {

ẋ = Ax + Bu
y = Cx + Du

(3.33)

Breaking down the equation 3.33, we can assert that x is a vector containing all
the systems states where, x ∈ Rn, y is called the output vector where, y ∈ Rq and u is the
input vector where, u ∈ Rp . Regarding the matrices, A is the state matrix where, A ∈ Rn×n,
B is the input matrix where, B ∈ Rn×p, C is the output matrix where, C ∈ Rn×p and D is the
feedforward matrix where, D ∈ Rq×n.

The linearization of a nonlinear set of dynamics ẋ = f (x , u) (see. eq 3.32) requires
the determination of an equilibrium point. Which is a point where the system starts, and it
remains there for all future time, e.g., a stable operating point. In the case of the quadrotor,
it is the stationary hover point above the ground. This way, the state system vector assumes
the form expressed in equation 3.34

Hover Condition
(Equilibrium Point):

{
θ = ϕ = ψ = θ̇ = ϕ̇ = ψ̇ = θ̈ = ϕ̈ = ψ̈ = 0

ẋ = ẍ = ẏ = ÿ = ż = z̈ = 0
, U =


mg
0
0
0

 (3.34)

Setting the equilibrium points xe and ue, we can rewrite x and u around the operat-
ing points: {

x = xe + δx
u = ue + δu

(3.35)

Where δ denotes minor variations about the operation points. We can develop the
linearized equations by using Taylor Series Expansion on f (·, ·), about xe and ue:

d
dt

(xe + δx) = f (xe + δx , ue + δu) ≈ f (xe, ue) +
∂f
∂x

∣∣∣∣
0
δx +

∂f
∂u

∣∣∣∣
0
δu (3.36)
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Combining all n state equations we have:

d
dt
δx =


∂f1
∂x

∣∣∣
0

∂f2
∂x

∣∣∣
0...

∂fn
∂x

∣∣
0

 δx +


∂f1
∂u

∣∣∣
0

∂f2
∂u

∣∣∣
0...

∂fn
∂u

∣∣
0

 δu
= Aδx + Bδu

(3.37)

Where,

A =


∂f1

∂x1|x=x0
∂f1

∂x2|x=x0 · · · ∂f1
∂x12|x=x0

∂f2
∂x1|x=x0

∂f2
∂x2|x=x0

. . . ...
...

... . . . ...
∂f12

∂x1|x=x0 · · · · · · ∂f12
∂x12|x=x0

 , B =


∂f1

∂u1|u=u0
∂f1

∂u2|u=u0 · · · ∂f1
∂u12|u=u0

∂f2
∂u1|u=u0

∂f2
∂u2|u=u0

. . . ...
...

... . . . ...
∂f12

∂u1|u=u0 · · · · · · ∂u4
∂u4|u=u0

 (3.38)

Similarly, we can apply this expansion to the nonlinear measurement equations
y = g(x , u) and y = ye + δy :

d
dt
δy =



∂g1
∂x

∣∣∣
0

∂g2
∂x

∣∣∣
0...

∂gn
∂x

∣∣∣
0

 δx +



∂g1
∂u

∣∣∣
0

∂g2
∂u

∣∣∣
0...

∂gn
∂u

∣∣∣
0

 δu

= Cδx + Dδu

(3.39)

Finally, we can find the matrices A, B, C and D for the system in equation 3.32, for
the equilibrium points in 3.34:

A =



0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 −g 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
g 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0



, B =



0 0 0 0
0 1

Ixx
0 0

0 0 0 0
0 0 1

Iyy
0

0 0 0 0
0 0 0 1

Izz

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1
m 0 0 0



(3.40)



96

C =


0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0

 , D =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (3.41)

3.8 Most Commonly Used Controllers in Quadrotors

Today’s principal control methodologies in Quadrotors designs can be separated
into three distinct categories: linear controllers, nonlinear controllers, and learning-based
controllers. Figure 3.7 shows the main control schemes found in a preliminary research
for this project. Within these categories, this work shows the most commonly used control
techniques for quadrotors in the literature.

Figure 3.7: Diagram showing with the most commonly used controllers by quadrotors in the
literature.

To arrive at this list of quadrotor control methods, we used the following studies:
Nguyen et al. [NQN+20], Mo and Farid [MF19], Nascimento and Saska [NS19], Kim et al.
[KGW19], Shraim et al. [SAY18] and Li et al. [LSJ15]. Having compiled the list of surveys, we
selected the control methods more likely to be used in the quadrotor context. The itemization
below briefly explains all of this list, giving summarized descriptions and concepts of all the
controllers. The later section explains why the final three controllers were selected for the
thesis study case, giving a more in-depth explanation of these selected controllers.
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3.8.1 Linear Controllers Used by Quadrotors

As shown in Figure 3.7, the most common linear control methods for the control of
quadrotors are:

• Proportional-Integral-Derivative (PID) control: Proportional-Integral-Derivative
Controllers (PID) are one of the simplest classical controllers seen in many textbook
applications. A PID controller is a control loop feedback mechanism that directly ad-
justs control values with a closed-form formula based on derivative, integral, and pro-
portional gains [Xia16]. The classical PID linear controller has the advantage that
parameter gains are easy to adjust, are simple to design, and have good robustness.

• Linear Quadratic Regulator (LQR) control: The LQR control algorithm is an optimal
control that operates a dynamic system at minimum cost [KGD14]. A quadratic function
defines a linear differential equation representing the system’s cost. This cost function
is minimized to provide the best control signal. The function is formulated like: J =∫∞

t0 (xT Qx + uT Ru)dt and LQR control is determined by the Q and R metrics. Selection
of appropriate Q and R values obtains the best feedback gain values for the plant
system [DP+17].

• H-Infinity (H∞) control: Robust H∞ control is an essential branch of control theory.
A robust H∞ control problem for systems with parameter uncertainty can be stated as
follows: given a dynamic system with exogenous input and measured output, where the
goal is to design a control law such that the L2 gain2 of the mapping from the exogenous
input to the regulated output is minimized or no larger than some prescribed level for
all admissible uncertainties [Cha14].

3.8.2 Nonlinear Controllers Used by Quadrotors

As shown in Figure 3.7, the most common nonlinear control methods for the control
of quadrotors are:

• Feedback Linearization Control: The central idea of Feedback Linearization is to
algebraically transform a nonlinear system dynamics into a (fully or partly) linear one
so that linear control techniques can be applied. This differs entirely from conventional
linearization in that feedback linearization is achieved by exact state transformations
and feedback rather than by linear approximations of the dynamics. In its simplest form,

2L2 gain of an input-output system quantifies the maximal gain in "energy transmission" from input to output,
where "energy" is of a signal g is understood as the integral of |g(t)|2 over a time interval [Meg06].
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feedback linearization amounts to canceling the nonlinearities in a nonlinear system so
that the closed-loop dynamics are in a linear form [SL+91].

• Backstepping Control: The common idea of the Backstepping procedure is to ap-
ply a passivation design to a small part of the system and then to reapply it step-by-
step by augmenting the sub-system at each step. Backstepping employs an analytic
expression for the time-derivative of the control law designed at the preceding step.
Backstepping starts with the system equation (integrator), which is the farthest from
the control input and reaches the control input at the last step [SJK12].

• Slide Mode Control: Sliding mode control is a particular type of Variable Structure
System (VSS) characterized by some feedback control laws and a decision rule. The
decision rule, termed the switching function, has as inputs some measure of the current
system behavior and produces the particular feedback controller that should be used at
that instant in time. In sliding mode control, Variable Structure Control Systems (VSCS)
are designed to drive and then constrain the system state to lie within a neighborhood
of the switching function [Spu14].

• Model Predictive Control (MPC): In Model Predictive Control (MPC), the control ac-
tion is obtained by solving a finite horizon open-loop optimal control problem at each
sampling instant. Each optimization yields a sequence of optimal control moves. How-
ever, only the first move is applied to the process: At the next time step, the computa-
tion is repeated over a shifted time horizon by taking the most recently available state
information as the new initial condition of the optimal control problem. For this reason,
MPC is also called receding or rolling horizon control [AB09].

3.8.3 Learning-Based Controllers Used by Quadrotors

As shown in Figure 3.7, the most common learning-based control methods for the
control of quadrotors are:

• Neural Networks:The feedback and feedforward controllers and the prefilter can all be
implemented as multilayered neural networks. The learning process gradually tunes
the neural network’s weights so that the error signal between the desired and actual
plant responses is minimized. Since the error signal is the input to the feedback con-
troller, the network’s training leads to a gradual switching from feedback to feedforward
action as the error signal becomes small [PSY88].

• Fuzzy Logic: The primary thrust of this control paradigm is to utilize the human con-
trol operator’s knowledge and experience to intuitively construct controllers so that the
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resulting controllers can emulate human control behavior to a certain extent [Yin00].
The fuzzy controller uses the control error and the rate of change in the control error
as its inputs. A typical fuzzy logic control architecture has a standard additive mode;
hence, it comprises two primary components: a decision-making logic module, also
referred to as an inference engine, and a defuzzifier. The inference engine processes
the inputs using a knowledge base. The outputs of the inference engine are converted
into crisp values, defuzzified, by a defuzzifier [Zak03].

3.9 Chosen Control Methods and Quadrotor Implementation

Based on the list compiled in Section 3.8 we chose three control methods as study
case for the quadrotor. The criteria for the choice of these controllers is the increasing
complexity of the algorithms. One of the goals of this thesis is to evaluate the trade-off
between computational cost and control performance in the proposed software framework
with the selected controllers. Simpler algorithms such as the PID require a low demand
in computing power. However, they may not deliver a satisfactory performance as a more
demanding algorithm such as the MPC.

3.9.1 Proportional Integral Derivative Control - PID

Proportional-Integral-Derivative Controllers (PID) are one of the simplest classical
controllers seen in many textbook applications. A PID controller is a control loop feedback
mechanism that directly adjust control values with a closed-form formula based on derivative,
integral, and proportional gains [Xia16]. The classical PID linear controller has the advan-
tage that parameter gains are easy to adjust, is simple to design and has good robustness.
However some of the major challenges with the quadrotor include the non-linearity associ-
ated with the mathematical model and the imprecise nature of the model due to unmodeled
or inaccurate mathematical modeling of some of the dynamics [ZJ14].

uc(t) = kpe(t) + Ki

∫ t

e(τ )dτ + kd
de
dt

(3.42)

In the PID equation (3.42), kp is the proportional gain, ki is the integral gain, kd is
the derivative gain, and the controller operates on the measured reference error time signal,
e(t) = (sigreference − sigmeasured ). The proportional component of the controller only depends
on the difference between the goal set for the system’s response and the actual system’s
response. The proportional gain Kp determines the response rate of the system’s error
signal, which means when Kp is raised, the system respond faster to the error signal trying
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to get to e(t) = 0. But a large increase of Kp usually results in oscillation in the system’s
output. If Kp keeps increasing past the oscillatory state, the system becomes unstable.

The integral term is responsible for the sum of the error signal (I =
∑

e(t)) as time
passes. Even a small error value makes the integral component to rise, not rising only when
the error is equal to zero. That behavior forces the steady-state error to converge to zero.
The derivative term monitors the change rate of the error signal (D = (e(t)−e(t−1))) causing
a dampening on the effects of the proportional gain, reducing overshoot and oscillations.
Figure 3.8 shows a block diagram of a PID controller in a feedback loop.

Figure 3.8: Block diagram of a PID controller in a feedback loop.

Integral windup

The presence of nonlinear effects limits the PID performance and also causes the
well-known phenomenon of integrator windup. All physical systems are subject to actuator
saturation since all actuators have limitations. Actuator limits create a nonlinear effect that
can be expressed by a saturation term, and this nonlinearity is one of the significant reasons
for integral windup [MGEY06].

If an actuator that realizes the control action has an effective range limit, then the
integrator may saturate and future correction is ignored until the saturation is offset. This
cause slow-frequency oscillations and may lead to instability. A usual measure taken to
counteract this effect is anti-windup [ACL05]. There are several anti-windup techniques in
the literature, but for this project was chosen the Back-Calculation method to mitigate the
effects of the phenomenon of integrator windup.

In Back-Calculation, when the controller output goes beyond the saturated value
of the system, the additional feedback measures the difference between saturate control
signals, Uactuator , and unsaturated control signal, Upid . Then, the difference is fed back to the
integrator to reset the integral term. This recalculation process occurs continuously until the
value of the integral term gives a controller signal at the saturation limits [JTRH14].
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Figure 3.9: PID with Back-Calculation Anti-Windup Block Diagram.

PID Controller Automatic Tuning

One of the features proposed in this thesis is the ability that a decentralized pro-
cessing system could create a controller that would be able to control another control pro-
cess. In this case, the author takes the PID process responsible for the attitude and height
control and change its gains in runtime. This sub-controller is based on a fuzzy controller
algorithm. The idea and algorithm behind this sub-controller is presented in this section.

Fuzzy Logic Theory

The theory of fuzzy sets and Fuzzy Logic were developed in 1965 by engineer
Lotfi A. Zadeh in [Zad65] and UC Berkley published his findings. This theory provides a
mathematical basis for treating imprecise or vague information. Fuzzy systems are capa-
ble of imparting the knowledge of human specialists in problems regarding classification,
modeling, or control systems [Lei09]. Fuzzy Logic (FL) is a multi-valued logic that allows
intermediate values to be defined between conventional evaluations like true/false, yes/no,
high/low, and more. Notions like rather tall or very fast can be formulated mathematically and
processed by computers to apply a more human-like way of thinking in the programming of
computers [Hel01].

According to [KK12], a fuzzy system has four main parts. First a fuzzification in-
terface that modifies and converts inputs into suitable linguistic values so that they can be
compared to the rules in the rule base. A rule base holds the knowledge in the form of rules
on how best to control the system. An inference mechanism that evaluates which control
rules are relevant at the current time and then decides what the input to the plant should
be. And finally, a defuzzification interface converts the conclusions reached by the infer-
ence mechanism into crisp ones. Figure 3.10 shows a diagram example of a fuzzy system,
followed by a brief explanation of each element.
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Figure 3.10: Fuzzy system diagram. Adapted from [Ian12].

Fuzzification

Fuzzification measures the values of inputs variables; it performs scale mappings
that transfer the range of values of inputs variables into corresponding universes of dis-
course. It serves the function of fuzzification that converts input data into suitable linguistic
values, which may be viewed as the label of fuzzy sets.

Fuzzy Inference Engine

The fuzzy inference engine is the kernel of a fuzzy logic system; it can simulate
human decision-making based on fuzzy concepts. And is capable of inferring fuzzy actions
employing implications and the rules of inference in fuzzy logic. A simple representation of
this concept is shown in Figure 3.11.

Figure 3.11: Fuzzy system inference engine. Adapted from [dRdS21].

Fuzzy Rule Base

The fuzzy rule base comprises knowledge of the application domain. It consists of
a "database" and a "linguistic (fuzzy) control rule base". It provides necessary definitions
used to define linguistic rules and fuzzy data manipulation. Then characterizes the goals
and the policies of the domain experts using a set of linguistic rules. (See Table 3.2)
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Table 3.2: Example of a fuzzy system rule table.

Rules
R1 if input1 is LVx

⋂
if input2 is LVg then output is LVa

R2 if input1 is LVy
⋂

if input2 is LVh then output is LVb
...

...
...

...
...

...
Rn if input1 is LVz

⋂
if input2 is LVi then output is LVc

Defuzzyfication

Defuzzification preforms scale mapping: which converts the range of values of
output variables into corresponding universes of discourse. Then performs, defuzzification
itself: which yields a non-fuzzy control action from an inferred fuzzy control action.

Center of Gravity Defuzzification

In this thesis, from many possibilities, we chose the center of gravity (COG) method
for defuzzification. The main idea of the COG method is to find the point x̃ where a vertical
line would slice the fuzzy set aggregate into two equal masses, as presented in Figure 3.12.

Figure 3.12: Representation of a defuzzification using COG method.

The area of the membership function distribution used to describe the combined
control action is divided into several sub-areas. The areas and centers of gravity of each
region are calculated. Then the sum of all these regions is used to determine the defuzzified
value for a discrete fuzzy set. (See fig. 3.13)

According to [RP01], this method is prevalent. It is often used as a standard de-
fuzzification method in experimental and industrial controllers. The COG generates a value
that is the center of gravity of a fuzzy set. It minimizes the membership graded weighted
mean of the square of the distance and can be calculated as:

x̃ =
∑n

i=1 Aixi∑n
i=1 Ai

(3.43)
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(a) Aggregated fuzzy set output without
division.

(b) Aggregated fuzzy set output with di-
vision.

Figure 3.13: Center of gravity method - fuzzy set aggregation.

where Ai =
∫
µ(x)dx and n is the number of geometrical components.

(a) Example of a output fuzzy set (1). (b) Example of a output fuzzy set (2).

Figure 3.14: Example of two output fuzzy sets.

Figure 3.14 shows an example of two output fuzzy sets. To calculate the output
value, first we need to aggregate the separate fuzzy sets, by putting them in the same axis,
as seen in Figure 3.15.

With the aggregation of the fuzzy sets, the next step is to determine the function
that represents the curve µ(x). The resulting function of curve a, b, c, d , e seen in Figure
3.15b, can be expressed as:

µ(x) =



0.3x , 0 ≤ x < 1
0.3, 1 ≤ x < 2.5

0.4x + 0.18, 2.5 ≤ x < 3
0.5, 3 ≤ x < 5

−0.2x + 1.5, 5 ≤ x ≤ 6

(3.44)

And the crisp value of this fuzzy set is given by x =
∫
µc (x).xdx∫
µc (x)dx .

According to [JS20], fuzzy sets can be defined as a set with a vague (ambiguous)
boundary as compared to a crisp boundary of classical sets. Then, a membership function
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(a) Example of the overlap of fuzzy sets
to calculate the output.

(b) Example of the aggregation of the
fuzzy sets.

Figure 3.15: Aggregation of the fuzzy sets process.

(MF) is a curve that defines how each point in the input space is mapped to a membership
value (or degree of membership) between 0 and 1. The input space is sometimes referred
to as the universe of discourse. Or, the membership function is a graphical representation
of the magnitude of participation of each input [AAS15]. Therefore, considered the building
blocks of fuzzy set theory.

In this work we chose the two most common forms of member functions:

• Triangular member functions;

• Trapezoidal member functions;

Figure 3.16 shows the graphical representation of these functions and the equa-
tions that define them.

(a) Schematic of an open-left
membership function.

(b) Schematic of a triangular
membership function.

(c) Schematic of an open-right
membership function.

Figure 3.16: Schematics of three membership functions.

Grouping several membership functions we can create a set of fuzzy rules. Figure
3.17 shows how each function can be labeled as a fuzzy value. As shown in the same figure
and what is used in this thesis, were created seven fuzzy values:
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1. NL: Negative Large;

2. NM: Negative Medium;

3. NS: Negtive Small;

4. Z: Zero;

5. PS: Positive Small;

6. PM: Positive Medium;

7. PL: Positive Large.

Figure 3.17: Example of a fuzzy system membership functions.

The x axis represents the range of possible outputs values, where x = n1, n2, ..., ni .

PID Controller with Fuzzy System Gains Tuning

The success of the PID controller depends on the appropriate PID gains. Tuning
the PID gains is very important to optimize performance. In practice, the PID gains are
usually tuned by experienced human experts based on some “rule of thumb” [HGH+19]. In
this work we implement a self-tuning PID controller using fuzzy theory.

The term self-tuning indicates the controller characteristics of tuning its control pa-
rameters on-line automatically so as to have the most suitable values of those gains ob-
tained, which results in optimization of the process output. The design of controlling rules
for a self-tuning fuzzy PID controller is based on theoretical and experimental analysis. The
gains kp , ki and kd can be tuned by adjusting other controlling parameters and +coefficients



107

on-line, which increases the precision of control resulting in better performance than the
classical PID controller [DBD16].

As in [AMY13], the self-tuning fuzzy PID controller implemented here, which takes
error "e" and rate of change-in-error "ed" as the input to the controller makes use of the
fuzzy controller rules to modify PID gains on-line. The self-tuning the PID controller refers
to finding the fuzzy relationship between the three gains of PID, and and "e" and "ed", and
according to the principle of fuzzy control modifying the three gains in order to meet different
requirements for control gains when "e" and "ed" are different and making the control object
produce a good dynamic and static performance. As seen in Figure 3.18.

Figure 3.18: PID controller structure with Fuzzy System for gains tuning. Adapted
from [AMY13].

The self-tuning PID controller seen in Figure 3.18, uses the theory shown in Figure
3.17 and in Table 3.2, is possible to create the Tables 3.3 and 3.4 that contains all the rules
for the tuning of the PID gains.

Table 3.3: Fuzzy rules for Kp and Ki .

Error
NL NM NS Z PS PM PL

NL M S VS VVS VS S M
NM L M S VS S M L
NS VL L M S M L VL
Z VVL VL L M L VL VVL

PS VL L M S M L VL
PM L M S VS S M L

Error Rate

PL M S VS VVS VS S M

The rules presented at the Tables 3.3 and 3.4 can be read as follows: For example,
IF the error is NL AND the error rate is PS THEN Kp is VL and Ki is VL and Kd is VS. The
output of the fuzzy system logic is fuzzy. These outputs can’t be input into the controller, then
we can use equation 3.43 and the values ni of Figure 3.17 to calculate the gains. Therefor,
we can describe the tables as a set of rules:
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Table 3.4: Fuzzy rules for Kd .

Error
NL NM NS Z PS PM PL

NL M L VL VVL VL L M
NM S M L VL L M S
NS VS S M L M S VS
Z VVS VS S M S VS VVS

PS VS S M L M S VS
PM S M L VL L M S

Error Rate

PL M L VL VVL VL L M

R1: IF ’error ’ IS NL AND ’errorderivative’ IS NL THEN ’kp’ IS M

R2: IF ’error ’ IS NL AND ’errorderivative’ IS NM THEN ’kp’ IS S

R3: IF ’error ’ IS NL AND ’errorderivative’ IS NS THEN ’kp’ IS VS

R4: IF ’error ’ IS NL AND ’errorderivative’ IS Z THEN ’kp’ IS VVS

...

Rn: IF ’error ’ IS Partition X AND ’errorderivative’ IS Partition Y THEN ’kp’ IS Partition Z

With all parts defined, is possible to build the PID-Fuzzy algorithm. Figure 3.19 shows a
diagram that explains the process of the estimation of the gains Kp, Ki and Kd for attitude
and height control.

3.9.2 Linear Quadratic Regulator - LQR

LQR is an optimal control technique that provides the best possible performance for
some given performance measure. The LQR design problem is to design a state feedback
controller K such that the objective function J is minimized (see eq. 3.46). In this technique,
a feedback gain matrix is designed, which minimizes the objective function to achieve some
compromise between the use of control effort, the magnitude, and the speed of response,
guaranteeing a stable system [AVN16]. Figure 3.20 shows a block diagram representation
of an LQR control.

The goal of the LQR is to drive all the states to zero in the fastest amount of time,
given a set of constraints described in the weighting matrices Q and R [GR15]. To fully
understand how a linear quadratic regulator works, first, we need to describe a continuous-
time linear system, like the one in equation 3.45:{

ẋ = Ax + Bu
y = Cx + Du

(3.45)
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Figure 3.19: Diagram of the fuzzy algorithm for PID gains determination.

With a cost function defined as

J =
∫ ∞

0
(xT Qx + utRu)dt (3.46)

Q and R are matrices representing the weights assigned to the state parameters
and the input parameters. By varying the values of the two matrices, the total value of the
cost function can be adjusted according to the desired output [SGP20]. Q is required to be
a positive definite or positive semi-definite symmetry matrix; R is required to be a positive
definite symmetry matrix. For better performance, matrix Q has to be changed, whereas
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Figure 3.20: Block diagram of an LQR control system.

the R matrix values need to be adjusted for minimizing effort. The feedback control law that
minimizes the value of the cost function is given by equation 3.47.

u = −Kx (3.47)

Where matrix K is found by equation 3.48:

K = R−1BT P (3.48)

And P is found by solving the continuous time Algebraic Riccati Equation (ARE) in
equation 3.49:

AT P + PA + Q − PBR−1BT P = 0 (3.49)

As stated before, the LQR only brings the states to zero; it does not track the
references. For that, we need an LQR controller with integral action.

LQR with Integral Action

In order to obtain zero steady-state error, an integral action is included in the LQR
Control. The basic approach in integral feedback is to create a state within the controller that
computes the integral of the error signal, which is then used as a feedback term [AVN16]. It
is done by augmenting the description of the system with a new state q̇:

q̇ = ref − y = ref − Cx (3.50)

The Figure 3.21 shows a block diagram an LQR control system with integral action.

The augmented system is described in equations 3.51 and 3.52.

d
dt

[
x
q̇

]
=

[
Ax + Bu
y − ref

]
=

[
Ax + Bu
Cx − ref

]
(3.51)
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Figure 3.21: Block diagram of an LQR control system with integral action.

Ã =

[
A 0
−C 0

]
, B̃ =

[
B
0

]
, C̃ =

[
C 0

]
(3.52)

The final compensator is given by equation 3.53.

u = −K [x ; xi ] (3.53)

3.9.3 Model Predictive Control - MPC

Model Predictive Control (MPC) has become an established control technology
owing to its capability of solving problems with physical constraints [LWM08]. The MPC
uses a system model to predict the future states of the system and generates a control
vector that minimizes a specific cost function over the prediction horizon in the presence
of disturbances and constraints [AJS14]. The name "Model Predictive Control" arises from
how the control law is computed. At the present time k , the behavior of the process over a
horizon p is considered. Using a model, the process response to changes in the manipulated
variable is predicted. The moves of the manipulated variables are selected such that the
predicted response has certain desirable characteristics. Only the first computed change in
the manipulated variable is implemented. At the time (k + 1) the computation is repeated
with the horizon moved by a one-time interval [GPM89].

For the modeling of the MPC controller, we can look at the work of Wang [Wan09]
for an MPC design approach. Moreover, first, we can assume that the soon to be controlled
discrete plant can be represented as an adaptation of equation 3.45 :

xm(k + 1) = Amxm(k ) + Bmu(k ),
y (k ) = Cmxm(k )

(3.54)
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Figure 3.22: The "moving horizon" approach of Model Predictive Control. Adapted
from [GPM89].

where u is the manipulated variable or input variable, y is the process output, and xm is the
state variable vector.

Notably, a general formulation of a state-space model has a direct term from the
input signal u(k ) to the output y (k ) as shown in equation 3.55.

y (k ) = Cmxm(k ) + Dmu(k ) (3.55)

Due to the principle of receding horizon control, it is assumed that the input u(k )
cannot affect the output y (k ) at the same time. Thus, Dm = 0 in the plant model of equation
3.54.

Placing a difference operation in both sides of xm(k + 1) = Amxm + Bmu(k ), produces:

xm(k + 1)− xm(k ) = Am(xm(k )− xm(k − 1)) + Bm(u(k )− u(k − 1)) (3.56)

Making the the difference of the state variable:

∆xm(k + 1) = xm(k + 1)− xm(k ) (3.57)

and

∆xm(k ) = xm(k )− xm(k − 1) (3.58)

The difference of the control variable is:
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∆u(k ) = u(k )− u(k − 1) (3.59)

Equations 3.57, 3.58 and 3.59 represent the increments of the variables xm(k ) and
u(k ). Then, the difference of the state-space equation is:

∆xm(k + 1) = Am∆xm(k )− Bm∆u(k ) (3.60)

In equation 3.60 the input of the state-space model is given by ∆u(k ), and to con-
nect ∆xm(k ) to the output y (k ) a new state variable vector is chosen:

x(k ) = [∆xm(k )T y (k )]T (3.61)

and the output gives:

y (k + 1)− y (k ) = Cm(xm(k + 1)− xm(k )) = Cm∆xm(k + 1)

= CmAm∆xm(k ) + CmBm∆u(k )
(3.62)

Merging equations 3.60 and 3.62 it is possible to recreate the space-state model
as:

x(k+1)︷ ︸︸ ︷[
∆xm(k + 1)

y (k + 1)

]
=

A︷ ︸︸ ︷[
Am oT

m

CmAm 1

] x(k )︷ ︸︸ ︷[
∆xm(k )

y (k )

]
+

B︷ ︸︸ ︷[
Bm

CmBm

]
∆u(k )

y (k ) =

C︷ ︸︸ ︷[
om 1

] [∆xm(k )
y (k )

] (3.63)

where om =

n1︷ ︸︸ ︷[
0 0 · · · 0

]
, n1 is the assumed dimension of the state variable vector, and

the triplet (A, B, C) is called the augmented model.

After having determined the mathematical model, we need to calculate the pre-
dicted plant output with the future control signal as the adjustable variables. This prediction
is described within an optimization window. But first, we need to assume that at the sampling
instant ki , ki > 0, the state variable vector x(ki) is available through measurement, the state
x(ki) provides the current plant information.

The future control trajectory of a single-input and single-output system is given by:

∆u(ki),∆u(ki + 1), ...,∆u(ki + Nc − 1) (3.64)

where Nc is called the control horizon dictating the number of parameters used to capture
the future control trajectory.
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The future state variables are described as:

x(ki + 1|ki), x(ki + 2|ki), ..., x(ki + m|ki), ..., x(ki + Np|ki) (3.65)

where Np are the number of samples, or the prediction horizon, x(ki + m|ki is the predicted
state variable at ki + m with given current plant information x(ki).

Based on the state-space model (A, B, C), the future state variables are calculated:

x(ki + 1|ki) = Ax(ki) + B∆u(ki)
x(ki + 2|ki) = Ax(ki + 1|ki) + B∆u(ki + 1)

x(ki + 3|ki) = A2x(ki) + AB∆u(ki) + B∆u(ki + 1)
...

x(ki + Np|ki) = ANpx(ki) + ANp−1B∆u(ki) + ANp−2B∆u(ki + 1) + ... + ANp−Nc B∆u(ki + Nc − 1)
(3.66)

Then, the predicted output variables are:

y (ki + 1|ki) = CAx(ki) + CB∆u(ki)
y (ki + 2|ki) = CA2x(ki) + CAB∆u(ki) + CB∆u(ki + 1)

y (ki + 3|ki) = CA3x(ki) + CA2B∆u(ki) + CAB∆u(ki + 1) + CB∆u(ki + 2)
...

y (ki + Np|ki) = CANpx(ki) + CANp−1B∆u(ki) + CANp−2B∆u(ki + 1) + ... + CANp−Nc B∆u(ki + Nc − 1)
(3.67)

All predicted variables are formulated in terms of current state variable information
x(ki) and the future control movement ∆u(ki + j), where j = 0, 1, ...Nc − 1. Moreover, we can
define the following vectors:

Y =
[
y (ki + 1|ki) y (ki + 2|ki) y (ki + 3|ki) ... y (ki + Np|ki)

]T

∆U =
[
∆u(ki) ∆u(ki + 1) ∆u(ki + 2) ... ∆u(ki + Nc − 1)

]T (3.68)

where the dimension of Y is Np and the dimension of ∆U is Nc. Putting together equations
3.66 and 3.67 in a compact matrix form we get:

Y = Fx(ki) + Φ∆U (3.69)

where
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F =



CA
CA2

CA3

...
CANp


; Φ =



CB 0 0 · · · 0
CAB CB 0 · · · 0
CA2B CAB CB · · · 0

...
...

... . . . ...
CANp−1B CANp−2B CANp−3B · · · CANp−Nc B


(3.70)

The objective of the predictive control system is to bring the predicted output as
close as possible to the set-point signal, where we assume that the set-point signal remains
constant in the optimization window [Wan09]. We need to find an optimal control parameter
vector ∆U such that an error function between the set-point and the predicted output is
minimized.

Equation 3.71 shows the data vector that contains the set-point information:

RT
s =

Np︷ ︸︸ ︷[
1 1 · · · 1

]
r (ki) (3.71)

and the cost function J that reflects the control objective is:

J = (Rs − Y )T (Rs − Y ) + ∆UT R∆U (3.72)

where the first term is linked to the objective of minimizing the errors between the predicted
output and the set-point signal while the second term reflects the consideration given to the
size of ∆U when the objective function J is made to be as small as possible. R is a diagonal
matrix used as a tuning parameter for the desired closed-loop performance.

Using equation 3.69 to find the optimal ∆U that minimizes J:

J = (Rs − Fx(ki))T (Rs − Fx(ki))− 2∆UTΦT (Rs − Fx(ki)) + ∆UT (ΦTΦ + R)∆U (3.73)

The first derivative of the cost function J:

∂J
∂∆U

= −2ΦT (Rs − Fx(ki)) + 2(ΦTΦ + R)∆U (3.74)

the necessary condition of the minimum J is obtained as

∂J
∂∆U

= 0 (3.75)

then, the optimal solution for the control signal is
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∆U = (ΦTΦ + R)−1ΦT (Rs − Fx(ki)) (3.76)

In equation 3.76, the matrix (ΦTΦ + R)−1 is the Hessian matrix, and Rs is a data vector that
contains the set-point information expressed as

Rs =

Np︷ ︸︸ ︷[
1 1 1 · · · 1

]T
r (ki) = Rsr (ki) (3.77)

where

Rs =

Nc︷ ︸︸ ︷[
1 1 1 · · · 1

]T
(3.78)

Finally, we can link the set-point signal and the state variable with the optimal solu-
tion of the control signal with the following equation:

∆U = (ΦTΦ + R)−1(ΦT Rs − ΦT Fx(ki)) (3.79)

in equation 3.79, (ΦTΦ + R)−1ΦT Rs corresponds to the set-point change, while −(ΦTΦ +
R)−1ΦT F corresponds to the state feedback control within the framework of predictive con-
trol. The receding horizon control principle makes that only the first element of ∆U at time
ki is used as the incremental control, then

∆u(ki) =

Nc︷ ︸︸ ︷[
1 0 · · · 0

]
(ΦTΦ + R)−1(ΦT Rsr (ki)− ΦT Fx(ki))

= Ky r (ki)− Kmpcx(ki)

(3.80)

where Ky is the first element of

(ΦTΦ + R)−1ΦT Rs (3.81)

and Kmpc is the first row of

(ΦTΦ + R)−1ΦT F (3.82)

Equation 3.80 shows a linear time-invariant state feedback control, where the state feedback
control gain vector is Kmpc. Combining with the following augmented model:

x(k + 1) = Ax(k ) + B∆u(k ) (3.83)
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the closed-loop system is obtained by substituting the equation 3.80 into the augmented
system equation; changing index ki to k , leading to the closed-loop equation:

x(k + 1) = Ax(k )− BKmpcx(k ) + BKy r (k )
x(k + 1) = (A− BKmpc)x(k ) + BKy r (k )

(3.84)

Up to this point, the formulation of the MPC was related to single-input, single-
output (SISO) systems, but the Quadrotor platform is described as a multiple-input, multiple-
output (MIMO) system. Therefore we need to transform the previous theory to accommodate
a MIMO system. First, assume that the plant has m inputs, q outputs, and n1 states. Ac-
cording to Wang [Wan09], the general formulation of the predictive control problem takes the
plant noise and disturbance into consideration.

xm(k + 1) = Amxm(k ) + Bmu(k ) + Bdω(k )
y (k ) = Cmxm(k )

(3.85)

So, the input disturbance is related to a zero-mean, white noise sequence ϵ(k ):

ω(k ) = ω(k − 1) = ϵ(k ) (3.86)

then

xm(k ) = Amxm(k − 1) + Bmu(k − 1) + Bdω(k − 1) (3.87)

considering that, ∆xm(k ) = xm(k )− xm(k − 1) and ∆u(k ) = u(k )− u(k − 1), then

∆xm(k ) = Am∆xm(k ) + Bm∆u(k ) + Bdϵ(k ) (3.88)

to relate the output y (k ) to the state variable ∆xm(k ), then

∆y (k + 1) = Cm∆xm(k + 1) = AmCm∆xm(k ) + CmBm∆u(k ) + CmBdϵ(k ) (3.89)

where ∆y (k ) = y (k )− y (k − 1).

With a new state variable vector x(k ) =
[
∆xm(k )T y (k )T

]T
, then

[
∆xm(k + 1)

y (k + 1)

]
=

[
Am oT

m

CmAm Iq×q

][
∆xm(k )

y (k )

]
+

[
Bm

CmBm

]
∆u(k ) +

[
Bd

CmBd

]
ϵ(k )

y (k ) =
[
om Iq×q

] [∆xm(k )
y (k )

] (3.90)
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where Iq×q is an identity matrix with q × q dimension, om is a q × n1, then we can rewrite
equation 3.90 as:

x(k + 1) = Ax(k ) + B∆u(k ) + Bϵϵ

y (k ) = Cx(k )
(3.91)

In a multiple-input, multiple-output environment, we can define the vectors Y and
∆U as

∆U =
[
∆u(ki)T ∆u(ki + 1)T ∆u(ki + Nc − 1)T

]T

Y =
[
y (ki + 1|ki)T y (ki + 2|ki)T y (ki + 3|ki)T · · · y (ki + Np|ki)T

]T (3.92)

Based on the model (A, B, C) the future state variables are calculated sequentially:

x(ki + 1|ki) = Ax(ki) + B∆u(ki) + Bdϵ(ki)

x(ki + 2|ki) = Ax(ki + 1|ki) + B∆u(ki + 1) + Bdϵ(ki + 1|ki)

x(ki + 3|ki) = A2x(ki) + AB∆u(ki) + B∆u(ki + 1)

+ ABϵϵ(ki) + Bdϵ(ki + 1|ki)
...

x(ki + Np|ki) = ANpx(ki) + ANp−1B∆u(ki) + ANp−2B∆u(ki + 1)

+ ANp−Nc B∆u(ki + Nc − 1) + ANp−1Bdϵ(ki)

+ ANp−2Bdϵ(ki + 1|ki) + ... + Bdϵ(ki + Np − 1|ki)

(3.93)

That way we can put the set of equations in 3.93 in the format:

Y = Fx(ki) + Φ∆U (3.94)

where F and Φ are represented by matrices shown in 3.70. The incremental optimal control
within one optimization window is given by

∆U = (ΦTΦ + R)−1(ΦT Rs − ΦT Fx(ki)) (3.95)

where matrix ΦTΦ have size mNc ×mNc, ΦT F have size mNc × n and ΦT Rs is equal to the
last q columns of ΦT F .

With the receding horizon control principle, the first m elements in ∆U are taken to
form the incremental optimal control:
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∆u(ki) =

Nc︷ ︸︸ ︷[
Im om · · · om

]
(ΦTΦ + R)−1(ΦT Rsr (ki)− ΦT Fx(ki))

= Ky r (ki)− Kmpcx(ki)

(3.96)

where Im is the identity matrix with size m ×m and the om is a zero matrix with size m ×m.

3.10 Overall View of The Quadrotor Study Case

This section summarizes the topics addressed in this chapter, as illustrated in Fig-
ure 3.23.

Figure 3.23: Chapter 3 research topics summary diagram.

To create the control system to implement in the thesis, the study case of the
quadrotor breaks into three parts: the physical aspects of the quadrotor, like dynamic char-
acteristics, flight modes, and mathematical modeling. The second part is the theory related
to the quadrotor’s control: to be possible to understand how the quadrotor can be controlled
and which of them were chosen for this thesis. Lastly, the process to be controlled is chosen
in the form of a quadrotor simulation.

To better understand this chapter and to see how the previous sections are linked.
The author refers to the block diagram representation of a closed-loop control system in
Figure 2.2. Based on this figure and the research made in this chapter, we can represent
how the control system of the quadrotor was built. Figure 3.24 shows a closed-loop sys-
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tem diagram showing how each research topic of this chapter relates to the overall control
system.

Figure 3.24: Closed-loop system diagram with Chapter 3 research topics.
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4. HARDWARE PLATFORM AND SUPPORTING RESOURCES

This chapter presents the hardware and software basis used in this thesis. The
author define concepts of Multiprocessed System-on-chip in Section 4.1, the RISC-V pro-
cessor architecture in Section 4.2, and the ORCA platform in Section 4.4. This Chapter it
also explains the Hellfire operational system running in the RISC-V architecture in Section
4.3. The URSA simulator where the ORCA platform is simulated is presented in Section 4.5.
Lastly, this chapter brings the software basis for the energy estimation in the processor in
Section 4.6.1. All of the sections of this chapter are not original works from this thesis.

4.1 Multiprocessed System-on-chip

Limitations of power and performance create the impossibility to continue to in-
crease the processing power of monolithic processor architectures. One solution for this
problem is the Multiprocessed System-on-chip (MPSoC) architecture.

An MPSoC is a VLSI system that incorporates most or all the components neces-
sary for an application that uses multiple programmable processors as system components.
MPSoCs are widely used in networking, communications, signal processing, and multime-
dia, among other applications [WJM08].

An MPSoC consists of a set of processing elements (PEs) interconnected by
some network. These networks are defined by an interconnect topology and several spe-
cific policies and structures, such as communication packet structure, routing algorithms
etc. [YBDM03].

This work adopts as standard a set of characteristics found in several MPSoC ar-
chitectures [MSC+14], which are:

• each PE contains at least one processor with a private memory (scratch-pad memory);

• the employed communication model is message passing;

• there is no shared memory in the system;

• applications are modeled as task graphs;

• a multi-tasking operating system (OS) runs at each PE;

• a mapping function assigns tasks to PEs, being possible to have more than one task
per PE.
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Figure 4.1: MPSoC Diagram of a 6×6 MPSoC instance and the internal structure of a pro-
cessing element, typically composed of a processor, a local memory, a DMA/network inter-
face module (DMNI) and a network router. Adapted from [PUC19].

Figure 4.1 shows a diagram with the representation of a 6×6 MPSoC instance with
the information of the elements that usually form a PE.

Jerraya et al. [JW05] state that MPSoCs became an attractive class of computing
architectures because they provide support for massively parallel, real-time embedded appli-
cations with low-energy consumption and small-sized chips. Moreover, these architectures
can handle multiple processes simultaneously, even without data parallelism, as opposed to
graphics processing units (GPUs).

The architecture used in this thesis is based on an MPSoC, which its PE includes
a RISC-V processor. This processor architecture is detailed in Section 4.2.

4.2 RISC-V Processor Architecture

Architectures like x86 and ARM are widely available and supported. However, they
are also complex, and the licensing model is difficult for experimental and academic use.
Then, to create an alternative ISA, Krste Asanovi, Andrew Waterman, and Yunsup Lee de-
veloped the RISC-V architecture at UC Berkeley [Kan16].

In the past few years, a large number of both proprietary and open-source RISC-V
implementations emerged. Furthermore, RISC-V ecosystems have been developed to pro-
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vide software compilers, System-on-Chip (SoC) peripherals, and other components, simpli-
fying the generation of FPGA- or ASIC-based RISC-V processors systems [DAK+21].

According to [WLPA11] RISC-V is designed to support computer architecture re-
search and education. Furthermore, their goals with this architecture were:

• Provide a realistic but open ISA that captures important details of commercial general-
purpose ISA designs, and that is suitable for direct hardware implementation.

• Provide a small but complete base ISA that avoids “over-architecting” for a particular
microarchitecture style or implementation technology but allows efficient implementa-
tion in any of them.

• Support for both 32-bit and 64-bit address space variants for applications, operating
system kernels, and hardware implementations.

• Support highly-parallel multicore or manycore implementations, including heteroge-
neous multiprocessors.

• Support an efficient dense instruction encoding with variable-length instructions, im-
proving performance and reducing energy and code size.

• Support the revised 2008 IEEE 754 floating-point standard.

• Be fully virtualizable.

• Be simple to subset for educational purposes and reduce the complexity of bringing up
new implementations.

• Support experimentation with user-level ISA extensions and specialized variants.

• Support independent experimentation with new supervisor-level ISA designs.

According to [Kan16], RISC-V is a three-operand load-store architecture that heav-
ily emphasizes cleanliness and simplicity. As Table 4.1 shows that it effectively has three
base instruction sets and six extensions. The base ISA plus MADF extensions form a
general-purpose ISA (sometimes known as the G extensions) that can handle scalar integer
or floating-point code readily.

4.3 HellfireOS

The operating system used in the MPSoC in this project is the HellfireOS. Created
in the GSE laboratory of the Pontifical Catholic University of Rio Grande do Sul (PUCRS),
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Table 4.1: RISC-V base instruction sets and extensions. Adapted from: [Kan16].

Base ISA Instructions Description

RV32I 47 32-bit address space and integer
instructions

RV32E 47 Subset of RV32I, restricted to 16 registers

RV64I 59 64-bit address space and integer instructions,
along with several 32-bit integer instruction

RV128I 71 128-bit address space and integer instructions,
along with several 64- and 32-bit instructions

Extension Instructions Description
M 8 Integer multiply and divide

A 11 Atomic memory operations,
load-reserve/store conditional

F 26 Single-precision (32 bit) floating point

D 26 Double-precision (64 bit) floating point;
requires F extension

Q 26 Quad-precision (128 bit) floating point;
requires F and D extensions

C 46 Compressed integer instructions; reduces size to 16 bits

this OS is a real-time operating system based on models for both the application and archi-
tecture features concerning modern MPSoCs [SFAM+12].

To allow high-level platform customization, HellfireOS was implemented modularly,
where each module corresponds to some specific functionality [AH12]. Such as the maxi-
mum number of tasks on a processor, and the task stack size, among others. The idea is to
allow the designer to optimize the final kernel image size according to software application
and system constraints. Thus, allowing the designer to make the system more suitable to run
on low memory constrained architectures, like typical critical embedded systems [ASFM+10].

The HellfireOS is organized in layers, and all hardware-specific functions are de-
fined in the first layer, known as HAL (Hardware Abstraction Layer). The uKernel lies just
above it, and the communication, migration, memory management, mutual exclusion drivers,
and the API are placed over the uKernel layer. The user applications belong to the top layer
[MSFLH14]. Figure 4.2 shows this organization.
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Figure 4.2: HellfireOS Structure. Adapted from [AH12].

From a single processor point of view, the designer can develop the application C
code and run it over the Hellfire Operating System [MLSF+12].

4.4 ORCA Platform

In [D+20], the author proposes ORCA (self-adaptive multiprocessOR system-on-
Chip plAtform), a development platform to aid in designing self-adaptive systems. The plat-
form provides abstractions to deal with self-adaptation complexity, including a configurable
hardware architecture, operating system, and software libraries.

Figure 4.3: The organization of ORCA platform, depicting software, hardware, and tools.
Adapted from [D+20].
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According to [VDP+20], the ORCA platform allows for the design-time configuration
of multiple MPSoC parameters, including the number of nodes, router buffer width, and
processor memory size. The configuration adopted in this paper has a message size of 64
16-bit flits. Communication is carried out by an instance of the Hermes NoC [MCM+04], with
a buffer depth of 16 flits, XY routing algorithm, and wormhole packet switching.

In [DJSFA19], the authors configure ORCA to have two node types:

• Processing nodes: comprising processor core, three scratchpad memory modules,
network interface and router;

• Networking nodes: comprising a network bridge, two scratchpad memory modules,
network interface, and router

Moreover, this configuration is used in this work. Figure 4.4 shows the arrangement
of a 2× 2 ORCA MPSoC, similar to what was used in some cases of this thesis.

Figure 4.4: The MPSoC comprising four different nodes. The top-left most node is a net-
working node, while the others are processing nodes. Nodes are interconnected through a
network-on-chip, namely Hermes. Adapted from [DJSFA19].
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4.5 URSA Simulator

As the ORCA platform was proposed in [D+20], the URSA (Micro (µ) Rapid-
Simulation API) is also first presented in the same work. The URSA is defined as an appli-
cation programming interface (API) for the modeling and simulation of computing platforms.
In the context of this thesis, the URSA is used to model and simulate the ORCA MPSoC.

URSA is a C++ API for system-level modeling and simulation. It provides a set of
language-related assets that can be used to create system-level, cycle-accurate hardware
simulators, like SystemC. The URSA hardware models are modeled as a set of finite state
machines (FSM), and its underlying simulation is based on discrete-event simulation. A
clock cycle in URSA corresponds to the activation of the transition function of the FSMs of
the simulated system [JMdMA+21].

The processor core model implemented in [D+20] and used in this thesis utilizes ei-
ther the RV32I or RV32IM (see Table 4.1) instruction sets of the Risc-V user mode standard,
with 32 user-level registers in the architecture (from x04 to x31), and four core instruction
formats (R, I, S, and U-type).

4.6 Processing Element Energy Estimation

This section presents the theory behind the processing element’s energy estimation
used in this thesis, based on the work of [M+18]. Estimating power and energy relies on a
calibration process to define the energy/power values. The characterization flow employs
the synthesizable VHDL description of the reference platform. Here, only the processor,
router, and memory are considered; the NI power consumption is neglected because it is a
small module compared to the others.

4.6.1 Processor Characterization

The characterization of the processor’s energy and power relies upon the classes
of instructions utilized by said processor, obtaining measures of energy per instruction and
power per instruction for all classes and presenting these values in parcels of leakage and
dynamic power. Table 4.2 shows which instruction classes were created and how many
cycles per instruction are used by the class to execute a program based on RTL simulations.
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Table 4.2: RTL simulation results obtained from instruction set classes. Adapted
from [M+18].

Class Cycles per instruction
arithmetic 1
logical 1
shift 1
move 1
nop 1
branches 1
jumps 1
load-store 2

The method to estimate power and energy is general because it is based on a cali-
bration process to define the energy/power values. Therefore, [M+18] provides accurate and
reliable measurement of dynamic and static power based on the switching activity annotation
from a netlist simulation. The results of this can be found in Table 4.3.

Table 4.3: Power characterization results and energy estimation for each instruction class of
the processor (65nm), at 1.1V, 25◦C (T=4ns). Adapted from [M+18].

Avg. Power (mW) Energy per inst. (pJ)Class Leakage Dynamic Leakage Dynamic
arithmetic 5.894 23.58
logical 5.176 20.70
shift 4.940 19.76
move 4.768 19.07
nop 3.331 13.32
branches 5.723 31.70
jumps 4.175

1.808

18.56
load-store

0.452

5.507 3.616 43.15

The energy for a given class of instructions is given by Equation 4.1.

Eclass = Pclass × CPI × T (4.1)

where Pclass is the average power for a given instruction class, CPI is the number of cycles
per instruction, and T is the clock period. Equation 4.1 works for both static and dynamic
power.

From equation 4.1, the total energy consumption and the power dissipation can be
estimated for the processor by equations 4.2 and 4.3.

Eprocessor =
nclass∑
i=0

ninstructioni × Eclassi (4.2)
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Pprocessor =
nclass∑
i=0

ninstructioni × Pclassi (4.3)

4.6.2 Router Characterization

The characterization process of the router is similar to the processor characteri-
zation; Table 4.4 presents the power characterization of the router for the two traffic rates.
The second column presents the dynamic average power consumption for one buffer. The
third column, combinational logic, corresponds to the remaining parts of the 5-port router
(Pleakrouter (nports)). The last table column presents the router leakage power [M+18].

Table 4.4: Router Average Power, at 1.1V, 25◦C (T=4ns). Adapted from [M+18].

Traffic Rate One buffer Combinational Logic Pleakrouter (nports = 5)
0% - idle 364.64µ W 575.64µ W

100% - active 755.56µ W 2655.25µ W 223.08µ W

Equations 4.4 and 4.5 show the dynamic active energy to receive one flit and the
spent dynamic energy in idle mode, respectively.

Eactive = [(nports − 1)× P idle
buffer + Pactive

buffer + Pactive
comb ]× T (4.4)

Eidle = [(nports)× P idle
buffer + P idle

comb]× T (4.5)

where nports is the number of ports of the router, P idle
component is the average idle power of a given

component, Pactive
component is the average active power, and T is the period used to characterize

the router.

4.6.3 Memory Characterization

For the memory energy characterization, [M+18] uses a memory generator tool
called CACTI-P [LCA+11]. Table 4.5 presents the characterization data produced by said
tool. Where Pleakmemory is the leakage power, Eload is the dynamic read energy per access,
and Estore is the dynamic write energy per access.

Therefore, we can define the computation of power and energy of the PE (EPE ) into
the epoch, with Eproc the dynamic processor energy, Emem the dynamic read/write energy per
access, Erouter the dynamic router energy, and Eleak the energy from leakage power of the
whole PE (see eq. 4.6).
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Table 4.5: CACTI-P Report for a Scratchpad Memory, at 1.1V, 25◦C (T=4ns). Adapted
from [M+18].

Access time Pleakmemory Eload Estore

3.98ns 0.66mW 67pJ 38pJ



Eproc =
∑nclasses

i=0 ninstructionsi × Edynclassi

Emem = ninstructionsload × Eload + ninstructionsstore × Estore

Erouter = Eidlerouter × (cyclestotal − cyclesactive) + Eactiverouter × cyclesactive

Eleak = [Pleakproc + Pleakmem + Pleakrouter (nports)]× cyclestotal × T
EPE = Eproc + Emem + Erouter + Eleak

(4.6)

4.6.4 ORCA Monitoring

To apply the energy estimation methods presented in Sections 4.6.1, 4.6.2 and
4.6.3, the author utilize the hardware counters implemented in the ORCA MPSoC. These
counters are exposed to the application level through the system API, which accesses re-
served memory space to read from these counters via memory-mapped I/O. Counters ap-
pear to the rest of the system as a memory region, accessible through software. Reads to
that memory region return the current value stored in the counter, and software can write to
these counters to modify their value to zero, corresponding to a reset to the counter [D+20].
Table 4.6 shows the counters used in the experiments of this thesis.

Table 4.6: Counters available for energy estimation in ORCA. Adapted from [D+20].

Counter Name Description

M0_COUNTER_STORE
Returns the number of writes on main memory
since the last reset

M0_COUNTER_LOAD
Returns the number of reading on main memory
since the last reset

M1_COUNTER_STORE
Returns the number of writes on receiving memory
since the last reset

M1_COUNTER_LOAD
Returns the number of reading on receiving memory
since the last reset

M2_COUNTER_STORE
Returns the number of writes on sending memory
since the last reset

M2_COUNTER_LOAD
Returns the number of reading on sending memory
since the last reset

Continued on next page
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Table 4.6 – Continued from previous page
Counter Name Description

CPU_COUNTER_ARITH
Returns the number of arithmetic instructions that
the CPU of the tile, executed since the last reset

CPU_COUNTER_LOGICAL
Returns the number of logical instructions that
the CPU of the tile, executed since the last reset

CPU_COUNTER_SHIFT
Returns the number of shift instructions that
the CPU of the tile, executed since the last reset

CPU_COUNTER_BRANCHES
Returns the number of branch instructions that
the CPU of the tile, executed since the last reset

CPU_COUNTER_JUMPS
Returns the number of jump instructions that
the CPU of the tile, executed since the last reset

CPU_COUNTER_LOADSTORE
Returns the number of load and store instructions
that the CPU of the tile, executed since the last reset

CPU_COUNTER_CYCLES_TOTAL
Returns the number of cycles in that the CPU
was not stalled since the last reset

CPU_COUNTER_CYCLES_STALL
Returns the number of cycles in that the CPU
was stalled since the last reset

ROUTER_COUNTER_ACTIVE

Returns the number of cycles that the router
had being active since the last reset. Routers
are active when at least one port is transmitting or
receiveing data.
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5. FRAMEWORK IMPLEMENTATION AND APPLICATIONS

This Chapter, defines the architecture used in this thesis. We explain how the
MPSoC platform interacts with the quadrotor simulation, detailing the operating system used
to simulate the quadrotor and how it is used to communicate with the simulation of the
MPSoC. We explain how the experimental setup was built and how the control algorithms
were developed and implemented on the system.

5.1 Target Architecture

The system’s architecture proposed in this thesis can be seen in Figure 5.1 and
been a simulation-only project, the entirety of the system run in a Linux OS. From there, we
have the system divided into two main parts: the ROS system and the URSA simulator. The
ROS system is responsible for simulating the quadrotor and communicating with the ORCA
MPSoC. The URSA creates a simulation of an MPSoC running the control system of the
quadrotor within its processing cores.

Figure 5.1: Overall representation of the proposed system.
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5.1.1 Experimental Setup

In order to implement this system, we decide to break apart the architecture into
two different machines. This choice was made to maximize the processing time due to the
heavy computation demand by Hector quadrotor and URSA simulations. Figure 5.2 shows
an overview of this implementation.

Figure 5.2: Experimental Setup.

Therefore, to better explain this setup, we need to understand running multiple
machines in the ROS environment. In a system that relies upon multiple PCs, all of them
must be configured to run ROS. Then the following rules must be applied:

• All machines (master and clients) must be in the same network;

• In all systems with multiple machines only a single PC running as a server (master),
but can exist several clients;

• All machines recognize the master through a setting called ROS_MASTER_URI, which
tells nodes where they can locate the server;

• All machines can run multiple nodes.

Then, in the implementation of the thesis was used two computers. The first ma-
chine (master) runs the URSA simulation and the ROS communication nodes. Moreover,
the other (client) runs the hector quadrotor simulation. The specifications of each machine
is described in Table 5.1.

Table 5.1: Computational setup specifications.

PC OS Processor Memory ROS Distro
(Version)

ROS Master Ubuntu 18.04.6 LTS Intel ® Core™ i7-10700F
CPU @ 2.90GHz × 16 16GB Melodic

(1.14.13)

ROS Client Ubuntu 18.04.5 LTS Intel ® Core™ i7-5500F
CPU @ 2.40GHz × 4 6GB Melodic

(1.14.10)
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5.2 ROS - Ursa Interface

In order to understand how the Hector simulation can communicate with ORCA, we
need to expand the concepts briefly presented in Section 4.4. In Figure 4.4, we have seen
the structure of nodes in the ORCA MPSoC, with network and processing nodes. According
to [DJSFA19], networking nodes include hardware from the processing node. However, they
have a network bridge attached to the NI instead of a processor core and main memory. The
network bridge translates raw UDP packets (containing UDP/IP headers and beyond) to the
protocol of the NoC, adding the required headers. Translation occurs when transmitting data
from the NoC to the UDP network and vice-versa.

Figure 5.3: Data-flow of the MPSoC integration into a ROS system.

As shown in Figure 5.3, a ROS node was developed to create a communication
line between ORCA and ROS. This node wraps the communication with the MPSoC and
exposes the MPSoC as a resource to the whole system via topics. This node executes two
simultaneous threads. The first treats the messages from the ROS systems to the MPSoC,
and the second treats UDP packets from the MPSoC.

5.3 Implementation of the Algorithms

This section describes how the algorithms of Section 5.5 are implemented in the
ORCA platform. Based on the Figure 4.3, the folder HellfireOS shows its components.
Folder "libc" houses the algorithms, each one described as a .C file.
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Figure 5.4: Algorithm implementation within the ORCA platform.

In order to build and assign the algorithms to each processing node of the MP-
SoC, first, we need to create a "applications" folder in the software partition of the system.
There, we create all applications needed for the project, also as a .C file with its header and
makefile.

Figure 5.5 shows how the EKF application was created for this project.

Figure 5.5: Application implementation of the EKF algorithm.

The next step is configuring the ORCA settings; this is done by creating a "Config-
uration.mk" file in the ROOT partition of the project. This file is populated by all the values
that URSA needs to run every simulation. Values like the number of cores, how they are



136

placed in the grid, which application runs in what core, and information related to topics like
the URSA engine, netsocket, buffer, memory, and more.

5.4 C and C++ Language Libraries

This section presents a few C and C++ libraries developed that serve as the back-
bone of this project. They are a small matrix operations library and a fixed-point arithmetic
library—the items below detail how each was implemented.

• matrix.h → Small Custom Matrix Operations Library : For the sake of memory usage
was developed a small matrix operation library in C, containing the exact amount of
mathematical operations needed to make the system work, abiding by the maximum
and minimum of matrices sizes that the EKF uses in this context. Each matrix is
described as a struct containing two integers for column and row sizes and a vector for
the matrices values. Next, is enumerated the functions present in this library.

– SET VALUES: This function is responsible for aggregating vital information about
the matrix. As stated before, each matrix is described as a struct containing two
integers for column and row sizes and a vector for the matrices values. As seen
in equations 5.1 and 5.2, the values in the vector are used to populate the matrix.
The first values are disposed in the matrix from left to right, then row by row. This
function is used throughout the EKF task.

* inputs: 
nrows

ncolumns

vector = [v0, v1, v2, ..., vk−1, vk ]

(5.1)

* output:

A =


v0 v1 v2 · · ·
... . . . ...
... . . . ...
· · · vk−1 vk

 (5.2)

– TRANSPOSED MATRIX: The transposed function recieves a Matrix struct A and
returns a new struct A with the values of rows and columns swaped. This function
is used in lines 2 and 3 of Algorithm 3.2 and in equation 3.13.

A =

a b c
d e f
g h i

 , AT =

a d g
b e h
c f i

 (5.3)
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– SUM OF MATRICES: Straightforward sum operation, where the function receives
two matrices, A and B, then returns the struct of a new matrix C with the sums
of each of the individual elements of the two matrices. Examples of use of this
functions can be found in equations 3.11 and 3.14.

– SUBTRACTION OF MATRICES: Another straightforward operation, where the
function receives two matrices, A and B, then returns the struct of a new ma-
trix C with the subtraction of each of the individual elements of the two matrices.
This function is used in lines 4 and 5 of Algorithm 3.2

– MULTIPLICATION OF MATRICES: In this operation, the function receives two
matrices, A and B, then returns the struct of a new matrix C with the of each
corresponding multiplication of row by column of each of the elements of the two
matrices. This function is used throughout the code.

– MATRIX MULTIPLICATION BY A SCALAR: In this operation, the function receives
matrix A and a scalar x , then returns the struct of a new matrix B that contains
the elements of the matrix A multiplied by x . This function is used throughout the
code.

A =

a(0,0) a(0,1) a(0,2)

a(1,0) a(1,1) a(1,2)

a(2,0) a(2,1) a(2,2)

 , x ∀x ∈ R, B =

xb(0,0) xb(0,1) xb(0,2)

xb(1,0) xb(1,1) xb(1,2)

xb(2,0) xb(2,1) xb(2,2)

 , Ax = B (5.4)

– MATRIX DIVISION BY A SCALAR: This operation is similar to the prior function,
it receives matrix A, and a scalar x then returns the struct of a new matrix B that
contains the elements of the matrix A divided by x .

A =

a(0,0) a(0,1) a(0,2)

a(1,0) a(1,1) a(1,2)

a(2,0) a(2,1) a(2,2)

 , x ∀x ∈ R, B =


a(0,0)

x
a(0,1)

x
a(0,2)

x
a(1,0)

x
a(1,1)

x
a(1,2)

x
a(2,0)

x
a(2,1)

x
a(2,2)

x

 , A/x = B (5.5)

– MATRIX SUM BY A SCALAR: This operation is similar to the prior functions, it
receives matrix A, and a scalar x then returns the struct of a new matrix B that
contains the elements of the matrix A summed by x .

A =

a(0,0) a(0,1) a(0,2)

a(1,0) a(1,1) a(1,2)

a(2,0) a(2,1) a(2,2)

 , x ∀x ∈ R, B =

a(0,0) + x a(0,1) + x a(0,2) + x
a(1,0) + x a(1,1) + x a(1,2) + x
a(2,0) + x a(2,1) + x a(2,2) + x

 , A+x = B

(5.6)

– CREATE AN IDENTITY MATRIX: Due to the frequent use of identity matrices in
control theory, was created a function that receives a scalar x representing the
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matrix order and creates a matrix in the form of equation 5.7.

I =


1 0 · · · 0
0 1 · · · 0

0 0 . . . 0
0 0 · · · 1

 (5.7)

– CREATE A MATRIX OF ZEROS: For convenience, a function that receives two
scalars (representing rows and columns) was created that determines the size of
a populated by zeros matrix A.

A =


0 0 · · · 0
0 0 · · · 0

0 0 . . . 0
0 0 · · · 0

 (5.8)

– CREATE A MATRIX OF ONES: This function has the same principle as the prior
function; the difference is that matrix A is populated by ones.

A =


1 1 · · · 1
1 1 · · · 1

1 1 . . . 1
1 1 · · · 1

 (5.9)

– CREATE A 3 × 3 SKEW-SYMMETRIC MATRIX: In Section 3.6.3 is presented
the quaternion representation theory. With it, it is shown the skew-symmetric
matrix, to create a more straightforward user interface, was created a function
that receives the three values x , y , and z and builds a 3 × 3 skew-symmetric
matrix, as presented in equation 5.10.

A =

 0 −z y
z 0 −x
−y x 0

 , ∀xyz ∈ R (5.10)

– BLOCK DIAGONAL CONCATENATION: This topic comprises three functions de-
signed to create a matrix with the input of other matrices. In this case, the con-
catenation of different matrices along the diagonal of the resultant matrix, as seen
in equation 5.11. As said previously, three functions were created utilizing this
idea, varying in the number of input matrices, two, three, or four. The rest o the
resultant matrix is filled with zeros. In equations, 5.12, 5.13 and 5.14 is shown an
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example of how this method is called, for an input of two matrices and its result.

M =



A 0 0 · · · 0
0 B 0 · · · 0
0 0 C · · · 0
...

...
... . . . 0

0 0 0 0 . . .


(5.11)

Example:
M = blkdiag2(A, B) (5.12)

where,

A =

[
1 2
3 4

]
, and B =

[
5 6
7 8

]
(5.13)

then,

M =


[

1 2
3 4

]
02×2

02×2

[
5 6
7 8

]
 , where 02×2 is

[
0 0
0 0

]
(5.14)

– CUSTOM MATRIX OF MATRICES: This function also aims the creation of a matrix
using the input of other matrices. Contrary to the prior task, which was a restriction
on the placement of matrices, this one lets the user position each of the input
matrices wherever he wants, as shown in equation 5.15. The user must inform
the system of the number of input matrices, a configuration vector containing the
information on matrix placement, and all the matrices that build the new one.

M =


A B · · ·
C D · · ·
...

... . . .

 (5.15)

The function is called by the line: "customMat(n_mats, vet_conf , A,B,C,D..)",
where, vet_conf = [confX, confY, row, column], confY and confX indicate how
the matrix is built. In case of confX = 2 and confY = 2, the matrices A, B, C and D
are placed in a 2x2 grid. The parameters row and column indicates the total size
of the matrix.

– DELETE ROW AND COLUMN OF A MATRIX: The A.14 algorithm shows the
method for obtaining a matrix, eliminating the row and column of a particular ele-
ment which is in the form of a square or rectangle. This algorithm is later used in
the determinant function (alg.A.15) to calculate co-factors.
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Take matrix A:

A =

a(0,0) a(0,1) a(0,2)

a(1,0) a(1,1) a(1,2)

a(2,0) a(2,1) a(2,2)

 (5.16)

For the element a(0,1) the first row and second column are not considered as seen
in Figure 5.4.

A =

a(0,0) a(0,1) a(0,2)

a(1,0) a(1,1) a(1,2)

a(2,0) a(2,1) a(2,2)


Therefore, the resulting matrix is:

Aa(0,1) =

[
a(1,0) a(1,2)

a(2,0) a(2,2)

]
(5.17)

– DETERMINANT OF A MATRIX: To calculate the determinant of a square matrix,
the Algorithm A.15 is divided into three cases:

* Matrix (1× 1): The determinant is equal the only element in the matrix;

* Matrix (2 × 2): The determinant is equal to the product of diagonal 1 (d1)
minus the product of diagonal 2 (d2):

A =

[
a(0,0) a(0,1)

a(1,0) a(1,1)

]d1 d2

* Matrix (n × n) ∈ n > 2: For each element of first row or first column get
cofactor (alg. A.14) of those elements and then multiply the element with the
determinant of the corresponding cofactor, and finally add them with alternate
signs.
Take the matrix A with order 3:

A =

a b c
d e f
g h i

 (5.18)

Then, the determinant is:

det(A) = a(ei − fh)− b(di − gf ) + c(dh − eg) (5.19)

To ilustrate this in terms of cofactor matrices:
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a
× ∣∣∣∣∣e f

h i

∣∣∣∣∣

−


b
×∣∣∣∣∣dg f

i

∣∣∣∣∣

 +


c

×∣∣∣∣∣d e
g h

∣∣∣∣∣

 (5.20)

– INVERSE OF A MATRIX: To calculate the inverse of a matrix, the Algorithm A.16
computes the following equation:

A−1 =
1

det(A)
adjoint(A) (5.21)

– COPY: The Algorithm A.17 takes an input matrix A and creates an output matrix
B with the same size and values.

– RANK OF A MATRIX: The Algorithm A.18 calculates the dimension of the sub-
space spanned by the rows of a matrix. The dimension of the column space is
equal to the rank.

– CHECK SYMMETRY OF A MATRIX: To check the symmetry of a matrix, the fol-
lowing preposition must be obeyed:

A is symmetric ⇔ A = AT (5.22)

The output of this function is either True or False.

– LU DECOMPOSITION: This function (Algorithm A.20) is responsible for decom-
posing a matrix into lower and upper triangular matrices:

A = LU (5.23)

a(0,0) a(0,1) a(0,2)

a(1,0) a(1,1) a(1,2)

a(2,0) a(2,1) a(2,2)

 =

l(0,0) 0 0
l(1,0) l(1,1) 0
l(2,0) l(2,1) l(2,2)


u(,0) u(0,1) u(0,2)

0 u(1,1) u(1,2)

0 0 u(2,2)

 (5.24)

– GET A MATRIX DIAGONAL: This function retrieves the values of the diagonal of
a square matrix and returns a vector with the values mentioned above:

a(0,0) a(0,1) a(0,2)

a(1,0) a(1,1) a(1,2)

a(2,0) a(2,1) a(2,2)

→
a(0,0)

a(1,1)

a(2,2)

 (5.25)

– GET A SECTION OF A MATRIX: This function is responsible for creating a matrix
B(i ,j) based on a desired section of an original matrix A(i ,j). The Algorithm A.13
receives four parameters: Ri , the first position of the row to be copied, Rf , the last



142

position of the row to be copied, Ci , the first position of the column to be copied,
Cf , and the last position of the column to be copied.

A(i , j) =


a(o, o) a(o, 1) a(o, 2) a(o, 3) a(o, 4)
a(1, o) a(1, 1) a(1, 2) a(1, 3) a(1, 4)
a(2, o) a(2, 1) a(2, 2) a(2, 3) a(2, 4)
a(3, 3) a(3, 1) a(3, 2) a(3, 3) a(3, 4)
a(4, o) a(4, 1) a(4, 2) a(4, 3) a(4, 4)



Ci Cf

Ri

Rf

B(i, j)

– QR DECOMPOSITION: The Algorithm A.23 receives a matrix A and outputs the
decomposition of the matrix into matrix Q, where Q is an orthogonal matrix, and
R is an upper triangular matrix. Used in Algorithm A.27

A = QR (5.26)

– MATRIX TO THE POWER OF N: The Algorithm A.24 receives matrix A and scalar
N and return matrix B that is equal to A to the power of A.

B = AN (5.27)

– TRACE OF A MATRIX: Auxiliary function. The Algorithm A.25 receives a matrix A
and outputs the sum of the values from its diagonal. It is used in Algorithm A.26.

tr (A) =
K∑

k=0

A(kk ) (5.28)

– EIGENVALUES OF A MATRIX (2 × 2): Auxiliary function. The Algorithm A.26
receives a matrix A with size 2 × 2 and outputs its eigenvalues. It is used in
Algorithm A.27.

– EIGENVALUES OF A MATRIX: The Algorithm A.27 receives a matrix A with sizes
higher than 2× 2 and outputs its eigenvalues.

– ZEROS ALL THE ELEMENTS BELOW THE MATRIX DIAGONAL: Auxiliary func-
tion. It receives a matrix A and returns a matrix B with the values below the
diagonal zeroed.

A =


a b c d
e f g h
i j k l
m n o p

 , B =


a b c d
0 f g h
0 0 k l
0 0 0 p

 (5.29)
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– ZEROS ALL THE ELEMENTS ABOVE THE MATRIX DIAGONAL: Auxiliary func-
tion. It receives a matrix A and returns a matrix B with the values above the
diagonal zeroed.

A =


a b c d
e f g h
i j k l
m n o p

 , B =


a 0 0 0
e f 0 0
i j k 0
m n o p

 (5.30)

– 2-NORM OF A MATRIX: The Algorithm A.30 computes the norm of all the matrix
A values:

norm(A(i ,j)) =
√∑∥∥∥a2

(i ,j)

∥∥∥ (5.31)

– DISCRETE-TIME ALGEBRAIC RICCATI EQUATION SOLVER: The Algorithm
A.31 is responsible to find a symmetric solution, that converge quadratically to a
stable state of the equation X = AT XA− (BT XA)T (R +BT XB)−1BT XA+Q (adapted
from [CFLW04]).

• fixed_point.h → Fixed-point arithmetic library : To utilize an alternative for floating-
point arithmetic that put unnecessary stress on the computation, a fixed-point arith-
metic library in C was developed to represent fractional (non-integer) numbers by stor-
ing a fixed number of digits of their fractional part. Each fixed-point variable is an
signed integer of 32 bits (int32_t). Table 5.2 shows a summary of the functions used
in this library.

Table 5.2: Fixed-point functions used in this Thesis.

Function Description
fix_add(A,B) sum of two numbers
fix_sub(A,B) subtraction of two numbers
fix_mul(A,B) multiplication of two numbers
fix_div(A,B) division of two numbers
fixtoa(A, char, dec) convert fixed-point number to char
fix_sqrt(A) square root of a number
fix_exp(A) exponential function
fix_ln(A) natural logarithm of a number
fix_log(A, base) logarithm of a number in a certain base
fix_pow(A, exp) exponential of a number
fix_rad(deg) convert degree to radians
fix_sin(rad) sine of a angle (in radians)

Continued on next page
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Table 5.2 – Continued from previous page
Function Description

fix_cos(rad) cosine of a angle (in radians)
fix_tan(rad) tangent of a angle (in radians)
fix_atan(rad) inverse tangent of a angle (in radians)
fix_atan2(rad1, rad2) 2-argument arctangent (in radians)
fix_asin(rad) inverse sine of a angle (in radians)
fix_acos(rad) inverse cosine of a angle (in radians)
fix_sinh(rad) hyperbolic sine of a angle (in radians)
fix_cosh(rad) hyperbolic cosine of a angle (in radians)
fix_tanh(rad) hyperbolic tangent of a angle (in radians)
fix_print(A) print a fixed-point number

fix_sign(A)
function to show signal from a fixed-point number:
Return 1 if A ≥ 0, and return -1 if A < 0

fix_norm(vector) euclidian norm of a vector
fix_cpsign(A, B) copy sign of a number (A) into an another number (B)

5.5 Description of the Algorithms

This Section approaches the algorithms implemented based on concepts that were
already referenced in chapter 3 and other ideas that are presented next. Every algorithm
here described used the software libraries described in Section 5.4, demonstrating the wide
range of control applications that can be embedded in this system.

5.5.1 Attitude Measurement of the Quadrotor based on Accelerometer and Magnetome-
ter

In the EKF algorithm presented in 5.5.2, the "correction" portion of the algorithm
is calculated with the quaternion measurement from the accelerometer and magnetometer.
Equation 5.32 show the calculations used to estimate roll , pitch and yaw , based in the
readings of the accelerometer and magnetometer,


roll = tan−1( ay√

ax2+az2 )

pitch = tan−1( −ax√
ay2+az2

)

yaw = tan−1( −my .cos(roll)+mz.cos(roll)
mx .cos(pitch)+my .sin(pitch).sin(roll)+mz.sin(pitch).cos(roll)] )

(5.32)

to transform the estimation roll , pitch and yaw to quaternion, equation 5.33 is used.
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qw = cos(pitch

2 ).cos( roll
2 ).cos( yaw

2 ) + sin(pitch
2 ).sin( roll

2 ).sin( yaw
2 )

qx = sin(pitch
2 ).cos( roll

2 ).cos( yaw
2 ) + cos(pitch

2 ).sin( roll
2 ).sin( yaw

2 )
qy = cos(pitch

2 ).sin( roll
2 ).cos( yaw

2 ) + sin(pitch
2 ).cos( roll

2 ).sin( yaw
2 )

qz = cos(pitch
2 ).cos( roll

2 ).sin(yaw
2 ) + sin(pitch

2 ).sin( roll
2 ).cos(yaw

2 )

(5.33)

Where the inputs are the vectors: a = [ax , ay , az], representing the accelerometer
readings in the x , y and z axis. Furthermore, m = [mx , my , mz] represents the magnetome-
ter readings in the x , y , and z axis. In lines 1 and 2, the accelerometer readings are used to
approximate the angles of roll and pitch. Because the quadrotor only operate in the stable
conditions, where roll ≈ pitch ≈ yaw ≈ 0. The calculations accounting gimbal lock are not
considered. In line 3, the yaw angle is calculated using the magnetometer readings with the
roll and pitch findings. Finally, the Euler angles are converted to quaternions on lines 5, 6,
7, and 8.

5.5.2 Extended Kalman Filter for Attitude Estimation

To understand the principles of the attitude estimation by the extended Kalman
filter first is necessary to understand how the quadrotor’s attitude is represented. As showed
in Figure 5.6 attitude is define as the orientation of the quadrotor in the body frame (B) in
relation to the navigation frame (N), usually represented by Euler angles roll (ϕ, rotation
around the X-axis), pitch (θ, rotation around the Y-axis) and yaw (ψ, rotation around the
Z-axis).

Figure 5.6: Euler angles representation. Adapted from [JCH+17].
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A simple way to represent this rotation is by quaternions, that are represented by

q =

[
q0

qv

]
=


q0

q1

q2

q3

 (5.34)

And to represent the angular rate ω we need to get the quaternion’s derivative

q̇ = Ω(ω)q (5.35)

where

Ω(ω) =
1
2

[
0 −ωT

ω [ωs]

]
(5.36)

and

[ωs] =

 0 ωz −ωy

−ωz 0 ωx

ωy −ωx 0

 . (5.37)

That way,

Ω(ω) =


0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0

 (5.38)

In this algorithm, the angular rate ω can be measured by a gyroscope sensor in the
body frame, and represented by

ω = [ωx ωy ωz ]T (5.39)

The discrete-time form of the system process model can be described as

qk+1 = exp(Ωk∆t )qk + wk , k = 0, 1, 2, ... (5.40)

where ∆t represents the system sample interval and wk is the process noise. To
linearize the exp(Ωk∆t )qk portion of the equation 5.40, we use its first-order and second-
order items of Taylor series expansion, that gives:
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qk+1 = (I4×4 +
1
2
Ωk∆t )︸ ︷︷ ︸

F

qk (5.41)

The observation vector of the model is given by:

Zk = [q0 q1 q2 q3]T (5.42)

And it is obtained by the Algorithm 5.1. Finally the applied algorithm of the EKF in
this project is represented as:

Algorithm 5.1: Attitude Estimation EKF.

1 algorithm ATTITUDE_EKF(x , ACC, GYR, MAG, Q, R, P):
2 Set measured_quaternion using eq.5.32 and 5.33;
3 w = [GYR];
4 wt = [GYR]T;
5 sw = SKEW_MAT ([GYR]) → Algorithm A.11;
6 Set omega using eq. 5.36;
7 F = EYE(4) + omega;
8 Xk = F .Xk−1

9 Pk = F .Pk−1.F T + Q
10 Kk = Pk−1(Pk−1 + R)−1

11 Xk = Xk + Kk [Zk − Xk ]
12 Pk = (EYE(4)− Kk )Pk

13 return (Xk , Pk)

5.5.3 Kalman Filter for Linear Position Estimation

In order to create an XY position estimation of the quadrotor, a Kalman Filter algo-
rithm is implemented, aggregating the readings of the accelerometer and GPS.

Therefore, first, we determine the linear equations that describe the model associ-
ated with the motion of a body:{

Pos = posi + vel∆t + 1
2acc∆t2

Vel = veli + acc∆t
(5.43)

Where Pos is the one-dimensional position of the body, Posi is the initial position,
Vel is the velocity of the body, ∆t is the variation of time, and acc is the acceleration. As-
suming that the desired states X are position and velocity, we can describe the equations
on system 5.43 as an space-state format:
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[
Pos
Vel

]
X

=

[
1 ∆t
0 1

]
A

×

[
PREVIOUS

STATES

]
previous states

+

[
1
2∆t2

∆t

]
B

[acc]
u

(5.44)

The system represented in equation 5.45 is know as state equation, where matrix
A is the state matrix and matrix B is the output matrix.


ẋ(t) = Ax(t) + Bu(t)[

˙Pos
V̇el

]
=

[
1 ∆t
0 1

][
Pos
Vel

]
+

[
1
2∆t2

∆t

]
[acc]

(5.45)

The system represented in equation 5.46 is know as output equation, where matrix
C is the output matrix and matrix D is the feedthrough matrix.


y (t) = Cx(t) + Du(t)

Pos =
[
1 0

] [Pos
Vel

]
+ [0]u(t)

(5.46)

To build the Kalman Filter, is necessary to derive the state extrapolation equation
(see eq. 5.47). This equation can predict the next system state, based on the knowledge of
the current state.

x̂n+1,n = Fx̂n,n + Gun,n + ωn (5.47)

where, x̂n+1,n is a predicted system state vector at time step n+1, x̂n,n is an estimated system
state vector at time step n, un is a measurable input to the system, ωn is a process noise or
disturbance, F is a state transition matrix and G is a control matrix.

In matrix form, we can define F and G as the equations in 5.48:

F =

[
1 ∆t
0 1

]
, G =

[
1
2∆t2

∆t

]
(5.48)

As the system controlled is the XY position of the quadrotor, we need to rewrite the
equation 5.43 to comprise the entirety of the system.

x(t) =


Posx

Posy

Velx
Vely

 ,


Posx = Posxi + velx∆t + 1

2accx∆t2

Posy = Posyi + vely∆t + 1
2accy∆t2

Velx = velxi + accx∆t
Vely = velyi + accy∆t

(5.49)

Therefor, the matrix F is represented as:
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ẋ(t) =


˙Posx

˙Posy

V̇elx

V̇ely

 =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1


A


Posxi

Posyi

velxi

velyi


x(t)

⇒ F (5.50)

And the matrix G is represented as:

ẍ(t) =


¨Posx

¨Posy

V̈elx

V̈ely

 =


1
2∆t2 0

0 1
2∆t2

∆t 0
0 ∆t


B

[
ax

ay

]
u(t)

⇒ G (5.51)

Based on the Algorithm 3.1 the applied algorithm of the KF in this project is repre-
sented as:

Algorithm 5.2: XY Position Estimation KF.

1 algorithm XY_POSITION_KF(x , ACC, GPS, Q, R, P):
2 Set F and G with eq. 5.48;
3 Xk = F .Xk−1 + G.uk−1

4 Pk = F .Pk−1.F T + Q
5 Kk = Pk−1.HT .(H.Pk−1.HT + R)−1

6 Xk = Xk + Kk [Zk − (H.Xk )]
7 Pk = (I − Kk .H)Pk

8 return (Xk , Pk)

In the line 4 of the Algorithm 5.2 the Matrix H represents the observation matrix,
and is shown in equation 5.52

H =

[
1 0 0 0
0 1 0 0

]
(5.52)

5.5.4 Proportional, Integral and Derivative Control (PID) - Attitude and Height Control

As previously stated, the PID controller can be used to find the control signal (ui) for
all of the states that guarantees the desired orientation (roll ϕsp, pitch θsp, yaw ψsp) and height
(z) of the vehicle. The PID controller for the roll, pitch and yaw parameters are described in
Equations 5.53, 5.54, 5.55 where Kp is the proportional gain, Ki is the integral gain, Kd is the
derivative gain, and ϕsp is the setpoint for the roll parameter. The same applies for pitch and
yaw parameters. The height control also uses a modified PID controller [HHWT09], shown
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in Equation 5.56, where Tgravity is the minimum thrust that overcomes the gravity force. The
aforementioned control laws are used as components for the signal output for each of the
four motors.

uϕ = Kp(ϕsp − ϕ) + Ki

∫ t

0
(ϕsp − ϕ)dt + Kd

d
dt

(ϕsp − ϕ); (5.53)

uθ = Kp(θsp − θ) + Ki

∫ t

0
(θsp − θ)dt + Kd

d
dt

(θsp − θ); (5.54)

uψ = Kp(ψsp − ψ) + Ki

∫ t

0
(ψsp − ψ)dt + Kd

d
dt

(ψsp − ψ); (5.55)

uz =
1

cosϕ cos θ
(Kpz (zsp − z) + Kiz

∫ t

0
(zsp − z)dt + Kdz

d
dt

(zsp − z) + Tgravity ); (5.56)

Based on the modeling described in Section 3.2 and the equations 5.53, 5.54, 5.55
and 5.56, the control law for each individual rotor can is described in Equation 5.57.

u1 = −uθ + uψ + uz u2 = −uϕ − uψ + uz

u3 = uθ + uψ + uz u4 = uϕ − uψ + uz
(5.57)

Algorithm 5.3: Generic PID used for the height and attitude parameters.

1 algorithm PID(input):
2 error = setpoint − input
3 errorsum+ = error − antiwindup

4 derivative = error − lasterror

5 lasterror = error
6 u = Kd × derivative + Kp × error + Ki × errorsum

7 if (u < satlow){

8 antiwindup = satlow

9 }

10 if (u > sathigh){

11 antiwindup = sathigh

12 }

13 if (u ≤ satlow ) && u ≥ sathigh){

14 antiwindup = satlow

15 }

16 return (u1, u2, u3, u4)
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5.5.5 Proportional, Integral and Derivative Control (PID) - XY Position Control

Quadrotors are an example of underactuated systems with six degrees of freedom
that is larger than the number of independent control inputs. As a result, this underactua-
tion limits the number of system configurations that can directly be controlled. The system
cannot follow an unrestricted flight in full vector space due to the lack of adequate control
actions in their configuration space. Hence, the dynamics model of the quadrotors is not
fully linearizable [EN18]. That is, in a quadrotor system, there are six controllable states
(roll, pitch, yaw, x position, y position, and height), and only four actuators, the four rotors.
Therefore a single linear controller is not able to fully control a quadrotor.

To address this problem, we need to divide the system into two subsystems, con-
taining an inner-loop representing the attitude and height dynamics and an outer-loop repre-
senting the XY position dynamics. Both of these loops are arranged into a cascade strategy.
Furthermore, a PID controller is designed for each one, as shown in Figure 5.7. The outer-
loop PID receives the reference signal for the overall position (XY) and the feedback of the
states XY, then sends an attitude reference signal of the desired roll and pitch states to the
inner-loop PID controller. The inner PID then sends the actuator signal to the quadrotor.

Figure 5.7: A block diagram shows the cascade control strategy.

5.5.6 Linear Quadratic Regulator (LQR) with Integral Action - Attitude and Height Control

To implement the theory behind the LQR with integral action, for the control of
height and attitude of the quadrotor, first, we need to define our linear model:{

ẋ = Ax + Bu
y = Cx + Du

(5.58)

as a discrete linear model (see eq. 5.59).
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{
x(k + 1) = Ax(k ) + Bu(k )

y (k ) = Cx(k ) + Du(k )
(5.59)

To achieve thah goal, the use Integral Approximation Method is applied. According
to [Gaj03], the integral approximation method for discretization of a continuous-time linear
system is based on the assumption that the system input is constant during the given sam-
pling period. Namely, the method approximates the input signal by its staircase form:

f (t) = f (kT ), kT ≤ t < (k + 1)T , k = 0, 1, 2, ... (5.60)

T represents the constant sampling interval. With the approximation of t = T , the space-
states equation are given by:

x(T ) = eAT x(0) +
∫ T

0
eA(T−τ )Bf (0)dτ

= eAT x(0) + eAT +
∫ T

0
e−AτdτBf (0)

= Φ(T )x(0) +
∫ T

0
Φ(T − τ )dτBf (0)

(5.61)

Therefore, we can conclude that,

Ad = eAT = Φ(T ) (5.62)

and,

Bd = eAT
∫ T

0
e−AτdτB

=
∫ T

0
eA(T−τ )dτB

=
∫ T

0
eAσdσB

(5.63)

where σ = (k + 1)T − τ . The for the system’s output can be derived in a similar manner:

y (kT ) = Cx(kT ) + Df (kT ) (5.64)

then, we can conclude that: {
Cd = C
Dd = D

(5.65)

To find Bd , integration is performed:
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Bd = eAT (−eAT A−1 + A−1)B

= (Ad − I)A−1B
(5.66)

Finally we can represent the discretization of a continuous-time space-state system as:
Ad = eAT

Bd = (Ad − I)A−1B
Cd = C
Dd = D

(5.67)

With the knowledge acquired in Sections 3.9.2 and 3.9.2, is possible to build the
algorithm responsible for control the height and attitude of the quadrotor:

Algorithm 5.4: LQR gain with integral action used for the control the height and attitude
parameters.

1 algorithm LQR_GAIN(Ad , Bd):

2 Set matrix Q;

3 Set matrix R;
4 P = RICCATI(Ad , Bd , Q, R);
5 K = R−1BT

d P;
6 return (K)

The LQR gain algorithm runs offline before the quadrotor operation begins.

5.5.7 Kalman Filter for Full State Estimation - Height and Attitude Control

As said in Section 3.9.2, the goal of the LQR is to drive all the states to zero in the
fastest amount of time, given a set of constraints described in the weighting matrices Q and
R. Therefore, it is needed to estimate all of those states. Only the output states y (height ,
roll , pitch and yaw) are available to us at this point (see eq. 5.68).

[
z ϕ θ ψ

]T
(5.68)

What is needed for the full state control of the system is the estimation of:

[
z ż ϕ ϕ̇ θ θ̇ ψ ψ̇

]T
(5.69)

To make this possible, we used a full state estimator, that receives the inputs and
outputs of a system and estimates all of the states of said system. Figure 5.8 shows the
representation of a generic estimator.
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Figure 5.8: Block diagram representation of a generic estimator

In this work we chose a Kalman Filter based on a LQR to serve as the full state
estimator. To build this estimator, first we need represent our space-state system considering
disturbances and noise: {

ẋ = Ax + Bu + wd

y = Cx + wn
(5.70)

where, wd is a gaussian white noise process of the disturbances acting in the states of
system and wn is a gaussian white noise process of the noise acting in the output of the
system.

To start building the estimator, first we need to consider the following equation:

ε̇ = (A× Kf C)ε (5.71)

where ε̇ is the prediction error of the estimator, Kk is the kalman filter gain and ε is the error
(ε = x − x̂). As in the case of the LQR controller, the Kf gain that is necessary to minimize a
cost function:

J = E((x − x̂)t (x − x̂)) (5.72)

where E((x − x̂)t (x − x̂)) is the expected value of the error between the real values of the
states and the prediction of the states by the estimator. Since is necessary to find a matrix
gain to minimize a cost function, it is used the same linear algebra tools as used in the LQR
controller calculation.

Therefore, we can find the kalman filter matrix gain by using a similar Algorithm of
5.5.

Algorithm 5.5: Kalman Filter Gain Algorithm for full-state estimator.

1 algorithm KALMAN_FILTER_GAIN(A, C, Vd , Vn):

2 P = riccati(AT , CT , Vd , Vn);

3 Kf = V−1
n CP;
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4 return (Kf)

where, Vd is the covariance matrix of the disturbance and Vn is the covariance matrix of the
noise.

Then, to build the states estimator, we define the Â, B̂, Ĉ matrices as:


Â = A− Kf C
B̂ = [B Kf ]

Ĉ = C

(5.73)

Therefore the estimates states can be calculated with:

x̂ = Ây + B̂u (5.74)

Figure 5.9 shows the block diagram of the LQR controller setup with the kalman filter esti-
mator.

Figure 5.9: Block diagram of the LQR controller with a kalman filter estimator.

5.5.8 Model Predictive Control (MPC) - Height and Attitude Control

This section, shows the application of the theory explained in Section 3.9.3, how
the algorithm was built and implemented on the MPSoC system. As the same for the LQR
control, first, we need to define our linear model:{

ẋ = Ax + Bu
y = Cx + Du

(5.75)

and then, represent the system as a discrete linear model.
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{
x(k + 1) = Ax(k ) + Bu(k )

y (k ) = Cx(k ) + Du(k )
(5.76)

therefore, the first inputs of the MPC algorithm, are matrices A, B, C and D.

As [SEMDI16] states, the MPC calculations are based on current measurements
and predictions of the future values of the outputs. The objective of the MPC control calcu-
lations is to determine a sequence of control moves so that the predicted response moves
to the set point in an optimal manner. As shown in Figure 5.10 the current sampling instant
is denoted by k , the MPC strategy calculates a set of M values of the input u:

u(k + i − 1), i = 1, 2, ..., M (5.77)

The set consists of the current input u(k ) and M − 1 future inputs. The input is held
constant after the M control moves. The inputs are calculated so that a set of P predicted
outputs,

ŷ (k + i), i = 1, 2, ..., P (5.78)

reaches the set point in an optimal manner. The control calculations are based on optimizing
an objective function.

Figure 5.10: Basic concept for model predictive control.

The number of predictions P is referred to as the prediction horizon while the num-
ber of control moves M is called the control horizon. And these parameters are the basis to
bulid the prediction matrices going forward.

Based on the equations on 3.63 and matrices A, B, C and D, the augmented
system’s matrices are build using Algorithm A.13.
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Algorithm 5.6: Algorithm For Augmented System Build.

1 algorithm AUGMENTED_SYSTEM(A, B, C):
2 Aa = CUSTOM_MAT(A, CA);
3 Ba = CUSTOM_MAT(B, CB);
4 Ca = CUSTOM_MAT(0, I);
5 return (Aa, Ba, Ca)

Next, it is necessary to build matrices F and Φ from equation 3.70. To accomplished
this task, it is used Algorithms A.13, A.24 and 5.6. Then, the auxiliary matrices that the MPC
controller uses can be devised as:

Algorithm 5.7: Algorithm For Auxiliary MPC Build.

1 algorithm AUXILIARY_MATRICES(Φ, F , u, Nc , Np):

2 BarR = Γ×ONES((ninputsNc), (ninputsNc));
3 Phi_F = ΦT F;
4 Phi_rs = Phi_F (:, Ninputs − 2 : Ninputs);
5 return (Aa, Ba, Ca)

With these matrices, we can implement the MPC controller based on the theory
explained in Section 3.9.3.

Algorithm 5.8: Algorithm MPC Controller.

1 algorithm MPC_CONTROLLER(x , setpoint , u, y):
2 xa = [x_{k} - x_{k-1}; y];

3 Delta_U = (ΦΦT + BarR)−1 × (Phi_rs × setpoint × Phi_F × xak−1);
4 uk = uk−1 + Delta_U;
5 return (u)

As Nc is the controller horizon, Np is the prediction horizon, Γ is the control effort
and y is the system’s output. And Φ is calculated in equation 3.70.

5.5.9 PID Online Update - Fuzzy Control

To build the algorithm for calculate each of the PID gains used in the controller, it
is used the functions described in appendix B. As described in Section 3.9.1 Algorithm 5.9
it is used obtain gains Kp, Ki , Kd for the attitude and height control. The algorithm receives
the error and derivative error of roll, pitch, yaw and height, and based on a pre-defined list
of rules and a defuzzification function, this algorithm is capable of return all the PID gains.

Algorithm 5.9: Algorithm for PID gain output.
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1 algorithm gain_output(error , errorderivative):

2 (PL, PM, ..., NL) = rules(NLerror , NLerrorderivative , ..., PLerror , PLerrorderivative );
3 output = defuzzyfication(PL, PM, PS, ZE , NS, NM, NL);
4 return(output)
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6. EXPERIMENTS AND RESULTS

This Chapter presents a set of six main experiments and their results to validate
the thesis proposal. These experiments concern the topics presented in Chapter 1.

Experiment 1, described in Section 6.1, consists of a Proof-of-Concept demon-
stration, embedding a distributed EKF-PID system to the ORCA MPSoC for the Quadrotor
control. Experiment 2, described in Section 6.2, shows how an MPSoC can bring a decen-
tralization feature into the control system architecture. Moreover, how this decentralization
effectively improves the system’s performance. In Experiment 3, Section 6.3, explores the
system’s capability to integrate more sophisticated control algorithms like LQR and MPC.

Experiment 4, depicted in Section 6.4, investigates how the system can provide
fault-tolerant solutions for a runtime "freeze" of a processing core regarding the control per-
formance and computational resources. Experiment 5, in Section 6.5, approaches the topic
of energy management, which is explored by creating a system that controls the frequency of
data injection into processing cores. Lastly, Experiment 6, in Section 6.6, tests the idea that
the decentralization feature of the framework can be used to create an adaptive controller.

6.1 Experiment 1 - EKF with PID Implementation - Proof of Concept

This Section contains a PoC experiment to validate the system at its basic func-
tionalities. These tests implements the ROS communication nodes in core zero, an EKF
algorithm (sensor fusion) in core one, and a PID controller (quadrotor control) in core two.
Figure 6.1 shows a representation of the software organization in the MPSoC. Section 6.1.1
evaluates the system’s capability to estimate its attitude with the EKF algorithm. Section
6.1.2, brings the results of the PID controller output. Furthermore, Section 6.1.3 test four
different application and hardware setups to determine the best configuration, considering
energy consumption and response time for the task set.

Figure 6.1: PID - EKF Implementation Diagram.
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6.1.1 Experiment 1.A - EKF Performance

This test was designed to assess the system’s capability to estimate, with accuracy,
the quaternion that represents the quadrotor attitude. As previously explained, the Hector
simulation publishes the IMU sensors data in topic /raw_imu and the magnetometer in
topic /magnetic. Then this data is consumed by the ROS nodes running on core zero,
therefore sent to core one to be processed by the EKF.

To determine the accuracy of the attitude estimation by the EKF, the system uses
the information provided by ROS in the topic /ground_truth_to_tf/pose, that keeps
the factual pose information of the simulation. That way, it is possible to make a definitive
comparison.

In this experiment, the setpoint for the quadrotor stabilization is given by the quater-
nion q =

{
1, 0, 0, 0

}
, which represents the configuration: roll angle (ϕ) = 0◦, pitch angle

(θ) = 0◦ and yaw angle (ψ) = 0◦.

Figure 6.2 shows the results obtained by the experiment for all of the quaternion
components.

(a) Comparison of "QW" component between the
EKF estimation and simulated real value.

(b) Comparison of "QX" component between the
EKF estimation and simulated real value.

(c) Comparison of "QY" component between the
EKF estimation and simulated real value.

(d) Comparison of "QZ" component between the
EKF estimation and simulated real value.

Figure 6.2: Results of Experiment 1.A - Graphical comparison between the EKF estimation
of the attitude quaternion and the real value presented by the simulation.
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Based on Figure 6.2, it is possible to asses that the estimation of the EKF ap-
proximates the real simulated value of the quadrotor’s attitude quaternion. Since this is a
preliminary experiment, the numerical analysis of these results are only made in subse-
quent sections. The experiments of Sections 6.1.1 and 6.1.2 are only devised to validate the
system’s functionality. Then, the graphical analysis of the results shows that the quaternion
estimation adequately approximates the real vaule.

6.1.2 Experiment 1.B - PID Performance

As the data from the EKF was collected in this experiment, it was also collected
the data from the PID controller. Therefore, able to determine if this controller can keep the
quadrotor hovering over the ground at a predetermined height. The controller set the height
setpoint at 1 meters above the ground, and the attitude angles are the same as it is in the
Section 6.1.1.

Figure 6.3: Results of Experiment 1.B - Height measured in meters representing the output
of PID controller.

Figure 6.3 shows that the PID controller could stabilize the quadrotor at the desired
height with minimal overshoot but at a relatively low rise speed. Therefore it is possible
to conclude that as a preliminary analysis, the proposed system represented in Figure 6.1
showed satisfactory results for controlling the attitude and height of the quadrotor. As the
work progresses in this thesis, it is possible to assess the optimum responses that this
system is capable. And determine if it can reduce overshoot and stabilization time with
better resource management.
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6.1.3 Experiment 1.C - Floating Point × Fixed Point

To determine the best setup to conduct the experiments in Sections 6.2, 6.3, 6.4,
6.5 and 6.6, is devised four tests regarding the type of the manipulated data format and hard-
ware component units. These tests compared four different application setups to determine
the best configuration, considering the task set’s energy consumption and response time.
For both tasks, the system ran under environment variations using a software-emulated
floating-point (SEFP), fixed-point, and a hardware multiplier unit (MU). There were four vari-
ations:

1. system with SEFP only;

2. SEFP + MU;

3. system with fixed-point only;

4. fixed-point + MU.

For each variation, is collected statistics for 100 iterations of each task. The fixed-
point data is represented in 16.16 format (16-bit integral, 16-bit fractional parts). The re-
sponse time results assume a clock period of 4 ns. The hardware counters of Section 4.6.4
are applied for each task to calculate the energy consumption.

Figure 6.4: Energy estimation results by algorithm with calculations made with fixed-point
format. With and without hardware multiplier unit.

Figure 6.4 shows the measurement of the energy consumed to process the EKF
and PID algorithms using Fixed-point format and variations of hardware: with/without a mul-
tiplier unit.
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Figure 6.5: Energy estimation results by algorithm with calculations made with software-
emulated floating-point format. With and without hardware multiplier unit.

Figure 6.5 shows the measurement of the energy consumed to process the EKF
and PID algorithms using software-emulated floating-point format and variations of hard-
ware: with/without a multiplier unit.

Analyzing both figures, it is possible to see that energy consumption drastically in-
creases using software-emulated floating-point compared to fixed-point numbers. The other
aspect inspected is the utilization of the multiplier unit, which shows that the utilization of
the MU also decreases the energy consumed. Table 6.1 shows the numerical values that
resume the findings of these tests. Besides the energy estimation, it is also measured the
latency for each algorithm executed. That has been the time it takes to the core to process
an iteration of an algorithm.

Table 6.1: Response time and energy evaluation for PID and EKF tasks.

Configuration
SEFP fixed-point arith.Task

with MU no MU with MU no MU
PID 17 ∼ 19 47 ∼ 48 1 ∼ 2 7 ∼ 9Avg. Response Time (ms) EKF 43 ∼ 48 123 ∼ 126 18 ∼ 20 77 ∼ 81
PID 1552.91 4003.10 183.67 526.04Avg. Energy (nJ) EKF 4407.37 12389.64 1903.93 4003.10

Regarding the utilization of a hardware multiplier unit, it reduces, on average, the
processing time by 106% and the energy consumption by 87%. The difference between
fixed and floating-point energy consumption is 125%, and the processing time is 100%. The
defining factor for determining the quadrotor control performance was the latency of the
EKF algorithm. When the configuration used was the combination of SEFP and no MU,
the quadrotor was not controllable, and there was not enough time to stabilize the system.
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By far, the better result is obtained by the Fixed-point and MU variation. Furthermore, that
configuration is used in the subsequent experiments.

6.2 Experiment 2 - EKF/KF with PID Implementation - Centralization × Decentral-
ization

This section explores the topic of the decentralization of the control architecture
in the MPSoC frame. This experiment aims to compare a traditional implementation of a
control system in only one core and a distributed one, with tasks assigned to several cores.
It adds one additional task to the experiment of Section 6.1 to achieve this goal, the linear
Kalman Filter for XY position estimation.

Section 6.2.1 performs a preliminary test, only evaluating the performance and
accuracy of the estimation algorithm. Section 6.2.2 presents a baseline by implementing all
estimation algorithms in a single thread (EKF + KF), running in a single core. Then, Section
6.2.3 distributes these tasks into two separate cores and rerun the simulation, allowing to
assess the potential gains of this technique.

6.2.1 Experiment 2.A - KF Performance

As stated previously, this section shows the Kalman Filter’s performance for the
XY position estimator. For this test, in addition to implementing the KF algorithm, the PID
controller counts with an additional controller: the XY position controller (see Section 5.5.5).
This way creates a baseline for the evaluation of the KF.

(a) Comparison between the X position estima-
tion by the KF algorithm, the GPS measurements
and the simulated real position.

(b) Comparison between the Y position estima-
tion by the KF algorithm, the GPS measurements
and the simulated real position.

Figure 6.6: Results of Experiment 1.C - Graphical comparison between the XY position
estimation by the KF algorithm, the GPS measurements and the simulated real position.

This experiment tests the accuracy of the KF for the XY position estimation. Here,
the PID controller is set to position the quadrotor in the (0,0) position in the simulated envi-
ronment. Also, the PID gains are set so that the quadrotor does not stabilize in the desired
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position. Therefore, the quadrotor keeps flying around the setpoint position to test the KF
estimator in motion.

Figure 6.6, shows the results of the KF position estimation, comparing the results
with the measured position by the GPS and the actual data gathered by the ROS system.
The graphical analysis of the graphs shows that the KF estimation significantly improves
the GPS measurements. Although the Figure 6.6a shows a relatively small improvement
from the GPS measurements to the KF estimation, the Figure 6.6b shows that the KF could
correct the drift from the GPS measurements, using the accelerometer data.

Table 6.2: Table of mean errors of the XY position estimation made by the KF algorithm and
the GPS measurements.

X Position Y Position
KF Mean Error - (m) 0.11877119164905567 0.11374884074983133
GPS Mean Error - (m) 0.13452016188308036 0.31011143907124045

To better understand these improvements, the Table 6.2 shows the numerical val-
ues gathered by this experiment. The data shows that the mean error of the X position
estimation is improved by 12% from the GPS measurements. Moreover, the mean error of
the Y position estimation is improved by 92%.

6.2.2 Experiment 2.B - EKF + KF (Centralized Processing)

In this experiment, the system runs both KF and EKF in a single thread in core 1,
then feed the resulting data to the PID controller. This test creates a baseline that it is used
to determine if there was any gain in the use of the decentralized system. An overview of
this test is described in Figure 6.7.

Figure 6.7: EKF + KF Centralized Processing Implementation Diagram.

After running the simulations, the system can extract the necessary information to
create the planned comparisons. In this case, the height output performance, the attitude
output performance, the XY position performance, and the consumed energy.
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Experiment 2.B.A - EKF + KF + PID (Attitude Estimation Results)

This experiment, tests this configuration’s capability to estimate the quadrotor’s
attitude quaternion during the simulation. Then these results are be compared to the decen-
tralized configuration in Section 6.2.3. As in the previous section, the PID controller is set to
move the quadrotor to the (0,0) position in the simulated environment, starting in the (0,0)
position.

(a) Comparison of "QW" component between the
EKF estimation and simulated real value.

(b) Comparison of "QX" component between the
EKF estimation and simulated real value.

(c) Comparison of "QY" component between the
EKF estimation and simulated real value.

(d) Comparison of "QZ" component between the
EKF estimation and simulated real value.

Figure 6.8: Results of Experiment 2.B.A - Graphical comparison between the EKF estima-
tion of the attitude quaternion and the real value presented by the simulation, utilizing a
centralized framework.

Table 6.3 shows all the estimated quaternion’s mean errors by its components.
These results are the baseline to determine the impact of the decentralization of this system.

Table 6.3: Table of mean errors of the quaternion estimation made by the EKF algorithm and
the simulated real attitude quaternion.

QW QX QY QZ
EKF Mean Error 0.000146 0.00615 0.0108 0.00581
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Experiment 2.B.B - EKF + KF + PID (XY Position Control Results)

This experiment tests the system’s capability to keep the quadrotor in a fixed po-
sition during flight. As for the previous test, these results are the baseline for determining
the decentralized configuration impact on the control performance. Figure 6.9 shows the
graphical results for each measured axis.

(a) Comparison between the X position estima-
tion by the KF algorithm and the simulated real
position, utilizing a centralized framework.

(b) Comparison between the Y position estima-
tion by the KF algorithm and the simulated real
position, utilizing a centralized framework.

Figure 6.9: Results of Experiment 2.B.C - Graphical comparison between the XY position
estimation by the KF algorithm, and the simulated real position, utilizing a centralized frame-
work.

Based on these graphs, it is possible to determine that the system can not stabilize
in the desired position. This determination can be made since the position error keeps
increasing with time. Moreover, Table 6.4 shows the mean error of the quadrotor’s position
to the setpoint. On axis X, the system presents a mean error of 0.38 meters, and on the Y
axis, a mean error of 0.11 meters.

Table 6.4: Table of mean errors of the XY position estimation made by the KF algorithm and
the simulated real position, utilizing a centralized framework.

X Position Y Position
PID Mean Error (m) 0.3803432246049657 0.11861218623024829

Experiment 2.B.C - EKF + KF + PID (Height Control Results)

This experiment assesses the system’s capability to stabilize the quadrotor at a
specific height during flight. Figure 6.10 shows the results of the system’s attempt to get to
the height setpoint while trying to keep the quadrotor at 1m over the ground.
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Figure 6.10: Results of Experiment 2.B.B - Height measured in meters representing the
output of PID controller, utilizing a centralized framework.

The graph shows that, although the quadrotor keeps a stable Z-axis trajectory, this
process is relatively slow and does not reach the determined setpoint during the simulation
time. As the XY controller gains were set, the height controller was significantly impacted
due to the time constraint that the EKF+KF process creates.

Experiment 2.B.D - EKF + KF + PID (Energy Estimation Results)

This experiment creates a baseline to compare the system’s centralized and de-
centralized configuration energy consumption. Figure 6.11 shows the energy consumption
in each core during flight. The blue curve shows the mean energy that the processing of
the KF+EKF takes in each iteration. The orange curve shows how much energy the PID
algorithm consumes in core two in each iteration.

Figure 6.11: Energy estimation results by algorithm within cores.

Table 6.5 explicitly shows the mean energy consumed by each core. These results
are also be the baseline for the subsequent section.
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Table 6.5: Table of the results of energy estimation results by algorithm within cores.

Mean Energy (nJ)
EKF + KF (Core 1) 3270.130133562798
PID (Core 2) 137.72794549280152

Experiment 2.B.E - EKF + KF + PID (Latency Results)

This experiment measures the time it takes each iteration of the algorithms to run in
the cores. As previously explained, this also serve as the baseline for comparing the decen-
tralized configuration. Based in this experiment, it was possible to approximately assess the
mean time for each process. The time of each iteration is not constant. This system is run-
ning in a simulation on a personal computer. Therefore, these variations can be attributed
to the fact that this computer is also running other processes that impact this simulation.
Finally, the time that the EKF+KF takes to process is approximately 40 ms. Moreover, the
PID process takes 2ms to run. To determine the overall time, it is added the time of cores 1
and 2 since they constitute a data pipeline, as shows the Figure 6.12.

Figure 6.12: Overall time diagram for centralized processing configuration.

6.2.3 Experiment 2.C - EKF + KF (Decentralized Processing)

In this experiment, the KF and EKF are implemented in core 1 and 3, respectively,
and they feed their output simultaneously data to the PID controller. This test creates a
dataset used to determine if there was any gain in using the decentralized system. An
overview of this test is described in Figure 6.13.
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Figure 6.13: EKF + KF Decentralized Processing Implementation Diagram.

As for the experiment in Section 6.2.2, here is extracted the same information for
later comparison.

Experiment 2.C.A - EKF + KF + PID (Attitude Control Results)

This experiment tests this configuration’s capability to estimate the quadrotor’s at-
titude quaternion during the simulation using the decentralized configuration. As in the Sec-
tion 6.2.2, the PID controller sets the quadrotor to move to the (0,0) position in the simulated
environment, starting in the (0,0) position. Figure 6.14 shows the graphical results of this
experiment.

Making a graphical analysis, it is possible to, at first, determine that the EKF running
by itself in a single core has a similar result as the combination of EKF and KF running
in a single core. And Table 6.6 shows all the estimated quaternion’s mean errors by its
components.

Table 6.6: Table of mean errors of the quaternion estimation made by the EKF algorithm and
the simulated real attitude quaternion.

QW QX QY QZ
EKF Mean Error 0.0003285 0.012777 0.011616 0.01068

To better understand the results of the differences between the centralized and
decentralized configurations regarding the EKF processing, it is possible to point to Table
6.7. In this table, is given both configurations’ data and give the difference between them.

Table 6.7: Table comparing the mean errors of the quaternion estimation made by the EKF
algorithm in both configuration.

QW QX QY QZ
EKF Mean Error (Centralized) 0.000146 0.00615 0.0108 0.00581
EKF Mean Error (Decentralized) 0.0003285 0.012777 0.011616 0.01068
EKF Mean Difference 0.0001825 0.006627 0.000816 0.00487
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(a) Comparison of "QW" component between the
EKF estimation and simulated real value.

(b) Comparison of "QX" component between the
EKF estimation and simulated real value.

(c) Comparison of "QY" component between the
EKF estimation and simulated real value.

(d) Comparison of "QZ" component between the
EKF estimation and simulated real value.

Figure 6.14: Results of Experiment 2.C.B - Graphical comparison between the EKF esti-
mation of the attitude quaternion and the real value presented by the simulation, utilizing a
decentralized framework.

When translating these quaternion’s results to Euler angles, it is possible to deter-
mine that the difference between both configurations is lower than 1◦. These results show
that, at least in this experiment, there are no significant differences between configurations.

Experiment 2.C.B - EKF + KF + PID (XY Position Control Results)

This experiment, as for Section 6.2.2, tests the system’s capability to keep the
quadrotor in a fixed position during flight. Figure 6.15 shows the graphical results for each
measured axis.

Based on these graphs, it is possible to determine that the system can not stabilize
in the desired position. Moreover, Table 6.8 shows the mean error of the quadrotor’s position
to the setpoint. On axis X, the system presents a mean error of 0.09 meters, and on the Y
axis, a mean error of 0.06 meters.

Table 6.8: Table of mean errors of the XY position estimation made by the KF algorithm and
the simulated real position, utilizing a decentralized framework.

X Position Y Position
PID Mean Error (m) 0.09015359745821944, 0.0686649148080268
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(a) Comparison between the X position estima-
tion by the KF algorithm and the simulated real
position, utilizing a decentralized framework.

(b) Comparison between the Y position estima-
tion by the KF algorithm and the simulated real
position, utilizing a decentralized framework.

Figure 6.15: Results of Experiment 2.B.C - Graphical comparison between the XY position
estimation by the KF algorithm, and the simulated real position, utilizing a centralized frame-
work.

Although this configuration could not also stabilize the quadrotor in the XY position,
the mean error of the positions was significantly reduced. In the X position, the mean error
reduced from 0.38m to 0.09m, a 123% decrease. In the Y position, the mean error reduced
from 0.11m to 0.06m, a 58% decrease.

Experiment 2.C.C - EKF + KF + PID (Height Control Results)

As for Section 6.2.2, this experiment assesses the system’s capability to stabilize
the quadrotor at a specific height during flight. Figure 6.16 shows the results of the system’s
attempt to get to the height setpoint while trying to keep the quadrotor at 1m over the ground.

Figure 6.16: Results of Experiment 2.C.A - Height measured in meters representing the
output of PID controller, utilizing a decentralized framework.

The graph shows that, although the quadrotor keeps a stable Z-axis trajectory, this
process performs significantly better compared to the centralized configuration. The rise
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time decreased, and the stable state error decreased from approximately 10cm to less than
1cm. Separating these algorithms and running them in parallel decreased the time constraint
the centralized configuration brought.

Experiment 2.C.D - EKF + KF + PID (Energy Estimation Results)

This experiment, runs these distributed algorithms to determine the energy con-
sumption in each core. Figure 6.17 shows the energy consumption in each core during
flight. The blue curve shows the mean energy that the processing of the EKF takes in each
iteration. The orange curve shows how much energy the KF algorithm consumes in core
three in each iteration. The green curve shows the mean energy that the processing of the
PID takes in each iteration.

Figure 6.17: Energy estimation results by algorithm within cores.

Table 6.9 explicitly shows the mean energy consumed by each core.

Table 6.9: Table of the results of energy estimation results by algorithm within cores.

Mean Energy (nJ)
EKF (Core 1) 1960.444
PID (Core 2) 136.688
KF (Core 3) 1429.942

As for energy consumption, the power used to run the processor is higher than the
centralized configuration. The energy consumed increased from 3407 nJ to 4049 nJ. An
increase of 17%. This increase is explained by the fact that even in idle, the core consumes
energy running code to wait for the next package to be read. Although the decentralized
configuration consumes more energy than the centralized configuration, this consumption is
distributed in more cores.
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Experiment 2.C.E - EKF + KF + PID (Latency Results)

This experiment, measures the time it takes each iteration of the algorithms to
run in the cores. And it was possible to approximately assess the mean time for each
process, determining that the EKF process takes approximately 22 ms, the KF process takes
approximately 15 ms, and the PID process takes 2ms to run. To determine the overall time,
instead of adding all of the processes’ time, only the more significant time value between the
EKF and the KF algorithms are added. This calculation is done because the EKF and KF are
done in parallel, as the Figure 6.18 shows. When the centralized configuration is running,
the process took approximately 42ms; now, decentralizing the process, it ran in aproximatly
24ms.

Figure 6.18: Overall time diagram for decentralized processing configuration.

These experiments show that although there is a slight increase in energy con-
sumption with a decentralized setup, the performance gains compensate for this drawback.

6.3 Experiment 3 - Capability of More Complex Control Implementation Evalua-
tion

This Section determines the capability of the proposed system to accept more com-
plex and demanding control options. In Section 6.3.1, it is possible to implement and eval-
uate an LQR controller for the quadrotor. Furthermore, in Section 6.3.2, an MPC controller
for the quadrotor is implemented and evaluated. Figure 6.19 shows an overview of these
experiments.



175

Figure 6.19: LQR/MPC Control Implementation Diagram.

6.3.1 Experiment 3.A - LQR

This section takes the scheme of experiment 1 and substitutes the PID controller
for an LQR controller. Then, rerun the simulations and gather the same information from
experiment 1.

Experiment 3.A.A - LQR Performance

Here, is it set the the setpoint for the quadrotor stabilization in q =
{

1, 0, 0, 0
}

,
which represents the configuration: roll angle (ϕ) = 0◦, pitch angle (θ) = 0◦ and yaw angle
(ψ) = 0◦, the same as in Section 6.1.2. Figure 6.20 shows the results from this test.

Graphically analyzing the 6.20, it is possible to deduce that the LQR control kept
the quadrotor fairly steady with minimal roll and pitch variations. The LQR explains this
improvement over the PID’s quaternion control. The control forces all states to reach zero,
adding only 6ms of latency to the control task.

Figure 6.21: Results of Experiment 3.A.A - Height measured in meters representing the
output of LQR controller.
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(a) Representation of "QW" quaternion compo-
nent resulting from the LQR control.

(b) Representation of "QX" quaternion compo-
nent resulting from the LQR control.

(c) Representation of "QY" quaternion compo-
nent resulting from the LQR control.

(d) Representation of "QZ" quaternion compo-
nent resulting from the LQR control.

Figure 6.20: Results of Experiment 3.A.A - Graphical representation of the measured quater-
nion of the LQR controller output.

Comparing the results of the height control in Figure 6.21 and the PID control in
Figure 6.3. It is possible to determine that the LQR outperformed the PID in the height
control task, with minimal overshoot and better stabilization time.

6.3.2 Experiment 3.B - MPC

This section takes the scheme of experiment 1 and substitutes the PID controller
for an MPC controller. Then, rerun the simulations and gather the same information from
experiment 1.

Experiment 3.B.A - MPC Performance

Here, is it set the the setpoint for the quadrotor stabilization in q =
{

1, 0, 0, 0
}

,
which represents the configuration: roll angle (ϕ) = 0◦, pitch angle (θ) = 0◦ and yaw angle
(ψ) = 0◦, the same as in Section 6.1.2. Figure 6.22 shows the results from this test.

To guarantee that the latency was kept under 30ms, which would seriously affect
the system’s capability to perform the control, the prediction horizon was set in Np = 5. The
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control horizon was set in Nc = 2. Performing some tests was determined that anything
above this configuration would cause congestion in the NoC.

(a) Representation of "QW" quaternion compo-
nent resulting from the MPC control.

(b) Representation of "QX" quaternion compo-
nent resulting from the MPC control.

(c) Representation of "QY" quaternion compo-
nent resulting from the MPC control.

(d) Representation of "QZ" quaternion compo-
nent resulting from the MPC control.

Figure 6.22: Results of Experiment 3.A.A - Graphical representation of the measured quater-
nion of the MPC controller output.

Graphically analyzing the Figure 6.22, it is possible to deduce: that although the
MPC control kept the quadrotor steady in the yaw angle, roll and pitch presented consider-
able jitter, which indicates marginal stability. The high latency of this controller, around 28ms,
is the cause of this effect.

Figure 6.23: Results of Experiment 3.B.A - Height measured in meters representing the
output of MPC controller.
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To demostrate the prediction aspect of the MPC, instead of starting the simulation
with the setpoint in 1 meter, the setpoint was described as a step function, where hsetpoint = 0
when sample <= 200 and hsetpoint = 1 when sample > 200. Based on the results of the
height control in Figure 6.23 and the LQR control in Figure 6.21. It is possible to determine
that the MPC did not outperform the LQR in the height control task. Although it did not
present overshoot, the stabilization increased. Also, its effects were not apparent due to the
small prediction window.

6.3.3 Experiment 3.C - LQR and MPC - Energy Estimation

As for the energy consumption, the power used to run each task by the processor
is represented in Figure 6.24. In this graphic, we compare the LQR and MPC task’s energy
consumption this the PID task. Based on the analysis of the figure, it is possible to determine
that the PID consumes around 140nJ, the LQR consumes around 525nJ, and the MPC
consumes around 5000nJ.

Figure 6.24: Energy estimation results by algorithm within cores.

After all these analyses, it is possible to conclude that the LQR, in this case, has
the best cost benefits of the selected controllers.

6.4 Experiment 4 - Fault Tolerance on PID Control

This experiment takes the decentralized nature of the MPSoC and addresses the
topic of fault tolerance. In the tests performed in Sections 6.4.1, 6.4.2 and 6.4.3, this section
takes propose three possible recovery tactics for a task "freezing" while running in a core.
These tests are based on migrating the control task from the "frozen" core to a new one.
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Referring to Figure 6.25 to better understand this idea. This diagram shows the
framework of an EKF-PID control system. Core zero still runs the input-output communica-
tion with the ROS system. However, it is now also responsible for detecting a fault in the PID
controller output and determining the task migration path. The system must preload all tasks
into their respective cores to set up all experiments. As for the previous tests, core zero and
core one run ROS Comm. and EKF. Moreover, core two and core three are preloaded with
the PID tasks.

Figure 6.25: Controller Migration Implementation Diagram.

In these experiments, the fault is generated in the PID core. As a PID task starts,
the PWM signal is published with a sequential serial number. For each iteration of the
PID task, this serial number is increased by 1. Due to the nature of the ROS topics and
messages, this robotic operating system keeps publishing the last sent information if a task
stops running.

Then, core zero subscribes to the topic publishing this serial number to detect the
fault and act on it. Suppose its information is the same for the last few iterations. In that
case, the system detects a fault, and all the data flow are diverted to a functioning PID core.

To approach the topic of control redundancy, it is necessary to address the topic
of control context. To illustrate this point: let us imagine a PID controller running in the
quadrotor. As the quadrotor is stable in hover mode, it uses information generated during
the whole process, like the sum of the errors and the error derivatives. In case of a forced
reset, this information would be lost, the system would exit this stable state, and the physical
consequences would be unknown. In this thesis, this information is called "control context."

6.4.1 Experiment 4.A - PIDs Running in Parallel

This first experiment tests the idea of migrating the control tasks with the respective
cores having the same control context. To achieve that, the PID runs the task concurrently
in two cores. As the process runs, the core responsible for the EKF sends its output data



180

for cores two and three simultaneously. Therefore, ensuring that both PIDs have the same
context at all times.

Although both cores are running the PID task, only one of them is publishing the
information. That is determined by core zero, as explained previously. Figure 6.26, shows a
diagram of this experiment.

Figure 6.26: Diagram of Experiment 4.A, where two cores run PID tasks in parallel.

The ROS system does not consume the faulted core output when detecting a fault.
And switches to the other core’s output. As the same for the previous hovering tests, it is set
the setpoint for the quadrotor stabilization in q =

{
1, 0, 0, 0

}
. Figure 6.27 shows the results

from this test.

In these tests, the fault occurs in the sample of number 500. Moreover, graphically
analyzing Figure 6.27, it is possible to deduce: that the PID control kept a consistent result
with the previous PID tests, showing a minor variation in roll and pitch, and a slight drift in
yaw.

The change of the cores did not cause an apparent effect on this test.

Figure 6.28: Results of Experiment 4.A - Height measured in meters representing the output
of PID controller running in parallel cores.
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(a) Representation of "QW" quaternion compo-
nent resulting from the PID control running in par-
allel cores.

(b) Representation of "QX" quaternion compo-
nent resulting from the PID control running in par-
allel cores.

(c) Representation of "QY" quaternion compo-
nent resulting from the PID control running in par-
allel cores.

(d) Representation of "QZ" quaternion compo-
nent resulting from the PID control running in par-
allel cores.

Figure 6.27: Results of Experiment 4.A - Graphical representation of the measured quater-
nion of the PID controller the running in parallel cores.

The PID’s height control presented a similar performance to the previous PID tests,
showing no overshoot and a longer stabilization time.

The change of the cores also did not cause an apparent effect on this test.

Figure 6.29 shows the energy estimation results for each of the PID tasks’ cores.

Figure 6.29: Energy estimation results by algorithm within cores.
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Since the two cores are running the same data at all times, they have similar energy
profiles. The only difference is that the core one also runs a function to create the fault, as
mentioned earlier. Core 1 consumes about 270nJ, while core 2 consumes about 250nJ.

6.4.2 Experiment 4.B - PIDs - No Context Migration

As we determined in the experiment presented Section 6.4.1. The performance
results were satisfactory, but the energy consumption overhead gives that solution a signif-
icant drawback. This section tests the possibility of keeping one core idle without context.
Then, when the fault occurs, the system switches to the idle core and observes if the system
continues in a stable state, saving on energy.

Figure 6.30: Diagram of Experiment 4.B, where two cores run PID tasks with no context.

When detecting a fault, core 0 sends a flag to core 1, determining which core
receives the EKF information. The core that does not receive the EKF information is kept
idle. As the same for the previous hovering tests, it is set the setpoint for the quadrotor
stabilization in q =

{
1, 0, 0, 0

}
. Figure 6.31 shows the results from this test.

In these tests, the fault occurs in the sample of number 500. Moreover, graphically
analyzing Figure 6.31, it is possible to deduce: that the PID control kept a consistent result
with the previous PID tests, showing a minor variation in roll and pitch, and a slight drift in
yaw.

The change of the cores did not cause an apparent effect on the quaternion control.

Figure 6.32 shows the results of the fault injection in height control.
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(a) Representation of "QW" quaternion compo-
nent resulting from the PID control running in sep-
arate cores with no context migration.

(b) Representation of "QX" quaternion compo-
nent resulting from the PID control running in sep-
arate cores with no context migration.

(c) Representation of "QY" quaternion compo-
nent resulting from the PID control running in sep-
arate cores with no context migration.

(d) Representation of "QZ" quaternion compo-
nent resulting from the PID control running in sep-
arate cores with no context migration.

Figure 6.31: Results of Experiment 4.A - Graphical representation of the measured quater-
nion of the PID controller the running in separate cores with no context migration.

Figure 6.32: Results of Experiment 4.B - Height measured in meters representing the output
of PID controller running in separate cores with no context migration.

Here, it is possible to conclude that the height control was severely affected by the
change in processors. The quadrotor fell almost 0.20 meters before starting to return to the
setpoint.

Figure 6.33 shows the energy estimation results for each of the PID tasks’ cores.
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Figure 6.33: Energy estimation results by algorithm within cores with no context migration.

While one core is running, it is consuming about 260nJ, and the core kept idle is
consuming about 130nJ.

6.4.3 Experiment 4.C - PIDs - Context Migration

This experiment was devised to mitigate the result shown in the previous section
without creating a significant energy overhead. Then, this experiment proposes that the
backup core is kept idle; however, the control context is published with the PID output data.
Then, when the task is migrated, the idle core have the necessary information to keep the
system in a stable state.

Figure 6.34: Diagram of Experiment 4.C, where two cores run PID tasks with context.

When detecting a fault, core 0 sends a flag to core 1 plus the control context,
determining which core receives the EKF information. The core that does not receive the
EKF information is kept idle. As the same for the previous hovering tests, it is set the setpoint
for the quadrotor stabilization in q =

{
1, 0, 0, 0

}
. Figure 6.35 shows the results from this test.

In these tests, the fault occurs in the sample of number 500. Moreover, graphically
analyzing Figure 6.35, it is possible to deduce: that the PID control kept a consistent result
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(a) Representation of "QW" quaternion compo-
nent resulting from the PID control in separate
cores with context migration.

(b) Representation of "QX" quaternion compo-
nent resulting from the PID control running in sep-
arate cores with context migration.

(c) Representation of "QY" quaternion compo-
nent resulting from the PID control running in sep-
arate cores with context migration.

(d) Representation of "QZ" quaternion compo-
nent resulting from the PID control running in sep-
arate cores with context migration.

Figure 6.35: Results of Experiment 4.A - Graphical representation of the measured quater-
nion of the PID controller the running in separate cores with context migration.

with the previous PID tests, showing a minor variation in roll and pitch, and a slight drift in
yaw.

The change of the cores did not cause an apparent effect on the quaternion control.

Figure 6.36 shows the results of the fault injection in height control.

Figure 6.36: Results of Experiment 4.A - Height measured in meters representing the output
of PID controller running in separate cores with context migration.
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The PID’s height control presented a similar performance to the successful PID
tests, showing a slight overshoot and a longer stabilization time.

The change of the cores did not cause an apparent effect on this test.

Figure 6.37 shows the energy estimation results for each of the PID tasks’ cores.

Figure 6.37: Energy estimation results by algorithm within cores with no context migration.

While one core is running, it is consuming about 320nJ, and the core kept idle is
consuming about 130nJ. This increase in energy consumption in the active core is due to
the processing needed for the extra data from the context.

6.5 Experiment 5 - Energy Management

This section proposes a software implementation of an energy management tech-
nique. This technique does not require that the user changes any parameters of the hard-
ware settings, only changing the data input frequency.

As observed in the previous sections, the cores only run tasks once new data
is incoming. Meanwhile, the core is kept idle, running only a function that detects if new
data have arrived. Therefore, it is possible to control the overall energy consumed by the
core by spacing the frequency of data injection into it. Figure 6.38 shows a diagram of this
experiment.
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Figure 6.38: Energy Management Implementation Diagram.

This experiment is based on the idea that running the system at full power is not
needed for every case. Let us take the example of the EKF: in hover mode, the changes
on the Euler angles are minimal; therefore, running the attitude estimation at its maximum
performance is unnecessary. Although the quadrotor at motion mode, the attitude estimation
becomes much more significant, which demands a greater processing speed and more
energy consumed.

As stated before, two modes of operation are developed: energy-saving mode and
max power mode. In energy-saving mode, the data injection frequency into the EKF until the
system decreases, saving energy without impacting the estimation quality while hovering. In
max power mode, the frequency injection is maxed out. And then, it is performed four tests:

1. Energy management system is in saving mode while the quadrotor is hovering;

2. Energy management system is in max power mode while the quadrotor is hovering;

3. Energy management system is in saving mode while the quadrotor is in motion;

4. Energy management system is in max power mode while the quadrotor is in motion.

6.5.1 Experiment 5.A - Saving Mode/Hovering

In this first experiment, it is fixed that the data injection rate in the EKF is 12Hz.
That means that the core running the EKF is kept idle for longer, consuming less energy.
However, this lower frequency reduces the control precision. Figure 6.39 shows the attitude
quaternion output while the system runs on the saving mode and in hover.

Graphically analyzing Figure 6.39, it is possible to detect that this test presents
the same results as the experiment of Figure 6.22. The high latency of this system could
stabilize the yaw angle. However, roll and pitch presented considerable jitter, indicating
marginal stability.

Figure 6.40 shows the results of the energy saving mode in the height control.
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(a) Representation of "QW" quaternion compo-
nent resulting from the PID control running in en-
ergy saving mode while hovering.

(b) Representation of "QX" quaternion compo-
nent resulting from the PID control running in en-
ergy saving mode while hovering.

(c) Representation of "QY" quaternion compo-
nent resulting from the PID control running in en-
ergy saving mode while hovering.

(d) Representation of "QZ" quaternion compo-
nent resulting from the PID control running in en-
ergy saving mode while hovering.

Figure 6.39: Results of Experiment 5.A - Graphical representation of the measured quater-
nion of the PID controller the running in energy saving mode while hovering.

Figure 6.40: Results of Experiment 5.A - Height measured in meters representing the output
of PID controller running in energy saving mode while hovering.

The height curve shows an adequate response time with no overshoot or steady-
state error in this figure.
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6.5.2 Experiment 5.B - Max Power Mode/Hovering

In this experiment, it is fixed that the data injection rate in the EKF is 40Hz. That
means that the core running the EKF is kept idle for a shorter time, consuming more en-
ergy. However, this higher frequency increases the control precision. Figure 6.41 shows
the attitude quaternion output while the system runs on the maximum energy mode and in
hover.

(a) Representation of "QW" quaternion compo-
nent resulting from the PID control running in
maximum energy mode while hovering.

(b) Representation of "QX" quaternion compo-
nent resulting from the PID control running in
maximum energy mode while hovering.

(c) Representation of "QY" quaternion compo-
nent resulting from the PID control running in
maximum energy mode while hovering.

(d) Representation of "QZ" quaternion compo-
nent resulting from the PID control running in
maximum energy mode while hovering.

Figure 6.41: Results of Experiment 5.B - Graphical representation of the measured quater-
nion of the PID controller the running in maximum energy mode while hovering.

Graphically analyzing the Figure 6.41, it is possible to detect a significant improve-
ment between the test in Figure 6.39. The smaller latency of this system could stabilize the
roll, pitch, and yaw angle, with little to no variation. However, between samples 0 and 200, it
is possible to detect a larger error in component QY; the fast rise of the quadrotor explains
this.

Figure 6.42 shows the results of the energy saving mode in the height control.
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Figure 6.42: Results of Experiment 5.B - Height measured in meters representing the output
of PID controller running in maximum energy mode while hovering.

The height curve shows an adequate response time with no overshoot or steady-
state error and a rise time faster than the saving energy mode.

6.5.3 Experiment 5.C - Saving Mode/Motion

This experiment tests the system’s capability to keep the quadrotor in a fixed po-
sition during the flight in energy saving mode. Figure 6.43 shows the graphical results for
each measured axis.

(a) X position control by the PID running in energy
saving mode while in motion.

(b) Y position control by the PID running in energy
saving mode while in motion.

Figure 6.43: Results of Experiment 5.C - XY position control by the PID running in energy
saving mode while in motion

Based on these graphs, it is possible to determine that the system can not stabilize
in the desired position. Moreover, this figure shows the maximum errors of the quadrotor’s
position to the setpoint. On axis X, the system presents a maximum error of 0.75 meters,
and on the Y axis, a maximum error of 0.6 meters. The high latency of this system imposes
unacceptable errors in this context.
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6.5.4 Experiment 5.D - Max Power Mode/Motion

This experiment tests the system’s capability to keep the quadrotor in a fixed posi-
tion during the flight in maximum energy mode. Figure 6.44 shows the graphical results for
each measured axis.

(a) X position control by the PID running in maxi-
mum energy mode while in motion.

(b) Y position control by the PID running in maxi-
mum energy mode while in motion.

Figure 6.44: Results of Experiment 5.D - XY position control by the PID running in maximum
energy mode while in motion

Based on these graphs, it is possible to determine that the system improved sig-
nificantly over the last experiment. Moreover, this figure shows the maximum errors of the
quadrotor’s position to the setpoint. On axis X, the system presents a maximum error of
0.10 meters, contrasting with the 0.75 meters of the last experiment. And on the Y axis, a
maximum error of 0.05 meters, reduction from 0.6 meters. The low latency of this system
improved this control significantly.

6.5.5 Experiment 5 - Energy Analysis

This section reports the energy estimation for both flight modes: energy saving and
maximum energy.

Figure 6.45 shows the accumulated energy estimated in the core running the PID
task in energy saving mode.
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Figure 6.45: Accumulated energy estimated in the core running the PID task in energy
saving mode.

This figure shows that the entirety of the experiment in saving mode consumed
2500000 nJ.

Figure 6.46 shows the accumulated energy estimated in the core running the PID
task in maximum energy mode.

Figure 6.46: Accumulated energy estimated in the core running the PID task in maximum
energy mode.

This figure shows that the entirety of the experiment in saving mode consumed 3
mJ. The analysis of these two figures shows that it is possible to save almost 20 percent in
energy consumption only by changing the data injection rate in one core.

In practical terms, it shows the possibility of this system to operate in several
modes, depending on the application and power and performance requirements. The case
just showed: that it is possible to operate in saving mode while in take-off and hover. When
it is needed to move, the maximum power setting is triggered.
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6.6 Experiment 6 - Controller Online Adaptation

This section explores another feature that the decentralization nature of the MPSoC
provides: the possibility of runtime controller adaptation. An external function updates a
functioning controller to better adapt to external conditions. Section 3.9.1 already discussed
the theory of the Fuzzy controller, and here it is applied to the framework.

The last section presented the energy management functionality of this framework.
There, the injection frequency is changed into the core running the EKF. However, it is es-
sential to mention that this change affects the EKF and the following processes. These tests
constantly changes the values of the PID gains to stabilize the quadrotor for each computing
demand.

With the proposed algorithm, the Fuzzy controller would mitigate small changes in
the frequency. Figure 6.47 shows a diagram of this functionality.

Figure 6.47: Controller Online Adaptation Implementation Diagram.

Section 6.6.1 repeats the experiment of Section 6.5.3, but now with the fuzzy con-
troller.

6.6.1 Experiment 6 - Saving Mode/Motion - With Fuzzy Control

This experiment tests the system’s capability to update the PID gains during run-
time. This test utilizes the setup from Section 6.5.3 where the system tries to stabilize in a
fixed position while in the energy saving mode. Figure 6.44 shows the graphical results for
each measured axis.

In the experiment of Section 6.5.3, the mean errors of the controller were: 0.27
meters for the X axis and 0.23 meters for the Y axis. Analyzing the numerical values and
graphics of Figure 6.48 of experiment 6, the mean errors were reduced to 0.18 meters on the



194

(a) X position control by the PID running with a
parallel Fuzzy controller.

(b) Y position control by the PID running with a
parallel Fuzzy controller.

Figure 6.48: XY position control by the PID running with a parallel Fuzzy controller.

X axis and 0.12 meters on the Y axis. They were also significantly reducing the maximum
errors.

Figure 6.49 shows the calculated KP and KD gains for each XY axis.

(a) Calculated KD gains for PID controller. KDX
refers to the KD gain for the X position control.
KDY refers to the KD gain for the Y position con-
trol.

(b) Calculated KP gains for PID controller. KPX
refers to the KP gain for the X position control.
KPY refers to the KP gain for the Y position con-
trol.

Figure 6.49: Calculated KP gains for PID controller by the Fuzzy controller running in parallel
to the PID task.

The KI gains were not included in this analysis because the values were relatively
low and did not present significant variations.

6.7 Final Remarks

This chapter proposed six different experiments to validate the thesis’s primary
goals. These experiments were developed based on the theory of Chapter 3, the hardware
infrastructure presented in Chapter 4 and the original work of Chapter 5.

Section 6.1 presents a PoC of this system, evaluating the precision of the algo-
rithms like the EKF and PID. It also justifies the choice of utilizing a fixed-point format and
multiplicator unit. The results showed that the fixed-point and multiplicator unit was the most
efficient setup and yielded the best results regarding sensor fusion, attitude, and height con-
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trol. In both setups, the difference between the output of the system and actual values was
acceptable.

Section 6.2 presents the first proposed feature in the thesis’ goals. The decentral-
ization of the control system. The first experiment process the sensor fusion for attitude and
XY position estimation in a single task. It checks the performance for attitude estimation, XY,
and height control. This experiment served as a baseline for the next one. Since the idea
of the experiment is to test the software framework capability of decentralization, the tasks
of the EKF and KF were separated into two cores running in parallel. These experiments
not only showed that the software framework was capeble of doing so, but it increased the
performance of the whole control system.

Section 6.3 presents the capabilities of the software framework in implementing
more complex control schemes. The LQR and MPC control were chosen for these tests.
Both applications showed that the software framework was capable of implementing func-
tional controllers that were more complex than the PID. The only caveat of these experiments
was the limitations imposed by the experimental setup regarding the calculations of larger
matrices required by the MPC. This problem can be mitigated for future works by implement-
ing this software framework in a more robust setup.

Section 6.4 presents the topic of fault tolerance in the software framework. This
experiment is constituted of three alternative fault tolerance setups. All of these sub-
experiments deal with the case of a processor core running a quadrotor controller "freez-
ing" mid-run. The first sub-experiment proposes running two PID controllers in parallel in
separate cores. This experiment shows that the performance is not affected by a fault. How-
ever, it consumes more energy than the other solutions. The second solution proposes that
while one processor core is running the controller, a second is kept idle until the fault in the
first processor core is detected. When the second core starts to run, it has no context to
the first processor core state, so it tries to stabilize the quadrotor with the wrong informa-
tion. That fact led to a transitory destabilization. The only advantage of this method over
the first was the energy consumption reduction. Lastly, the third sub-experiment treated the
previous drawbacks. It solve the issue of energy consumption, as in the 2nd FT setup, by
keeping the redundant processor core idle. Moreover, it addresses the destabilization issue
by transmitting the context information with the control and sensor signals.

Section 6.5 presents the topic of energy management. Here, four experiments were
devised to determine modes of operation regarding energy consumption and performance.
This section aims to show that this software framework can implement a software solution
for energy management. The first experiment shows the results when the data injection rate
is lowered when the quadrotor is hovering, which showed a satisfactory result. However,
the second experiment significantly improved when it ran on the maximum frequency. The
third and fourth experiments showed the results for the position controller in the two energy
modes. The energy-saving mode showed itself not to be suitable for this purpose. At the
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same time, the maximum power mode showed a satisfactory result. All of these experiments
present the possibility of energy management for different applications; for example: while
in hover, the processor can function in an energy saving mode, and when it needs to control
its position, it triggers the maximum power mode.

Lastly, Section 6.6 presents the capability of the software framework to create a
system capable of updating the controller based on the immediate requirements. In this
case, a fuzzy controller updates the PID controller gains mid-run. The results showed that
this system performed well when applied to the problem found in experiment 5.
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7. CONCLUSION AND FUTURE WORK

This Thesis stated the following hypothesis: "Applying digital control systems into
a heterogeneous computing framework increases control efficiency and provides the pos-
sibility to apply other techniques, like decentralized control and controller self-adaptation.
Also this is expected to be achievable while taking into account parameters such as energy
consumption and fault tolerance."

In order to validate the hypothesis of the Thesis, a software framework was pro-
posed as the initial step, utilizing an MPSoC platform intended for integration into a robotic
application.

The quadrotor UAV was selected as the study case for the robotic application in
this research due to its suitability for the proposed idea presented in the Thesis. Quadrotors
require robust processing and are sensitive to faults due to their fast dynamics, and benefit
from energy management techniques common to mobile robotic applications. Additionally,
the nonlinear nature of quadrotors requires robust controllers. To implement the quadrotor,
a computational simulation was chosen, allowing for rapid implementation of the software
framework and low-cost testing. However, the simulation adds computational demands to a
system already simulating another process. Based on relevant literature, three controllers
were selected for testing, including the most commonly used controllers and a set of con-
trollers varying in complexity.

The hardware selected for this Thesis was an MPSoC, chosen for its ability to sup-
port real-time embedded applications with low power consumption, small size, and the abil-
ity to handle multiple processes simultaneously. The RISC-V architecture was selected for
modeling the MPSoC, as it offers a realistic ISA suitable for direct hardware implementation,
a small but complete base ISA to avoid over-architecting, and support for highly-parallel mul-
ticore or manycore implementations, including heterogeneous multiprocessors. The ORCA
platform was chosen as the development platform for the software framework design, as it
provides abstractions for self-adaptation complexity, including a configurable hardware archi-
tecture, operating system, and software libraries. To simulate and model the ORCA MPSoC,
the URSA application programming interface was selected.

Once the base architecture and robotic application were established, the software
framework was developed. A communication infrastructure was constructed on the ORCA
MPSoC and ROS operating system to enable data transmission between the processor and
application via the ROS publish-subscribe protocol and UDP communication. This allowed
for the exchange of information between the processor and quadrotor. In addition, math-
ematical libraries were developed to support the project’s control libraries, including matrix
operations and fixed-point math.
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In consideration of time constraints, the initial experiment involved a proof-of-
concept test consisting of a basic setup of the EKF + PID combination. The objective was to
determine the optimal hardware configuration and number format to minimize latency when
running a specific task, while also measuring the precision, effectiveness, and performance
of the control algorithms. The results indicated that configuring the Multiplier Unit and uti-
lizing fixed-point format was the most efficient choice, providing acceptable performance for
the control algorithms.

An experiment was conducted to evaluate the ability of the software framework to
support a decentralized control paradigm (Sensoring + Control + Actuation) within the MP-
SoC architecture. To achieve this, a comparison was made between a traditional control
system implementation, where all designs were executed on a single central processor, and
a distribution of tasks across multiple processors. The results demonstrated that although
energy consumption was not improved, there were significant gains in sensor fusion preci-
sion and control of the quadrotor’s attitude, height, and XY position.

The third experiment was designed to evaluate the MPSoC’s ability to support con-
trollers with more complex algorithms than PID, as well as to assess the software frame-
work’s capability to implement such controllers. The experiment demonstrated that the con-
troller could run on the MPSoC with acceptable results, indicating the software framework’s
feasibility for implementing more complex controllers.

An experiment was conducted to investigate fault tolerance in the software frame-
work. The experiment involved inducing a "freeze" on the PID controller’s processor, and
three potential solutions were proposed to mitigate the sudden stop in the process. The first
solution involved running two redundant processors simultaneously, receiving the same data
from the EKF process. When a fault occurs in one processor, the system starts to read the
output from the other. This solution yielded satisfactory control performance but consumed
the most energy. The second solution proposed keeping one processor idle while the other
runs the PID control, with the idle processor waiting for a flag indicating a fault in the active
processor. This solution had the best energy consumption profile, but the quadrotor mo-
mentarily destabilized during the fault. The third solution involved transmitting the control
context with the sensor and controller data to the idle processor so that it could start with
the necessary information to avoid destabilizing the system. This configuration proved to be
the best solution, with the same performance as the parallel configuration but with slightly
higher energy consumption than the second experiment.

The implementation of energy management was tested using an application that of-
fers users two operational modes. The first mode maintains a low data injection rate into the
processor, thereby keeping the controller stable and idle for longer periods to save energy.
The second mode increases the data injection rate to the processor as much as possible
without causing congestion in the NoC, resulting in better performance at a higher energy
cost. This approach can be applied to various robotic demands, including the quadrotor,
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where the processor can run on lower energy during low-intensity activities, such as hov-
ering. In contrast, the energy supply can be increased during more demanding tasks. The
impact of energy management on the quadrotor system was found to be insignificant. How-
ever, the goal of this thesis is to develop a software framework that can be applied to differ-
ent robotics applications, including those that involve computationally intensive tasks such
as computer vision and neural networks that may result in higher energy demand, which this
software framework can mitigate.

In this thesis, a new feature was proposed whereby an application can run in a
separate processor capable of controlling and updating a robotic control application running
in parallel. Specifically, a fuzzy controller was introduced to run in parallel with the PID con-
troller, allowing for real-time updates to the PID gains depending on the errors and derivative
errors of the quadrotor. The experiment aimed to demonstrate the potential performance im-
provement of the PID controller compared to a previous test, where the processor’s energy
consumption had been reduced.

The aforementioned paragraphs validate the propositions put forward in the Thesis
hypothesis. Through these experiments, it was demonstrated that integrating digital con-
trol systems into a heterogeneous computing framework utilizing MPSoC resulted in im-
proved control efficiency, enabling the application of decentralized control and controller
self-adaptation. Furthermore, the framework allowed for effective management of energy
consumption and fault tolerance within the system.

7.1 Future Work

As a guideline for future works, this Thesis has room for improvements as follows:

• Improve performance of the most demanding algorithms;

• In this Thesis the combination of many or all features into one application was not
possible due to limitation of the experimental setup;

• Although the system energy consumption was estimated, aspects like the processor
wear was not considered;

Future works to continue the research in control system in heterogeneous comput-
ing and to fulfill the improvements previously mentioned are as follows:

• Import the system into a real chip;

• Embed the chip into the Hector Quadrotor simulation (hardware-on-the-loop) and com-
pare the results;
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• Migrate the whole system to a real quadrotor;

• Add more applications related to sensoring that demands more computational power
(Comupter vision, LIDARs, Particle Filters and more.);

• Migrate this system to other robotics applications, like ground and water vehicles.

• Integrate into the system applications like: path planning and obstacle detection;

• Integrate prediction models to estimate the processor’s wear;

• Implement this system where the energy consumption of the processor impacts more
in the overall system, like nano satelites.
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APPENDIX A – MATRIX LIBRARY ALGORITHMS

Algorithm A.1: SET VALUES

1 algorithm SET_VALUES(nrows, ncolumns, vector):
2 k = 0;
3 for(i <= nrows){

4 for(j <= ncolumns){

5 A(i , j) = vector [k ];
6 k = k + 1;
7 j = j + 1;
8 }

9 i = i + 1;
10 }

11 return (Matrix A)

Algorithm A.2: TRANSPOSED MATRIX

1 algorithm TRANSPOSED_MATRIX(nrows, ncolumns, vector):
2 Set size of AT as size of matrix A
3 for(i <= numbers of rows of A){
4 for(j <= numbers of columns of A){
5 AT (i , j) = A(j , i);
6 k = k + 1;
7 j = j + 1;
8 }

9 i = i + 1;
10 return (Matrix AT)

Algorithm A.3: SUM OF MATRICES

1 algorithm SUM_OF_MATRICES(Matrices A, B):
2 Set size of C as size of matrices A and B;
3 for(i <= numbers of rows of A){
4 for(j <= numbers of columns of A){
5 C(i , j) = A(i , j) + B(i , j);
6 j = j + 1;
7 }

8 i = i + 1;
9 }

10 return (Matrix C = A + B)
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Algorithm A.4: SUBTRACTION OF MATRICES

1 algorithm SUBTRACTION_OF_MATRICES(Matrices A, B):
2 Set size of C as size of matrices A and B;
3 for(i <= numbers of rows of A){
4 for(j <= numbers of columns of A){
5 C(i , j) = A(i , j)− B(i , j);
6 j = j + 1;
7 }

8 i = i + 1;
9 }

10 return (Matrix C = A− B)

Algorithm A.5: MULTIPLICATION OF MATRICES

1 algorithm MULTIPLICATION_OF_MATRICES(Matrices A, B):
2 Set size of C as size of number of rows of A and columns of B;
3 if(numbers of columns of A == numbers of rows of B){
4 for(i <= numbers of rows of A){
5 for(j <= numbers of columns of B){
6 for(x <= numbers of rows of B){
7 y = y + A(i , x)× B(x , j);
8 x = x + 1;
9 }

10 C(i , j) = y;
11 y = 0;
12 j = j + 1;
13 }

14 i = i + 1;
15 }

16 return (Matrix C = A× B)

Algorithm A.6: MATRIX MULTIPLICATION BY A SCALAR

1 algorithm MATRIX_TIMES_X(Matrix A, scalar x):
2 Set size of B as size of matrix A;
3 for(i <= numbers of rows of A){
4 for(j <= numbers of columns of A){
5 B(i , j) = A(i , j)× x;
6 j = j + 1;
7 }

8 i = i + 1;
9 }

10 return (Matrix B = Ax)
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Algorithm A.7: MATRIX DIVISION BY A SCALAR

1 algorithm MATRIX_DIV_X(Matrix A, scalar x):
2 Set size of B as size of matrix A;
3 for(i <= numbers of rows of A){
4 for(j <= numbers of columns of A){
5 B(i , j) = A(i , j)/x;
6 j = j + 1;
7 }

8 i = i + 1;
9 }

10 return (Matrix B = A/x)

Algorithm A.8: CREATE AN IDENTITY MATRIX

1 algorithm EYE(scalar x):
2 Set size of I as (x by x);
3 for(i <= numbers of rows of I){
4 for(j <= numbers of columns of I){
5 if(j == i){
6 I(i , j) = 1;
7 }

8 else{

9 I(i , j) = 0;
10 }

11 j = j + 1;
12 }

13 i = i + 1;
14 }

15 return (Matrix I)

Algorithm A.9: CREATE A MATRIX OF ZEROS

1 algorithm ZEROS_MAT(scalars x , y):
2 Set size of Z as (x by y );
3 for(i <= numbers of rows of Z){
4 for(j <= numbers of columns of Z){
5 Z (i , j) = 0;
6 j = j + 1;
7 }

8 i = i + 1;
9 }

10 return (Matrix Z)
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Algorithm A.10: CREATE A MATRIX OF ONES

1 algorithm ONES_MAT(scalars x , y):
2 Set size of O as (x by y );
3 for(i <= numbers of rows of O){

4 for(j <= numbers of columns of O){

5 O(i , j) = 1;
6 j = j + 1;
7 }

8 i = i + 1;
9 }

10 return (Matrix O)

Algorithm A.11: CREATE A 3× 3 SKEW-SYMMETRIC MATRIX

1 algorithm SKEW_MAT(scalars x , y , z):
2 Set size of S as (3 by 3);
3 S(0, 0) = 0;
4 S(0, 1) = −z;
5 S(0, 2) = y;
6 S(1, 0) = z;
7 S(1, 1) = 0;
8 S(1, 2) = −x;
9 S(2, 0) = −y;

10 S(2, 1) = x;
11 S(2, 2) = 0;
12 return (Matrix S)

Algorithm A.12: BLOCK DIAGONAL CONCATENATION (2 by 2)

1 algorithm BLKDIAG2_MAT(Matrices A, B):
2 Set size of M as ([row of A + row of B]× [column of A + column of B]);
3 Set all M values as zeros;
4 for(i <= numbers of rows of A){
5 for(j <= numbers of columns of A){
6 M(i , j) = A(i , j);
7 j = j + 1;
8 }

9 i = i + 1;
10 }

11

12 for(i <= numbers of rows of B){
13 for(j <= numbers of columns of B){
14 M([i + nrows_of_A], [j + ncolumns_of_A]) = B(i , j);
15 j = j + 1;
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16 }

17 i = i + 1;
18 }

19 return (Matrix S)

Algorithm A.13: CUSTOM MATRIX OF MATRICES

1 algorithm CUSTOM_MAT(

Scalar nmatrices, Vector [confX , confY , row , column], list of matrices):
2 Set size of M as ([row × column);
3 auxX = 0;
4 auxY = 0;
5 for(x <= confX){
6 for(y <= confY){
7 A← get a matrix from list;
8 for(i <= nrows_of_A){

9 for(j <= ncolumns_of_A){

10 M([i + auxX ], [j + auxY ]) = A(i , j);
11 j = j + 1;
12 }

13 i = i + 1;
14 }

15 auxY = auxY + ncolumns_of_A;

16 if(auxY >= ncolumns_of_M){

17 auxY = 0;
18 }

19 y = y + 1;
20 }

21

22 auxX = auxX + nrows_of_A;

23 if(auxX >= nrows_of_M){

24 auxX = 0;
25 }

26 x = x + 1;
27 }

28 return (Matrix M)

Algorithm A.14: DELETE ROW AND COLUMN OF A MATRIX

1 algorithm DEL_RC_MAT(Matrix A, Scalars r , c and order):
2 i = j = g = h = 0;
3 for(g < order){
4 for(h < order){
5 if(g! = r && h! = c){
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6 B[i ][j + +] = A[g][h];
7 if(j == order − 1){
8 j = 0;
9 i = i + 1;

10 }

11 }

12 }

13 }

14 return (Matrix B)

Algorithm A.15: DETERMINANT OF A MATRIX

1 algorithm DET_MAT(Matrix A, Scalar order):
2 sign = 1;
3 if(order == 1){
4 det = A[0][0];
5 }

6 if(order == 2){
7 det = A[0][0]× A[1][1]− A[0][1]× A[1][0];
8 }

9 if(order > 2){
10 f = 0;
11 for(f < order){
12 C = DEL_RC_MAT (A, 0, f , order ); → Algorithm A.14
13 d = (sign × A[0][f ])× (DET_MAT (C, (order − 1)));
14 det = det + d;
15 sign = −sign;
16 }

17 }

18 return (Scalar det)

Algorithm A.16: INVERSE OF A MATRIX

1 algorithm INVERSE_MAT(Matrix A):
2 order = nrows_of_A;

3 if(order == 1){
4 Set B size as (1× 1);
5 B[0][0] = 1/A[0][0];
6 }

7 if(order == 2){
8 Set B size as (2× 2);
9 det = DET_MAT (A, order ); → Algorithm A.15

10 B[0][0] = A[1][1];
11 B[0][1] = −A[0][1];
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12 B[1][0] = −A[1][0];
13 B[1][1] = A[0][0];
14 B = B × (1/det); → Algorithm A.6
15 }

16 if(order > 2){
17 Set B size as (order × order );
18 Set factor size as (order × order );
19 Set X size as (order × order );
20 Set Y size as (order × order );
21 p = q = 0;
22 for(q < order){
23 for(p < order){
24 k = n = 0;
25 i = j = 0;
26 for(i < order){
27 for(j < order){
28 if(i ! = q && j ! = p){
29 X [n][k ] = A[j ][i ];
30 if(n < (order − 2)){
31 n = n + 1;
32 }

33 else{

34 n = 0;
35 k = k + 1;
36 }

37 }

38 }

39 }

40 if(p == 0 && q == 0){
41 factor [p][q] = DET_MAT (X , (order − 1)); → AlgorithmA.15
42 }

43 else{

44 if((p + q)%2 == 0){
45 factor [p][q] = DET_MAT (X , (order − 1)); → AlgorithmA.15
46 }

47 else{

48 factor [p][q] = −DET_MAT (X , (order − 1)); → AlgorithmA.15
49 }

50 }

51 }

52 }

53 g = h = 0;
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54 for(g < order){
55 for(h < order){
56 Y [h][g] = factor [g][h];
57 }

58 }

59 d = DET_MAT (A, order ); → AlgorithmA.15
60 g = h = 0;
61 for(g < order){
62 for(h < order){
63 B[h][g] = Y [h][g]/d;
64 }

65 }

66

67 }

68 return (Matrix B)

Algorithm A.17: COPY OF A MATRIX

1 algorithm COPY_MAT(Matrix A):
2 Set size of B as size of matrix A;
3 for(i <= numbers of rows of A){
4 for(j <= numbers of columns of A){
5 B(i , j) = A(i , j);
6 j = j + 1;
7 }

8 i = i + 1;
9 }

10 return (Matrix B)

Algorithm A.18: RANK OF A MATRIX

1 algorithm RANK_MAT(Matrix A):
2 rank ← column of matrix A;
3 r = 0;
4 for(r < rank){
5 if(A[r ][r ]! = 0){
6 c = 0;
7 for(c < nrows_of_A){

8 if(c! = r){
9 m = A[c][r ]/A[r ][r ];

10 i = 0;
11 for(i < rank){
12 A[c][i ]− = m × A[r ][i ];
13 i = i + 1;
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14 }

15 }

16 c = c + 1;
17 }

18 }

19 else{

20 reduce = 1;
21 i = r + 1;
22 for(i < nrows_of_A){

23 if(A[i ][r ]! = 0){
24 j = 0;
25 for(j < rank){
26 t = A[r ][j ];
27 A[r ][j ] = A[i ][j ];
28 A[i ][j ] = t;
29 j = j + 1;
30 }

31 reduce = 0;
32 break;
33 }

34 i = i + 1;
35 }

36 if(reduce == 1){
37 rank −−;
38 i = 0;
39 for(i < nrows_of_A){

40 A[i ][r ] = A[i ][rank ];
41 i = i + 1;
42 }

43 }

44 r −−;
45 }

46 r = r + 1;
47 }

48 return (Scalar rank)

Algorithm A.19: CHECK SYMMETRY OF A MATRIX

1 algorithm SYM_MAT(Matrix A):
2 Set matrix cp ← same size as matrix A;
3 Set matrix tr ← same size as matrix A;
4 sum = 0;
5 if(nrows_of_A! = ncolumns_of_A){
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6 sym = 0;
7 }

8 else{

9 i = 0;
10 for(i < nrows_of_A){

11 j = 0;
12 for(j < ncolumns_of_A){

13 cp[i ][j ] = A[i ][j ];
14 j = j + 1;
15 }

16 i = i + 1;
17 }

18 check = nrows_of_A × ncolumns_of_A;

19 tr = cp′;

20 i = 0;
21 for(i < nrows_of_A){

22 j = 0;
23 for(j < ncolumns_of_A){

24 if(cp[i ][j ] == tr [i ][j ]){
25 sum + +;
26 }

27 j = j + 1;
28 }

29 i = i + 1;
30 }

31 if(check == sum){

32 sym = 1;
33 }

34 else{

35 sym = 0;
36 }

37

38 }

39 if(sym == 0){
40 False;
41 }

42 else{

43 True;
44 }

45 return (Bool ← True or False)

Algorithm A.20: LU DECOMPOSITION
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1 algorithm LU_MAT(Matrix A):
2 Set matrix L size the same as matrix A;
3 Set matrix U size the same as matrix A;
4 Set matrix L values to zero;
5 Set matrix U values to zero;
6 Set i = 0, j = 0, k = 0;
7 for(i < nrows_of_A){

8 for(j < ncolumn_of_A){

9 if(j < i){

10 L[j ][i ] = 0;
11 }

12 else{

13 L[j ][i ] = A[j ][i ];
14 for(k < i){
15 L[j ][i ] = L[j ][i ]− L[j ][k ]× U[k ][i ]
16 }

17 }

18 }

19 }

20 Set i = 0, j = 0, k = 0;
21 for(i < nrows_of_A){

22 if(j < i){
23 U[j ][i ] = 0;
24 }

25 else if(j == i){
26 U[j ][i ] = 1;
27 }

28 else{

29 U[j ][i ] = A[i ][j ]/L[i ][i ];
30 for(k < i){
31 U[i ][j ] = U[i ][j ]− [(L[i ][k ]× U[k ][j ])/(L[i ][i ])];
32 }

33 }

34 }

35 return (Matrices L and U)

Algorithm A.21: GET A MATRIX DIAGONAL

1 algorithm DIAG_MAT(Matrix A):
2 Set i = 0;
3 for(i < nrows_of_A){

4 v [i ] = A[i ][i ];
5 }
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6 return (Vector v with matrix A diagonal values)

Algorithm A.22: GET SECTION OF A MATRIX

1 algorithm SEC_MAT(MatrixA, scalars Ri , Rf , Ci , Cf):
2 Set Matrix B row size ← Rf − Ri;
3 Set Matrix B row size ← Cf − Ci;
4 Set i = 0 and j = 0;
5 for(i < nrows_of_B){

6 for(j < ncolumns_of_B){

7 B[i ][j ] = A[i + Ri ][j + Ci ];
8 }

9 }

10 return (Matrix B)

Algorithm A.23: QR DECOMPOSITION

1 algorithm QR(MatrixA):
2 Set m as number of row of matrix A;
3 Set n as number of columns of matrix A;
4 Set matrix Q as an identity matrix with size m;

5 R = COPY_MAT (A);
6 i = 0;
7 for(i < n){
8 z = GET_PART (R, i , m, i , i) → Algorithm A.22;
9 nz ← norm of z;

10 v = [(−sign(z[1])× norm(z)− z[1]); (−z[2 : end ])] → Algorithm A.13;
11 Set I as an identity matrix of size m − i + 1;
12 P = I − 2× (v × vT )/(vT × v );
13 R[i : m][:] = P × R[i : m][:];
14 Q[i : m][:] = P ×Q[i : m][:];
15 }

16 Q = QT;

17 R is set as R with all elements above the diagonal as zeros; → Algorithm A.29;
18 return (Matrix Q andR)

Algorithm A.24: MATRIX TO THE POWER OF N

1 algorithm POWER_MAT(Matrix A, scalar N):
2 Set B as matrix of ones with size of A;
3 if (N == 1){
4 B = A;
5 }

6 i = 0;
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7 else{

8 for(i < N){
9 B = B × A;

10 i = i + 1;
11 }

12 }

13 return (Matrix B)

Algorithm A.25: TRACE OF A MATRIX

1 algorithm TRACE_MAT(Matrix A):
2 Set n as number of row of matrix A;
3 t = 0;
4 i = 0;
5 for(i < n){
6 t = t + A[i ][i ];
7 }

8 return (Scalar t)

Algorithm A.26: EIGENVALUES OF A MATRIX

1 algorithm EIG22_MAT(Matrix A):
2 t = TRACE_MAT (A)→ Algorithm A.25
3 d = DET_MAT (A)→ Algorithm A.15
4 B[0][0] = (t +

√
t2 − 4d)/2;

5 B[1][0] = (t −
√

t2 − 4d)/2;
6 return (Matrix B)

Algorithm A.27: EIGENVALUES OF A MATRIX (2× 2)

1 algorithm EIG_MAT(Matrix A):
2 Set n as number of row of matrix A;
3 Set matrix H as copy of matrix A → Algorithm A.17
4 Set m as number of iterations for estimation of matrix H;
5 i = 0;
6 for(i < m){

7 [Q, R] = QR(H)→ Algorithm A.23
8 H = R ×Q;

9 }

10 c = 0;
11 j = 0;
12 Set p the precision of the eigenvalues estimation;
13 for(j < n){
14 if(c < n){
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15 if(H[c + 1][c] ≤ p & H[c + 1][c] > p){
16 B[c][0] = H[c][c];
17 c = c + 1;
18 }

19 else{

20 He = [(H[c][c] H[c][c + 1]); (H[c + 1][c] H[c + 1][c + 1])];
21 M = eig22(He) → Algorithm A.26;
22 B[c][0] = M[0][0];
23 B[c + 1][0] = M[1][0];
24 c = c + 2;
25 }

26 }

27 }

28 return (Matrix B)

Algorithm A.28: ZEROS ALL THE ELEMENTS BELOW THE MATRIX DIAGONAL

1 algorithm TRIL_MAT(Matrix A):
2 Set Matrix B size same as matrix A;
3 Set i = 0 and j = 0;
4 for(i < nrows_of_B){

5 for(j < ncolumns_of_B){

6 if(i < j){
7 B[i ][j ] = 0;
8 }

9 else{

10 B[i ][j ] = A[i ][j ];
11 }

12 }

13 }

14 return (Matrix B)

Algorithm A.29: ZEROS ALL THE ELEMENTS ABOVE THE MATRIX DIAGONAL

1 algorithm TRIU_MAT(Matrix A):
2 Set Matrix B size same as matrix A;
3 Set i = 0 and j = 0;
4 for(i < nrows_of_B){

5 for(j < ncolumns_of_B){

6 if(i > j){
7 B[i ][j ] = 0;
8 }

9 else{

10 B[i ][j ] = A[i ][j ];
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11 }

12 }

13 }

14 return (Matrix B)

Algorithm A.30: 2-NORM OF A MATRIX

1 algorithm 2NORM_MAT(Matrix A):
2 i = j = 0;
3 for(i < nrows_of_A){

4 for(j < ncolumns_of_A){

5 x = fabs(A[i ][j ]);
6 sum = sum + x2;

7 }

8 }

9 n =
√

sum;

10 return (Scalar n)

Algorithm A.31: DISCRETE-TIME ALGEBRAIC RICCATI EQUATION SOLVER

1 algorithm RICCATI(Matrices A, B, Q, R):
2 Set Matrix Gk as BR−1B;
3 Set Matrix Hk equal to Q ;

4 Set Matrix Ak equal to A;
5 n = nrows_of_A;

6 Set ϵ as cut off point in X calculation;
7 ns = 1;
8 while(ns ≥ ϵ){

9 Ak1 = Ak × (EYE(n) + GkHk )−1Ak;
10 Gk1 = Gk + Ak × (EYE(n) + GkHk )−1GkAkT;

11 Hk1 = Hk + AkT Hk × (eye(n) + GkHk )−1Ak;
12 ns = 2NORM_MAT ((Hk1− Hk ))/2NORM_MAT ((Hk1)) → Algorithm A.30;
13 Hk = Hk1;
14 Ak = Ak1;
15 Gk = Gk1;
16 }

17 X = Hk;
18 return (Matrix X as X = AT XA− (BT XA)T × (R + BT XB)−1 × BT XA + Q)
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APPENDIX B – PID - FUZZY LIBRARY ALGORITHMS

Algorithm B.1: Algorithm for open left fuzzyfication

1 algorithm openLeft(x ,α,β):
2 if (x < α){

3 return (1);
4 }

5 if (x < α_&&_x <= β){

6 return ((β − x)/(β − α));
7 }

8 else{

9 return (0);
10 }

Algorithm B.2: Algorithm for open right fuzzyfication

1 algorithm openRight(x ,α,β):
2 if (x < α){

3 return (1);
4 }

5 if (x < α_&&_x <= β){

6 return ((x − α)/(β − α));
7 }

8 else{

9 return (0);
10 }

Algorithm B.3: Algorithm for triangular fuzzyfication

1 algorithm triangular(x , a, b, c):
2 return (max(min((x − a)/(b − a), (c − x)/(c − b)), 0));

Algorithm B.4: Algorithm for open left defuzzyfication

1 algorithm areaOL(µ, start ,α,β):
2 xOL = (β − start)− µ ∗ (β − α);
3 return (0.5 ∗ µ ∗ (β + xOL),β/2);

Algorithm B.5: Algorithm for open right defuzzyfication

1 algorithm areaOR(µ, end ,α,β):
2 xOR = (β − α) ∗ µ + α;

3 aOR = 0.5 ∗ µ ∗ ((end − α) + (end − xOR));
4 return (aOR, (end − α)/2 + α);
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Algorithm B.6: Algorithm for triangular defuzzyfication

1 algorithm areaTR(µ, a, b, c):
2 x1 = µ ∗ (b − a) + a;
3 x2 = c − µ ∗ (c − b);
4 d1 = (c − a);
5 d2 = x2 − x1;

6 area = 0.5 ∗ µ ∗ (d1 + d2);
7 return (area, b);

Algorithm B.7: Algorithm for mathematical representation of the fuzzy rules

1 algorithm rules(NLerror , NLerrorderivative , ..., Xerror , Xerrorderivative):

2 # RULES FOR PL OUTPUT:

3 PL1 = min(NLerror , NLerrorderivative ) → R1;
4 PL2 = min(NLerror , NMerrorderivative ) → R2;
5 PLoutput = min([PL1, PL2]);
6

7 # RULES FOR PM OUTPUT:

8 PM1 = min(NLerror , NSerrorderivative ) → R3;
9 ...

10 PMoutput = min([PM1, ..., PMn]);
11

12 # RULES FOR PS OUTPUT:

13 ...
14 PSoutput = min([PS1, ..., PSn]);
15

16 # RULES FOR ZE OUTPUT:

17 ...
18 ZEoutput = min([ZE1, ..., ZEn]);
19

20 # RULES FOR NS OUTPUT:

21 ...
22 NSoutput = min([NS1, ..., NSn]);
23

24 # RULES FOR NM OUTPUT:

25 ...
26 NMoutput = min([NM1, ..., NMn]);
27

28 # RULES FOR NL OUTPUT:

29 ...
30 NLoutput = min([NL1, ..., NLn]);
31

32 return([PLoutput , PMoutput , PSoutput , ZEoutput , NSoutput , NMoutput , NLoutput ])
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Algorithm B.8: Algorithm for defuzzyfication output

1 algorithm defuzzyfication(PL, PM, PS, ZE , NS, NM, NL):
2 (areaPL, cPL) = areaOR(PL, x , y , z);
3 (areaPM, cPM) = areaTR(PM, x , y , z);
4 (areaPS, cPS) = areaTR(PS, x , y , z);
5 (areaZE , cZE) = areaTR(ZE , x , y , z);
6 (areaNS, cNS) = areaTR(NS, x , y , z);
7 (areaNM, cNM) = areaTR(NM, x , y , z);
8 (areaNL, cNL) = areaOL(NL, x , y , z);
9 num = areaPL× cPL + areaPM × cPM + ... + areaNL× cNL;

10 den = areaPL + areaPM + ... + areaNL;
11 return(num/den)
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