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UM MODELO EFICIENTE PARA IDENTIFICAÇÃO DE EVENTOS DE
AMEAÇA À MÃO ARMADA EM VÍDEOS

RESUMO

Para que uma sociedade prospere, seus membros devem se sentir seguros em
suas vidas cotidianas; caso contrário, o medo começaria a tomar conta da população, cau-
sando estresse e pânico e, consequentemente, reduzindo a qualidade de vida. Diversas po-
líticas e medidas costumam a ser adotadas para preservar a segurança das pessoas, mas
a medida que a população cresce e armas de fogo se tornam mais acessíveis, a segurança
da sociedade fica mais ameaçada. Preocupados com isso, diversos trabalhos buscaram
explorar o uso de câmeras de segurança, uma das medidas de segurança mais utilizadas,
e identificar um evento de ameaça. No entanto, esses trabalhos não possuem práticas co-
muns de comparação, conjuntos de dados padrão ou restrições para os conjuntos de dados
usados. O principal objetivo deste trabalho é explorar métodos e estratégias para enfren-
tar o desafio da detecção de ameaça à mão armada, assumindo um cenário de sistema
de vigilância com hardware limitado. Para atingir esse objetivo, buscamos redes neurais
eficientes do estado da arte e técnicas de compressão de modelos para termos uma base
sólida e estratégias bem desenvolvidas que pudessem melhorar ainda mais seu desempe-
nho. Também propomos um novo conjunto de dados desafiador para identificar ameaças à
mão armada que segue critérios rigorosos para garantir a qualidade dos dados utilizados.
Até onde sabemos, o nosso é o maior conjunto de dados disponível na área com anotações
para detecção de objetos e que usa apenas dados de mundo real. Nosso conjunto de da-
dos está disponível online, juntamente com as ferramentas usadas para criá-lo, facilitando
sua capacidade de expansão. Além disso, avaliamos o desempenho de alguns métodos
do estado da arte nele, e os resultados obtidos corroboram sua dificuldade. Fornecemos
um conjunto extenso de experimentos para demonstrar os pontos fortes e fracos de cada
abordagem e seu impacto nas detecções. Também realizamos experimentos em diferentes



ambientes para avaliar como essas abordagens se comportavam em diferentes condições
de hardware. Também evidenciamos quais são mais vantajosas ou mais versáteis e que
melhor funcionam em nossos cenários.

Palavras-Chave: vigilância; câmeras de segurança; visão computacional; detecção de
ameaça à mão armada; compressão de modelos.



AN EFFICIENT MODEL FOR IDENTIFYING FIREARM THREATS IN
VIDEOS

ABSTRACT

For a society to prosper, its members must feel safe in their everyday lives; oth-
erwise, fear would start to take over the population, causing stress and panic and, conse-
quently, reducing the quality of life. Several policies and measures are usually adopted to
preserve people’s security, but as the population grows and firearms become more accessi-
ble, society’s security becomes more threatened. Concerned with this, several works sought
to explore the use of security cameras, one of the most commonly used security measures,
and identify when a threatening event occurs. However, these works do not have common
comparison practices, standard datasets, or constraints for the datasets used. The main
goal of this work is to explore methods and strategies to address the challenge of firearm
threat detection while assuming a scenario of a surveillance system with limited hardware.
To achieve this goal, we sought well-known efficient neural networks from the state-of-the-art
and model-compression techniques to have a solid basis to start from and well-developed
strategies that could further improve their performance. We also propose a new challenging
dataset for identifying firearm threats that follows rigorous controls to ensure the quality of
the data used. To the best of our best knowledge, ours is the largest dataset available in the
area based on frame-level annotations and that uses only real-world data. Our dataset is
available online, alongside the tools used to create it, making it easier to expand it further.
Moreover, we evaluated the performance of some state-of-the-art methods on it, and the
obtained results corroborate with its difficulty. We provide an extensive set of experiments
to present clearly each approach’s strengths and weaknesses and their impact on the de-
tection performance. We also conducted experiments on different environments to evaluate
how these approaches performed on different hardware conditions. We also clarified which
ones are most advantageous or are more versatile and work well on our scenarios.



Keywords: surveillance; security camera; computer vision; weapon threat detection; model
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1. INTRODUCTION

Security has always been a major concern for human beings within society, and as
the war industry develops and more people have access to firearms, the more fragile the
security of society becomes [54, 80, 33]. This relationship exists because firearms enable
a single person, without the need for advanced training, to be able to cause a worrisome
amount of fatalities, especially in public environments, leading to situations such as school
shootings [25] and mass shootings [45]. Several measures have been implemented to com-
bat this type of event, among which the most common is monitoring these environments
using security cameras.

Although the usage of security cameras presents advantages [67], such as record-
ing an event to be analyzed later, a significant disadvantage that this method has is the
constant need for supervision. The cameras alone only record the event, requiring someone
to monitor the recordings to notify the authorities if an event occurs. In addition, in most
cases, just one security camera is not enough to cover, for example, an entire public space
or the various environments of a building. Therefore, it becomes necessary to use and
monitor several cameras recording 24 hours a day, seven days a week, making the moni-
toring process more difficult and creating many chances for distractions and other human
errors [12].

Some qualities such as maintaining concentration and remaining alert for long pe-
riods are required for an effective CCTV-based vigilance [15]. However, CCTV operators
may not realize their attention levels have dropped, especially when dividing their attention
across multiple tasks. When analyzing the attention level of the operators, the work pro-
posed by [87] shows that the operators can maintain their focus for 20 minutes on average.
After that, they start missing details in the footage. The work developed by Ainsworth [2]
goes further, showing that the operators miss around 45% of the details in the scene after
12 minutes. This value goes up to 95% of details overlooked after 22 minutes.

The initial solution to relying less on the operator’s undivided attention was the pro-
posal of semi-automated monitoring systems. These approaches studied the most common
human errors during CCTV vigilance and proposed solutions trying to work around those
issues [11]. However, they were part of a complex process since they required studying the
problem to be solved, the operator’s performance, and how to minimize human faults. So,
as Computer Vision methods advanced and results became more reliable, fully automated
monitoring systems became more and more prevalent [14].

Many works, have addressed this issue recently, some focusing less on the data
used and more on the models and results achieved in the Firearm Detection task, as can be
seen in the work proposed by [23, 88, 13]. In other cases, the data used had a particular
goal, as, for example, the works that address Concealed Weapon Detection, as proposed
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by [70, 40, 36]. Finally, some researchers do not focus on the task by itself, but they address
multiple events at once, such as detecting abandoned luggage [49], fire [55], and violence
in general [64].

Several authors have expressed concern with the available datasets’ quality, most
of those being discussed as future work [60, 47], while only a few propose new datasets
or improvements. Moreover, those who did could not satisfy the requirements stipulated by
the research area. We have also identified that many works express concern with perfor-
mance in their future work, given its importance in real-life situations. However, all these
discussions considered the availability of plentiful computational resources and the usage of
GPU accelerators when estimating the model’s performance. However, small-scale security
systems, such as middle-class residences or small stores, will not have these resources
available most of the time. For cases like these, solutions must be projected with these
restricted conditions to achieve the desired performance.

With these restrictions in mind, we decided to focus our research on CPU-based
systems with no hardware accelerators. Addressing these systems makes our model more
accessible and usable by people that can not invest a large portion of their earnings in large
surveillance systems. With these restrictions, in ideal cases, we would like to achieve a
performance of at least 10fps, since we identified that surveillance systems usually record
between 15fps and 5fps. However, in more extreme cases of limited hardware, we would
be satisfied with achieving a performance close to 5fps. Thus, achieving either of those
performance levels would enable our model to process most of the recorded frames as they
were made available, satisfying our near-real time goals.

Considering this, the main goal of this work is to perform near-real time firearm
threat detection on systems with few computational resources available. Moreover, while
most works identified in the literature address the issue of Firearm Detection, by locating the
weapon itself, we decided to explore a slightly different challenge: firearm threat detection,
which consists of identifying the human wielding the weapon. We decided to make this
distinction because, in real-world data, the weapon might not be entirely on display (due
to camera angles or occlusion, for example). However, by analyzing body language, we
may be able to recognize the threatening individual. Motivated by this, we developed a
novel and flexible benchmark dataset for firearm threat detection to address and fill this gap.
Our dataset was created with real-world scenes by following a defined procedure for image
selection and annotation. We also developed a set of tools to facilitate its extension.

Thus, our model should be capable of assisting in monitoring different spaces,
public or private, by processing videos taken by security cameras and identifying events
that compromise the security of those environments. We expect that by identifying that
a dangerous event is starting, it is possible to notify those responsible for monitoring the
environment, who can then alert the authorities to take immediate action, preserving the
innocent’s safety before the event escalates to a more dangerous level.
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This work’s contributions can be summarised as follows:

• Introduction of a novel challenging dataset with 6942 images of real-world situations,
called FiDaSS (Firearm Dataset for Smart Surveillance). The dataset images are an-
notated for object detection encompassing both the assailant and the held weapon.
Our dataset is different from the ones presented in the literature by containing real-
world scenes from various scenarios and cultures, more detailed annotations, and
novel data representing COVID-19 preventive measures.

• Assessment of the quality and difficulty of FiDaSS using state-of-the-art neural network
architectures.

• Proposal of a challenging scenario as a case study to validate our model by simulating
a small and low-investment surveillance system without specialized hardware. We
also provide an evaluation of various model compression techniques in our case study,
comparing both their performance and detection results.

The remainder of this work is organized as follows. Chapter 2 presents some im-
portant concepts, challenges, and techniques in the area. Following that, in Chapter 3, we
describe the literature review procedure we followed, our insights gained from it, and the
gaps identified in the area. Next, Chapter 4 presents in-depth each step followed to develop
this research. In Chapter 5, we discuss in detail each step followed to create our dataset, the
tools used, and statistical information about our dataset and comparisons to the ones exist-
ing in the literature. Then, in Chapter 6, we address how we planned our proposed model,
the architectures we explored, and the techniques we used for our experiments. We discuss
the results achieved in Chapter 7, including whether the chosen architectures can learn and
generalize our dataset well, how the performance of these architectures is affected by the
compression techniques chosen, and the performances achieved on our case study. Finally,
Chapter 8 addresses our contributions, limitations, and plans for future work, followed by
Chapter 9, which contains our conclusions and final remarks.
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2. BACKGROUND

This chapter describes some important concepts and techniques that are relevant
to the issue this work addresses. Computer vision, neural networks, and model compression
are examples of content covered in the following sections.

2.1 Techniques using Handcrafted Features

This section addresses some strategies and Computer Vision techniques that are
commonly employed on solutions for automated Firearm Detection. The first one simplifies
the problem by dividing it into smaller sub-problems. This technique is known as Sliding
Window [62] and consists of methodically extracting patches from the image, which are
then evaluated separately, and the results of the patches can be joined and mapped to the
original image accordingly. Sliding Window approaches are well suited for tasks that rely
heavily on multi-scale local features but should be avoided when global features are more
important. Although optimization strategies can be employed to minimize the number of
patches extracted and analyzed, the technique is very computational heavy and requires
many resources

The second technique discussed is called Bag Of Features [10], which consists
of a vocabulary of features formed from a set of training images. Each feature on the bag
represents descriptors of a local area of a training image, using information extracted by
methods such as Zernike Moments [89] and Gabor Filters [22], which leads to an extremely
large amount of features. Thus, to reduce the number of features and generalize them so
that they can be applied to new images, it is required to apply a clustering step so that
the features can be summarized in a “visual vocabulary”. When evaluating a new image,
it is only necessary to match the new features extracted to the nearest matching cluster
centers in the vocabulary. This technique is best fitted to image classification and retrieval
tasks based on similar images, and it is not recommended for tasks that require a semantic
understanding of elements in the image, such as object detection and keyword-based image
retrieval.

Another important technique to be described in the context of this work is the Scale
Invariant Feature Transform [51] (SIFT) technique, which expands on the existing Bag Of
Features techniques. The technique consists of four steps: Keypoint Localization, Keypoint
Filtering, Orientation Assignment, and Keypoint Descriptor. In the first step, to find can-
didates Keypoints in the image, a Difference of Gaussian is applied, as a less-expensive
alternative to Laplacian of Gaussian, using small and large kernels to identify potential key-
points independent of their scale. In the next step, keypoints mainly consisting of edges and
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low-contrast areas are removed, leaving only strong interest points. Then the orientation of
each keypoint is extracted, and copies of each keypoint are created, but with different orien-
tations, making the descriptors less dependent on the orientation of the features. And finally,
in the last step, the feature descriptors of each keypoint are extracted and clustered. Similar
to the Bag of Features technique, features are matched to the nearest matching centers, but
in this case, some additional checks are suggested to reduce the number of false matches.
Being an improvement over the Bag Of Feature technique, the SIFT technique is recom-
mended or not for the same tasks. This technique is preferred over the previous since it is
robust to different illumination levels, scales, and local affine distortions in the recommended
cases.

The last technique presented is the Speeded-Up Robust Features [4] (SURF) tech-
nique, which was proposed as a faster alternative to SIFT, being almost three times faster
than it. The first change proposed by SURF is to substitute the Difference of Gaussian for
the Box Filter convolution, which can take advantage of parallelism when computing dif-
ferent kernel sizes. The next change proposed is the orientation extraction by computing
the wavelet responses of each keypoint, while also providing an alternative method, called
Upright-SURF, that skips the Orientation Assignment step, speeding up applications that do
not require considering multiple orientations. The SURF approach also provides the option
of using a more compact descriptor, reducing the dimensionality of each feature. Another
step proposed during the matching process is to only compare features with similar contrast,
reducing the number of comparisons required. This technique is similar to SIFT and is rec-
ommended for the same tasks, but it improves the algorithm’s performance. But which one
should be chosen between SIFT and SURF depends on the objectives to be achieved: if per-
formance is a major concern, then SURF is the preferred technique; otherwise, if accuracy
is more important, then SIFT is the preferred one.

2.2 Neural Networks

It is widely known that Neural Networks have an enormous influence on modern-
day Computer Vision [27], having achieved state-of-the-art results in many different chal-
lenges. Neural Networks fulfill primarily three main tasks in Computer Vision [19]: Image
Classification, Object Detection, and Image Segmentation. Each of those tasks has its own
scientific implication, but with ascending complexity.

The image classification task focuses on discerning if the image contains a char-
acteristic of interest, such as a person or a person performing a specific action. This task
is responsible for many important advancements in the area, resulting in architectures such
as the Visual Geometry Group [81] (VGG) and ResNet [31]. The task’s state of the art is,
most commonly, evaluated based on the Imagenet database [77], where some of the current
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best-performing approaches are the Meta Pseudo Labels [66] and Big Transfer [41] models.
Although this task is simple, it is the basis of the more advanced ones, where the proposed
solutions are used as the backbone of more complex tasks.

The object detection task focuses on identifying the position in the image that con-
tains instances of interest. This task, extending the previous examples, finds a bounding box
that indicates precisely where a person is located on the image or where there are people
performing actions of interest. Using AlexNet [42] as its backbone, the R-CNN architec-
ture [24] was one of the first works to address this task with neural networks, proposing a
two-stage process to perform the detections. The architecture underwent a series of mod-
ifications, later on turning to the Faster R-CNN architecture [74], which is still one of the
architectures in the literature with the best results. But being dependent on two stages
makes the R-CNN family computationally heavy and slow. With this in mind, architectures
such as You Only Look Once [72] (YOLO) and Single-Shot Detector [48] (SSD) were cre-
ated. These architectures unified the backbone and the bounding box computation into the
same process, highly improving performance but providing slightly worse results. As the next
class of difficulty following the classification task, this task is significantly more challenging
but provides more exciting results and applications.

Finally, the segmentation task tries to identify instances of interest on a pixel level of
precision, i.e., instead of giving the position, the task seeks to identify each pixel that consti-
tutes each instance. To address this task, one of the initial proposals introduced the strategy
of Fully Convolutional Networks [50], where the authors started with architectures proposed
for image classification (such as VGG) and changed all the fully-connected layers to convo-
lutional layers. Although the model did not achieve the ideal results, it provided important
insights necessary to develop new approaches. Segmentation is far more challenging than
the previous tasks, which is evident from the fact that there is a lot yet to be improved even
with all advances being proposed.

From the presented tasks, the object detection task is the best suited for us, in
the context of this work, as it encompasses well all our goals when processing the frames.
Alongside the task, we presented briefly important architectures in its history and some
interesting one-stage architectures for object detection. In the remainder of this section, we
will discuss those one-stage architectures more in-depth and introduce some other relevant
architectures for single-shot object detection.

The first model we will discuss is the YOLO architecture [72], whose first proposed
architecture is shown in Figure 2.1. This architecture went through many changes and op-
timizations in the last years [71, 73, 6], but we will focus on describing the initial strategies
employed to create the model. The main contribution proposed by the YOLO model is di-
viding the image in an arbitrary grid, where each cell in this grid makes a set number of
bounding box predictions alongside predicting the probability of each class being present in
that cell. Then, by combining the information from the bounding boxes with the probability
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predicted by the cells, the model can provide a confidence score that can be translated into
the probability of each box containing the predicted class. By using a single processing
stage, this model can save a lot of time when compared to the two-stage detectors previ-
ously discussed. To illustrate this difference, the original YOLO model was six times faster
than the Faster R-CNN model [74], although having less accurate results.

Figure 2.1 – Diagram representing the scheme of the original YOLO architecture.

The next model we will address is the YOLOv3 Nano architecture [92], illustrated
in Figure 2.2. This architecture proposes a highly compact deep convolutional neural net-
work based on the design principles of YOLO architectures. The authors also followed a
process of Machine-Driven Design Exploration to determine the optimal micro-architecture
that meets the original design requirements and a set of constraints. The three design con-
straints used by the authors were: (i) the architecture should achieve ≥ 65% mAP on VOC
2007; (ii) the computational cost should be ≤ 5B operations; (iii) the weights should abide
by 8-bit precision. Compared to the YOLOv3 architecture, YOLOv3 Nano is approximately
8.3× smaller and requires 17% fewer operations while increasing the mAP by more than
10%.

Another model we will address is the SSD architecture, illustrated in Figure 2.3.
This architecture proposes using a sequence of feature maps with decreasing size, allowing
for multi-scale detections. Each of those extra feature maps can produce a set of detection
predictions using convolutional filters. Finally, this architecture also proposes the usage
of “default boxes” on the initial feature maps, with a similar purpose to the anchor boxes
proposed by the Faster R-CNN architecture, but the default boxes are applied in different
shapes and multiple feature maps. Apart from the aforementioned advantage of using a
single processing stage, strategies such as the multi-scale convolutional feature maps make
the model 3 times faster than the Faster R-CNN model while also achieving better results.



17

Figure 2.2 – Diagram representing the scheme of the YOLO Nano architecture.

Figure 2.3 – Diagram representing the SSD architecture scheme.

The final model we will present is the M2Det architecture [95], presented in Fig-
ure 2.4. The architecture proposes the usage of a Multi-Level Feature Pyramid Network
(MLFPN) for feature extraction, which is composed of three modules: Feature Fusion Mod-
ules (FFM), Thinned U-Shape Modules (TUM), and a Scale-wise Feature Aggregation Mod-
ule (SFAM). The first module is responsible for fusing feature maps of the backbone to
enrich their semantic information. The second module allows for the extraction of multi-level
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multi-scale features. The final module aggregates the features by using scale-wise concate-
nation and attention modules. Then finally, similar to the SSD architecture, they estimate
the dense bounding boxes and categories based on the learned features. In their model, the
authors use a modified version of the backbone network where the fully connected layers are
removed, which improves significantly their performance when combined with the MLFPN
approach proposed. The model’s results compete with the state of the art of two-stages de-
tectors and achieved the best results out of the one-stage detectors when it was proposed,
while still being 4.5 faster than the Faster R-CNN model.

Figure 2.4 – Diagram representing the M2Det architecture scheme.

2.3 Model Compression

While neural networks have been achieving high results in various computer vi-
sion tasks, they also come with an inherently high cost of computational resources. This
section discusses valuable techniques that optimize resource usage, reducing the amount
of Multiply-Accumulate (MAC) operations while affecting detection results with as minimal
impact as possible.

The first technique we are going to highlight is Pruning [44], which aims to remove
unnecessary elements from models. This technique can be applied on multiple levels for
differing levels of impact on the resources saved and detection results. The lowest level
pruning is called Weight Pruning, where zeros replace redundant and non-relevant weights,
but it is the pruning strategy with the least impact. The next level of pruning strategies is
called Neuron Pruning (or Filter Pruning for convolutional layers), where the most negligible
neurons or filters are cut from the model, which is a more effective strategy than singling
out individual values. Finally, for deeper networks, it might be interesting to perform the
highest level pruning strategy: Layer Pruning, where layers that do not provide new relevant
information are cut from the network, thus having a high impact on both the resources used
and the results achieved by the model.
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The following technique we are interested in discussing is Quantization [21], which
changes the internal representation of the model’s weights to a smaller number of bits. This
technique allows us to reduce both the complexity of MAC operations and the final size of
the trained model. In addition to reducing the precision of the weights to smaller precision,
clustering can also be explored for quantization. In this strategy, each cluster is assigned
the value of a full precision weight, and each weight can be quantized to an index mapping
its corresponding cluster, where it can then retrieve its full precision value.

The last technique described will be Knowledge Distillation [7], which aims to train
a smaller student model to generalize as well as a bigger teacher model – which can be even
an ensemble of individual networks. In this technique, first, the teacher model is trained to
generalize the dataset well, then the student model is trained to replicate the generalization
capabilities of the teacher model. This technique allows us to achieve comparable results by
expending less computational resources and MAC operations for the same inputs.
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3. RELATED WORK

We conducted a literature review consisting of two stages to study state-of-the-art
works addressing Firearm Detection to identify what has already been done in the past years
and what needs improvement. In this chapter, we detail the procedure for each of the two
stages followed, discuss some of the selected works, present the datasets available in the
literature, and describe the conclusions of our findings.

In the following sections, we present the analysis and insights we found for each
group of papers. Section 3.1 describes the methodology followed to study the literature.
We start by presenting the datasets identified in the literature. Then, in Section 3.2 we
present the works that addressed gun detection with different goals in Section 3.3. Finally,
in Section 3.4, we discuss our findings from this study.

3.1 Methodology

Our literature review was divided into two stages: a Snowball procedure and a
query-based search. The first stage is responsible for analyzing the state of the art, which
allowed us to identify the research gaps that could be addressed. In the second stage, we
constructed a query tailored around the gap found, thus allowing us to select works that
addressed that specific issue – even if it was not their primary concern. By following these
stages, we aimed to encompass a representative portion of the state of the art and focused
on works that could significantly impact our work. The process followed for our literature
review is shown step-by-step in Figure 3.1, highlighting where each stage begins and ends.

Figure 3.1 – The process followed step-by-step during the literature study realized.

The first stage consisted of a two-step Snowball procedure parting from the work
of Lim et al. [47] (Figure 3.1-A), where we first applied a backward step, then a forward step.
By applying these steps, we arrived at a total of 50 papers (Figure 3.1-B), which were then
reduced to 37 after a selection process (Figure 3.1-C) by following the criteria presented in
Table 3.1. By analyzing these selected papers (Figure 3.1-D), we were able to identify that
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the efficiency of the models was a concern of most works, although in most cases it was left
as future work and few papers addressed it directly.

Based on these findings, we then constructed a query to search for works that
address the issue of efficiency, more specifically, focusing on works that address near-real
time efficiency (Figure 3.1-E). Using this query, we were able to retrieve a total of 139
papers that met the criteria (Figure 3.1-F), which were quickly reduced to 118 by removing
the duplicates from our initial collection of 50 papers. Then, due to the aim of this selection
being more specific and well-defined, we applied a selection process with more rigorous
criteria, as shown in Table 3.1. So, we reduced this selection to only five papers deemed as
relevant for our work (Figure 3.1-G).

Once concluded these two stages, we arrived at a total of 42 relevant papers, 37 of
those being more broad-scoped and encompassing the state of the art in a general manner,
and five of those that discuss more in-depth near-real time solutions. To understand how the
state of the art has evolved and to complement our original literature review that considered
papers published until early 2020, we conducted a small-scale query-based search following
the same procedure as the original. During this final step, we first selected 14 initial papers
that met our criteria, but we only chose six of these as pertinent to our objectives. With this
final search, we gathered a total of 48 works for our research.

We present the selected works in Table 3.2, ordered by when they were added to
our selection. Each row is colored by a shade of blue indicating the step in which each
work was added, starting with a lighter color for the initial paper for the snowball and getting
progressively darker for each snowball iteration, and then reaching the darkest shade on the
papers added after the query search.

In the following sections, we will present the analysis and insights we found for
each group of papers. The first group includes the works identified in the first stage and that
address firearm detection with varying goals. The second one contains the works selected
due to having addressed performance as a major concern.

Criteria Was used in
Addressed Gun Detection as one of its main focuses Both stages
Proposed between 2015 and early 2020 Both stages
Was available online as Gray Literature or have access pro-
vided by the University Both stages

Was written either in English or Portuguese Both stages
Addressed high performance as one of its main focuses Query-based retrieval
Presented state-of-the-art results Query-based retrieval

Table 3.1 – List of criteria we required for each work to fulfill, depending on which stage they
were identified, so that they entered our final selection.
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Work Published in
Gun Detection in Surveillance Videos using Deep Neural Networks [47] APSIPA ASC
A Computer Vision based Framework for Visual Gun Detection using Harris Interest Point Detector [85] IMCIP
Developing a Real-Time Gun Detection Classifier [43] Tech report
Automatic Handgun Detection Alarm in Videos Using Deep Learning [60] Neurocomputing
A computer vision based framework for visual gun detection using SURF [84] EESCO
Automated Detection of Firearms and Knives in a CCTV Image [29] Sensors
Object Detection Binary Classifiers methodology based on deep learning to identify small objects handled
similarly: Application in video surveillance [65]

Knowledge-Based
System

A binocular image fusion approach for minimizing false positives in handgun detection with deep learning [61] Information Fusion
Firearm Detection from Surveillance Cameras Using Image Processing and Machine Learning Techniques [23] ICSICCS
A Review on State-of-the-Art Violence Detection Techniques [69] IEEE Access (Vol. 7)
The Need for marker-less computer vision techniques for human gait analysis on video surveillance to detect
concealed firearms [57]

Tech report

Detection Of Concealed Weapons Using Image Processing Techniques: A Review [52] ICSCCC
Firearm Detection and Segmentation Using an Ensemble of Semantic Neural Networks [18] EISIC
Convolutional Models for the Detection of Firearms in Surveillance Videos [75] Applied Sciences
Use of Deep Learning for Firearms Detection in Images [8] XV WVC
A Novel Approach to Detect Crimes and Assist Law Enforcement Agency using Deep Learning with CCTVs
and Drones [64]

IJRASET

ADoCW: An Automated method for Detection of Concealed Weapon [70] ICIIP
Automatic Handgun and Knife Detection Algorithms: A Review [90] IMCOM
Localizing Firearm Carriers by Identifying Human-Object Pairs [3] ICIP
Gun Detection System Using Yolov3 [91] ICSIMA
Detection and Recognition of Handguns in the Surveillance Videos using Neural Network [30] IJRASET
Gun and Knife Detection Based on Faster R-CNN for Video Surveillance [20] IbPRIA
Weapon Classification using Deep Convolutional Neural Network [17] ICoICT
Crime Scene Prediction by Detecting Threatening Objects Using Convolutional Neural Network [58] IC4ME2
Graph clustering for weapon discharge event detection and tracking in infrared imagery using deep features [5] Pattern Recognition

and Tracking XXVIII
Firearm Detection using Convolutional Neural Networks [13] ICAART
AI Based Automatic Robbery/Theft Detection using Smart Surveillance in Banks [39] ICECA
Accelerated pistols recognition by using a GPU device [53] INTERCON
Crime Intention Detection System Using Deep Learning [59] ICCSDET
Hybrid weapon detection algorithm, using material test and fuzzy logic system [36] Computers & Electri-

cal Engineering
A handheld gun detection using faster r-cnn deep learning [88] ICCCT
An alternative method to discover concealed weapon detection using critical fusion image of color image and
infrared image [34]

ICCCI

Concealed weapon detection from images using SIFT and SURF [40] IC-GET
Cascaded Neural Networks for Identification and Posture-Based Threat Assessment of Armed People [1] HST
Suspicious Activity Detection in Surveillance Footage [49] ICECTA
Fire and Gun Violence based Anomaly Detection System Using Deep Neural Networks [55] ICESC
Gun source and muzzle head detection [97] Electronic Imaging
A Systematic Review of Intelligence Video Surveillance: Trends, Techniques, Frameworks, and Datasets [79] IEEE Access (Vol. 7)
Intelligent Surveillance System to Handle Sudden Arms Attack in Less Secured Areas [63] JAT
Development of an AI-based System for Automatic Detection and Recognition of Weapons in Surveillance
Videos [93]

ISCAIE

Deep autoencoder for false positive reduction in handgun detection [86] Neural Computing
and Applications

Real-time gun detection in CCTV: An open problem [26] Neural Networks
Deep multi-level feature pyramids: Application for non-canonical firearm detection in video surveillance [46] EAAI
A Dataset and System for Real-Time Gun Detection in Surveillance Video Using Deep Learning [68] IEEE SMC
Automatic Handgun Detection with Deep Learning in Video Surveillance Images [78] Applied Sciences
TYolov5: A Temporal Yolov5 Detector Based on Quasi-Recurrent Neural Networks for Real-Time Handgun
Detection in Video [16]

CoRR

Detection of weapon possession and fire in Public Safety surveillance camera [56] ENIAC 2021
Handgun Detection Using Combined Human Pose and Weapon Appearance [76] IEEE access (Vol. 9)

Table 3.2 – List of works that we selected, highlighting in which stage they were added to
our selection.

3.2 Literature Datasets

Several datasets for detecting weapons [35], crimes [82], and other objects [55]
and violent events [9] have been found in the literature. By studying the selected works, we
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identified no standard dataset in the area, and the existing datasets can be roughly catego-
rized according to the data they use. This insight is crucial for us to quickly filter undesirable
datasets and focus on those adequate to our objectives. The categories identified are as
follows:

• Movie Data: Some works focus on data taken from movies to base their models on
since there is a large amount of data available to allow for large datasets to be created,
such as the IMFDB [35]. But, because of a few characteristics of movies, such as video
quality and camera positioning, models based on these datasets don’t perform well on
real-world data.

• Enacted Data: Other works try to emulate real-life events to make their models more
appropriate for real-life applications than the movie-based counterpart. Although such
datasets are a better representation of real-life scenarios, they are generally much
smaller because they require much effort to create, which can be seen in datasets
such as the videos created by [28].

• Real Data: The final class of relevant datasets is composed of surveillance videos
made public. Even though these are the most representative datasets, they are pretty
rare, and few in numbers, and are not very large (sometimes being even a subclass of
a larger dataset, as in [82].

ID Dataset Type of Data Year Uses
[D01] Weapons-Detection [60] Movie Data 2018 15
[D02] IMFDB [35] Movie Data 2015 7
[D03] UCF Crime [82] Real-world Data 2018 4
[D04] Gun Movies Database [28] Acted Data 2013 3
[D05] Monash Guns Dataset [46] Acted Data 2021 3

Table 3.3 – This table presents the most frequently used datasets in the works we selected.

In our analysis, we identified 33 datasets used and sometimes proposed by the lit-
erature reviewed. Among these datasets, only five of them, which are presented in Table 3.3,
were commonly used among the selected works. It is important to note that we assigned
an ID to those five datasets, which are used in future discussions to reference back to this
table. In contrast to those, another eleven proposed datasets were used in just one work.
And the 17 remaining datasets were created but not made available. Thus we will not be
considering them for our analysis.

Although most works discussed the usage of firearm detection in CCTV cameras
scenarios, only three of the publicly made datasets focused on real-world data. Even con-
sidering enacted data, which had the most datasets at size unique proposals, the number of
works focused on security camera data was only the minority. For the movie category, five
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datasets were proposed and looking at Table 3.3, we can see that this category was vastly
more used than the others since the two most used datasets were part of it. This leads
us to a situation where most works explore the possibility of using firearm detection models
in real scenarios, but most of them use inadequate data for such scenarios. One possible
justification for this decision might be the difference in availability and size of these datasets
since it is a lot easier to acquire a large dataset of movies than in real-life cases.

3.3 Selected Works

We could identify two main research lines by analyzing the selected works: pro-
posals for firearm detection and the detection of concealed weapons. However, since our
search was primarily directed towards firearm detection in general, only a minority of the
selected works address concealed weapons as their primary objective. Moreover, to further
filter the works selected, we separated them into categories based on the research line they
followed: Works that used feature engineering [23, 29, 40], works that used deep features
with a two-stage detector [43, 88, 70], and works that used deep features with a one-stage
detector [47, 13, 93]. In the following sections, we present some proposals for each of the
previously mentioned categories, and give a brief description of the strategies employed.

3.3.1 Gun Detection with Computer Vision Techniques

Among the works that use engineered features, we will highlight three works pro-
posed for Gun Detection [29, 23, 36] and one work proposed for Concealed Gun Detec-
tion [40].

The works of Grega et al. [29] and Gelana and Yadav [23] propose a very similar
pipeline, where their model extracts patches from the image using foreground filters and a
sliding window method, which are then classified by a neural network. However, the work by
Grega et al. applies an intermediate step, using the PCA method to reduce dimensionality
before classifying the patch, while in their work, Gelana and Yadav address this problem by
using a more advanced network. With their pipeline, Grega et al. achieved a sensitivity of
36% when testing on [D04], and Gelana and Yadav achieved 93.8% sensitivity on the same
dataset.

Ineneji and Kusaf [36] propose a hybrid pipeline, using data from sensors to aid the
main pipeline, composed of 3 stages: feature extraction using a Bag Of Features method,
feature clustering using K-means, and an SVM for classification. And lastly, the work pro-
posed by Kaur and Kaur [40] uses a pipeline based on the combination of the SIFT and
SURF methods to select candidate regions, then classify those regions based on a set of
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rules. Both works experimented on their own dataset, which were not available. However,
they achieved high metrics, with Ineneji and Kusaf achieving an accuracy of 80% and Kaur
and Kaur achieving a sensitivity of 90%.

3.3.2 Gun Detection using Two-Stage Detectors

For works that use deep features, we will highlight three two-stage proposals,
where two of them address Gun Detection [43, 88] and one addresses Concealed Gun
Detection [70].

The model proposed by Lai and Maples [43] uses the Overfeat architecture to per-
form the detection, achieving an accuracy of 89% using images from [D02]. For their work,
Verma and Dhillon [88] use the Faster R-CNN architecture, using the VGG-16 backbone,
achieving 93% accuracy on [D02] images. Similar to the previous work, the work by Raturi
et al. [70] also employed the Faster R-CNN architecture, although not specifying the back-
bone used. They built their own dataset, taking images from datasets such as [D01], and
achieved 95.8% accuracy, but did not make the dataset public.

3.3.3 Gun Detection using One-Stage Detectors

For the second group that uses deep features, we will highlight three one-stage
proposals [47, 13, 93], all of them addressing Gun Detection.

The work proposed by Lim et al. [47] employs the M2Det [95] architecture, using
a VGG-16 [81] backbone, seeking to improve performance when compared to the state-
of-the-art. However, they lose significantly in their detection results, which is evidenced by
the 22.3% accuracy achieved on the UCF Crime dataset (see Table 3.3). In their work,
De Azevedo et al. [13] went a step further, using the YoloV2 [71] architecture to achieve
a performance gain but still achieving high detection results with 96.3% accuracy on the
custom test set made. And lastly, the work by Xu et al. [93] proposes the usage of the
SSD [48] architecture with a MobileNet [32] backbone, seeking to have a slightly better
performance than the heavier models while not losing too much on the results reached
since they achieved 85.2% precision on the dataset they made.
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3.4 Discussion

Through the analysis of the selected papers, we identified that the issue of perfor-
mance was not explored very often in this area, although being one of the most frequent
suggestions for future work, as shown in Figure 3.4, but it has gained substantially more at-
tention in recent years [23, 79, 16]. Monitoring the videos from security cameras is essential
to identify the moment a particular event begins so that the safety of the innocent involved
can be preserved as much as possible. This shows the importance of having a high perfor-
mance to process each instant of the video quickly, and hence, the importance of studying
efficient architectures such as those previously presented.

Figure 3.2 – Amount of papers selected, grouped by year of publication.

Although research in this area has received more attention in recent years, as
shown in Figure 3.2, few works addressed the performance issue in real-life scenarios. We
identified that few papers proposed contributions to solve this problem and, analyzing the
charts in Figure 3.3, it is also observed that, recently, this problem is rarely addressed as
a proposal for future work, even though it is still open [26] and is clearly very important for
innovative solutions to be applied in real scenarios.

From the overview presented throughout Section 3.3, we can observe that it is
hard to fairly compare the methods in the area, as many works use diverging datasets and
focus on different types of data. Even when analyzing the most frequently used datasets
discussed in Section 3.2, we can see no standard between them. In Figure 3.4, we can see
the recurring future work proposals identified in our study, where achieving better datasets
is by far the most frequently mentioned proposal. Thus, the biggest concern in the area is
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Figure 3.3 – Distributions of future work proposals over the years, as observed in our selec-
tion. Works that did not propose any future work were not considered for this analysis.

the lack of representative datasets. While most of the datasets found in the literature are
composed of acted scenes (see Section 3.2), some works, such as Sultani et al. [82] and
Lim et al. [47], stand out for presenting data from actual events captured by security cameras
and made available to the public. Nonetheless, while those datasets contain exciting data,
they lack amount, diversity, and structure since most of them constitute a set of videos or
contiguous frames marked as having or not the object of interest instead of more a precise
annotation.

Figure 3.4 – Distribution of future work proposals by the selected papers.

Through the analysis of the works, it was also possible to identify that the most used
technique was the Faster-RCNN [74] architecture, being also the technique adopted by the
papers that presented the best results in representative datasets, such as Pérez-Hernández
et al. [65] and Raturi et al. [70]. However, although this technique presents excellent results,
it does not have an ideal performance and is a “heavy” architecture. Thus, it requires many
computational resources, making it unsuitable for limited-hardware scenarios.
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After this study, which showed the need to have an enhanced dataset, we decided
to create a new dataset to try to fulfill all the lacking characteristics identified on the ones
present in the literature:

1. We chose to include only real-world data on our dataset since we want to encourage
research applied in real-world scenarios.

2. We gathered data from multiple sources, thus introducing high variability and quantity
of data.

3. We also chose frame-level annotations for object detection that can be easily adaptable
for other tasks, such as scene or clip classification.
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4. RESEARCH METHODOLOGY

To develop this project, we planned the ten activities shown in Figure 4.1. The
first four activities encompassed studying and understanding the literature. In activities five
and six, we defined the main goal, the contributions, and the requirements for this work.
Activities seven through nine are responsible for the development of our solution. The last
activity involves compiling our findings, results, and limitations for writing the dissertation and
submitting a paper to a conference or journal. The following sections detail these activities,
which were grouped into three phases.

Figure 4.1 – List of the main activities constituting this project.

4.1 First Phase

When choosing the research problem to be addressed in this work, we sought
to explore areas that had real-world implications in our current society. Our initial step (Fig-
ure 4.1-1) was to investigate the surveys in the literature about surveillance video processing.
Then, we identified that Firearm Detection was growing as a research area with still many
challenges to be addressed. After deciding on firearm threat Detection as a research prob-



30

lem, we conducted the literature study discussed back in Chapter 3, through which we could
then finally identify a challenge significant for the chosen research problem (Figure 4.1-1– 4)
that was not fully addressed in the literature.

4.2 Second Phase

Once we decided precisely the points we wanted to address, we needed to formally
stipulate what we would need to do to achieve our goals (Figure 4.1-5). Our first step was
to decide the dataset we would use as a basis for the evaluation of our approach. For this,
we searched the literature for datasets available online that contained interesting data for
our challenge. Meanwhile, we also started studying the area of Model Compression and
chose a set of techniques that we were interested in exploring further. These techniques
were chosen based on effectiveness and complexity to understand. We decided on this
because we were just learning these techniques, and we were afraid that misunderstanding
and misusing them would have an undesirable impact on our model.

Then, we gathered some datasets to join them into a final group of data (Fig-
ure 4.1-6), which is described in detail in Chapter 5. This stage was needed because,
as mentioned before in Section 3.2, real-life data is very scarce, and we could not find a
satisfactorily large dataset. Thus, our approach to this issue was manually joining the best
datasets, among the previously identified, and including novel data we gathered to form a
challenging and diverse final dataset. This process introduced a few challenges since the
datasets we found varied by how the annotations were done and different data formats, e.g.,
images and videos.

Next, to assess whether the dataset is adequate or needs improvements, we used
it to train some state-of-the-art models and extracted some metrics. These metrics were
used to assert that the data is ample and diverse enough that the models could properly
learn from it, instead of being forced into pitfalls such as overfitting, and demonstrate how
challenging our final dataset is.

4.3 Final Phase

In the next activity (Figure 4.1-7), we studied more in-depth and experimented with
the chosen Model Compression techniques. We explored many combinations and hyper-
parameters to see which would yield satisfying results and which were not fit for our work.

Once the most cost-efficient strategies are selected, we advanced to the next ac-
tivity (Figure 4.1-8), where a set of experiments were conducted both on ideal and limited
conditions. This way, we can compare the strategies amongst themselves and contrast their
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performance against how the state-of-the-art performs on both conditions. Through this
analysis, we could acquire unbiased insights about how the models perform since some
strategies may be more appropriate for one scenario rather than the other. Making this
disparity will highlight the advantages of each strategy for the scenario they excelled.

Then, by analyzing the results and metrics extracted, our next activity (Figure 4.1-9)
focused on studying the weak points of the strategies selected and making adjustments to
address those weaknesses directly. Once the refinements were done, we could assign a
score to each strategy to objectively rank the strategies amongst themselves, encompassing
their performance and robustness.

On our last activity, after finishing these refinements, we selected our best strategy
and compiled the information gathered from the set of experiments performed. By doing
so, we can fully state our main contributions, what metrics support our claims, and our
limitations. Furthermore, having these formally stated, we concluded the dissertation to
focus on producing a paper.
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5. PROPOSED DATASET

We initially did a literature research to identify which datasets were being used,
their characteristics, and what could be improved, as discussed in Section 3.2. After, we
decided that the paramount quality we want on our dataset is a high variability amongst
the images, i.e., we are not interested in a contiguous sequence of frames but frames that
present new information not shown by previous frames. Then we started gathering images,
preprocessing them, and lastly annotating and anonymizing faces on them. The following
sections describe in detail each of the steps presented in Figure 5.1 and followed to develop
FiDaSS. Our dataset and the tools designed to create it are available online1.

Figure 5.1 – Presentation of the steps followed to create our dataset.

5.1 Data Collection

The creation of FiDaSS was divided into two stages. First, we analyzed the datasets
described in the literature, starting with the most-used ones shown in Table 3.3. Then, we
searched the lesser-known ones to understand what we could use and to build a strong ba-
sis of what we wanted in our dataset. In the second stage, we selected a collection of videos
from YouTube and a local news company to further enrich FiDaSS with various scenarios
and situations. Even though our work focuses on everyday events, most recordings are
not shared online due to belonging to security companies or other privacy matters, making
collecting an ample amount of varied data difficult.

After analyzing existing datasets, we selected those that focused primarily on real-
world data from security cameras: UCF Crime and Weapons in Images [38]. When choosing
which videos to analyze further, we chose those that contained at least one moment that
clearly displayed the weapon (where it could not be confused with another object). We also
demanded that a criminal appear (thus avoiding situations including only cops, for example).
Since there was an intersection between the datasets selected, we conducted a manual

1https://github.com/MuriloRegio/FiDaSS

https://github.com/MuriloRegio/FiDaSS
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verification to remove all overlapping data from the selection – which we performed once
more at the end of the next stage.

Then, to complement the data that we selected from the datasets in the literature,
we sought new and still unexplored data from YouTube. In the first step, we conducted a
query-based search to create an initial selection of videos using the keywords [surveillance
video armed robbery, CCTV assaults, guns in CCTV, assault caught on camera, assaltos
à mão armada]. So, we filtered the videos found based on our previously defined criteria
(clearly displaying a weapon and with a criminal appearing), arriving at a total of 39 videos.
For the next step, we started collecting new videos based on YouTube’s recommendations
alone, leading us to new videos from different cultures that were not represented by our
query, which were then filtered by the previously presented criteria, thus accumulating 162
more videos for our dataset. The playlist with the selected and filtered videos is available
online2. Thus, in the end, we selected 201 videos from YouTube depicting crime scenes
from different countries and cultures.

Finally, to further expand our dataset, we contacted a local news company, request-
ing access to some videos provided to them depicting recent crime scenes from the region.
Upon receiving their approval, they provided us with 13 novel videos.

5.2 Dataset Annotation

Before annotating FiDaSS, since we are interested in image annotations instead
of video annotations, we converted the videos we selected into a set of frames. Then, to
satisfy our constraint of data variability, we manually analyzed all of the frames extracted and
chosen for our final dataset only the frames that provided new variations from their prede-
cessors (e.g., different angles, illumination levels, positioning). Following this procedure, we
transformed seven hours of video to form our final dataset of a total of 6942 images. These
images were then annotated so that the bounding boxes would include both the gun and the
person handling them, thus making our dataset not focused on the weapons themselves but
the action of people using them. We present a selection of a subset of images present in
FiDaSS and their corresponding annotations in Figure 5.2.

We adopted some measures to provide a thorough and fair annotation process
since some scenes were not clear and, thus, not intuitive whether they should be annotated
and how. We conducted two parallel annotation processes, where each person analyzed all
the selected images and decided which threats to annotate and which were too ambiguous.
Then, after both were done, we conducted a discussion session to decide what to do with
annotations that differed from each person. Therefore, our final dataset is the consensus
reached between researchers and carefully made annotation decisions.

2https://www.youtube.com/playlist?list=PLnq5fLsdu5RqPUGq3r4rgyY5m_pM9h3HB

https://www.youtube.com/playlist?list=PLnq5fLsdu5RqPUGq3r4rgyY5m_pM9h3HB
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Figure 5.2 – Example of images from our dataset, showcasing the diversity of situations
present in the images we have gathered with their corresponding annotation.
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While annotating the images, we only considered information from the current
frame to avoid an “unfair” ground truth on some of them. This was needed because some
frames had ambiguous or hard to discern objects since security cameras usually record
poor-quality videos. In these cases, we would only know for sure what these objects were
if we had information from past and future frames. We present some cases in Figure 5.3.
Thus, since we are interested in frame-level detections, we avoided using knowledge from
other frames and factors such as body language when deciding if a firearm threat was within
our scope.

Following this methodology, we annotated a total of 4307 firearm threats over 3942
images of our dataset. Furthermore, we also selected 3000 additional images for our dataset
that did not include our event of interest or similar situations, which were included to help
enhance the recall of the predictions. As explained before, since some images rely on subtle
information such as body language, we analyzed that it was beneficial to include counter-
examples so the learning algorithms could better differentiate the situations.

Furthermore, in cases where the image quality was clear enough to recognize
someone’s face, we applied a Gaussian Blur on people’s faces to preserve their anonymity.
We used the face detector proposed by Zhang et al. [94] to apply the blur automatically.
However, we had to review all the images and manually apply the blur where the algorithm
failed to detect a face. Then, using the tools developed (which are available together with
the dataset), we annotated the images to include the whole body of the person posing as an
armed threat – as shown in the cropped annotations in Figure 5.3.

a. b. c.

Figure 5.3 – Example of an image from our dataset (a) and the annotation in the subsequent
frames. Images in (b) are adequate for our dataset, and in (c) are inadequate due to being
too hard to identify the gun without temporal context. The images shown in (b) and (c) are
cropped exactly in the area of corresponding annotations. The red circles however were only
included as visual aid.
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5.3 Dataset Augmentation

To promote more diversity in the data of FiDaSS, we applied data augmentation
techniques to create variations of the images we had previously selected. Given both the
number of images we had and the number of random changes we applied to each one, we
decided that creating three new variations of each image would be enough to enhance the
performance of learning algorithms without introducing issues such as overfitting.

We applied a pipeline of seven transformations to each of our images, with random
parameters, to create still recognizable but highly variable outputs. The transformations
applied in our pipeline were, in order:

• Gaussian noise;

• HSV-space variation;

• Horizontal flips;

• Scale reduction;

• Plane translation;

• Plane rotation;

• Shear mapping.

Figure 5.4 presents some examples of input images and the variations introduced
by our data augmentation pipeline. We developed a tool to apply this pipeline and created,
with pseudo-random parameters, three new augmented variations of all training images.
However, we discarded cases where a transformation omitted an annotated region of the
image, thus providing 14372 additional examples to complement our dataset.

5.4 Datset Statistics

This section encompasses a discussion on some properties of FiDaSS and com-
pares it to those presented in Section 3.2. We also address the necessity of annotating
data from the datasets highlighted in Section 5.1 and why the original annotations were
insufficient.

One important characteristic of FiDaSS is that we made the annotations directed
towards the task of object detection in real-life scenarios. To the best of our knowledge,
considering our literature analysis, there is no dataset presenting those characteristics, and
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a. b.

c. d.

e. f.

g. h.

Figure 5.4 – Examples of our data augmentation on sample images, shown step by step:
(a) the original images; (b) Gaussian noise; (c) HSV-space variation; (d) random horizontal
flips; (e) scale reduction; (f) plane translation; (g) plane rotation; (h) shear mapping.

that also contains a substantial amount of images. Among the datasets highlighted in Ta-
ble 3.3, although they have a large amount of data, only one of them presented exclusively
real-world data, and none had annotations for the object detection task, only for image or
video classification.

Number of annotations Quantity Percentage
0 2955 42.84%
1 3611 52.36%
2 303 4.39%
3 23 0.33%
4 4 0.06%
5 1 0.01%

Total 6897 100%

Table 5.1 – Distribution of objects per image of our dataset.

We present in Table 5.1 the composition of the dataset we built and, in sequence,
the composition of our augmented dataset in Table 5.2. These tables show how many an-
notations each image has and how many images contain that amount of annotations. It is
important to mention that we used 70% of the dataset for training and only created aug-
mented versions for this portion of the dataset. Also, when separating the frames into sub-
sets (training, test, and validation), we ensured that frames from the same video were in the
same subset to not have similar frames from the same video in the training and test sets, for
example.
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Number of annotations Quantity Percentage
0 6165 42.90%
1 7541 52.47%
2 599 4.17%
3 55 0.38%
4 9 0.06%
5 3 0.02%

Total 14372 100%

Table 5.2 – Distribution of objects per image our augmented dataset.

Amount of Total SelectedDataset of Origin selected Videos Frames
Youtube Playlist 201 1531

UCF Crime 392 5034
News Company’s Videos 13 258

Weapons in Images 11 74
Total 617 6897

Table 5.3 – Total data acquired from each data source.

Table 5.3 presents the datasets we used as the basis to create ours. It also shows
the number of videos taken from each dataset and the total number of frames selected from
all those videos. Although most of FiDaSS already existed in the literature, constituting
74.06% of it (54.62% of images with objects of interest), we have carefully and rigorously
selected the most relevant frames, which were previously only available as raw videos. More-
over, the remaining 25.94% (45.38% of annotated images) of FiDaSS contains novel data,
including people wearing masks due to COVID-19’s security norms.

In Figure 5.5 we present the distribution of size occupied by the annotated regions
in images of our dataset. Since our data relies solely on images from security cameras, we
can observe that most objects of interest are further away (i.e., they occupy a smaller portion
of the image). However, we can also see that some images are zoomed in or close to the
incident, as some annotated regions occupy up to 86% of them. Just in one extreme case,
an annotation occupied 100% of the image.

After describing FiDaSS’ properties, it is important to compare it with the most used
datasets identified, shown in Table 3.3. While the datasets Weapons-Detection and IMFDB
contain the most data among those analyzed and ours, they have images from movies or
without context primarily and thus are not ideal for real-world applications. The Gun Movies
Database provides more accurate data by recording scenes with a security camera but only
provides seven videos shot in a laboratory. A more interesting dataset, given our goals, was
the recently released Monash Guns Dataset which provides a plethora of data and bounding
box annotations for object detection. This dataset is very exciting and has a lot of potentials,
shown by the number of works that have already been using it in the relatively short time it
has been available. However, this dataset is has a considerable portion of it made of acted
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Figure 5.5 – Size distribution of each object of interest in FiDaSS compared to how much of
the image it covers.

data, but we wanted a dataset exclusively of real data. Finally, the UCF Crime dataset pro-
vides real-world recordings of several events, the ones relevant to this work being Robbery
(with 150 videos available) and Shooting (with 50 videos available). With the desired type
and a vast amount of data, this dataset was close to ideal. Its most significant issue was how
the data was provided with clip-level labels instead of more detailed frame-level annotations.
Thus, with the development of our dataset, we tried to cover these issues, providing a large
number of images obtained from real scenarios and with frame-level annotations.
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6. PROPOSED MODEL

This chapter presents in detail how we approached the issue of firearm threat de-
tection, how our model is subdivided, and what challenges were addressed. In the following
sections, we present the model overview, the architectures and Model Compression tech-
niques chosen, and how they were used to address the challenge.

6.1 Model Description

Our proposed solution consists of three main states, which are illustrated in Fig-
ure 6.1: on state A our model reads a frame from the input channel; once a frame is read,
our model advances to state B, where it will use the firearm threat detection architecture de-
veloped to look for any use of firearms in the scene; then, our model reaches state C, where
the detection results are collected and, before looping back to state A, our model sends an
alert or notifies the personnel responsible for the CCTV monitoring, in case the results indi-
cate that there is a dangerous event happening, so that they may take the necessary actions
for the given situation.

Figure 6.1 – Overview of model states.

Since our model aims to preserve the safety of people involved in dangerous
events, the earlier we identify such an event starting, the safest the people involved will
be. Because we intend for our model to be accessible to the general public without requiring
high investment in hardware or complex systems, our model needs to run efficiently on a
vast majority of systems, especially considering budget options. Due to the heavy hardware
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restrictions imposed, we foregone processing data in clips and worked only on frame-by-
frame detections. Although clip-level detection could provide better results, it requires more
complex and specialized approaches. Furthermore, the hardware we explored could not sat-
isfy our performance restrictions with these approaches. However, our model still requires
a human operator to verify the gravity of the identified situations, especially since we had to
sacrifice the detection quality for more efficiency.

Because we intend for our model to be usable by a broad spectrum of systems
and hardware constraints, we planned our model around two key concepts: flexibility and
versatility. That means that the states presented for our model are constituted of indepen-
dent modules that can be changed, adapted, or optimized freely to suit each system better.
State A encompasses modules responsible for capturing data from the environment, receiv-
ing it from the camera, and preprocessing it. For example, a small surveillance system might
use an IP camera to monitor the environment transmitting the frames to the processing unit
through the local network. Upon receiving them, the model would adjust some of the frames’
qualities (e.g., their dimensions). Then, state B contains the modules responsible for pro-
cessing, identifying, and locating firearm threats in the received images. Continuing the
previous example, the processing unit would evaluate the frames using one of the trained
networks available. Finally, on state C, we process the detection results and make decisions
based on them, to decide whether personnel should be notified or not. Concluding the exam-
ple, in this state, the model could be arranged to send a message to the person responsible
for the environment’s security with a copy of the accusing frame when a dangerous situation
is identified.

For our case study, we wanted to evaluate an implementation of our model on a
system that had few computational resources available, and that would be easy to acquire
and operate. By satisfying these conditions, we would guarantee that a large number of
people would be able to use our model, and would leave the option for more knowledgeable
people to adapt our model to fit optimally to their needs. The system we decided was the best
fit for these conditions was a smartphone, as people could use their old smartphone after
buying a new one and most people are familiar with how to operate a smartphone, and finally,
older smartphones fit perfectly into our restrictions of having few resources available and no
specialized hardware. Thus, the way we implemented our model in our case study was to
use the smartphone’s camera to capture data on state A. The images were then transmitted
to the next module through a socket in the localhost, then resized and transformed to fit
the network’s necessities. Once the images are ready, we feed them to a YOLO network
in small batches during state B. Finally, the detection results are processed on state C by
applying a small set of postprocessing computations, using these to decide which cases
should be notified and which should not. Since our model implementation allowed for easy
substitution of modules, we could easily make use of another smartphone’s camera a as
method of capturing data for state A or change the network architecture used in state B.
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This implementation of our model is available alongside FiDaSS1. In the following sections
we discuss the network architectures we explored for our model, followed by the model
compression techniques we employed to achieve a satisfying performance.

6.2 Network Architecture

When deciding the network architecture we would focus on and modify, considering
all the restrictions of our case study, we concluded that the YOLO architecture would be a
solid basis to build upon to achieve our goals. When addressing the issue of performance in
neural networks, few architectures stand out as much as the YOLO architecture, famous for
excellent performance while also having great results for object detection.

The YOLO architecture is helpful since it was made with efficiency being one of
its main concerns. However, another significant advantage of using this architecture is the
variety of options available. The YOLO-Tiny model is an example of an available option and
the most important for our study. This model, in particular, is specially crafted for higher
performance and less computational cost than the base YOLO model. Another class of
models has been explored in recent years, the YOLO-Nano model. These studies started
with the YOLOv3 architecture [92] and have received increasing attention, especially with the
recently released YOLOv5-Nano [16]. Such models have achieved exceptional performance
results while still maintaining great detection results.

Inspired by this and employing the newly acquired knowledge of Model Compres-
sion, we proceeded to further expand on Tiny and Nano’s key features and lower its hard-
ware restriction even further. The following section addresses the Model Compression tech-
niques we explored and how they were employed.

6.3 Compression Methods

As mentioned in the previous section, because of how restrictive our case study
scenario is, we have chosen state-of-the-art efficient neural networks as the basis for the
implementation of our model. However, after some initial experiments, we identified that they
still were not efficient enough to achieve the desired performance on our limited-hardware
scenario. Thus, to address the challenge of adapting a neural network into our hardware-
restricted scenario, we decided to adopt some model compression techniques to reduce the
number of computational resources required by the network during inference. To achieve
this, we selected the techniques pruning and quantization, which directly affect the number

1https://github.com/FiDaSS/FiDaSS_dataset

https://github.com/FiDaSS/FiDaSS_dataset
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of resources the network requires and experimented with combining different strategies to
approach each of these techniques. It is important to note that whenever we experimented
with a combination of these techniques, we also included a fine-tuning step to guarantee
that the compressed model would achieve the best results it could.

The first technique we explored was pruning, which allowed us to minimize the
number of redundant and irrelevant information stored on the trained model. We focused on
two main approaches to pruning: Weight Pruning and Filter Pruning. The process of Weight
Pruning consisted of identifying the least important weights, and a portion of those that least
contribute to the network’s output, based of a percentage informed as a hyper-parameter,
are substituted by zero by applying a binary mask to the weights of each filter, When applying
Filter Pruning we removed irrelevant weight values by applying a zero-mask to each filter,
changing those specific weights to zero, and then proceeding to cut a percentage of the
least relevant filters from the model.

Then, after we had chosen which prune approach we would use, if any, we pro-
ceeded to choose a quantization approach. We experimented with two quantization ap-
proaches, in both cases mapping the float weights to 8 − bit values. The first quantization
we used is made by Google and proposed by Jacob et al. [37], which allows for integer-only
operations during inference. The second one is called DoReFa-Net and was proposed by
Zhou et al. [96], which specializes in low bitwidth representations.
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7. EXPERIMENTAL RESULTS

In this chapter, we provide an assessment of FiDaSS on Section 7.1, demonstrat-
ing how challenging the dataset is by presenting an evaluation of state-of-the-art neural net-
works trained on it. Additionally, we also provide comparisons between the model compres-
sion techniques explored. On Section 7.2.1 we present comparisons between the results
each technique achieved, while on Section 7.2.2 we discuss how the techniques compare
when applied to our case study.

7.1 Dataset Evaluation

FiDaSS aims to promote more research in the area by introducing a novel, chal-
lenging object detection dataset. We used FiDaSS to train five state-of-the-art architec-
tures: YOLOv4-Full [6]; YOLOv4-Tiny [6]; YOLOv3-Nano [92]; SSD300 [48] with an Effi-
cientNetB3 [83] backbone; SSD512 [48] with a VGG-16 [81] backbone. After which, we
used them to evaluate our case study and assess our dataset. For the training of our mod-
els, and later for the inference, we used a machine with an NVidia GeForce RTX 2080 GPU
with an 8GB memory, 64GB RAM, and an i5-9400F 2.90GHz CPU with six cores. The met-
rics we adopted to compare the results achieved were: Precision, Recall, Average Precision
(AP50), and F-measure (F1).

Annotated Images Non-Annotated Images Amount of ImagesConfiguration ID Original Augmented Original Augmented Training Validation Test
Configuration #1 X 2716 623 603
Configuration #2 X X 10776 623 603
Configuration #3 X X 4770 1068 1056
Configuration #4 X X X 12830 1068 1056
Configuration #5 X X X X 18994 1068 1056

Table 7.1 – Description of the different data configurations we experimented with.

Before starting our experiments, we organized our dataset in five different config-
urations, shown in Table 3.3, each using a unique combination of data. Each configuration
corresponds to the presence or absence of the following data groups: images containing
firearm threats, images not containing firearm threats, and their respective augmented ver-
sions. Instead of only training one dataset, we were interested in analyzing how adding and
removing data would impact the results achieved by the networks. However, when com-
paring multiple architectures, we only used configuration #1 as a basis and used all five
configurations only on YOLOv4-Tiny, which we focused on in this research.

We present the results achieved by the five architectures trained on Table 7.2. We
can observe that the results obtained are not ideal and would need to be improved a lot
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Architecture Precision Recall AP50 F1
YOLOv4-Full 65.27% 67.28% 55.46% 59.97%
YOLOv4-Tiny 73.56% 33.49% 29.19% 46.02%
YOLOv3-Nano 39.97% 24.53% 18.57% 30.40%

SSD300 69.77% 61.62% 53.02% 65.24%
SSD512 71.74% 61.11% 53.20% 66.00%

Table 7.2 – Results achieved by training each architecture on FiDaSS.

before they could be used in a real-world scenario, given the severe implications incorrect
predictions may implicate. While the YOLOv4-Full and SSD architectures achieve overall
better results, the YOLOv4-Tiny architecture achieves the best precision, although it also
has a very low recall. While we were interested in exploring the YOLOv3-Nano architecture,
since it is optimized for high performance, it could not generalize our dataset well and its
results were a lot lower than we expected.

Training Precision Recall AP50 F1
#1 73.56% 33.49% 29.19% 46.02%
#2 69.30% 36.57% 30.10% 47.88%
#3 70.93% 43.67% 36.49% 54.06%
#4 73.49% 37.65% 33.06% 49.80%
#5 73.90% 31.02% 26.88% 43.70%

Table 7.3 – Results of each of our training configurations.

Table 7.3 presents an assessment of YOLOv4-Tiny on the five configurations of our
dataset. We can see that changing which groups we used had little effect on precision, but
including images without firearm threat caused a significant increase in the model’s recall.
Something surprising and unexpected is that including augmented images without firearm
threat lowered the recall a lot, being the lowest recall of all five experiments, but also had a
small positive impact on precision, achieving the highest of the experiments.

7.2 Model Compression Evaluation

To identify the most valuable combination of the model compression techniques
studied, we conducted two sets of experiments: an evaluation of the results achieved by
each combination, discussed in Section 7.2.1, and an analysis of the performance they
achieved on our case study, presented in Section 7.2.2.
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7.2.1 Detection Performance

In this section, we address the experiments about the results achieved, discussing
how each technique performed on average, what were the best combinations, and the in-
sights gained from these experiments.

Configuration ID Prunning Strategy Quantization Strategy
CFGA No Quantization
CFGB No Pruning Google’s Quantization
CFGC DoReFa-Net Quantization
CFGD No Quantization
CFGE Weight Pruning Google’s Quantization
CFGF DoReFa-Net Quantization
CFGG No Quantization
CFGH Filter Pruning Google’s Quantization
CFGI DoReFa-Net Quantization

Table 7.4 – Description of the different model compression combinations we experimented
with.

We performed this set of experiments with a very similar methodology to those
presented in Section 7.1. We started by organizing the combinations we would be apply-
ing to the network, presented in Table 7.4, and deciding on hyper-parameters such as the
percentage of the model that would be pruned. Although we initially conceptualized using
four different pruning percentages, those being [0.1%, 5%, 10%, 25%], our initial experiments
showed no interesting new results from using most of them as generally they would either
underfit or overfit to our dataset. Thus we decided to focus only on a pruning percentage of
0.1%, as it was the one that showed the most exciting results. Then we proceeded to set up
our training environment, using the same system as the experiments in Section 7.1, as well
as preparing a small set of tools to help us manage the training sessions and the evaluation
results.

To evaluate each combination, we decided that it would be interesting to see how
they performed after being trained by different group configurations of our dataset, from
those presented in Table 7.1, deciding ultimately on configurations #1, #3, and #5. However,
since we are comparing the results achieved by the different techniques and combinations,
we decided it would be better to use the same validation and test sets for all trained networks,
as it provides a more fair evaluation. By looking at Table 7.1, we can see that configurations
#3 and #5 already shared the same test and validation sets, while configuration #1 used
different ones. Thus, for the context of this evaluation only, we made so configuration #1
would share the same data sets as the other two configurations, making the training set the
only distinguishable feature between the three configurations.
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The results achieved by the combinations explored are presented in Table 7.5,
where each training realized corresponds to a triple of (Precision, Recall , Average Precision).
We start by presenting the results achieved by the base network, which were already dis-
cussed in Section 7.1, but served as a relevant basis of comparison. However, it is important
to note that these base results were acquired using a different resolution from the one we
used in these new experiments. For our previous experiments, we used a rectangular input
of dimensions (768, 480), which is approximately the average of the many different original
resolutions from the data we gathered for FiDaSS. However, for these new experiments, we
used a square input of dimensions (512, 512) to reduce the number of pixels on the image,
thus improving the performance of our model by both reducing the load needed during I/O
and the amount of data the neural network needed to process.

Analyzing our results, the first thing we noticed was also something we did not ex-
pect: applying model compression to our trained networks caused a significant increase in
their average precision. While we did expect it to change, since we were removing extra and
irrelevant information, the amount changed was beyond our expectations and demonstrates
that model compression can be beneficial not only to performance but also to improve the
model’s overall quality. This is further reinforced by the results of configurations CFGB and
CFGC, where adding quantization and reducing the input’s dimensions caused an improve-
ment on each training’s recall, especially those trained on configuration #1. Although a
major part of the massive improvement in this configuration, in particular, is because while
the original training used only data with firearm threat, it was fine-tuned using images with-
out these events, thus allowing it to differentiate better between these two situations. It is
also interesting to note that, while CFGB with Google’s quantization method achieved the
best average precision for configurations #1 and #3, the combination of Filter Pruning and
DoReFa-Net’s quantization method were responsible for the best average precision of the
training configuration #5.

7.2.2 Time Performance

In this section, we present the final set of experiments realized, which corresponds
to the evaluation of the model compression techniques on our case study. These exper-
iments were conducted in a Samsung Galaxy S7, with eight cores (4× 2.60GHz Exynos
M1 and a 4× 1.59GHz Cortex-A53) with 4GB RAM. It is important to note that the perfor-
mance shown is an average of five executions, which ran in sequence after rebooting the
smartphone. We did this to avoid having any cached data influencing the performance of
the executions, thus ensuring that we can compare our results fairly.

Before checking how the compressed networks performed on our case study, we
first analyzed the performance of the original architectures on it. These initial results were not
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ideal as the YOLOv4 architectures performed very poorly on the limited-hardware scenario
we proposed. Ideally, we would want to use the YOLOv4-Full for our model since it achieved
the best results on our dataset (as discussed in Section 7.1). However, it was the worst-
performing architecture of these initial experiments by performing about 10× slower than
the YOLOv4-Tiny, the second-best performing model of this initial batch of experiments. As
expected, the YOLOv3-Nano architecture was the one that achieved the best performance
out of the architectures we explored, but we had already identified that it could not generalize
our dataset well and thus was not a good fit for our model. Therefore, based on these initial
results and the ones presented in Table 7.2, we decided to focus the model compression
evaluation primarily on the YOLOv4-Tiny architecture, even if it did not achieve a perfor-
mance of even 1fps. This architecture is also a lot more malleable and has more room for
changes and improvements than the YOLOv3-Nano, which is already a product of a model
compression approach.

Network Batch Size
Configuration 1 Frame 2 Frames 4 Frames 8 Frames

CFGB 1.9 3.9 3.9 3.9
CFGC 1.9 3.8 4.0 4.1
CFGD 2.2 4.1 4.2 4.3
CFGE 1.8 3.5 3.9 4.0
CFGF 1.9 3.8 3.9 4.0
CFGG 2.2 3.9 4.1 4.1
CFGH 1.9 3.8 3.9 4.0
CFGI 1.9 3.4 3.8 4.1

Table 7.6 – Performance in frames per second achieved on our case study by each of our
experiments of combining model compression techniques on the YOLOv4-Tiny architecture.

Table 7.6 presents the performance achieved by the compressed networks we
discussed in the previous section, showing how their performance changes based on the
number of images being processed at once in a batch. By analyzing all the performances
achieved, we can see that while we managed to improve upon YOLOv4-Tiny’s performance,
we did not manage to achieve a high rate of processed frames per second. This further
corroborates how difficult the challenge we addressed is, especially in extreme cases such
as our case study. By looking specifically at how the performances changed based on the
batch size, we can see that increasing the batch size caused a minimal gain of performance
that diminishes rapidly, due to the low amount of memory available. Considering that all
the performances achieved processed at least 4fps, we found that the optimal usage of the
memory was feeding the network two images at a time. Finally, we can see that the per-
formance achieved by the pruning strategies did not differ much from each other, which we
believe is due to the low prune percentage value we chose.
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8. DISCUSSION

This chapter summarizes our contributions to the research area, the limitations of
the proposed approach, and our plans for continuing the research, contemplating both the
dataset created and the proposed model.

8.1 Contributions

We propose a dataset for firearm threat detection that improves pre-existing ones
by adding novel images and new information to the annotations. FiDaSS is one of the few
datasets made with real data, being the largest one in this context, as far as we know, with
annotations for object detection. Along with our dataset, the tools we developed to create
it are also available online. Having these available makes FiDaSS easily expandable and
adaptable for varying needs that may arise from approaching the issue from different angles.

We also propose a model for managing a surveillance environment and identifying
dangerous situations involving firearms. Our model helps the surveillance process by con-
stantly processing images depicting the environment from a CCTV camera feed and notifying
responsible personnel when it recognizes that a dangerous situation is starting. Additionally,
we also provide an extensive set of comparisons over the performance of state-of-the-art
network architectures on the proposed dataset, demonstrating their detection capabilities
and the performance they can achieve when combined with specific model compression
strategies. By analyzing these results, we can determine which combination of neural net-
work architecture and compression technique is the best fit for the challenge and should be
chosen for our proposed model.

8.2 Limitations

Our dataset has comprehensive data from South and North America (gathered
primarily from our YouTube playlist and existing datasets, respectively). However, we still
lack volume for other continents, especially those in the orient. A limitation of FiDaSS,
although we sought diversity in our dataset, is the minimal number of examples of some
cultures while having ample data about others. This characteristic implies that approaches
based on our dataset are more inclined to identify everyday situations from the Americas
but may not be as prepared to recognize events from oriental countries. This lack of volume
also makes our data unbalanced towards specific demographics, which may introduce a
particular bias on models learning from our dataset.
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As discussed throughout Sections 7.1 and 7.2.1, the models trained have achieved
less than desirable detection results, especially regarding the recall. Although these models
can run efficiently even in our limited hardware scenario, their detections are not reliable
enough for our approach to be realistically used in a surveillance environment yet. Even if
our approach can consistently identify a dangerous situation, it needs further improvements
before it reaches the point where people can trust it with their security. Furthermore, the
alarming amount of false alarms raised would also be an issue since our approach still
raises too many false positives to help monitor an environment.

While we did achieve a desirable level of performance for our approach, we did not
get to explore the more sophisticated compression techniques, and processing four frames
each second might miss some key moments that a more efficient model would be able
properly identify. Although the techniques we used were the most versatile and valuable
in most cases, they are also the ones with the least impact compared to the ones we did
not explore as in-depth. Therefore, our approach can still be optimized further to enhance
performance and detection results.

8.3 Future Work

We want to enhance FiDaSS by adding more data and classes to it for future work.
We expect that adding a class for unarmed people might provide new exciting information
while also helping the neural networks achieve a better recall, which is an strategy adopted
by Lim et al.[46] on their dataset. Further effort will also be dedicated to expanding FiDaSS
with new and unexplored data to introduce more diversity of situations and images on our
dataset, seeking to provide a more substantial and representative amount of data for each
culture and demographic. We also plan to develop new tools to facilitate expanding the
dataset. For example, we plan to organize a strategy to select frames more systematically
when gathering data from new videos, thus minimizing manually analyzing frames looking
for the best fit for our dataset. Another tool we are interested in improving is the one re-
sponsible for anonymizing the frames selected by the previously mentioned stage. With the
new classes added to the dataset, we expect to reliably automate the blurring process and
minimize the number of incorrectly blurred images we need to check and correct manually.

As for our model, the first options we want to explore are different model compres-
sion techniques and other network architectures. We will start with deeper research of ad-
vanced techniques and then experiment and combine them with our best-performing trained
models, trying to achieve faster performance and be less penalized on the detection results
achieved. Furthermore, another interesting experiment is trying the various compression
techniques on different architectures in the literature. While we did focus on the YOLOv4
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architectures in this work, many other great one-stage detectors can yield interesting results
– including the recent YOLOv5 [16].

Finally, we are also interested in taking the research in a new direction, focusing on
different challenges around firearm threat detection. Our experiments’ consistently below-
average detection results motivated us to readjust our goals. We intend to study and seek
further information we can extract from the frames to help our decision process decide if
there is an armed threat on the scene or just a false positive from the network. However, it is
essential to note that we are still considering performance even if we are adding more steps
into our pipeline. Nevertheless, with these new goals, we will be easing the restrictions of
the environment responsible for running the model, thus allowing us to make a model more
reliable at the cost of a more considerable hardware investment.
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9. CONCLUSIONS

This work presented a novel dataset for firearm threat detection containing images
from real-world situations, focusing on object detection. It has 6942 images with high vari-
ability, i.e., without a contiguous sequence of frames that do not present new information.
The available scripts used to assemble the dataset allow us to extend it easily. Moreover,
our experiments assert how challenging it is, showing that state-of-the-art methods have dif-
ficulty with it, primarily when dealing with false negatives, making it an exciting alternative for
future research. We attribute this to the high similarity of a person holding a gun and holding
an arbitrary object that was not caught well by the camera.

We also propose a model to aid in managing surveillance systems environment by
performing firearm threat detection, identifying, and notifying responsible personnel as fast
as possible before the situation escalates. As a case study, we implemented our model fo-
cusing on small systems and requiring low investment to achieve the desired performance.
The model processes images captured from a smartphone camera using a YOLO archi-
tecture optimized with model compression techniques. Thus, we make it accessible to a
broader spectrum of people regardless of the scale of the environment being monitored.

By employing the pruning and quantization techniques, we managed modify the
YOLOv4-Tiny architecture to best fit the needs of our case study, managing to achieve a
performance that would satisfy our needs without deteriorating the architecture’s detection
results. However, our analysis both on detection results and performance achieved shows
that that there is still room for improvements, and we hope our research helps instigate more
research in this area. Finally, in addition to promoting research in the area, we hope to
contribute to security in our everyday lives.
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