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OTIMIZAÇÕES DO PARALELISMO DE STREAM E DADOS EM GPUS

RESUMO

Nos dias de hoje, a maioria dos computadores são equipados com unidades de
processamento gráfico (GPUs) para prover capacidade massiva de paralelismo a baixo
custo. Para explorar completamente a capacidade destas arquiteturas é necessário o uso
de programação paralela. No entanto, isso representa um desafio para os programadores,
pois requer a refatoração de algoritmos, técnicas de paralelismo e conhecimento específico
sobre o hardware. Além disso, o paralelismo das GPUs é ainda mais desafiador, pois GPUs
possuem características de hardware peculiares, e outro paradigma de paralelismo cha-
mado de programação many-core. Nesse sentido, pesquisas de computação paralela tem
se concentrado no estudo de técnicas de programação eficientes para GPUs, e também no
desenvolvimento de abstrações que diminuem o esforço de programação. SPar é uma lin-
guagem específica de domínio (DSL) que segue essa direção de pesquisa. Programadores
podem utilizar a SPar para expressar paralelismo de stream sem impactar significativa-
mente o desempenho. A SPar oferece abstrações de alto nível através de anotações no
código-fonte, enquanto o compilador da SPar gera código paralelo. Recentemente foi adici-
onada uma extensão na SPar, a qual permite que seja gerado código paralelo para CPUs e
GPUs em aplicações de stream. Os núcleos da CPU controlam o fluxo de dados, e a GPU
aplica paralelismo massivo na computação de cada elemento do fluxo de dados. Para este
fim, a SPar gera código para uma biblioteca intermediária chamada GSParLib. GSParLib
é uma API paralela orientada a padrões que provê um modelo único de programação para
a runtime dos frameworks CUDA e OpenCL, permitindo a exploração do paralelismo em
GPUs de diferentes fabricantes. Porém, o suporte para GPUs em ambas SPar e GSPar-
Lib ainda está em seus passos iniciais; SPar e GSParLib oferecem apenas funcionalidades
básicas, e nenhum estudo avaliou o desempenho de forma abrangente. A contribuição
deste trabalho concentra-se em paralelizar benchmarks representativos da área de com-
putação de alto-desempenho (HPC), fornecer novos recursos e otimizações para GPUs na



GSParLib e SPar, e apresentar um método para prover frameworks que sejam agnósticos
e independentes de interfaces de programação de baixo nível. O conjunto de melhorias
cobre a maioria das limitações críticas de desempenho e programabilidade da GSParLib.
Nos experimentos deste trabalho, a versão otimizada da GSParLib foi capaz de atingir até
54.500,00% de melhoria no speedup em relação à versão original da GSParLib nos bench-
marks de paralelismo de dados e até 718,43% de melhoria no throughput nos benchmarks
de paralelismo de stream.

Palavras-Chave: Programação Paralela, programação de GPUs, computação heterogê-
nea, paralelismo de dados, paralelismo de stream, programação paralela estruturada,
padrões paralelos, benchmarks, aplicações de processamento de stream, linguagem
específica de domínio, esqueletos algorítmicos, avaliação de desempenho, computa-
ção de alto desempenho, C, C++, CUDA, OpenCL.



DATA AND STREAM PARALLELISM OPTIMIZATIONS ON GPUS

ABSTRACT

Nowadays, most computers are equipped with Graphics Processing Units (GPUs)
to provide massive-scale parallelism at a low cost. Parallel programming is necessary to
exploit this architectural capacity fully. However, it represents a challenge for programmers
since it requires refactoring algorithms, designing parallelism techniques, and hardware-
specific knowledge. Moreover, GPU parallelism is even more challenging since GPUs have
peculiar hardware characteristics and employ a parallelism paradigm called many-core pro-
gramming. In this sense, parallel computing research has focused on studying efficient
programming techniques for GPUs and developing abstractions that reduce the effort when
writing parallel code. SPar is a domain-specific language (DSL) that goes in this direc-
tion. Programmers can use SPar to express stream parallelism in a simpler way without
significantly impacting performance. SPar offers high-level abstractions via code annota-
tions while the SPar compiler generates parallel code. SPar recently received an extension
to allow parallel code generation for CPUs and GPUs in stream applications. The CPU
cores control the flow of data in the generated code. At the same time, the GPU applies
massive parallelism in the computation of each stream element. To this end, SPar gener-
ates code for an intermediate library called GSParLib, a pattern-oriented parallel API that
provides a unified programming model targeting CUDA and OpenCL runtime, allowing par-
allelism exploitation of different vendor GPUs. However, the GPU support for both SPar
and GSParLib is still in its initial steps; they provide only basic features, and no studies
have comprehensively evaluated SPar and GSParLib’s performance. This work contributes
by parallelizing representative high-performance computing (HPC) benchmarks, implement-
ing new features and optimizations for GPUs in the GSParLib and SPar, and presenting
a method for providing agnostic frameworks independent of low-level programming inter-
faces. Our set of improvements covers most of the critical limitations of GSParLib regarding
performance and programmability. In our experiments, the optimized version of GSParLib



achieved up to 54,500.00% of speedup improvement over the original version of GSParLib
on data parallelism benchmarks and up to 718,43% of throughput improvement on stream
parallelism benchmarks.

Keywords: Parallel programming, GPU programming, heterogeneous computing, data par-
allelism, stream parallelism, structured parallel programming, parallel patterns, bench-
marks, stream processing applications, domain-specific language, algorithmic skele-
tons, performance evaluation, high performance computing, C, C++, CUDA, OpenCL.
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1. INTRODUCTION

In the 1980s and early 1990s, operating systems with graphical interfaces such as
Microsoft Windows helped create a market for a new type of processor targeting graphics
processing. At the same time, the company Silicon Graphics popularized graphics applica-
tions such as scientific and technical visualization. In mid-1990, the requirement for progres-
sive computing power to process 3D graphics increased substantially, driven by the industry
of games launching games such as Doom, Duke Nukem 3D, and Quake [KH10]. Companies
like NVIDIA, ATI Technologies, and 3dfx Interactive started releasing the first graphics accel-
erators to supply that demand. The first graphics accelerators were single-chip processors
with features such as integrated transform, lightning, and rendering engines [SK10]. Fig-
ure 1.1 illustrates a summary of the GPU timeline. White rectangles represent milestones.
Rectangles with light orange or light yellow backgrounds are important events.

Figure 1.1 – GPU timeline.

Before the 2000s, processors had a single processing core per chip, and the strat-
egy used by the semiconductor industry to improve the performance was to increase the
clock speed. However, increasing the processor’s clock speed leads to higher temperatures
and imposes a significant drawback because the chips cannot dissipate such temperatures.
Due to this and other limitations, the industry started to increase the number of processing
cores bundled in each chip to keep improving the total performance of processors [Kum02].

During the 2000s, Graphics accelerators, likewise known as Graphics Processing
Units (GPUs), also adopted the multiple cores per chip tendency. However, they diverged
from traditional Central Processing Units (CPUs) manufacturing in two main ways: 1) they
were designed with more cores (called many-core architectures); 2) they were designed
with simpler control units. The manufacturers projected these new features to improve the
computation of the graphic applications in favor of the older single-core GPUs with integrated
rendering. From this point onward, the parallel capacity of the GPUs attracted the interest
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of many researchers investigating the feasibility of employing GPUs in different types of
applications [SK10].

Until 2005 programming GPUs to perform general-purpose computation was very
difficult because it was necessary to use graphic APIs such as OpenGL to access the GPU
cores. Then, in 2006, NVIDIA released the CUDA programming model, which allowed pro-
grammers to use traditional languages such as C to exploit the GPUs for general-purpose
computations. In 2006 NVIDIA GPUs also started to support IEEE Floating-Point Standard,
enabling predictable results, and in 2009 they started to support double-precision floating-
point operations. Those features led the GPUs to become very popular for general-purpose
computing.

Figure 1.2 summarizes a panorama of the GPUs nowadays. The left side of Fig-
ure 1.2 lists modern computer architectures that include GPUs as co-processors. The right
side of Figure 1.2 lists a set of applications that benefit from such accelerators [NVI22]. The
features present in GPUs enabled them to solve problems from various domains that were
not viable before, such as deep learning and autonomous vehicles [SK10]. While the list
of GPU-accelerated applications continuously increases, GPUs are present in almost ev-
ery modern computer architecture, from embedded systems and personal computers to the
world’s top 500 most powerful supercomputers [KH10].

Figure 1.2 – GPUs nowadays, pervasiveness versus accelerated applications.

Many applications that benefit from GPUs’ massive parallelism are stream pro-
cessing applications. Stream processing applications commonly process a continuous flow
of data, in which the amount of data may not be known. These kinds of applications are
widespread because digital data is very prevalent. Different sources such as social media,
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online shopping, and sensors from embedded systems generate lots of data that need to be
processed continuously. However, stream processing applications often impose real-time
processing constraints to offer relevant results [AGT14].

In order to fulfill the performance requirements of stream processing applications,
it is necessary to efficiently exploit the parallel capacity of the hardware on which the appli-
cation is running. Programmers may do that by employing a parallel programming model.
In parallel programming, the programmer rewrites the serial code splitting the program into
smaller problems that can be solved concurrently. Nonetheless, writing efficient parallel
code is challenging because it requires deep knowledge of the application, hardware, and
parallelism techniques [Kum02]. In this sense, parallel programming research investigates
means to approach specific problems through structured parallel programming and means
to provide high-level abstractions that lower the effort to apply parallelism in serial algo-
rithms [Kum02, KH10]. Nonetheless, parallel programming research has not yet entirely
resolved this problem [MSM04,MRR12,AGDF20].

In 2016, following the parallel programming research line of high-level abstractions
for parallel computing, the SPar language was created by Dalvan Griebler in his doctoral
thesis [Gri16]. SPar is a Domain Specific Language (DSL) embedded in C++ that offers high-
level abstractions for stream parallelism through code annotations with C++ attributes [Gri16,
GDTF17]. The SPar compiler makes source-to-source transformations replacing the C++
annotations with parallel code. Figure 1.3 shows the current state of the research about
SPar. The sections where this Master’s Thesis intends to contribute are marked using a
dashed line.

Figure 1.3 – Current state of SPar’s Research.

The initial version of SPar supported parallelism on multi-core architectures gen-
erating calls to the FastFlow [ADKT17] library. However, more recent studies enabled
SPar to generate TBB [HGDF20] and OpenMP [HLG22] code for multi-core architectures,
DSParLib (which uses MPI as backend) code for clusters [Pie20], and GSParLib (which
uses CUDA and OpenCL as backends) for GPUs [Roc20]. Recent work added support
for data parallelism exploitation in the CPU [LHGF21], while the SPar original version gen-
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erates only stream parallel patterns for the CPU. At the same time, recent research in-
troduced a self-adaptive degree of parallelism in the CPU [VGF21]; It allows SPar to dy-
namically change the number of CPU threads to boost its performance during the execu-
tion of a stream application. Other studies have applied the parallelism of SPar in several
applications compared to lower-level APIs for multi-cores like POSIX Threads [GHDF18a]
or studying optimizations for stream processing such as different ways to sort stream
data [GHDF18b]. Some works combine the use of SPar with other frameworks such as
MPI [VRJ+20] and CUDA [SGDF19]. In summary, the works reported that SPar could per-
form similarly to manual implementations while requiring significantly lower programming
effort [HGDF20,HLG22,Pie20,Roc20,LHGF21,GHDF18a,GHDF18b,VRJ+20,VGF21].

Accelerators such as GPUs are relevant for improving the performance of stream
processing applications that offer the opportunity for exploiting data parallelism and are com-
putationally intensive. However, programming applications from the stream domain to ef-
ficiently exploit combined parallelism between multi-core CPUs and many-core GPUs or
other many-core accelerators is challenging [RSG+19, BFH+04, UGT09, APD+14, APD+15,
SRG+20]. Thus, in 2020 Rockenbach extended SPar in his master’s thesis targeting
GPU programming [Roc20]. The extension proposed on top of SPar offers high-level ab-
stractions for stream parallelism targeting computer architectures composed of CPUs and
GPUs [Roc20]. Computer architectures composed of CPUs and GPUs are named heteroge-
neous computer architectures [NVI20a]. This new implementation allows SPar to combine
stream and data parallelism. SPar assigns the stream parallelism to the CPU and the data
parallelism to the GPU. The CPU cores control the data flow while the GPU processes each
data element with a massive number of threads. The SPar GPU extension uses GSParLib
API as the backend to generate GPU code.

GSParLib is a GPU framework based on structured parallel programming that of-
fers abstractions for parallel patterns and wrappers for CUDA and OpenCL. Rockenbach
developed GSParLib to be used as a runtime library for other tools, such as SPar, and as a
standalone API [Roc20]. GSParLib provides significant benefits compared to the literature.
GSParLib aims to support both CUDA and OpenCL GPU backends via a unified way of pro-
gramming, while most other frameworks support only one. Moreover, GSParLib provides a
set of transparent mechanisms to the user; these mechanisms are necessary to implement
stream processing applications such as thread safety for manipulating the GPU and asyn-
chronous GPU kernel launches. Additionally, GSParLib also provides abstractions such as
batch processing that are relevant optimizations for stream applications. Nonetheless, the
support for GPUs on SPar (via GSParLib) is still in an initial stage and can be further im-
proved. This work is motivated by some GSParLib limitations: 1) GSParLib only provides
basic features for GPU processing; 2) It only provides two parallel patterns; 3) It was not
tested under computationally intensive data parallelism scenarios; 4) It was not tested under
scenarios where there is more than one parallel stage in a stream application pipeline; 5) It
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has no specific optimizations for GPUs; 6) Its programmability was not evaluated concerning
the ease of use and flexibility to express data and stream parallelism on robust applications.

When programming applications targeting accelerators such as GPUs, different
problems must be approached differently to achieve relevant speedups [KH10,NVI20a]. For
this purpose, a GPU framework must provide a methodology to access the GPUs resources
and mechanisms. At the same time, in terms of structured parallel programming, several par-
allel patterns can be supported. In our previous study [AGDF20,AGR+21], we implemented
the NAS Parallel Benchmarks (NPB) [BBB+94] with CUDA and reported our experience im-
plementing it. As an example of how different parallel patterns are essential, we highlight
the CG benchmark (part of NPB). CG is characterized mainly by irregular computations that
require isolation to achieve a relevant performance on GPUs. Suppose we use a traditional
map parallel pattern to apply the GPU parallelism. In that case, the GPU achieves a very
low speedup (3× the speedup over the serial code [AGDF20]). However, when we use a
variation of the map parallel pattern that enables organizing subsets of data as tasks, we
can isolate irregular computations before offloading them to the GPU. It eliminates divergent
instructions and memory misses between the GPU threads, providing higher speedups (70×
the speedup over the serial code [AGDF20]).

Another NPB study case is the FT benchmark. FT routines are composed of a
complex instruction flow. Upon refactoring the routines and splitting them into data stages
where the instruction flow is simplified, the computations become more suitable for the GPU
threads. This approach can potentially double the performance of the GPU compared to
the traditional approach using the map parallel pattern [AGDF20]. Both study cases were
implemented manually with CUDA and represent a challenging task for programmers. They
are examples of functionalities that could be abstracted and added to GSParLib or SPar
to improve the programmability and performance. Additionally, as reported in the litera-
ture [KH10, Coo13, CGM14, SK10, NVI20a], specific optimizations for GPUs are crucial for
achieving good speedups in these architectures. Among others, GPU-specific optimizations
can include memory coalescing, efficiently exploiting the GPU memory hierarchy, and low-
ering the number of branch divergences [KH10,NVI20a,AGDF20,DKO+19]. The availability
of a flexible set of parallel patterns and abstractions to access GPU resources is crucial to
guarantee a relevant performance in a framework for GPUs.

Therefore, the main question that drives this research is: can GSParLib and
SPar offer an interface flexible enough to approach robust applications with data and
stream parallelism while presenting a comparable performance with state-of-the-art
GPU frameworks? In order to answer this research question, we provide the following
contributions:

• A methodology to provide a unified interface for parallel programming frame-
works. We present a method to develop more agnostic frameworks independent of
low-level programming interfaces. The method mainly involves the manipulation of
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Strings to manage and generate code of different parallel programming interfaces. Al-
though we applied it to provide a unified interface for CUDA and OpenCL in GSParLib,
those techniques can be used in other areas to improve code portability or provide
programming abstractions. Our results demonstrated a negligible performance penalty
when using this methodology.

• A set of data and stream parallelism optimizations for GSParLib. We provide
new mechanisms for the limitations found in GSParLib, including, among others, code
generation for CUDA and OpenCL syntax, parameters to specify the reuse of data
to decrease communication between the CPU and GPU, and abstractions for atomic
operations. The modified version of GSParLib can achieve a performance equiva-
lent, or very similar, to handwritten CUDA programs on robust applications such as
those present in NPB. Additionally, the improvements consolidate a unified interface
for CUDA and OpenCL in the GSParLib, which lowers the programming effort and
allows code portability between GPUs of different vendors.

• A discussion about possible improvements to SPar. We describe a set of pos-
sible optimizations related to the limitations found in SPar and discuss how the SPar
compiler can integrate these optimizations. In order to validate the performance im-
provement of such optimizations, we perform semi-automatic code generation with the
SPar compiler and the modified version of GSParLib. When using the optimized code,
SPar’s GPU extension achieves results similar to manual implementations using lower-
level APIs for GPU programming.

• A robust stream processing benchmark that approaches stream and data paral-
lelism. A limitation present in the stream processing domain is the lack of available
benchmarks. There are even fewer options for evaluating GPUs. We provide a new
synthetic benchmark for the stream processing domain. Military Server Benchmark
(MS, as we describe in Section 3.3) is a stream processing benchmark that offers
the opportunity to combine stream and data parallelism. The benchmark is compu-
tationally intensive for GPUs and can be used for testing different GPU programming
techniques. MS is also highly customizable. It offers an integrated data-set generator
and integrated correctness verification.

• A performance and programmability evaluation on CFD domain applications us-
ing structured parallel programming for GPUs. We provide an implementation of
the NPB kernel benchmarks using the GSParLib’s Pattern API, which is based on
structured parallel programming. NPB is a suite of benchmarks based on the CFD
domain. NPB is composed of representative problems of data parallelism and requires
challenging parallelism strategies to present relevant speedups on GPUs. Nonethe-
less, the available GPU frameworks based on structured parallel programming do not
explore the NPB suite.
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This document is organized as follows: Chapter 2 presents the background for
this work. Chapter 3 presents the study of performance and programmability regarding
GSParLib. Chapter 2.5 presents the study of performance and programmability regarding
SPar. Chapter 5 presents the related work regarding SPar’s GPU extension. Chapter 6
presents our conclusions.
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2. BACKGROUND

2.1 Graphics Processing Units

GPUs were initially developed to process 2D and 3D graphics to support the de-
mand of the industry of games. Lately, NVIDIA introduced the Computer Unified Device
Architecture (CUDA), which permits the programmers to use the GPUs for general-purpose
computations with a small set of extensions of the C language. This way, GPUs became
a very popular accelerator that allows programmers to solve a significant set of complex
problems, such as Deep Learning [NVI20a,KH10].

2.1.1 General Characteristics

Figure 2.1 presents general characteristics of CPU and GPU architectures.

Figure 2.1 – General characteristics of CPU and GPU.

CPUs have a few large and robust cores, a complex control unit, a big amount
of cache, and also, the cores have a high clock speed. These characteristics mean that
CPUs have a very optimized code for performing complex instruction flows, using cache and
mechanisms such as branch prediction [NVI20a,KH10].

GPUs are the opposite of CPUs. GPUs have up to thousands of cores, but the
control units are simplified, the amount of cache is small, and the cores have a lower clock
speed. This set of characteristics implies that the GPUs are not optimized for running se-
rial code. The GPU threads have low performance on algorithms with complex instruction
flows. Complex instruction flows are often characterized by loops, conditional statements,
and pipelined instructions. GPUs perform better on algorithms with more straightforward
routines and intensive arithmetic operations, which are the main characteristics of computer
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graphics algorithms. The standard way to use GPUs is to run part of the program on the
CPU and offload intensive parts to the GPU [NVI20a,KH10].

2.1.2 Thread Hierarchy

Current high-end GPUs have up to thousands of cores. They can run millions of
threads [NVI20a,SK10,NVI20b], which are organized hierarchically. A function offloaded to
the GPU is called kernel and is executed by a grid. A grid contains blocks, and each block
contains threads. Blocks and threads can be organized in one, two, or three dimensions, and
the number of blocks and threads are also configurable. Each thread identifies its position in
the block, and each block identifies its position in the execution grid. Thus, we calculate the
global id of a thread by collecting its position in the thread block and thread block position in
the grid [NVI20a,KH10].

Figure 2.2 presents an example of a grid of threads. In the example, the grid has
four blocks organized in two dimensions. Each block has twelve threads also organized in
two dimensions.

Figure 2.2 – Example of a grid of GPU threads.
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2.1.3 Memory Hierarchy

GPUs have their own memories, allowing them to get faster access to data. If the
CPU and GPU were to use the same memory, GPU accesses would be slower, and the
CPU and GPU would compete for accesses in the memory, reducing overall performance.
Thus, when software is written for heterogeneous systems containing GPUs, it is necessary
to copy the data from the host to the GPU and perform the computations over the data in the
GPU. Then the results are copied back from the GPU memory to the host memory [NVI20a].

The GPU memory hierarchy is divided into localization and visibility. Figure 2.3
presents the physical localization of GPU memory. Off Chip Memory has high access la-
tency while On Chip Memory has low access latency.

Figure 2.3 – Physical localization of GPU memory.

Figure 2.4 presents the visibility of GPU memory. Local Memory is private to a
thread. Shared Memory is visible to a block of threads. Global Memory and Constant
Memory are visible to any thread of any grid.

Global Memory is the standard way to access GPU data and has a high access
latency. Although Local Memory is also localized off the chip, their accesses are optimized
compared to the Global Memory because accesses to the Local Memory are automatically
coalesced by the GPU [NVI20a, KH10] (we explain memory coalescing in Section 2.1.5).
Shared Memory has low access latency and works as a cache memory managed by the
programmer, as it is only visible to a thread block. It is commonly used in cooperative
computations between the threads of a block or to reduce the access latency. Constant
Memory is a read-only memory. It is used for data that is frequently read but is never
written [NVI20a,KH10].
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Figure 2.4 – Visibility of GPU memory.

2.1.4 Execution Model

The GPU execution model is how the GPU executes the parallel code. Related to
this concept is essential to understand GPU stream multiprocessors (SMs) and warps.

GPU stream multiprocessors are responsible for executing thread blocks. When
a grid of thread blocks is sent to the GPU, the GPU distributes the thread blocks to the
SMs. Then the SMs execute the thread blocks in parallel. The more blocks are created,
the more blocks can be executed in parallel. However, since each SM has a limited number
of registers, if there are not enough registers, the SM will execute fewer thread blocks in
parallel [NVI20a,KH10,SK10,Coo13,CGM14].

Figure 2.5 illustrates how GPU stream multiprocessors work. In the example, a grid
with four blocks is sent to a GPU that contains two SMs. The GPU distributes two blocks to
the SM 0 and two blocks to the SM 1. SM 0 executes the blocks 0 and 2, and SM 1 executes
the blocks 1 and 3.

A warp is a small group of threads. The GPU split blocks of threads in warps to
execute them. The model execution of warps is called Single Instruction Multiple Threads
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Figure 2.5 – Schedule of thread blocks in the GPU SMs.

(SIMT). The GPU executes only a common instruction between the threads of a warp at a
clock cycle. When threads have different instructions, as occurs when the code has loops or
conditional statements (occasioning branch divergences), threads of divergent instructions
stay inactive. The warp only returns to full execution when all threads have the same instruc-
tion again. The more complex the instruction flow, the more the GPU threads’ performance
penalty. The simplified control unit is one of the reasons why more cores are allowed in
GPUs [NVI20a,KH10,SK10,Coo13,CGM14].

Figure 2.6 presents an example of a warp execution. The threads execute together
the instructions I.0 and I.1. Since I.1 is a conditional statement if/else, there is a branch
divergence with two sets of instructions. The instructions I.2 and I.3 are executed only
by the threads that entered Path 0 (T.0, T.1, T.2 and T.3), while the threads T.4, T.5, T.6
and T.7 stay inactive. When the Path 0 execution finishes, the Path 1 is then executed by
the threads T.4, T.5, T.6 and T.7, and the other threads stay inactive (T.0, T.1, T.2 and
T.3). The full warp is only executed again in the instruction I.6 that is common between all
threads.
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Figure 2.6 – Execution of a thread warp.

2.1.5 Memory Coalescing

GPUs’ memory operations are costly and take several clock cycles to execute. As
explained in Section 2.1.4, the GPU execution model is SIMT, and threads in the same
warp always execute a common instruction in a clock cycle. Accessing the memory is an
inherently expensive operation. Thus, it is crucial to optimize these operations. GPUs have
an optimization targeting these operations that are called memory coalescing. When GPU
threads access contiguous positions in the memory, the GPU hardware automatically makes
only a single thread of the warp request the memory operation (instead of each thread exe-
cuting the operation). Then, the operation is applied in the whole block of memory accessed
by the threads (instead of a single position) [NVI20a,KH10].

Figure 2.7 presents an example of uncoalesced accesses. The example illustrates
a group of threads executing four iterations of a loop and accessing different positions of an
array. At each iteration, each thread walks on different regions of memory. Therefore, the
GPU cannot automatically group the operations. Consequently, the GPU performs memory
operations sixteen times.
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Figure 2.7 – Uncoalesced access pattern.

Figure 2.8 presents an example of coalesced accesses. In this example, the GPU
threads access contiguous positions in the memory. Then, at each iteration, the memory
instruction load is requested by a single thread and loads the entire block of memory for
the threads. Consequently, the GPU performs only four memory operations. It is four times
fewer than the uncoalesced example.

Figure 2.8 – Coalesced access pattern.



29

2.1.6 GPU Occupancy

Another important GPU concept is occupancy. GPU occupancy is related to using
the maximum parallel capacity of the GPU. A way to explore the maximum GPU capacity is
to apply fine-grained parallelism, which often requires refactoring the serial code. Avoiding
branch divergences also helps the threads to stay active, as explained in Section 2.1.4.
Launching several blocks of threads also increases the use of the GPU. Finally, it is possible
to execute concurrent GPU kernels [NVI20a,KH10].

GPU occupancy means performance improvement due to the mechanism of thread
scheduling performed by the GPU warp scheduler. When a thread requests to execute an
instruction that takes several clock cycles to finish, another thread that is ready to run is
scheduled. Thus, a GPU core does not stay idle. The literature calls this effect as hiding
threads latency and hiding memory latency [NVI20a, KH10, SK10, Coo13, CGM14]. Fig-
ure 2.9 illustrates the concept of GPU occupancy.

Figure 2.9 – GPU occupancy.

2.1.7 CUDA

CUDA is a framework for GPU programming developed by the manufacturer
NVIDIA, suited for their chips. The framework consists of a small set of extensions for the C
language. This section shows how to implement an algorithm with CUDA by using a simple
matrix multiplication application as an example.
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Code 2.1 presents the serial code for a simple matrix multiplication application. The
two outermost loops can be executed in parallel in the serial matrix multiplication. Then we
create a thread for each combination of iterations from both loops. Each thread corresponds
to a single position of the matrices and executes only the innermost loop from the original
matrix multiplication algorithm.

1 void m a t r i x _ m u l t i p l i c a t i o n ( ) {
2 for ( i n t i =0; i <N; i ++) {
3 for ( i n t j =0; j <N; j ++) {
4 for ( i n t k =0; k<N; k++) {
5 matr ix3 [ i ] [ j ] += ( matr ix1 [ i ] [ k ] * mat r ix2 [ k ] [ j ] ) ;
6 }
7 }
8 }
9 }

Code 2.1 – Serial matrix multiplication.

Code 2.2 presents a CUDA implementation for the matrix multiplication algorithm
from Code 2.1.

In the CUDA example, in lines 5-7, we allocate the GPU memory for storing the
matrices. In lines 10-12, we copy the matrices to the GPU.

When programming CUDA, we must define the thread hierarchy by specifying the
number of threads per block and the number of thread blocks in the grid. In this example,
we create a GPU thread for each position of the matrices.

In lines 15-18, we define the thread hierarchy for the GPU kernel. We configure
each thread block dimensions as 32 threads on the x-axis and 32 threads on the y-axis,
totaling 1024 threads per block. We define the number of thread blocks in the grid as the
number of elements in the matrices divided by the number of threads per block. This defini-
tion creates a GPU thread for each position of the matrices. However, suppose the result of
the division is not an integer. In that case, we round up this number to create enough blocks
of threads to map all elements of the matrices.

In line 21, we launch the GPU kernel to execute the matrix multiplication algorithm.
In line 24, we define a barrier that forces the CPU thread to wait for the GPU to finish the
matrix multiplication algorithm. In line 27, we copy the results from the GPU memory to the
host memory (also called host memory).

In lines 30-40, we define the GPU kernel that executes the matrix multiplica-
tion operation. In lines 31-32, we calculate the thread’s global id. It uses the block’s
id and the thread’s local id. In this implementation, the global id of the thread corre-
sponds to a single position of the matrices. The thread returns in line 35 if its global
id does not correspond to a valid position in the matrices. In lines 37-39, the matrix
multiplication is performed. In line 38, the indexes of the matrices are computed as
linear arrays because CUDA only accepts single-dimensional arrays [NVI20a, KH10].
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1 i n t main ( ) { . . .
2 s i z e _ t s ize = N * N * sizeof ( i n t ) ;
3

4 / / a l l o c a t i n g gpu memory
5 cudaMalloc (& matr ix1_device , s i ze ) ;
6 cudaMalloc (& matr ix2_device , s i ze ) ;
7 cudaMalloc (& matr ix3_device , s i ze ) ;
8

9 / / copying data to gpu
10 cudaMemcpy ( matr ix1_device , matr ix1_host , s ize , cudaMemcpyHostToDevice ) ;
11 cudaMemcpy ( matr ix2_device , matr ix2_host , s ize , cudaMemcpyHostToDevice ) ;
12 cudaMemcpy ( matr ix3_device , matr ix3_host , s ize , cudaMemcpyHostToDevice ) ;
13

14 / / d e f i n i n g g r i d c o n f i g u r a t i o n
15 dim3 threadsPerBlock (32 , 32 , 1) ;
16 i n t block_x = c e i l ( double (N) / double ( threadsPerBlock . x ) ) ;
17 i n t block_y = c e i l ( double (N) / double ( threadsPerBlock . y ) ) ;
18 dim3 blocksPerGr id ( block_x , block_y , 1) ;
19

20 / / executes the mat r i x m u l t i p l i c a t i o n on GPU
21 m a t r i x _ m u l t i p l i c a t i o n <<<blocksPerGrid , threadsPerBlock >>>( matr ix1_device , matr ix2_device ,

matr ix3_device , N) ;
22

23 / / wa i t the end of the computat ion
24 cudaDeviceSynchronize ( ) ;
25

26 / / copy data to cpu
27 cudaMemcpy ( matr ix3_host , matr ix3_device , s ize , cudaMemcpyDeviceToHost ) ; . . .
28 }
29

30 __global__ void m a t r i x _ m u l t i p l i c a t i o n ( i n t * matr ix1 , i n t * matr ix2 , i n t * matr ix3 , i n t N) {
31 i n t i = b lock Idx . y * blockDim . y + th read Idx . y ;
32 i n t j = b lock Idx . x * blockDim . x + th read Idx . x ;
33

34 / / r e t u r n i f the index i s not v a l i d
35 i f ( i >= N | | j >= N) { return ; }
36

37 for ( i n t k =0; k<N; k++) {
38 matr ix3 [ i *N+ j ] += ( matr ix1 [ i *N+k ] * mat r ix2 [ k *N+ j ] ) ;
39 }
40 }

Code 2.2 – CUDA matrix multiplication.

2.1.8 OpenCL

OpenCL is a framework developed by the Kronos Group. OpenCL supports several
devices such as CPUs, GPUs from diverse vendors (including NVIDIA), and other accelera-
tors. OpenCL is very similar to CUDA. However, OpenCL is more verbose and requires more
lines of code. The main differences between OpenCL and CUDA are in naming conventions
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and the programming syntax. For example, a block in CUDA is a group in OpenCL, a thread
in CUDA is a work item in OpenCL, and shared memory in CUDA is called local memory in
OpenCL. More details about the OpenCL syntax are available in the OpenCL Programming
Guide [MGM+11].

Code 2.3 presents an OpenCL implementation for the matrix multiplication equiva-
lent to the CUDA implementation from Code 2.2.

1 i n t main ( i n t argc , char * * argv ) { . . .
2 s ize = N * N;
3

4 c l_con tex t con tex t = 0 ;
5 cl_command_queue commandQueue = 0;
6 cl_program program = 0;
7 c l_dev ice_ id device = 0;
8 c l _ k e rn e l ke rne l = 0 ;
9 cl_mem memObjects [ 3 ] = {0 , 0 , 0 } ;

10 c l_event f i n i s h e d = NULL ;
11

12 contex t = CreateContext ( ) ;
13 commandQueue = CreateCommandQueue ( context , &device ) ;
14

15 program = clCreateProgramWithSource ( context , 1 , ( const char * * )&gpu_kerne l_ funct ion , NULL, NULL) ;
16 clBui ldProgram ( program , 0 , NULL, NULL, NULL, NULL) ;
17 kerne l = c lCreateKerne l ( program , " m u l t i p l i c a t i o n " , NULL) ;
18

19 CreateMemObjects ( context , memObjects , matr ix1 , mat r ix2 ) ;
20

21 c lSetKerne lArg ( kernel , 0 , sizeof ( cl_mem ) , &memObjects [ 0 ] ) ;
22 c lSetKerne lArg ( kernel , 1 , sizeof ( cl_mem ) , &memObjects [ 1 ] ) ;
23 c lSetKerne lArg ( kernel , 2 , sizeof ( cl_mem ) , &memObjects [ 2 ] ) ;
24 c lSetKerne lArg ( kernel , 3 , sizeof ( i n t ) , &N) ;
25

26 s i z e _ t l o c a l [ 2 ] ;
27 l o c a l [ 0 ] = ( s i z e _ t ) 32;
28 l o c a l [ 1 ] = ( s i z e _ t ) 32;
29 s i z e _ t g loba l [ 2 ] ;
30 g loba l [ 0 ] = ( s i z e _ t ) c e i l ( double (N) / double ( l o c a l [ 0 ] ) ) * l o c a l [ 0 ] ;
31 g loba l [ 1 ] = ( s i z e _ t ) c e i l ( double (N) / double ( l o c a l [ 1 ] ) ) * l o c a l [ 1 ] ;
32

33 clEnqueueNDRangeKernel (commandQueue , kernel , DIMENSION_BLOCKS, NULL, g loba l , threadsPerBlock , 0 ,
NULL, &f i n i s h e d ) ;

34

35 clWai tForEvents (1 , &f i n i s h e d ) ;
36

37 clEnqueueReadBuffer (commandQueue , memObjects [ 2 ] , CL_TRUE, 0 , s ize * sizeof ( i n t ) , matr ix3 , 0 , NULL,
NULL) ; . . .

38 }
39

40 c l_con tex t CreateContext ( ) {
41 c l _ i n t errNum ;
42 c l _ u i n t numPlatforms ;
43 c l _ p l a t f o r m _ i d f i r s t P l a t f o r m I d ;
44 c l_con tex t con tex t = NULL ;
45 errNum = c lGetP la t fo rmIDs (1 , & f i r s t P l a t f o r m I d , &numPlatforms ) ;
46 c l _ c o n t e x t _ p r o p e r t i e s con tex tP rope r t i es [ ] = {CL_CONTEXT_PLATFORM, ( c l _ c o n t e x t _ p r o p e r t i e s )

f i r s t P l a t f o r m I d , 0 } ;
47 contex t = clCreateContextFromType ( con tex tProper t i es , CL_DEVICE_TYPE_GPU, NULL, NULL, &errNum ) ;
48 return contex t ;
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49 }
50

51 cl_command_queue CreateCommandQueue ( c l _con tex t context , c l_dev ice_ id * device ) {
52 c l _ i n t errNum ;
53 c l_dev ice_ id * devices ;
54 cl_command_queue commandQueue = NULL ;
55 s i z e _ t dev iceBuf fe rS ize = −1;
56 errNum = c lGetCon tex t In fo ( context , CL_CONTEXT_DEVICES, 0 , NULL, &dev iceBuf fe rS ize ) ;
57 devices = new c l_dev ice_ id [ dev iceBuf fe rS ize / sizeof ( c l_dev i ce_ id ) ] ;
58 errNum = c lGetCon tex t In fo ( context , CL_CONTEXT_DEVICES, dev iceBuf ferS ize , devices , NULL) ;
59 commandQueue = clCreateCommandQueue ( context , devices [ 0 ] , 0 , NULL) ;
60 * device = devices [ 0 ] ;
61 delete [ ] devices ;
62 return commandQueue ;
63 }
64

65 void CreateMemObjects ( c l _con tex t context , cl_mem memObjects [ 3 ] , i n t * a , i n t * b ) {
66 memObjects [ 0 ] = c lC rea teBu f fe r ( context , CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof ( i n t ) *

s ize , a , NULL) ;
67 memObjects [ 1 ] = c lC rea teBu f fe r ( context , CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof ( i n t ) *

s ize , b , NULL) ;
68 memObjects [ 2 ] = c lC rea teBu f fe r ( context , CL_MEM_READ_WRITE, sizeof ( i n t ) * s ize , NULL, NULL) ;
69 }
70

71 const char * gpu_kerne l_ func t ion = " \ n " \
72 " __kernel vo id m a t r i x _ m u l t i p l i c a t i o n ( __global i n t * matr ix1 , __global i n t * matr ix2 , __global i n t *

matr ix3 , __global i n t N) { \ n " \
73 " i n t i = ge t_g loba l_ id ( 0 ) ; \ n " \
74 " i n t j = ge t_g loba l_ id ( 1 ) ; \ n " \
75 " \ n " \
76 " / / r e t u r n i f the index i s not v a l i d \ n " \
77 " i f ( i >= N | | j >= N) { r e t u r n ; } \ n " \
78 " \ n " \
79 " f o r ( i n t k =0; k<N; k++) { \ n " \
80 " mat r ix3 [ i *N+ j ] += matr ix1 [ i *N+k ] * mat r ix2 [ k *N+ j ] ; \ n " \
81 " } \ n " \
82 " } \ n " \
83 " \ n " ;

Code 2.3 – OpenCL matrix multiplication.

In the OpenCL example, in lines 4-10, we create variables related to the OpenCL
API. In line 12, we call a function to create the OpenCL context, that we define in lines 40-49.
In line 13, we call a function to create the OpenCL command queue, that we define in lines
51-63. In lines 15-17, we create and build the OpenCL kerne using the string from lines 71-83

(we can write an OpenCL kernel as a string). In line 19, we call a function that we define at
the lines 65-69; the function allocates GPU memory to store the matrices and also copies
the data from the host to the GPU. In lines 21-24, we set the arguments for the OpenCL
kernel. In lines 26-31, we define the thread hierarchy. local is the number of threads per
block. global is the total amount of threads in the grid (in OpenCL, the programmer does
not define the number of blocks per grid as in CUDA). In line 33, we execute the OpenCL
kernel. In line 35, we call a barrier that forces the CPU thread to wait until the OpenCL
kernel finishes its execution. In line 37, copy the results from the GPU to the host. In lines
71-83, we define the computations of the OpenCL kernel. In lines 73-74, we collect the
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thread’s global id. Unlike CUDA, in OpenCL, it is unnecessary to use the block’s id and
thread’s local id to calculate the global id. In line 77, the thread returns if its global id does
not correspond to a valid position in the matrices. In lines 79-81, the thread performs the
matrix multiplication. Similar to CUDA, in line 80, we must compute linear indexes to access
the matrices’ positions.

2.1.9 OpenACC

Like OpenCL, OpenACC is a framework that can run on several architectures,
including NVIDIA GPUs. However OpenACC programming model is based on directives,
similar to OpenMP. Since OpenACC is a high-level framework, it does not offer some low-
level functionalities available in CUDA and OpenCL. For instance, OpenACC does not al-
low synchronizing the threads from a thread block [Opea, CJ17]. Although the use of di-
rectives improves the programmability, it can present performance loss depending on the
application due to the lack of flexibility to efficiently approach different parallelism strate-
gies [AGR+21,HMMT13,KH10].

Code 2.4 presents an OpenACC implementation for the matrix multiplications with
a similar parallelism strategy adopted in the CUDA and OpenCL examples.

1 void m a t r i x _ m u l t i p l i c a t i o n ( ) {
2 #pragma acc loop
3 for ( i n t i =0; i <N; i ++) {
4 #pragma acc loop
5 for ( i n t j =0; j <N; j ++) {
6 for ( i n t k =0; k<N; k++) {
7 matr ix3 [ i *N+ j ] += ( matr ix1 [ i *N+k ] * mat r ix2 [ k *N+ j ] ) ;
8 }
9 }

10 }
11 }

Code 2.4 – OpenACC matrix multiplication.

In the OpenACC example, we need a lower programming effort than CUDA and
OpenCL. We apply the directive #pragma acc loop on the two outermost loops of the matrix
multiplication algorithm. Then, OpenACC creates a GPU thread for each position of matri-
ces. In line 7 it is still necessary to calculate linear indexes to access the matrices’ positions.
Additionally, we do not need to specify memory transfers between the CPU and the GPU.
OpenACC manages the memory automatically.
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2.2 Structured Parallel Programming

Structured parallel programming is known in the literature mainly as design pat-
terns, parallel patterns, and algorithmic skeletons [Gri16, MRR12, MSM04]. It refers to a
good solution to a specific problem. It registers the experience of experts in the area so
that it can provide knowledge to help other programmers solve similar problems [MSM04].
Design patterns originated in the software engineering community, where they provide so-
lutions for object-oriented programming [MSM04]. Figure 2.10 illustrates an overview of
parallel patterns.

Figure 2.10 – An overview of parallel patterns (original source [MRR12,Gri16,Roc20]).

Based on the literature [Gri16, MRR12, MSM04], we briefly describe each one of
the parallel patterns in Figure 2.10 as follows:

• Fork-join. A process creates a fork with some other processes to compute other por-
tions of data. A process commonly waits for child processes to terminate its execution.
It is useful mainly when the creation of tasks is dynamic during the execution of a
program.

• Map. Applies the same computation over a set of data defined by an index. It is
commonly used when there is a loop where the total of iterations is known, and each
iteration is independent.

• Stencil. Is a variation of the map pattern. It accesses a data element and a set of
neighbors. This pattern needs verification of bounds. It is commonly used in imaging
processing, for example, operating a computation in a pixel where is necessary info
from the neighbors.
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• Reduction. Combines the values of a set of elements into a single value. It is com-
monly used to combine the results from different threads or processes. An example of
use is computing a summation of a set of integers. We can use the reduction pattern
with different operators, such as associative or commutative.

• Scan. It is a variation of the reduction pattern, it computes every partial reduction
from a set of elements. We can use this pattern in computations, such as generating
random numbers that use a successor function.

• Recurrence. It is a generalization of loops where an iteration depends on another one.
Recurrence is similar to map and stencil because a thread or process can use its input
and the outputs from neighbors to proceed with the computation. Recurrence can be
found in algorithms such as matrix factorization and sequence alignment.

• Pack. It eliminates elements that are not being used in a set. Each element is marked
with a Boolean. The Boolean indicates if the element is useful or not. The result is
a new set of elements maintaining the original order. An example of use for the pack

pattern is the detection of collision where we want only valid collisions.

• Split. split is a variation of the pack pattern, where instead of removing elements,
they are moved to the leftmost or rightmost part of the arrays. This way the split

pattern does not lose information as the pack pattern.

• Geometric decomposition. It breaks the data into subsets that can overlap or not.
Each subset is assigned to a thread or a process. It can be used in graph and image
processing.

• Partition. It is a particular case of the geometric decomposition pattern where the
subsets do not overlap. It can also be applied in the same applications.

• Gather. It receives a set of indexes and reads the data only in the specified positions.
It is considered a variation of the map pattern. Examples of use can be found in sparse
matrix operations and collision detection.

• Scatter. scatter is the inverse of the gather pattern, where the pattern writes the data
instead of reading it. As the pattern writes data, race conditions can occur if a position
is requested at least twice.

• Superscalar sequences. This pattern defines a sequence of tasks. The tasks are
freely executed concurrently. However, they preserve the order of data dependencies.

• Speculative section. In this pattern, both cases of a conditional statement run in par-
allel. When the conditions finish their execution, the unnecessary branch is canceled,
and its side effects are reverted. It is commonly used in compilers to hide the latency of
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instructions. To revert a speculative section on CPUs is necessary to cancel the task.
This pattern is unsuitable for GPUs because GPU threads only execute a common
instruction in the clock cycle.

• Expand. In the expand pattern, a map is executed, and each thread or process outputs
zero or more elements. The result is a set with the outputs of every thread or process.
Also, the set is ordered according to the order of the threads or processes. This pattern
can be used in applications such as compression and decompression.

• Category reduction. We can organize this pattern into a sequence of steps: 1) It
receives a set of data where each element has a label; 2) It finds all elements with
the same label; 3) It applies a reduction in each subset using an associative or a
commutative operator; Examples of use for the category reduction pattern can be
found on web analytics computations.

• Pipeline. When there is a data flow, and the computation can be decomposed in a
sequence of operations, we can implement a pipeline. A pipeline creates one stage
for each operation, and a process or a thread executes each stage. Additionally, all
stages are executed concurrently and must process each data element. The concept
is analog to an assembly line. This pattern can be applied in several applications. For
instance, when a sequence of filters must be applied to a set of images.

• Farm. A farm can be seen as a pipeline of three stages. The first stage is called
the emitter and produces data to be consumed and sent to the second stage. The
second stage consists of a set of parallel workers that consume the data sent by the
emitter and then send the data to the third stage. The third stage is called the collector.
It receives the data processed by the parallel workers from the second stage. It can
operate features such as sorting the data before sending it to the output. farm is a
useful pattern when a pipeline stage is a bottleneck. If the stage is stateless, it is
possible to process several elements in the stage, improving the performance.

2.3 Stream Processing Applications

Stream processing applications are characterized by a continuous data flow.
Stream is becoming very popular as computers are more and more pervasive in modern
society. Data for stream applications can come from social media as what people talk about
on the internet, from live videos, or several types of sensors. In most cases, a stream is
associated with real-time processing. It needs high-performance computing in order to ana-
lyze data and produce results of good quality [AGT14]. Figure 2.11 lists some examples of
stream processing applications.
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Figure 2.11 – Stream processing applications (original source [AGT14]).

Tuning stream processing applications to be efficient and able to produce results
in an acceptable time range is fundamental and requires the use of parallel program-
ming [Gri16]. Using parallel patterns to approach stream processing applications is a way
to explore this kind of application [ADKT17] efficiently. The patterns suitable to control the
data flow of stream applications are pipeline and farm. A pipeline is used when a stage
of a stream is stateful. It means that the data have dependencies. The farm pattern can
be applied on stages that are stateless, which means that the data have no dependen-
cies. Then, multiple parallel workers can execute the stage by processing different data
elements [GDTF17].

A pipeline needs a structure to be implemented. It is necessary to implement a
queue for communication between each stage. A farm implementation also needs a sched-
uler to assign tasks to the parallel workers. Depending on the structure of communication
or schedule, the performance of a stream application can vary. Moreover, some streaming
applications require that the application’s output follow the input’s order. For example, when
processing a video, we need to maintain the order of the frames. There are some design
alternatives to guarantee the order of the stream elements. For instance, we can implement
a sort algorithm in the last stage of the pipeline. Another alternative is creating a linked
queue with ordered insertion in the last stage [GHDF18b].

In addition to the patterns that control the flow of data, it is also essential to consider
other parallel patterns. For example, pipeline and farm control the flow of data. However, it
is possible to apply other patterns to process each data element of the stream. If a stream
application is processing a real-time video, patterns like map, stencil, or reduce can be used
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to process each frame of the video. Also, suppose an accelerator as a GPU is present in
the hardware. In that case, the GPU can process the frames and considerably improve the
performance. This way, exploring a stream application suitably, efficiently, and exploiting all
the hardware resources is a complex task [RSG+19].

2.4 GSParLib

GSParLib [Roc20] is an object-oriented C++ library for GPU programming con-
structed over CUDA and OpenCL. Figure 2.12 presents an overview of GSParLib. GSParLib
is divided into two APIs: Driver API and Pattern API; Driver API is a wrapper over CUDA and
OpenCL. Pattern API comprises a set of parallel patterns constructed over the Driver API.
A standard way to extend GSParLib is by providing new mechanisms in the Driver API and
new parallel patterns in the Pattern API.

Figure 2.12 – Overview of GSParLib’s APIs.

When using GSParLib, we define a GPU kernel as a string and compile it dur-
ing the execution time. GSParLib follows this strategy for two main reasons: 1) Since the
GPU kernel is a string, it easily allows GSParLib to apply transformations in the GPU kernel
source; 2) The compilation during execution time allows tuning the applications according to
the hardware characteristics collected during the execution time.

The Driver API offers a unified interface for accessing the GPU. It allows functional-
ities such as allocating GPU memory, copying data between host and GPU memories, and
running GPU kernels. In order to avoid racing conditions when manipulating critical GPU
resources, such as allocating GPU memory, GSParLib creates a mutually exclusive section
for CPU threads. Thus, the programmer can safely exploit simultaneous parallelism using
CPU and GPU.
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In the GSParLib’s original version, we must provide two versions of a GPU kernel,
one using CUDA syntax and another using OpenCL syntax, which is a drawback as the
programmer must have specialized knowledge in both CUDA and OpenCL.

Code 2.5 shows the matrix multiplication algorithm using GSParLib’s Driver API. In
lines 1−12, we define the GPU kernel with the CUDA syntax. In lines 13−24, we define the
GPU kernel with the OpenCL syntax. In allows the programmer to switch between CUDA
and OpenCL by changing compilation flags. In lines 27 − 38, we initialize the Driver API,
allocate the GPU memory, and copy the data from the host memory to the GPU memory.
In line 40, we compile the GPU kernel. In lines 42 − 46, we set the parameters of the GPU
kernel. In line 48, we define the total number of threads that will execute the GPU kernel.
In lines 50 − 56, we run the GPU kernel, wait for it to finish its computations, and copy the
memory from the GPU to the CPU.

The Pattern API offers a set of parallel patterns. It conceptually does not require
CUDA or OpenCL syntax to write a GPU kernel (which does not work in practice, as shown
in Section 3.4). The programmer must identify the stateless code to be executed by GPU
threads and use the Pattern API syntax to access the GPU resources. Since the GPU
kernel is a string, GSParLib replaces the Pattern API syntax with CUDA or OpenCL calls
before compiling it. GSParLib automatically creates CUDA streams and OpenCL command
queues when using a parallel pattern, which decreases the programming effort. Those
mechanisms are necessary to manipulate simultaneous GPU kernels.

Code 2.6 presents the matrix multiplication application using the Pattern API. In
lines 2 − 7, we define the GPU kernel and the map pattern instance. In lines 3 − 4, we
call functions provided by the Pattern API abstractions. They are replaced by CUDA or
OpenCL syntax and collect the thread’s id. In lines 8 − 11, we set the parameters of the
GPU kernel, setting the amount of GPU memory that must be allocated for each parameter.
GSPAR_PARAM_IN indicates that the matrices matrix1 and matrix2 must copied to the GPU
before running the GPU kernel. GSPAR_PARAM_OUT indicates that matrix3 must only be copied
from the GPU to the CPU after finishing the computations. In line 12, we compile and run
the GPU kernel using N ∗ N threads. In line 13, we delete the map pattern, releasing the
related resources.

For both Driver and Pattern APIs, upon using the compilation flag
GSPARDRIVER_CUDA, GSParLib compiles the code with CUDA, and when using
GSPARDRIVER_OPENCL, GSParLib compiles the code with OpenCL. The Pattern API has
three arguments for manipulating memory transfers between the CPU and the GPU. The
default argument is GSPAR_PARAM_IN, which copies the data from the CPU to the GPU before
executing the GPU kernel. GSPAR_PARAM_OUT copies the data from the GPU to the CPU after
executing the GPU kernel. GSPAR_PARAM_INOUT copies the data from the CPU to the GPU
before the GPU kernel execution and copies the data from the GPU to the CPU after the
GPU kernel execution.
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1 # i f def ined (GSPARDRIVER_CUDA)
2 / / CUDA gpu kerne l
3 #include "GSPar_CUDA. hpp "
4 using namespace GSPar : : D r i ve r : :CUDA;
5 const char * gpu_kernel_source = GSPAR_STRINGIZE_SOURCE(
6 extern "C"
7 __global__ void m a t r i x _ m u l t i p l i c a t i o n ( i n t * matr ix1 , i n t * matr ix2 , i n t * matr ix3 , i n t N) {
8 i n t i = b lock Idx . x * blockDim . x + th read Idx . x ;
9 i n t j = b lock Idx . y * blockDim . y + th read Idx . y ;

10 for ( i n t k =0; k<N; k++) {
11 matr ix3 [ i *N+ j ] += ( matr ix1 [ i *N+k ] *
12 matr ix2 [ k *N+ j ] ) ; } } ) ;
13 # e l i f def ined (GSPARDRIVER_OPENCL)
14 / / OpenCL gpu kerne l
15 #include "GSPar_OpenCL . hpp "
16 using namespace GSPar : : D r i ve r : : OpenCL ;
17 const char * gpu_kernel_source = GSPAR_STRINGIZE_SOURCE(
18 __kernel void m a t r i x _ m u l t i p l i c a t i o n ( __globa l i n t * matr ix1 , __global i n t * matr ix2 , __global i n t *

matr ix3 , i n t N) {
19 i n t i = g l o b a l _ i d ( 0 ) ;
20 i n t j = g l o b a l _ i d ( 1 ) ;
21 for ( i n t k =0; k<N; k++) {
22 matr ix3 [ i *N+ j ] += ( matr ix1 [ i *N+k ] *
23 matr ix2 [ k *N+ j ] ) ; } } ) ;
24 #endif
25 i n t main ( ) { . . .
26 / / d r i v e r ap i i n i t i a l i z a t i o n
27 Ins tance * d r i v e r = Instance : : ge t Ins tance ( ) ;
28 d r i ve r −> i n i t ( ) ;
29 auto gpus = d r i ve r −>getGpuList ( ) ;
30 auto gpu = d r i ve r −>getGpu ( 0 ) ;
31 / / gpu memory a l l o c a t i o n
32 matr ix1_dev ice = gpu−>mal loc (N*N* sizeof ( double ) , mat r ix1_host ) ;
33 matr ix2_dev ice = gpu−>mal loc (N*N* sizeof ( double ) , mat r ix2_host ) ;
34 matr ix3_dev ice = gpu−>mal loc (N*N* sizeof ( double ) , mat r ix3_host ) ;
35 / / memory t r a n s f e r , copy memory to gpu
36 matr ix1_device −>copyIn ( ) ;
37 matr ix2_device −>copyIn ( ) ;
38 matr ix3_device −>copyIn ( ) ;
39 / / gpu kernel , compi l ing
40 gpu_kernel = new Kernel ( gpu , gpu_kernel_source , " m a t r i x _ m u l t i p l i c a t i o n " ) ;
41 / / gpu kernel , s e t t i n g parameters
42 gpu_kernel −>setNumThreadsPerBlockForX (1024) ;
43 gpu_kernel −>setParameter ( matr ix1_device ) ;
44 gpu_kernel −>setParameter ( matr ix2_device ) ;
45 gpu_kernel −>setParameter ( matr ix3_device ) ;
46 gpu_kernel −>setParameter ( sizeof ( i n t ) , &N) ;
47 / / gpu kernel , s e t t i n g t o t a l amount o f threads
48 unsigned long dimensions [ 3 ] = {N, N, 0 } ; / / N*N threads
49 / / gpu kernel , running
50 gpu_kernel −>runAsync ( dimensions ) ;
51 / / gpu kernel , wa i t the f i n i s h o f computat ions
52 gpu_kernel −>waitAsync ( ) ;
53 / / memory t r a n s f e r , copy memory to cpu ( host )
54 matr ix1_device −>copyOut ( ) ;
55 matr ix2_device −>copyOut ( ) ;
56 matr ix3_device −>copyOut ( ) ; }

Code 2.5 – Matrix multiplication with the Driver API of GSParLib.
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1 void m a t r i x _ m u l t i p l i c a t i o n ( double * matr ix1 , double * matr ix2 , double * matr ix3 , i n t N) {
2 Map* map = new Map(GSPAR_STRINGIZE_SOURCE(
3 i n t i = gspar_get_global_id ( 0 ) ;
4 i n t j = gspar_get_global_id ( 1 ) ;
5 for ( i n t k =0; k<N; k++) {
6 matr ix3 [ i *N+ j ] += ( matr ix1 [ i *N+k ] *
7 matr ix2 [ k *N+ j ] ) ; } ) ) ;
8 map−>setParameter ( " mat r ix1 " , sizeof ( double ) *N*N, matr ix1 , GSPAR_PARAM_IN)
9 . setParameter ( " mat r ix2 " , sizeof ( double ) *N*N, matr ix2 , GSPAR_PARAM_IN)

10 . setParameter ( " mat r ix3 " , sizeof ( double ) *N*N, matr ix3 , GSPAR_PARAM_OUT)
11 . setParameter ( "N" , sizeof ( i n t ) , N)
12 . run <Instance > ( {N,N} ) ; / / N*N threads
13 delete map;
14 }
15 i n t main ( ) { . . .
16 m a t r i x _ m u l t i p l i c a t i o n ( matr ix1 , matr ix2 , matr ix3 , N) ; }

Code 2.6 – Matrix multiplication with the Pattern API of GSParLib.

2.5 SPar

SPar is a Domain Specific Language (DSL) embedded in C++ that offers high-level
abstractions for stream parallelism through code annotations with C++ attributes [Gri16].
SPar avoids two main burdens of parallel programming: 1) refactoring serial code to explore
stream parallelism; 2) writing low-level code to explore the underlying parallel hardware effi-
ciently. These characteristics improve the programmability and maintain a performance simi-
lar to a manual implementation with a lower level multi-core framework [GHDF18a,GDTF17].

In order to prevent the programmer from learning a new syntax, SPar uses C++
attributes to express parallelism because the attributes are part of the C++ language. SPar
focuses on pipeline and farm parallel patterns, as they are the parallel patterns best suited
for stream parallelism. The original version of SPar generates FastFlow [ADKT17] code.
Spar uses FastFlow’s features and optimizations, such as non-blocking queues, scheduling
mechanisms, and sort algorithms for sorting stream data [GDTF17].

SPar Attributes

SPar uses C++ attributes as the mechanism of annotations to identify parallel re-
gions in the serial code. Then, SPar generates the parallel code making the necessary
transformations in the serial code. SPar has five attributes defined for stream processing.
Spar organizes the attributes into two groups, identifiers (ID) and auxiliary (AUX). Each SPar
annotation inserted in the serial code must have an ID attribute and an optional list of AUX
attributes. The ID attributes are ToStream and Stage. ToStream identifies the region of the
serial code that has the flow of data and should be executed as stream parallelism, com-
monly a loop as a for or a while. Stage is used to identify each stage of each ToStream

region.
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The AUX attributes are Input, Output, and Replicate. Input and Output attributes
are fundamental to define what data is sent or received by the stages. Input identifies the
stream’s input data (when used with ToStream) or the stage (when used with Stage). Output
identifies the output data from the stream or stage. Replicate can only be used next to the
Stage attribute. Replicate defines the degree of parallelism of a stage, that is, how many
replicas of the stage are executed simultaneously. If the number of replicas is not defined,
SPar uses the environment variable SPAR_NUM_WORKERS.

The SPar’s extension for GPUs added three attributes to SPar [Roc20]. The at-
tributes are Pure, Reduce, and Batch. Pure indicates that a loop has no dependencies and
can be executed on the GPU. It can be used as an AUX attribute with Stage or standalone
as an ID attribute. Reduce indicates that a reduction operation must be performed. It is an ID
attribute. Batch expects to receive n data elements before executing the code on the GPU. it
must be used as an AUX attribute with the Stage attribute. Batch decreases communication
costs by processing more data at each GPU invocation, increasing the GPU utilization.

SPar Compilation Flags

The SPar compiler accepts three flags that can be passed at compilation time and
can modify the execution behavior of SPar. The flags are spar_ondemand, spar_blocking,
and spar_ordered:

• spar_ondemand uses the on-demand scheduler to control the flow of data. This sched-
uler keeps only one stream element at a time being processed by the stages of the
stream pipeline. The default behavior is to continuously read stream elements and
insert them into the communication queues between the stages of the stream pipeline.

• spar_blocking uses blocking queues as communication between the stages of the
stream pipeline. Thus, only a single thread can access each communication queue.
The default behavior is non-blocking queues. The performance of each type of queue
can vary depending on the application.

• spar_ordered sorts the stream’s output data according to the input data’s order. This
functionality is critical when the order of the stream elements must be preserved.

• spar_gpu activates the GPU extension of SPar, and SPar generates GSParLib source
code when applicable. When using this flag, GSParLib uses the CUDA driver by de-
fault.

• spar_opencl makes GSParLib use the OpenCL driver when the GPU extension of SPar
is activated.
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1 [ [ spar : : ToStream ] ]
2 while ( true ) {
3 element = read_element ( ) ;
4

5 [ [ spar : : Stage , spar : : Input ( element ) , spar : : Output ( element ) , spar : : Replicate ( n ) ] ] {
6 element = computat ion ( element ) ;
7 }
8

9 [ [ spar : : Stage , spar : : Input ( element ) , spar : : Output ( element ) ] ] {
10 wr i t e_ou tpu t ( element ) ;
11 }
12 }

Code 2.7 – Example of use of SPar.

SPar Compiler

The SPar compiler was built using the infrastructure provided by CINCLE (Compiler
Infrastructure for New C/C++ Language Extensions) [Gri16, GDTF17]. CINCLE provides
functionalities for C++ code analysis and an API for transformations in ASTs (Abstract Syntax
Trees).

Figure 2.13 illustrates the steps of the compilation process of the SPar compiler.
The first step receives a C++ code annotated with C++ attributes. The second step performs
semantics analysis of the C++ code using GCC (GNU Compiler Collection). The third step
scans the code and parses it to an AST. The fourth step applies the SPar transformation
rules in the AST, generating a new AST. The fifth step compiles the source code transformed
using GCC. The sixth step outputs a binary executable file of the parallel code generated.

Figure 2.13 – Steps of the compilation process of SPar (original source [Roc20]).

Examples of Code Annotations

This section presents two examples demonstrating how to apply code annotations
in a serial code using SPar. Code 2.7 shows an example of using SPar annotations in a multi-
core system. In the example, a while loop reads, computes, and outputs data elements.

In line 1, the ToStream annotation indicates that the next line (line 2) loop is a stream
region, and the first stage is created. In this example, the first stage reads a data element in
line 3. In line 5, the attributed stage is utilized to indicate the second stage of the algorithm.
In this case, the second stage process the element. The attribute Input indicates the input
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1 [ [ spar : : ToStream ] ]
2 while ( true ) {
3 element = read_element ( ) ;
4

5 [ [ spar : : Stage , spar : : Pure , spar : : Batch ( s i ze ) , spar : : Input ( element ) , spar : : Output ( element ) , spar : :
Replicate ( n ) ] ] {

6 for ( i n t i =0; i <element . s i ze ; i ++) {
7 element [ i ] = pseudo_random_number ( i ) ;
8 }
9 }

10

11 [ [ spar : : Stage , spar : : Pure , spar : : Batch ( s i ze ) , spar : : Input ( element ) , spar : : Output ( element , sum) ] ] {
12 for ( i n t i =0; i <element . s i ze ; i ++) {
13 [ [ spar : : Reduce ] ] sum += element [ i ] ;
14 }
15 }
16 }

Code 2.8 – Example of use of SPar with GPUs.

element of the second stage, and the attribute output indicates the output element of the
stage. The attribute Replicate means that n parallel workers will execute the second stage.
In line 9, the third stage is annotated, where the data element is written in the output. In
this example, three additional lines of annotations are enough to apply parallelism in the
application.

Code 2.8 shows an example of the SPar annotations in a heterogeneous system
equipped with a GPU accelerator. In this example, the application receives an array at the
first stage, initializes the array with pseudo-random numbers at the second stage, and sums
the array’s values at the third stage.

Lines 1, 5, and 11 identify the data flow using the annotations ToStream and Stage.
In line 5, the attribute Pure is used to indicate that the loop of the line 6 can be executed
on the GPU. The attribute Batch indicates how many elements must be received before
executing the GPU kernel. In line 11, the attribute Pure indicates that the loop of the line 12

can be executed on the GPU. However, in line 13 the attribute Reduce is annotated. Then,
the SPar compiler will generate a parallel reduction to run on the GPU. The variable sum is
assigned as the parallel reduction result and stage output.

2.6 Final remarks about the Background

This chapter presented basic concepts of GPU programming, Structured Parallel
Programming, and stream processing. Programming GPUs is challenging because it re-
quires deep knowledge of GPUs’ hardware, GPU programming techniques, and the target
application. The challenge is even more complicated when targeting stream processing ap-
plications because applications from this domain additionally require data structures and
algorithms to control the data flow. Consequently, the programmer must provide different
routines targeting the CPU and GPU and manage their communication. GSParLib and SPar
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were developed to facilitate the development of parallel programs, including data parallelism,
stream parallelism, and GPUs. However, both GSParLib and SPar are initial approaches.

In the following chapters, we present our study concerning GSParLib (Chapter 3)
and SPar (Chapter 2.5). We describe the benchmarks that we implemented to evaluate the
programmability and performance of GSParLib and SPar; the limitations that we found in
the GSParLib and SPar; the improvements that we provided to GSParLib and SPar; and
the experiments that we performed to evaluate the performance of the improved versions of
GSParLib and SPar.
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3. GSPARLIB EVALUATION AND IMPROVEMENTS

This chapter presents our study of performance and programmability using GSPar-
Lib. Sections 3.1, 3.2, and 3.3 describe the benchmarks that we implemented using GSPar-
Lib’s APIs. Section 3.4 describes the limitations that we found in GSParLib and our optimiza-
tions to overcome each one of them. Sections 3.5, 3.6, and 3.7 evaluate the performance
and programmability of GSParLib. Section 3.8 describes our final remarks about GSParLib.

3.1 NAS Parallel Benchmarks

This section briefly presents our implementation of the NAS Parallel Benchmarks
(NPB) [BBB+94] with GSParLib. This presentation is concise because our latest publications
detail our parallelism strategies for those benchmarks [AGDF20,AGR+21,LGM+21].

Although the focus of SPar is stream processing, the GPU is used to apply data
parallelism in each stream element. Thus, evaluating specific GPU functionalities of GSPar-
Lib requires the evaluation of data parallelism benchmarks besides stream processing ones.
Then, to strictly evaluate data parallelism with GSParLib, we implemented parallel versions
of the NPB [BBB+94]. For the study, we implemented the benchmarks using both GSParLib’s
Driver and Pattern APIs.

The NPB [BBB+94] is a consolidated set of benchmarks consisting of five kernels
and three pseudo-applications. All eight benchmarks mimic computations extracted from
the CFD domain. While the kernels represent the core of CFD applications, the pseudo-
applications reproduce entire CFD computations. NPB was initially developed in Fortran
and consisted of two versions: a serial version [BBB+94] for reference and an OpenMP ver-
sion [JFY99] targeting multi-core architectures. Later, other versions for clusters [BHS+95],
hybrid programming [WJ03], and grid computing [WF02] were released. The NPB suite pro-
vides a set of workloads called classes, ordered by the size as S, W, A, B, C, D, E, and
F. Simple tests commonly use S and W classes, while experiments use the other classes.
NPB website [NAS] gives a complete description of the workloads. NPB also provides tests
of correctness integrated into the benchmarks. They are convenient for validating parallel
versions of the benchmarks.

The benchmarks from NPB are primarily composed of iterative procedures (except
in the EP benchmark), and the procedures call a set of functions. Figure 3.1 presents
a flowchart of the NPB kernels [AGR+21]. Rectangles with solid lines are the functions.
Functions offloaded to the GPU are rectangles with a green background. Each benchmark
from NPB has an initialization routine and a verification routine. The time measurement
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starts after the execution of the initialization routine and finishes before calling the verification
routine.

Figure 3.1 – NPB kernels’ flowchart (original source [AGR+21]).

We implemented our GPU version using the GSParLib APIs and a C++ conversion
from the NPB 3.4 [LGM+21,GLM+18], which strictly follows the original Fortran version. We
checked to ensure that our GPU version passed all the NPB correctness tests. In our GPU
implementation with GSParLib, we followed the same strategies adopted in our previous
works, where we provided a CUDA version for the NPB [AGDF20, AGR+21] (the papers
present further details about the parallelism strategies). Since the Driver API is a lower-
level interface for parallel programming, the experience of implementing the NPB is similar
to CUDA and OpenCL. The implementation with the Pattern API is more affordable than the
Driver API because we used parallel programming abstractions via algorithmic skeletons
available in the GSParLib. Nonetheless, our parallelization strategies required knowledge
and manual insertion of CUDA and OpenCL code even when using the Pattern API, which
is a higher-level programming interface. It occurs because GSParLib is still an initial work
and does not offer abstractions for all features of those state-of-art frameworks. We cover
details about those and other limitations in Section 3.4.

This section briefly described the benchmarks that we used for evaluating data
parallelism on GSParLib. The next section presents three legacy benchmarks that we used
to evaluate stream processing.
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3.2 Legacy Stream Processing Benchmarks

This section briefly describes a set of legacy stream processing benchmarks that
we used to evaluate stream parallelism with GSParLib. Rockenbach provided the legacy
stream processing benchmarks in his master’s thesis [Roc20]. We implemented the parallel
versions using FastFlow to control the stream elements’ flow and GSParLib’s Pattern API to
apply data parallelism on each stream element. We describe the benchmarks as follows:

1. Lane-detection (LD). LD is an algorithm used for detecting linear patterns on images.
This application is useful mainly for autonomous vehicles. Autonomous vehicles often
have an integrated camera that captures several frames per second. The LD algorithm
is crucial because it allows correctly planning the trajectory of vehicles [LTA+22]. A ro-
bust LD application can be very complex. It should cover variables such as illumination,
appearance, and age of a lane marking [LTA+22]. The LD implementation presented
by Rockenbach [Roc20] is a simplified version and does not consider such variables.

Figure 3.2 illustrates the LD benchmark flowchart (the flowchart is the same for the
LD, MB, and RT benchmarks). Rounded rectangles are threads. Rounded rectangles
with a green background are threads that offload computations to the GPU. Dashed
rounded rectangles are stages. Arrows represent the communication between threads
of different stages. Circles are stream elements. Three stages compose this LD bench-
mark. The first stage reads an element from the input. The second stage processes an
element by applying a Gaussian and a Sobel filter. The third stage writes an element
in the output.

Figure 3.2 – LD, MB, and RT benchmarks’ flowcharts.

The LD stream element is a frame captured by a camera. While the CPU controls
the flow of frames, the second stage offers the opportunity to employ data parallelism,
as it is possible to use the GPU massive parallelism to perform the Gaussian and
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Sobel filters. Additionally, the second stage is stateless as it allows the computing of
each frame independently. We commonly expect that the more threads are offloading
computations to the GPU, the more prominent the GPU utilization will be. Increasing
the GPU utilization is beneficial for GPU performance, as presented in Section 2.1.6.

In LD, the computational routines that the CPU offload to the GPU do not require
robust strategies or access to GPU resources such as shared memory and atomic
operations. In the parallelism strategy, we assign a GPU thread to each position of the
frames. Since this task is straightforward, LD requires lower programming efforts than
previous NPB parallelizations. Furthermore, LD generates small loads for the GPU
and performs many CPU operations and communication between CPU and GPU. In
opposite, the NPB allows performing the whole computations on the GPU [AGR+21].

2. Mandelbrot (MB). MB is an algorithm that generates fractal images [YTZ21]. It is de-
fined by the quadratic polynomial z = z2 + c, where c is a constant and z receives the
initial value. The polynomial is called several times as an iterative process [ASA21].
Although MB is usually approached as data parallelism when targeting GPUs, Rock-
enbach [Roc20] adapted it as a stream processing application. In the MB modified
version, each row of the generated image is considered a stream element.

The MB execution flow is equivalent to LD (Figure 3.2). The first stage reads an ele-
ment. The second stage processes the fractal. The third stage writes an element in
the output. The second stage is the one that offers the opportunity for data parallelism.
In this stage, we offload each row to the GPU and assign a GPU thread to each row
position.

3. Ray-tracing (RT). RT is a method used to simulate the behavior of light in 3D
scenes [KSCK19]. This technique is present mainly in applications such as 3D an-
imations and 3D games [KSCK19]. The popularity of those algorithms led NVIDIA
to include specialized cores (called RT cores) in their GPUs to compute RT algo-
rithms [WUM+19]. Other fields of study also use RT, such as electromagnetic numerical
simulation algorithm [NHJ21] and mesh point location [MWUP20]. The RT benchmark
is as simple as LD and MB. The execution flow is equivalent to LD (Figure 3.2). In
the second stage, we offload the computations to the GPU and assign a GPU thread
to each position of the frames. The first stage reads frames from the input. The third
stage sends the frames to the output.

This section briefly described the legacy stream processing benchmarks. The fol-
lowing section presents a robust stream processing benchmark to evaluate better GSParLib.



51

3.3 Military Server Benchmark

In this section, we present a robust benchmark to complement the evaluation of the
GSParLib on the stream processing domain. The legacy stream processing benchmarks
introduced in Section 3.2 present limitations for evaluating GPU programming. The main
reasons are threefold: 1) they are not compute-intensive for GPUs. 2) they do not fully
exploit the underlying GPU resources; 3) they do not require robust parallelism strategies.
Thus, we designed a new benchmark application to provide a better and more representative
scenario for evaluating GSParLib.

Military Server Benchmark (MS) is a synthetic stream processing application that
simulates a military server that continuously receives data collected from drones. The bench-
mark is composed of heavy computations and allows exploiting data parallelism in each
stream element. In the MS simulation, each stream element contains a list of coordinates
captured by a drone and a list of military units. The objective of each drone is to find the best
coordinate for each military unit from its list. Each military unit has a different type and req-
uisites for proper localization. As analyzing the data is a burdensome task for the embedded
system of a drone, the server performs this task.

Figure 3.3 illustrates the MS flowchart. Rounded rectangles are threads. Rounded
rectangles with a green background are threads that offload computations to the GPU.
Dashed rounded rectangles are stages. Arrows represent the communication between
threads of different stages. Circles are stream elements. We can replicate stages B, C,
and D because they are stateless.

Figure 3.3 – MS Benchmark flowchart.
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As in the legacy stream processing benchmarks, we implemented the parallel ver-
sion of MS using FastFlow for programming the CPU and GSParLib’s Pattern API for pro-
gramming the GPU. We describe the five stages that compose MS as follows:

1. Stage A. Stage A is a CPU lightweight stage. The main characteristic of this stage is
the CPU IO. As it is a synthetic benchmark, the CPU loads the input by reading data
from the disk.

2. Stage B. Stage B is a computational intensive stage performed by the GPU. The main
characteristic of this stage is the processing of irregular computations using the par-
allel pattern Map. Stage B is responsible for extracting information from each drone’s
coordinates, such as average height.

Figure 3.4 illustrates Stage B’s flowchart. Rectangles are functions, and rectangles with
a green background are functions offloaded to the GPU. When a drone captures data, it
selects a [x , y] coordinate and rotates itself four times, generating four data fragments.
In this stage, the server iterates over each drone’s coordinate and coordinate’s rotation,
forming a double nested loop. Inside the double nested loop, the server’s algorithm
executes four procedures: 1) It selects the data fragment from the current rotation.
2) Computes the coordinate’s lowest point. 3) Computes the coordinate’s highest point.
4) Computes the coordinate’s average height. The Big O notation [CLRS09] of Stage
B is O(nc ∗ nr ∗ nx ∗ ny), where nc is the number of coordinates, nr is the number of
rotations, nx is the number of elements on the x-axis of the coordinate, and ny is the
number of elements on the y-axis of the coordinate.

Procedure 1 does not perform any loop computation; it just selects a data fragment.
In contrast, procedures 2, 3, and 4 perform a double nested loop that iterates over
each coordinate’s [x , y] position. Moreover, each coordinate has a different size and
refers to very different positions in the map, configuring irregular computations. The
whole map is also loaded into the memory by the server for inspecting a given drone’s
coordinates.

Figure 3.5 gives more details about the procedures from Stage B by illustrating
how the algorithm computes the average height of a coordinate. Squares with a
white background are map positions, and squares with a light yellow background
are map positions that are being read by the algorithm. The input is a military
unit of type 2, whose reference value is 10.0; the most suitable coordinate for this
military unit is the one where the average height is the closest possible to 10.0.
Figures 3.5(a), 3.5(b), 3.5(c), 3.5(d) respectively illustrate rotation 0, rotation 1,
rotation 2, and rotation 3 of the computations from Stage B. The parameters of this
coordinate is x = 0, y = 1, and width = 3 (different coordinates can present different val-
ues for x , y , and width). The algorithm sequentially extracts the average height of each
rotation. The average height from rotation 0 is 1.0 (Figure 3.5(a)), from rotation 1
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Figure 3.4 – MS Benchmark Stage B’s flowchart.

is 9.0 (Figure 3.5(b)), from rotation 2 is 5.0 (Figure 3.5(c)), and from rotation 3 is
7.0 (Figure 3.5(d)). As rotation 1 presents the smallest distance to the reference
value of the military unit, the algorithm chooses rotation 1 as the best option for the
military unit. Although this example illustrates the verification of a single coordinate,
each drone verifies a list of coordinates to choose the most suitable for each military
unit. MS is a flexible benchmark; thus, future work can modify the benchmark to extract
other information from maps.

We summarize our parallelism strategy for stage B as a sequence of optimization steps:

(a) We merge procedures 1, 2, 3, and 4 into a single routine. The literature names this
technique as GPU kernel fusion [KH10]. We perform this optimization primarily
using the loop fusion technique. It is possible because the procedures have the
same iteration space and no data dependency. GPU kernel fusion is relevant for
lowering the amount of GPU kernel launches.

(b) We assign a thread block to each coordinate of a drone to isolate irregular compu-
tations, which is critical to allow convergent instructions between the GPU threads
and implement coalesced access patterns. Suppose GPU threads from the same
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(a) Illustrating rotation 0 from Stage B. (b) Illustrating rotation 1 from Stage B.

(c) Illustrating rotation 2 from Stage B. (d) Illustrating rotation 3 from Stage B.

Figure 3.5 – MS Benchmark Stage B, computing the best average height of a coordinate for
a military unit.
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thread block process computations from different coordinates. Each coordinate
has a different size and accesses very different map regions. In that case, the
instructions between the threads will diverge, imposing a GPU under-utilization
because GPU threads execute only a common instruction in a clock cycle. Ad-
ditionally, as coordinates access different map regions, it is impossible to provide
contiguous memory accesses for a group of GPU threads.

(c) We distribute the positions of the coordinate between the threads of the thread
block.

(d) We modify the access patterns to allow the GPU optimization of memory coalesc-
ing. This optimization is relevant for lowering the memory latency.

(e) We perform most computations using GPU shared memory. GPU shared memory
accesses are faster than GPU global and local memory.

(f) We implement a binary tree parallel reduce algorithm for combining results from
each thread block [NVI12]. The result of each thread block is the average height
and the lowest and highest points of the coordinate. Figure 3.6 illustrates the
thread block reduction algorithm. Each thread loads its data on the GPU shared
memory in the initialization. Then, the algorithm starts an iterative process. At
each step: 1) The algorithm divides in half the number of active threads; 2) A
thread combines the results of itself and another thread. 3) The thread block
synchronizes its threads; The algorithm stops when only a single thread remains
active, which holds the accumulated result.

(g) We apply loop collapsing and unrolling to lower the number of branches in the
GPU kernel.

In short, the resulting GPU kernel performs a sequence of two simple loops. In the
first loop, the GPU threads compute the coordinate’s positions and perform O(CS/n)
branches, where CS is the coordinate size, and n is the thread block size. In the
second loop, the GPU performs a reduction algorithm in the thread block, and each
thread performs O(log n) branches, where n is the thread block size. This strategy’s
total amount of threads is the number of coordinates multiplied by the size of the thread
blocks.

3. Stage C. Stage C is a computational intensive stage performed by the GPU. The main
characteristic of this stage is the use of the parallel pattern MapReduce with multiple
output variables. Stage C is responsible for finding the best coordinate for each military
unit and uses the extracted data from stage B.

Figure 3.7 illustrates Stage C’s flowchart. Rectangles are functions, and rectangles
with a green background are functions offloaded to the GPU. Dashed rectangles are
routines. This stage is composed of a triple nested loop; the server iterates over each
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Figure 3.6 – Binary tree parallel reduce algorithm in a thread block.

drone’s military unit, each drone’s coordinate, and each coordinate’s rotation. The
stage is composed of two procedures. The algorithm finds the best coordinate for a
military unit in the first procedure. In the second procedure, the algorithm updates the
utilization of the chosen coordinate for a given military unit. A MapReduce pattern is
suitable for this problem, where the Map pattern extracts the best coordinate for a given
military unit. The Reduce pattern outputs the number of military units that the algorithm
is assigning to this coordinate. This Reduce pattern has multiple outputs: 1) The total
amount of military units in the coordinate (integer); 2) The total amount of military units
per type (array of integers); 3) The coordinate utilization factor (double). The Big O
notation [CLRS09] of the stage C is O(nm∗nc∗nr), where nm is the number of military
units, nc is the number of coordinates, and nr is the number of rotations.

We summarize our parallelism strategy for stage C as a sequence of optimization steps:

(a) We assign a thread block to each military unit.

(b) We distribute the drone’s coordinates between the threads of the thread block.

(c) We modify the access patterns to allow the GPU optimization of memory coalesc-
ing.

(d) We perform most computations using GPU shared memory.
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Figure 3.7 – MS Benchmark Stage C’s flowchart.

(e) We implement a binary tree parallel reduce algorithm for combining results from
each thread block [NVI12]. The result of each thread block is the most suitable
coordinate for the military unit assigned to the thread block.

(f) A single thread of the thread block performs atomic operations to update the uti-
lization status of the coordinate chosen for the military unit assigned to the thread
block. An alternative strategy to update the status of the coordinate is using a tra-
ditional algorithm reduction. However, such a strategy has large memory require-
ments. Since MS is a streaming application, the continuous data flow imposes
that the GPU will process several drones simultaneously. Thus, a strategy with
large memory requirements is unsuitable because it makes the GPU run out of
memory.

(g) We apply loop collapsing and unrolling to lower the number of branches in the
GPU kernel.

(h) We launch a GPU kernel for each type of military unit. Each type of military unit
performs different routines for verifying the suitability of a coordinate. Suppose
the GPU threads from the same thread block perform different routines. In that
case, the instructions between the threads will diverge, imposing a GPU under-
utilization.

In short, the resulting GPU kernel performs a sequence of two simple loops. In the
first loop, the GPU threads compute the coordinates’ suitability and perform O(CN/n)
branches, where CN is the number of coordinates, and n is the thread block size. In
the second loop, the thread block performs a reduction algorithm, and each thread
performs O(log n) branches, where n is the thread block size. After the thread block
finishes the reduction algorithm, a single thread from the thread block is selected.
Then, the thread performs O(1) atomic operations to update the status of the best
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coordinate found. The total amount of threads performed by this strategy is the number
of military units multiplied by the size of the tread blocks.

4. Stage D. Stage D is a lightweight stage performed by the GPU. The main characteristic
of this stage is the use of the parallel pattern Reduce with a single output variable. This
stage’s objective is to validate the results found in stage C.

Figure 3.8 illustrates Stage D’s flowchart. Rectangles are functions, and rectangles
with a green background are functions offloaded to the GPU. Dashed rectangles are
routines. Stage D is divided into three procedures. The first procedure is a single loop
that counts the number of military units classified into each coordinate. The second
procedure is a single loop that validates each military unit and counts the number
of ones that passed the test. The third procedure compares the checksum reference
value to the results from the first and second procedures. The Big O notation [CLRS09]
of the stage D is O(nc +nm +1), where nc is the number of coordinates, and nm is the
number of military units.

Figure 3.8 – MS Benchmark Stage D’s flowchart.

In the GPU implementation of the first procedure, we assign a GPU thread to each loop
iteration. As this procedure is a parallel reduce pattern, we use atomic operations to
combine the results from different thread blocks. However, only a single thread of each
thread block performs the atomic operations (the thread updates the global reduce with
the partial reduction of its thread block). A traditional parallel reduction implementation
using buffers to store partial results is unsuitable for MS because parallelism increases
memory utilization, resulting in application crashes. We applied the same parallel strat-
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egy in the second procedure. The third procedure implements a checksum verification
for validation status, and a single GPU thread executes it. If the drone passes the test,
it assigns its status as SUCCESSFUL. Otherwise, it assigns its status as UNSUCCESSFUL.
The MS benchmark execution is correct when all drones pass this test.

5. Stage E. Stage E is a lightweight stage performed by the CPU. The main characteristic
of this stage is the CPU IO. The CPU simulates the output by writing the results of the
stream element in the disk. The output is a configuration file containing a list of military
units with their respective most suitable coordinates.

This section described the GPU implementation of the stream processing bench-
mark MS. In the next session, we report the limitations that we found in GSParLib and the
optimizations that we provided to overcome each limitation.

3.4 Limitations and Improvements in GSParLib

This section discusses the limitations found in GSParLib’s Driver and Pattern APIs.
We also describe our strategies to overcome each one of them. We implemented the bench-
marks presented in the above sections (CG, EP, FT, IS, MG, LD, MB, RT, and MS) to inves-
tigate GSParLib’s performance and programmability.

We found five main limitations in the Driver API. The limitations can impact both
performance and programmability depending on the application we want to apply the GPU
parallelism. In the following items, we describe the limitations found and the optimizations
we provided to overcome each one of them in the GSParLib’s Driver API. The items are
organized as follows:

1. Different additional routines must be provided for CUDA and OpenCL.

• Limitation.

When we create GPU kernels, we commonly need to define additional routines.
The additional routines can be functions, variables, or constants used by a GPU
kernel. In CUDA, we name them as device functions, device variables, and device
constants [NVI20a].

One of the main concepts of the GSParLib’s Driver API idealized by Rocken-
bach [Roc20] is that the programmer must provide only the GPU kernel using
CUDA or OpenCL syntax. However, GSParLib currently does not have any ab-
stractions for the additional routines. The programmer must provide additional
routines using CUDA and OpenCL syntax, which increases the programming ef-
fort and the knowledge required to exploit both programming models.
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Moreover, writing an entire GPU kernel using CUDA or OpenCL syntax is already
a drawback. A unified interface should not require any CUDA or OpenCL syntax
from the programmer.

Code 3.1 shows an example of a GPU kernel that uses additional routines. The
constant value named as CONSTANT has different type declarations for CUDA and
OpenCL (lines 6 and 34), as well as the device function routine (lines 7 and 35).
Considering the kernel source, several other differences are noted as the GPU
kernel declaration (lines 10 and 38), global memory declaration (lines 11 and 39),
shared memory declaration (lines 12 and 40), barrier for the thread block (lines
20 and 48), and information about the thread identifiers and the thread hierarchy
(lines 14, 18, 22, 24, 26, 42, 46, 50, 52, and 54).

• Improvement. In order to overcome this limitation of programmability, we pro-
vided a set of abstractions for GSParLib. The abstractions implement a unified
interface for CUDA and OpenCL.

We created two mechanisms to provide a unified interface. First, we added a
second typing in GSParLib to identify GPU kernels, device functions, and the
memory hierarchy of the data. Second, we added functions that abstract CUDA
and OpenCL routines, such as barriers or getting information about the thread
hierarchy. Table 3.1 presents a summary of the abstractions added to GSParLib,
which we can use with both Driver API and Pattern API. First column highlights
if the abstraction is a keyword or a function. The second column describes the
abstraction. The third column presents the signature or example of use for the
abstraction.

A GPU kernel inside GSParLib is a string, which allows extensive manipulation
flexibility. In order to implement our abstractions, we created a preprocessing
method for GPU kernels. GSParLib calls this method before compiling the string.
To deal with the keywords, we created a routine that uses regular expressions
to identify the GSParLib keywords in the source code and replace them with
CUDA or OpenCL syntax. To deal with the abstractions that are functions, we
implemented the low-level routines with CUDA and OpenCL. In the preprocessing
method, GSParLib appends those routines at the beginning of the GPU kernel
source. This way, the programmer can use the defined GSParLib functions to
avoid a manual implementation of low-level routines with CUDA or OpenCL.

Code 3.2 presents an example that uses our abstractions added to GSParLib that
is equivalent to the previous code 3.1. Due to the abstractions, a single GPU
kernel can be used to generate CUDA or OpenCL code; the single requirement is
to import the C++ headers and namespace according to CUDA or OpenCL.
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1 / / CUDA vers ion
2 # i f def ined (GSPARDRIVER_CUDA)
3 #include "GSPar_CUDA. hpp "
4 using namespace GSPar : : D r i ve r : :CUDA;
5 s td : : s t r i n g kernel_source = GSPAR_STRINGIZE_SOURCE(
6 const double CONSTANT = 56.64;
7 __device__ double r o u t i n e ( double a , double b ) {
8 return a * b ;
9 }

10 extern "C" __global__ void gpu_kernel (
11 double * data ) {
12 __shared__ double shared_data [ 1 0 2 4 ] ;
13

14 i n t index = b lock Idx . x * blockDim . x + th read Idx . x ;
15

16 double my_resul t = r o u t i n e ( data [ index ] , CONSTANT) ;
17

18 shared_data [ th read Idx . x ] = my_resul t ;
19

20 __syncthreads ( ) ;
21

22 i f ( th read Idx . x==0) {
23 for ( i n t i =1; i <1024; i ++) {
24 shared_data [ th read Idx . x ] += shared_data [ i ] ;
25 }
26 data [ b lock Idx . x ] = shared_data [ th read Idx . x ] ;
27 }
28 } ) ;
29 / / OpenCL vers ion
30 #else
31 #include "GSPar_OpenCL . hpp "
32 using namespace GSPar : : D r i ve r : : OpenCL ;
33 s td : : s t r i n g kernel_source = GSPAR_STRINGIZE_SOURCE(
34 __constant double CONSTANT = 56.64;
35 double r o u t i n e ( double a , double b ) {
36 return a * b ;
37 }
38 __kernel void gpu_kernel (
39 __global double * data ) {
40 __ loca l double shared_data [ 1 0 2 4 ] ;
41

42 i n t index = ge t_g loba l_ id ( 0 ) ;
43

44 double my_resul t = r o u t i n e ( data [ index ] , CONSTANT) ;
45

46 shared_data [ g e t _ l o c a l _ i d ( 0 ) ] = my_resul t ;
47

48 b a r r i e r (CLK_LOCAL_MEM_FENCE) ;
49

50 i f ( g e t _ l o c a l _ i d ( 0 ) ==0) {
51 for ( i n t i =1; i <1024; i ++) {
52 shared_data [ g e t _ l o c a l _ i d ( 0 ) ] += shared_data [ i ] ;
53 }
54 data [ get_group_id ( 0 ) ] = shared_data [ g e t _ l o c a l _ i d ( 0 ) ] ;
55 }
56 } ) ;
57 #endif

Code 3.1 – Example of different routines required when using GSParLib’s Driver API.
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Table 3.1 – Summary of the new abstractions for GSParLib.
Type Description Example of use / Signature
keyword __gspar_device_function__ indicates that a function is a

device function and will be called inside a GPU kernel.
__gspar_device_function__ additional_routine(double a, double
b){return a*b;}

keyword __gspar_device_kernel__ indicates that a function is a
GPU kernel.

__gspar_device_kernel__ void gpu_kernel(
__gspar_device_global_memory__int* array){...}

keyword __gspar_device_global_memory__ indicates that the
data is in the GPU global memory.

__gspar_device_global_memory__ int* array;

keyword __gspar_device_shared_memory__ indicates that the
data is in the GPU shared memory.

__gspar_device_shared_memory__ int shared_data[128];

keyword __gspar_device_constant_memory__ indicates that the
data is in the GPU constant memory.

__gspar_device_constant_memory__ double PI = 3.141592;

keyword __gspar_macro_begin__ and __gspar_macro_end__
identify the beginning and the ending of a C/C++ macro
declaration.

__gspar_macro_begin__ #define PI 3.141592
__gspar_macro_end__

function __gspar_get_global_id__ returns the thread global id on
the x, y, or z axis. The argument axis must be 0, 1, or 2.

__gspar_get_global_id__(int axis);

function __gspar_get_thread_id__ returns the thread local id (po-
sition in the thread block) on the x, y, or z axis. The argu-
ment axis must be 0, 1, or 2.

__gspar_get_thread_id__(int axis);

function __gspar_get_block_id__ returns the block id of the
thread on the x, y, or z axis. The argument axis must
be 0, 1, or 2.

__gspar_get_block_id__(int axis);

function __gspar_get_block_size__ returns the block size of the
thread on the x, y, or z axis. The argument axis must be
0, 1, or 2.

__gspar_get_block_size__(int axis);

function __gspar_synchronize_local_threads__ performs a syn-
chronization between the threads of the thread block.

__gspar_synchronize_local_threads__(void);

function __gspar_atomic_add_int__ performs an atomic opera-
tion with integer numbers.

__gspar_atomic_add_int__(int* address, int value);

function __gspar_atomic_add_double__ performs an atomic op-
eration with float-pointing numbers of double precision.

__gspar_atomic_add_double__(double* address, double value);

2. Macros are not recognized.

• Limitation. When programming with CUDA, the compiler automatically imports
macros to GPU kernels. Among others, macros can include important parame-
ters, define access patterns, and activate features of GPU APIs through pragma
directives [NVI20a]. However, GSParLib cannot recognize macros, which im-
pacts the programmability because it is impossible to activate some features, e.g.,
atomic operations from OpenCL. In our investigation, we found that the routine
GSPAR_STRINGIZE_SOURCE from GSParLib is why the framework does not recog-
nize macros.

• Improvement. To solve this limitation, we provided two keywords for GSParLib
(Table 3.1): 1) __gspar_macro_begin__, which identifies the beginning of a macro;
2) __gspar_macro_end__, which identifies the ending of a macro. The macro con-
tent uses the syntax of C/C++. The macros are manipulated in the preprocessing
method before the GPU kernel compilation, as with the other abstractions.

3. The compute capability of the GPU is not recognized.

• Limitation. The compute capability is a version number of GPUs from NVIDIA. It
identifies the set of features supported by the GPU. When the GPU does not rec-
ognize the compute capability, it is impossible to use some CUDA features. For
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1 / / CUDA vers ion
2 # i f def ined (GSPARDRIVER_CUDA)
3 #include "GSPar_CUDA. hpp "
4 using namespace GSPar : : D r i ve r : :CUDA;
5 / / OpenCL vers ion
6 #else
7 #include "GSPar_OpenCL . hpp "
8 using namespace GSPar : : D r i ve r : : OpenCL ;
9 #endif

10 s td : : s t r i n g kernel_source = GSPAR_STRINGIZE_SOURCE(
11 __gspar_device_constant__ double CONSTANT = 56.64;
12 __gspar_device_function__ double r o u t i n e ( double a , double b ) {
13 return a * b ;
14 }
15 __gspar_device_kernel__ void gpu_kernel (
16 __gspar_device_global_memory__ double * data ) {
17 __gspar_device_shared_memory__ double shared_data [ 1 0 2 4 ] ;
18

19 i n t index = gspar_get_global_id ( 0 ) ;
20

21 double my_resul t = r o u t i n e ( data [ index ] , CONSTANT) ;
22

23 shared_data [ gspar_get_thread_id ( 0 ) ] = my_resul t ;
24

25 gspar_synchronize_local_threads ( ) ;
26

27 i f ( gspar_get_thread_id ( 0 ) ==0) {
28 for ( i n t i =1; i <1024; i ++) {
29 shared_data [ gspar_get_thread_id ( 0 ) ] += shared_data [ i ] ;
30 }
31 data [ gspar_get_block_id ( 0 ) ] = shared_data [ gspar_get_thread_id ( 0 ) ] ;
32 }
33 } ) ;

Code 3.2 – Example of the new abstractions for GSParLib.

example, atomic operations with double-precision floating-point numbers or co-
operative groups (a feature that allows a global synchronization of GPU threads)
require the compute capability information to work [NVI20a]. The more recent the
compute capability, the larger the set of features available.

• Improvement. To overcome this limitation, we created a low-level routine that
uses the NVIDIA CUDA Driver API [KH10, NVI20a] to collect the compute capa-
bility of the GPU. The compute capability is passed as an argument in the GPU
kernel compilation, enabling all the GPU features.

4. Limited use of atomic operations.

• Limitation. Atomic operations are important when programming GPUs because
GPUs do not offer features for creating critical regions or semaphores for threads,
except atomic operations. However, since GSParLib does not recognize the GPU
compute capability, it is impossible to use the complete set of atomic operations
from CUDA. In this case, when using the GSParLib for generating CUDA code,
the programmer must manually implement atomic operations using the more basic
features of CUDA. It increases the programming effort and the risk of introducing
errors [NVI20a].
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OpenCL does not offer a complete set of atomic operations such as CUDA. Then
the programmers must always provide their implementation of atomic operations.
Nonetheless, atomic operations do not work with OpenCL in GSParLib at all be-
cause the routines require the introduction of pragma directives that are not recog-
nized by GSParLib. Moreover, implementing the atomic operations for CUDA and
OpenCL are entirely different. Therefore, GSParLib should offer an abstraction for
those operations.

• Improvement. We performed some modifications in GSParLib to fix these limita-
tions.

First, we created abstractions for atomic operations in CUDA and OpenCL, con-
templating both integers (gspar_atomic_add_int) and floating-pointing numbers
of double-precision (gspar_atomic_add_double), the signature of the functions can
be checked in Table 3.1. Code 3.3 presents our low-level implementation of atomic
operations for floating-pointing numbers of double precision. Lines 3 − 11 define
the operation in CUDA, and lines 14 − 28 define the operation in OpenCL.

Second, we enable the GPU resources. In CUDA, we identify and activate the
compute capability of the GPU. Suppose the GPU compute capability is inferior to
6. In that case, we append the complete set of abstractions for atomic operations
in the GPU kernel source because those routines are unavailable by default on
those architectures [NVI20a]. Otherwise, the complete set of atomic operations
from CUDA is available, and GSParLib just calls the available routines in CUDA.
In OpenCL, we append our abstractions into the GPU kernel source and enable
all OpenCL extensions in the GPU kernel compilation. In this case, we use the
directive #pragma OpenCL EXTENSION all: enable for this purpose.

In the NPB implementation, we used atomic operations in three benchmarks (EP,
FT, and IS). As reported in our previous work [AGR+21], depending on the case,
atomic operations can present better performance than algorithms of parallel re-
duction on modern GPU architectures.

5. GPU thread hierarchy is not configurable.

• Limitation. It is not possible to specify the number of threads per block when
programming a GPU kernel using the Driver API of GSParLib. However, this
parameter can impact the GPU performance [AGR+21].

Figure 3.9 illustrates an example of how changing the number of threads per block
impacts GPU performance. We ran experiments with the function q = A.p from
CG, varying the number of threads per block from the warp size (32) of the GPU
up to the maximum threads per block supported by the GPU (1024). The x-axis
presents the number of threads per block, and the y-axis presents the time in sec-
onds. The blue curve presents the results of the benchmark CG running with the
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1 # i f def ined (GSPARDRIVER_CUDA)
2 / / implementat ion o f atomic add wi th f l o a t i n g − p o i n t i n g numbers o f double p re c i s i o n i n CUDA
3 __device__ double gspar_atomic_add_double ( double * address , double va l ) {
4 unsigned long long i n t * address_as_ul l = ( unsigned long long i n t * ) address ;
5 unsigned long long i n t old = * address_as_ul l , assumed ;
6 do {
7 assumed = old ;
8 o ld = atomicCAS ( address_as_ul l , assumed , __double_as_longlong ( va l + __longlong_as_double (

assumed ) ) ) ;
9 } while ( assumed != o ld ) ;

10 return __longlong_as_double ( o ld ) ;
11 }
12 # e l i f def ined (GSPARDRIVER_OPENCL)
13 / / implementat ion o f atomic add wi th f l o a t i n g − p o i n t i n g numbers o f double p re c i s i o n i n OpenCL
14 double gspar_atomic_add_double ( __g lobal double * valq , double de l t a ) {
15 union {
16 double f ;
17 unsigned long i ;
18 } o ld ;
19 union {
20 double f ;
21 unsigned long i ;
22 } new1 ;
23 do {
24 o ld . f = * va lq ;
25 new1 . f = o ld . f + de l t a ;
26 } while ( atom_cmpxchg ( ( v o l a t i l e __global unsigned long * ) valq , o ld . i , new1 . i ) != o ld . i ) ;
27 return old . f ;
28 }
29 #endif

Code 3.3 – GSParLib abstractions for atomic operations.

class B of NPB, and the green curve presents the results of class C. In this rou-
tine, the GPU performance decreases as the thread block size increases. When
using 32 threads per block, the GPU kernel is 525% faster than 1024 threads per
block. Tasks of different sizes are processed in the q = A.p GPU kernel. However,
most tasks have a small size. In this case, the task size is the number of positions
to be processed in an array. Thus, when there are more threads than positions
to be processed, the threads stay inactive, imposing an overhead of creating idle
threads and divergent instructions. The best number of threads per block to im-
prove a GPU kernel’s performance depends on the algorithm’s characteristics and
GPU hardware. Our previous work describes more details about how the aspects
of an algorithm can impact the GPU performance and how they are related to the
number of threads per block [AGR+21].

• Improvement. To overcome this limitation, we created attributes to store
the number of threads per block in a GPU kernel (a GPU kernel is an
object). The attributes are private and have public methods to allow the
modification of their values. Table 3.2 presents the signature of the methods.
The first column describes the abstraction. The second column presents
the signature of the methods. The methods setNumThreadsPerBlockForX,
setNumThreadsPerBlockForY, and setNumThreadsPerBlockForZ, allow con-
figuring the number of threads per block on the axis x , y , and z.
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Figure 3.9 – Performance of the function q = A.p from CG when varying the number of
threads per block (original source [AGR+21]).

Table 3.2 – Abstractions for configuring the number of threads per block in GSParLib.
Description Example of use / Signature
setNumThreadsPerBlockForX sets the number of
threads per block in the axis x .

void setNumThreadsPerBlockForX(unsigned long num);

setNumThreadsPerBlockForY sets the number of
threads per block in the axis y .

void setNumThreadsPerBlockForY(unsigned long num);

setNumThreadsPerBlockForZ sets the number of
threads per block in the axis z.

void setNumThreadsPerBlockForZ(unsigned long num);

If the programmer does not specify the number of threads per block, GSParLib
uses the maximum number of threads per block supported by the GPU as configuration.

Now we discuss the limitations found in the Pattern API and describe our improve-
ments to overcome each one. Pattern API inherits all Driver API issues and also inherits their
improvements. Therefore, we describe the exclusively Pattern API limitations as follows:

1. Memory transfers are always executed when a GPU kernel is executed.

• Limitation. Memory transfers between the CPU and the GPU are costly oper-
ations, and the good practice of GPU programming is avoiding them [NVI20a].
However, whenever the Pattern API executes a GPU kernel, GSParLib operates
memory transfers. There is no option to keep the data on the GPU and reuse it.

In robust computations like those present in NPB, where the application operates
many GPU kernel launches, the excessive use of memory transfers becomes a
critical problem for performance. When considering stream processing applica-
tions, memory transfers should be done only at the beginning of the first stage
and at the end of the last stage.

• Improvement. In the Pattern API, we manage the memory arguments of a GPU
kernel through the method setParameter. GSParLib’s original version only ac-
cepts host pointers as memory arguments. GSParLib creates an internal memory
object for each host pointer before launching a GPU kernel and deletes them all
when the GPU kernel finishes its execution.
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To overcome this limitation, we overloaded the method setParameter to receive a
GSParLib memory object. A few lines of code are enough to create a GSParLib
memory object. Consequently, it does not negatively impact the programmability
levels of GSParLib.

We also created another option to control the flow of memory transfers. The option
is GSPAR_PARAM_PRESENT, which indicates that the data is already on the GPU and
does not perform any memory transfers.

When using the method setParameter with a memory object and the option
GSPAR_PARAM_PRESENT, the GPU kernel will use the data from the memory object
instead of creating an internal memory object and performing memory transfers.

Creating a pointer or an object for the GPU memory is a common practice present
in several GPU frameworks such as CUDA, OpenCL, and Thrust [KH10]. Pro-
viding arguments that indicate if the data is already present in the GPU is a
practice adopted in high-level frameworks such as OpenACC [CJ17]. Memory
objects from GSParLib can be used with any of the arguments to control the
flow of memory transfers (GSPAR_PARAM_IN, GSPAR_PARAM_OUT, GSPAR_PARAM_INOUT,
GSPAR_PARAM_PRESENT). Table 3.3 shows the signature of the overloaded method
setParamter. The first column presents a description. The second column
presents the signature.

Table 3.3 – Overloaded setParameter method to improve GSParLib memory transfers.
Description Example of use / Signature
setParamter sets a memory object as a GPU kernel parameter. T is a
generic data type. name is the name of the data inside the GPU ker-
nel. data_device is the memory object that will be set as parameter in
the GPU kernel. direction is the memory transfer direction for the mem-
ory object (it can be GSPAR_PARAM_IN, GSPAR_PARAM_OUT, GSPAR_PARAM_INOUT, or
GSPAR_PARAM_PRESENT). GSPAR_PARAM_PRESENT is the option required to avoid mem-
ory transfers.

setParameter<T>(string name, MemoryObject
device_data, enum direction);

Code 3.4 presents an example that uses the optimizations for memory transfers
in the GSParLib. In the example are launched five GPU kernels that perform
computations over the memory object data_device. Line 1 collects a reference
from the GPU of ID 0. Line 3 creates a memory object. Line 4 allocates GPU
memory for the memory object and associates it to a host pointer. Lines 6 −
8 execute the first GPU kernel. The method setParameter in line 7 uses the
argument GSPAR_PARAM_IN to copy the data to the GPU. Lines 10 − 20 launch
the GPU kernels 2, 3, and 4. Those launches use GSPAR_PARAM_PRESENT as an
argument, avoiding any memory transfers. Lines 22 − 24 launch the last GPU
kernel, use GSPAR_PARAM_OUT as an argument, and transfer the data to the host
after finishing the execution. Following this strategy, we only perform two memory
transfers. In contrast, the GSParLib default version would require ten memory
transfers.
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1 auto gpu = d r i ve r −>getGpu ( 0 ) ;
2

3 MemoryObject * data_device ;
4 data_device = gpu−>mal loc ( sizeof ( i n t ) *N, data_host ) ;
5

6 Map* kernel_1 = new Map( kernel_source_1 ) ;
7 kernel_1 −>setParameter < i n t * >( " data " , data_device , GSPAR_PARAM_IN) ;
8 kernel_1 −>run <Instance >( dims ) ;
9

10 Map* kernel_2 = new Map( kernel_source_2 ) ;
11 kernel_2 −>setParameter < i n t * >( " data " , data_device , GSPAR_PARAM_PRESENT) ;
12 kernel_2 −>run <Instance >( dims ) ;
13

14 Map* kernel_3 = new Map( kernel_source_3 ) ;
15 kernel_3 −>setParameter < i n t * >( " data " , data_device , GSPAR_PARAM_PRESENT) ;
16 kernel_3 −>run <Instance >( dims ) ;
17

18 Map* kernel_4 = new Map( kernel_source_4 ) ;
19 kernel_4 −>setParameter < i n t * >( " data " , data_device , GSPAR_PARAM_PRESENT) ;
20 kernel_4 −>run <Instance >( dims ) ;
21

22 Map* kernel_5 = new Map( kernel_source_5 ) ;
23 kernel_5 −>setParameter < i n t * >( " data " , data_device , GSPAR_PARAM_OUT) ;
24 kernel_5 −>run <Instance >( dims ) ;

Code 3.4 – Using memory transfer optimizations in GSParLib.

2. The pattern reduce imposes a sequence of GPU kernel launches.

• Limitation. The current implementation of the pattern reduce available in the Pat-
tern API launches a sequence of GPU kernels, where each GPU kernel computes
a partial reduction. The larger the amount of data, the more GPU kernels are
launched. However, launching several GPU kernels is expensive. Moreover, the
current implementation of the pattern reduce requires synchronization between
the CPU and the GPU before launching a new GPU kernel, which is also an ex-
pensive operation.

• Improvement. To overcome this limitation, we provided an implementation of the
pattern reduce, where a single GPU kernel executes the whole computation.

Code 3.5 presents a CUDA implementation of the pattern reduce (a binary tree
parallel reduce [KH10]) that is executed by a single GPU kernel. In this imple-
mentation, we assign a thread block to each subset of the data. In lines 3 − 9, we
initialize the data. In line 8, we load the data on the GPU shared memory. In line
11, we synchronize the threads of the same block. In lines 13 − 18, we perform
a partial reduction using the binary tree reduction algorithm and combine the re-
sults from the threads of the same block. In lines 20 − 22, we perform the global
reduction by selecting a single thread of the thread block and writing the thread
block’s partial reduction in the global reduction using an atomic operation.
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1 __global__ void single_gpu_kernel_reduce ( i n t * data , i n t * r e s u l t , i n t n ) {
2 / / i n i t i a l i z a t i o n
3 __shared__ i n t shared_data [THREADS_PER_BLOCK ] ;
4 i n t t h read_g loba l_ id = b lock Idx . x * blockDim . x + th read Idx . x ;
5 i n t t h read_ loca l_ i d = th read Idx . x ;
6 shared_data [ t h read_ loca l_ i d ] = 0 ;
7 i f ( t h read_g loba l_ id < n ) {
8 shared_data [ t h read_ loca l_ i d ] = data [ th read_g loba l_ id ] ;
9 }

10 / / thread block synchron iza t ion
11 __syncthreads ( ) ;
12 / / p a r t i a l reduc t ion
13 for ( i n t s = 1; s < THREADS_PER_BLOCK; s *= 2) {
14 i f ( t h read_ loca l_ i d % (2* s ) == 0) {
15 shared_data [ t h read_ loca l_ i d ] += shared_data [ t h read_ loca l_ i d + s ] ;
16 }
17 __syncthreads ( ) ;
18 }
19 / / f i n a l reduc t ion wi th an atomic opera t ion
20 i f ( t h read_ loca l_ i d == 0) {
21 atomicAdd ( r e s u l t , shared_data [ 0 ] ;
22 }
23 }

Code 3.5 – Single kernel reduction with CUDA.

3. Pattern Composition imposes a sequence of GPU kernel launches, synchroniza-
tions and memory transfers.

• Limitation. Conceptually idealized by Rockenbach [Roc20], the pattern composi-
tion from the Pattern API allows the composition of patterns. However, this feature
currently executes a sequence of GPU kernels. It does not perform any trans-
formations in the source code. Also, it performs synchronizations and memory
transfers between each GPU kernel launch, which is an unnecessary overhead.

• Improvement. As the use of the pattern composition is entirely optional, this
is not a critical limitation. Additionally, the user can create a sequence of GPU
kernels. This way, we will let the improvement of this feature as future work.

4. No abstractions for using the GPU shared memory are available.

• Limitation. GPU shared memory is vital for cooperative work between the
threads of a thread block or for reducing the memory latency of memory-bound
computations. Currently, the Pattern API does not offer any abstractions for using
the GPU shared memory, requiring low-level commands of CUDA or OpenCL.

• Improvement. To overcome this limitation, we provided programming abstrac-
tions in GSParLib that allow allocating GPU data by specifying the memory hier-
archy. In this case, we created the keyword __gspar_device_shared_memory__ for
allocating GPU shared memory data as presented in Table 3.1.
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5. Parameters of additional routines require OpenCL casts.

• Limitation. Suppose we pass arguments to additional routines of a GPU ker-
nel and compile the GSParLib with OpenCL. If the parameter is data on the
GPU global memory, GSParLib requires the use of casts with OpenCL syntax
(__global). However, the programmer should not be responsible for providing
such kinds of lower-level hacks using OpenCL syntax.

• Improvement. Our new programming abstractions presented in Table 3.1 are
enough to solve this limitation. Upon using the second typing for GSParLib,
GSParLib generates OpenCL syntax before compiling the GPU kernel, eliminating
the requirement of OpenCL details.

6. GPU kernels are always compiled when the workload size is modified.

• Limitation. Another limitation of the Pattern API is that GSParLib always com-
piles a GPU kernel when the workload size is modified. In the NPB, it occurs in
the benchmark MG. MG has irregular computations and launches each GPU ker-
nel several times. However, it computes chunks of different sizes over the data.
When GSParLib detects this behavior, it recompiles the GPU kernel, imposing a
considerable slowdown in the GPU.

• Improvement. In order to overcome this limitation, we modified the GSParLib to
compile a GPU kernel a single time and allow its execution with different workload
sizes. For this purpose, we use the workload size and the thread id to perform a
verification. Suppose the thread’s id is greater than the workload size; Then, this
thread terminates its execution; Otherwise, the thread can perform the computa-
tions of the GPU kernel; This modification allows dynamically changing the work-
load size (without any recompilation). Compiling a GPU kernel once and reusing
it with any workload size is a good programming practice allowed in CUDA and
OpenCL [NVI20a,KH10].

This section described the limitations that we found in GSParLib and the optimiza-
tions that we provided to overcome each limitation. In the next session, we present the
performance evaluation of GSParLib on data parallelism benchmarks.

3.5 Impact on data parallelism with GSParLib

In this section, we evaluate the performance of the NPB programs using the orig-
inal and improved versions of the GSParLib, CUDA, and OpenMP. We conducted the ex-
periments in a computer equipped with Intel Xeon E5-2620 (6 cores and 12 threads) and
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64 GB of RAM. The machine’s GPU is a NVIDIA Titan X Pascal with 12 GB of VRAM and
3584 CUDA Cores. The operating system was Ubuntu 20.04 LTS. The software used was
CUDA 11, GCC 9, OpenCL 3.0, and OpenMP 4.5. We used the compiler flag -O3 to enable
automatic compiler optimizations. We used classes B and C as workloads. NPB has other
options for workloads. However, S, W, and A are too small, while D, E, and F are too large to
fit the GPU memory. We executed each test ten times and collected the average time, and
they presented a negligible standard deviation. We calculated the speedups concerning the
execution time of the serial code on the CPU.

Figure 3.10 presents the speedup of the parallel implementations over the serial
code on the CPU for the workloads B (Figures 3.10(a) and 3.10(c)) and C (Figure 3.10(b)
and 3.10(d)). The x-axis lists the benchmarks evaluated. The y-axis presents the speedup
over the serial code, using a logarithmic scale with base 2. Concerning the versions: 1) We
tested an OpenMP version [LGM+21] (this version uses 12 threads, the number of logical
cores of the processor) and a CUDA version [AGR+21]; 2) We tested all the combinations of
the GSParLib Driver and Pattern APIs, with and without our improvements (we named these
versions as New and Old, respectively), and with CUDA and OpenCL backends.

 0.015625

 0.0625

 0.25

 1

 4

 16

 64

 256

CG EP FT IS MG

S
p
e
e
d

u
p

 O
v
e
r 

S
e
ri

a
l 
C

o
d

e
 (

lo
g

 s
ca

le
)

OpenMP
CUDA

Driver-Old-CUDA

Driver-Old-OpenCL
Driver-New-CUDA

Driver-New-OpenCL

(a) Driver API comparison using class B.

 0.015625

 0.0625

 0.25

 1

 4

 16

 64

 256

CG EP FT IS MG

S
p
e
e
d

u
p

 O
v
e
r 

S
e
ri

a
l 
C

o
d

e
 (

lo
g

 s
ca

le
)

OpenMP
CUDA

Driver-Old-CUDA

Driver-Old-OpenCL
Driver-New-CUDA

Driver-New-OpenCL

(b) Driver API comparison using class C.

 0.015625

 0.0625

 0.25

 1

 4

 16

 64

 256

CG EP FT IS MG

S
p
e
e
d

u
p

 O
v
e
r 

S
e
ri

a
l 
C

o
d

e
 (

lo
g

 s
ca

le
)

OpenMP
CUDA

Pattern-Old-CUDA

Pattern-Old-OpenCL
Pattern-New-CUDA

Pattern-New-OpenCL

(c) Pattern API comparison using class B.

 0.015625

 0.0625

 0.25

 1

 4

 16

 64

 256

CG EP FT IS MG

S
p
e
e
d

u
p

 O
v
e
r 

S
e
ri

a
l 
C

o
d

e
 (

lo
g

 s
ca

le
)

OpenMP
CUDA

Pattern-Old-CUDA

Pattern-Old-OpenCL
Pattern-New-CUDA

Pattern-New-OpenCL

(d) Pattern API comparison using class C.

Figure 3.10 – Speedup of the NPB versions over the serial code on the CPU, using a loga-
rithmic scale with base 2.
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3.5.1 Impact on CG with GSParLib

In the CG benchmark, we can observe a performance limitation in Driver-Old due
to the lack of allowing configuring the number of threads per block. CG performs better
with small amounts of threads per block, like 32 or 64, while Driver-Old always uses 1024
threads per block. CUDA achieves up to 75 of speedup, while Driver-Old achieves up to
12 of speedup. However, Driver-New is able to achieve performance equivalent to CUDA.
Pattern-Old presented a very low speedup, even slower than the serial code when com-
piled with OpenCL and running the class B. CG benchmark has iterative routines and calls
several GPU kernels thousand times. The main overhead highlighted in this benchmark is
the excessive amount of memory transfers performed in the Pattern-Old version. GSPar-
Lib’s original version imposes memory transfers at each GPU kernel launch when using the
Pattern API. That is the main reason for the performance degradation in CG. The lack of op-
tions to configure the number of threads per block also negatively impacts the performance.
When we observe the Pattern-New version, the overheads are solved, and the performance
is equivalent to CUDA.

3.5.2 Impact on EP with GSParLib

We also observed a performance degradation due to the number of threads per
block in the EP benchmark. Similar to CG, EP performs better with a small number of threads
per block, while GSParLib’s original version uses the maximum threads per block supported
by the GPU. CUDA achieved up to 158 of speedup, while Driver-Old’s best speedup was
135. Driver-New version was able to achieve up to 163 of speedup, which is even bet-
ter than CUDA. The NPB CUDA version uses dynamic shared memory [AGR+21], while
our GSParLib version of NPB uses static shared memory. For this reason, depending on
the benchmark, a parallel version can achieve a better performance than others. In the
Pattern-Old version of EP, we observed a moderate performance degradation compared to
the CG version. EP launches a single GPU kernel, while CG performs thousands of GPU
kernel launches (GSParLib performs memory transfer at each GPU kernel launch). How-
ever, the memory transfers required in EP were still noticeable in the overall performance.
Similar to Driver-New, Pattern-New presented a performance even better than CUDA.
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3.5.3 Impact on FT with GSParLib

Unlike CG and EP, the GPU thread hierarchy does not largely impact the bench-
mark FT. This way, Driver-Old and Driver-New presented a performance equivalent to CUDA.
Pattern-Old presented a significant overhead due to the excessive amount of memory trans-
fers, achieving up to 1.29 of speedup. In contrast, CUDA achieved up to 27 of speedup.
Pattern-New presented a performance equivalent to Driver-Old, Driver-New, and CUDA.

3.5.4 Impact on IS with GSParLib

The same overhead of performance from FT was observed in the IS benchmark
when running the Pattern-Old version. IS benchmark launches several GPU kernels, and
GSParLib’s original version of Pattern API operates lots of memory transfers. In contrast,
Pattern-New presented again a performance equivalent to Driver-Old, Driver-New, and
CUDA. The number of threads per block predominantly impacts IS. However, IS performs
better with a large number of threads per block. Once Driver-Old always chooses the max-
imum number of threads per block supported by the GPU, this version does not suffer any
overhead.

3.5.5 Impact on MG with GSParLib

In the MG benchmark, we observed another overhead in the Pattern-Old version.
Pattern-Old achieved a performance even worse than CG when running the MG bench-
mark. A GPU kernel is launched several times in the MG benchmark. However, the GPU
kernels use a different workload size at each launch. GSParLib’s original version always
recompiles a GPU kernel when the workload size is modified. That is why we observe a
considerable overhead. GPU kernel recompilations and memory transfers lead the GPU to
very poor speedups in the Pattern-Old version. Driver-Old, Driver-New, and Pattern-New

achieved a performance equivalent to CUDA. We observed a lower performance with class B.
It occurs due to the differences in the memory allocation of the GPU shared memory.

This section presented the performance evaluation of GSParLib on data parallelism
benchmarks. In the next session, we present the performance evaluation of GSParLib on
stream parallelism benchmarks.
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3.6 Impact on stream processing with GSParLib

This section evaluates GSParLib’s performance on stream processing benchmarks.
We performed experiments using the same methodology and machine described in Sec-
tion 3.5. As demonstrated in Section 3.5, GSParLib’s Pattern API can achieve equivalent
performance to GSParLib’s Driver API. For this reason, we only tested the stream process-
ing benchmarks with the Pattern API. We divided the workloads into two classes, B and C.
The classes of each benchmark are composed of the following parameters:

1. LD.B. A 640x360 resolution video with 248 frames.

2. LD.C. A 1280x720 resolution video with 609 frames.

3. MB.B. A 1500x1500 matrix and 1500 iterations.

4. MB.C. A 2500x2500 matrix and 2500 iterations.

5. RT.B. 128 images of 640x360 resolution.

6. RT.C. 256 images of 1280x720 resolution.

7. MS.B. 2048 drones, 3072 coordinates per drone, 1024 military units per drone, a
2048x2048 land size.

8. MS.C. 2048 drones, 6144 coordinates per drone, 1536 military units per drone, a
2048x2048 land size.

Figures 3.11, 3.12, 3.13, and 3.14 present the amount of elements processed per
second (throughput) in the benchmarks LD, MB, RT, and MS. The x-axis lists the number of
CPU threads, where the number of CPU threads corresponds to the number of replicas of
each stage (when applicable). For instance, we can replicate the stages B, C, and D in the
MS benchmark 3.3. If we set the CPU threads as 2, the benchmark will create two replicas
of the stages B, C, and D, totaling 6 CPU threads in those stages in addition to the thread in
stage A and the one in stage E. The y-axis presents the throughput (elements per second).
Concerning the versions: 1) We tested a serial version and a parallel multi-core version with
SPar; 2) We tested all the combinations of the GSParLib Pattern API, with and without our
improvements (we named these versions as New and Old, respectively), and with CUDA and
OpenCL backends.
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Figure 3.11 – Throughput of LD benchmark versions.
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Figure 3.12 – Throughput of MB benchmark versions.
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Figure 3.13 – Throughput of RT benchmark versions.



76

 0

 50

 100

 150

 200

 250

 300

 0  2  4  6  8  10  12

D
ro

n
e
s 

p
e
r 

se
co

n
d

CPU Threads

MS Benchmark - Performance evaluation with Class B

Serial
SPar

Pattern-Old-CUDA

Pattern-Old-OpenCL
Pattern-New-CUDA

Pattern-New-OpenCL

(a) GSParLib evaluation using the workload Class B.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0  2  4  6  8  10  12

D
ro

n
e
s 

p
e
r 

se
co

n
d

CPU Threads

MS Benchmark - Performance evaluation with Class C

Serial
SPar

Pattern-Old-CUDA

Pattern-Old-OpenCL
Pattern-New-CUDA

Pattern-New-OpenCL

(b) GSParLib evaluation using the workload Class C.

Figure 3.14 – Throughput of MS Benchmark versions.

3.6.1 Impact on LD with GSParLib

In the LD benchmark (Figure 3.11), the GPU versions do not present a relevant
improvement over the parallel multi-core version (SPar), except in the workload C. SPar ver-
sion is up to 4.7 times faster than the serial version. In contrast, the GPU versions are up
to 2.46 times better than SPar version. Varying the number of CPU threads in the multi-core
version significantly impacts the throughput. In contrast, we observe a lower performance
impact when varying the number of CPU threads in the GPU versions. Most computations
are assigned to the GPU, imposing low CPU usage. When comparing the performance of
Pattern-Old-CUDA and Pattern-Old-OpenCL to Pattern-New-CUDA and Pattern-New-OpenCL,
poor performance improvements are observed. The reason is that this benchmark does
not explore robust strategies or GPU resources. LD generates small loads for the GPU and
imposes lots of communications between the CPU and the GPU. Those features are very dif-
ferent from the computations present in the NPB. NPB explores the GPU resources, imposes
the use of robust strategies, generates large loads for the GPU, and avoids communication
between the CPU and the GPU. In this case, the LD benchmark highlights that the new
GSParLib’s version does not present any performance advantages over GSParLib’s original
version when targeting simple applications. The same occurs in terms of programmability.
The single GPU resource required in the LD benchmark is the global id of each thread. This
resource is already available in the original version of the Pattern API. This way, this bench-
mark does not explore any of the resources that improved GSParLib’s programmability.
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3.6.2 Impact on MB with GSParLib

All LD limitations are present in the MB benchmark (Figure 3.12). However, MB
generates even smaller loads for the GPU than to LD because computing a matrix row is
less computing-intensive than processing a whole frame. Once it is not worth launching
GPU kernels for non-compute-intensive routines, we do not observe a relevant performance
improvement when using the GPU versions instead of the parallel multi-core version. Due to
those MB features, we can not observe any performance and programmability improvements
when comparing GSParLib’s modified version to the original version.

3.6.3 Impact on RT with GSParLib

RT benchmark is similar to LD and MB (Figure 3.13). However, RT performs fewer
communications between the CPU and the GPU than LD and has larger loads for the GPU
than MB. Consequently, the GPU performance was better than the parallel multi-core version
in classes B and C. However, RT is still a limited benchmark for evaluating GPU program-
ming. As the GPU performs most computations, the number of CPU threads poorly impacted
the throughput. As in LD and MB, the improvements are not noticeable when using GSPar-
Lib’s new version over GSParLib’s original version.

3.6.4 Impact on MS with GSParLib

In the MS benchmark, it is clear that the CPU Serial version (Figure 3.14) is very
limited for computing the data collected from the drones. It can process only 9 drones per
second with class B and 3 with class C. In contrast, SPar version that is a parallel multi-core
implementation presents relevant results with up to 47 drones processed per second with
class B and up to 17 drones processed per second with class C.

When considering GSParLib’s original version (Pattern-Old-CUDA and
Pattern-Old-OpenCL), the performance is very limited. The GPU is mostly similar or
slower than SPar with class B and only slightly better than SPar with class C. While the
MS Benchmark offers suitable routines for data parallelism. GSParLib’s original version
presents a limited performance because it requires memory transfers at each GPU kernel
launch. In opposite, a suitable programming practice should perform memory transfers only
in the stream’s first and last stages, maintaining the data on the GPU. Another limitation
is the number of threads per block that is not configurable and degrades the performance.
MS GPU kernels consume lots of GPU resources. If we create large thread blocks, the
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GPU’s SMs will not have enough resources for launching several thread blocks in parallel,
imposing a GPU under-utilization. Moreover, several GPU threads stay inactive in the
irregular computations from stage B when the thread block is larger than the coordinate
size. In short, GSParLib’s old version is not able to offer relevant advantages over a parallel
multi-core version on a robust stream application.

On the other hand, GSParLib’s modified version (Pattern-New-CUDA and
Pattern-New-OpenCL) was able to compute up to 260 drones per second with class B, and
172 drones per second with class C, which is a considerable improvement over the CPU ver-
sions (Serial and SPar). However, we must observe that the performance does not increase
upon varying the number of CPU threads. The GPU performs most of the computations,
and then the CPU always presents a low usage. A slowdown occurs when using 9 and 11
CPU threads due to the FastFlow runtime. FastFlow performs a thread pinning technique.
It assigns a CPU thread to a physical core. This core always executes this thread, even
if the core has to compute other tasks and other physical cores are idle. In this case, the
thread pinning imposes a performance degradation. It occurs only in some cases because
FastFlow statically distributes the CPU threads among the physical cores of the processor.
In the MS benchmark, FastFlow’s algorithm performs a bad choice only when using 9 and
11 CPU threads.

This section presented the performance evaluation of GSParLib on stream paral-
lelism benchmarks. In the next session, we discuss programmability aspects of GSParLib.

3.7 Impact on programmability with GSParLib

This section discusses aspects of programmability from the benchmarks tested
with GSParLib. Figure 3.15 presents the number of source lines of code of each benchmark
implemented. Figure 3.15(a) presents the results for the benchmarks of data parallelism.
Figure 3.15(b) presents the results for the benchmarks of stream parallelism. The x-axis
lists the benchmarks, and the y-axis presents the number of source lines of code. We
used the software SLOC [Whe] to collect this metric. Several techniques help to evaluate
the programmability of an API. Collecting the source lines of code is a simple metric that
helps give a general idea of the programming effort of an API through the necessary code
intrusion [Roc20]. However, we highlight that it does not represent code productivity.

Concerning data parallelism with the NPB programs (Figure 3.15(a)), our first ob-
servation is that Driver-Old and Pattern-Old versions require more source lines of code
than CUDA. It occurs because we must write every GPU kernel and additional routines using
both CUDA and OpenCL syntax. Moreover, in GSParLib’s original version, we must man-
ually provide low-level routines such as atomic operations. Finally, GSParLib requires that
we manually include each macro in the GPU kernels. It also increases the source lines of
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Figure 3.15 – Source Lines of Code of each Benchmark tested.

code. In opposite, CUDA automatically imports every macro from the C/C++ program and
offers abstractions to features such as atomic operations. In future work, we could provide
the automatic import of macros to GSParLib.

In the versions Driver-New and Pattern-New, there are fewer lines of source code
compared to Driver-Old and Pattern-Old. This reduction is because the improvements
done in the GSParLib allow writing a single GPU kernel or additional routine that can work
with both CUDA and OpenCL. With these improvements, the amount of source lines of code
is more similar to the CUDA versions.

Concerning the benchmarks of stream parallelism (Figure 3.15(b)), all the obser-
vations relative to the NPB programs are valid to the MS benchmark. Pattern-New requires
fewer source lines of code than Pattern-Old because we can provide a single routine for
both CUDA and OpenCL. LD, MB, and RT benchmarks are more straightforward than MS
because they do not explore GPU resources or robust strategies. Thus, we do not observe
a relevant difference in the source lines of code when using Pattern-Old or Pattern-New.

The main objective of the programmability improvements is not to require fewer
source lines of code but to provide a unified interface for both CUDA and OpenCL. Providing
a single source code that can work with CUDA and OpenCL and run on different vendors’
GPUs is a considerable advantage.

A recurrent limitation present in frameworks that provide abstractions is perfor-
mance degradation as a higher level is the abstraction. However, GSParLib is now pre-
senting a performance very similar to CUDA in both Driver and Pattern APIs.

Another limitation exhibited by APIs that provide programming abstractions is that
they are susceptible to a lack of expressiveness. For instance, OpenACC does not allow
synchronizing the threads of a thread block. The lack of features can impose strategies that
are not suitable for GPUs and result in performance degradation. In this case, GSParLib
also provides a large set of features, making its APIs flexible and powerful as it can now
recognize the GPU resources.
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Some high-level APIs also introduce other concepts and other programming mod-
els, increasing the difficulty of applying parallelism in a given application. This kind of limi-
tation occurs with frameworks such as Thrust from NVIDIA [DSU20]. In opposite, the GPU
programming community well knows CUDA nomenclature and concepts. CUDA is the stan-
dard way to exploit parallelism on NVIDIA GPUs, and NVIDIA is the leader GPU manufac-
turer. For those reasons, in the GSParLib we keep the nomenclature and concepts similar
to CUDA.

This section discussed programmability aspects of GSParLib. In the next session,
we present our final remarks about GSParLib.

3.8 Final remarks about GSParLib

In this chapter, we presented a study for evaluating GSParLib’s performance and
programmability. Table 3.4 summarizes the results by presenting the performance improve-
ment of the optimized version of the GSParLib over the original version and CUDA. The
first column indicates the API used. The second column indicates the benchmark used.
The third column indicates the parallelism exploited (data or stream parallelism). The fourth
column indicates the metric measured (speedup or throughput). The fifth column indicates
the percentage of performance improvement of the GSParLib’s modified version over the
GSParLib’s original version. The sixth column indicates the percentage of performance im-
provement of the GSParLib’s modified version over CUDA.

Table 3.4 – Performance improvement of the optimized version of GSParLib over the original
version and CUDA.

API Benchmark Parallelism Metric Improve over
original version

Improve over
CUDA

Driver API CG Data Speedup 629.32% 0.59%
Driver API EP Data Speedup 72.61% 3.92%
Driver API FT Data Speedup 4.02% 0.42%
Driver API IS Data Speedup 0.00% 0.00%
Driver API MG Data Speedup 0.00% 1.00%
Pattern API CG Data Speedup 6,135.29% -1.47%
Pattern API EP Data Speedup 188.75% 1.92%
Pattern API FT Data Speedup 2,095.97% 0.00%
Pattern API IS Data Speedup 385.03% 0.00%
Pattern API MG Data Speedup 54,500.00% -3.00%
Pattern API LD Stream Throughput 21.05% -
Pattern API MB Stream Throughput 0.00% -
Pattern API RT Stream Throughput 0.00% -
Pattern API MS Stream Throughput 718.43% -

Our investigation highlighted several limitations in the original version of both Driver
and Pattern APIs. GSParLib’s original version was impacted by different performance
degradation, turning the GPU even slower than the serial code in different cases. In con-
trast, the results demonstrated that our improved version of GSParLib can achieve a per-
formance equivalent to CUDA in representative and robust applications such as those in
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NPB [XTC+14, DKO+19, BBB+94, AGDF20, AGR+21] (Figures 3.10(a) and 3.10(c)) and C
(Figure 3.10(b) and 3.10(d)). Additionally, as we can see in Table 3.4; When we use the op-
timized version of GSParLib on data parallelism, the optimized Driver API is to up 629.32%
better than the original Driver API (CG case). At the same time, the optimized Pattern API
is up to 54,500.00% better than the original Pattern API (MG case). On the other hand,
when we use the optimized version of GSParLib on stream parallelism, the optimized Pat-
tern API is up to 718.43% better than the original Pattern API (MS case). That performance
difference between data and stream parallelism is because stream processing applications
have inherent overheads such as allocating memory for each new stream element. Finally,
we observe poor performance improvements over LD (21%), MB (0.00%), and RT (0.00%)
cases because those benchmarks are not robust stream applications. When comparing
GSParLib to CUDA, GSParLib presented up to 3.0% of performance degradation. It occurs
because upon using GSParLib’s abstractions, the GPU threads perform more instructions
than using CUDA directly. In contrast, GSParLib was faster than CUDA in a few cases. In
these cases, the differences occur due to the shared memory allocation in the GPU. In the
GPU implementation of the NPB, we used static shared memory with GSParLib and dynamic
shared memory with CUDA. This CUDA version uses dynamic shared memory because this
implementation allows modifying the thread hierarchy during the execution time [AGR+21].

GSParLib’s original version offers a unified interface for the CPU routines for manip-
ulating GPU resources, such as allocating GPU memory or launching a GPU kernel. At the
same time, the programmer must provide the GPU routines in CUDA and OpenCL syntax.
In opposite, our improvements over GSParLib’s programmability provided a unified interface
for CUDA and OpenCL, eliminating the requirement of low-level routines and hacks of those
frameworks. This feature facilitates programming the GPU for non-specialists in both CUDA
and OpenCL. Also, it allows code portability between GPUs of different vendors.

Once we treated the most critical limitations of the GSParLib, future works can
introduce new parallel patterns to GSParLib. Moreover, the unified interface will also facilitate
adding new features for GPUs in the SPar. Generating code for a unified interface is more
affordable than directly generating CUDA and OpenCL code.

In the next chapter, we present our study concerning SPar. We describe the main
limitations that we found in SPar; the main improvements that we provided to overcome each
limitation; and a performance evaluation contemplating the original and optimized version of
SPar.
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4. SPAR EVALUATION AND IMPROVEMENTS

In order to evaluate SPar’s programmability and performance when targeting GPUs,
we implemented the stream benchmarks previously presented in Section 3 (LD, MB, RT, and
MS). Our implementation contemplates the GPU directive Pure presented in Section 2.5.
Only the MS benchmark requires the use of a parallel reduce pattern. However, it requires
a partial reduce while SPar’s directive Reduce performs a global reduce. Thus, we do not
consider SPar’s directive Reduce in our strategy, as we explained in Section 3.3, it imposes
an overhead in this benchmark.

While we addressed most of the GSParLib limitations (Section 3), in this section, we
highlight SPar’s GPU extension limitations and only describe possible strategies to overcome
them. We generate parallel code using the SPar compiler and manually replace the GPU
code with the one containing gsparlib’s optimizations since it is not doable for the time we
had in the Master Thesis. Our implementation is a semi-automatic parallel code generation
approach that was enough to provide insights into the strategies created. For future work,
we could simplify code generation for GPU in SPar’s compiler since GSParLib is currently
fully supporting a unified interface for CUDA and OpenCL. Generating code for a unified
interface simplifies the compiler complexity of generating long code routines of pure CUDA
and OpenCL code.

We organize the subsequent sections as follows: Section 4.1 highlights the main
limitations found in the SPar’s GPU extension and also describes possible improvements.
Section 4.2 presents a performance evaluation. Section 4.3 verifies SPar’s programmability
impact. Section 4.4 describes the final remarks about SPar.

4.1 Limitations and Improvements in SPar

We discuss SPar’s limitations in the following:

1. No information about the CPU threads is stored.

• Limitation. CPU threads’ information, such as id, is essential to allow different
parallelism strategies or optimizations. For instance, when specific data is com-
mon to GPU kernels launched by a CPU thread. If we can access and store in-
formation about the CPU thread, we can access the thread id to store a Boolean
type. We can use the Boolean type to indicate if it is the first stream item pro-
cessed by the CPU thread. Then this CPU thread can transfer the data to the
GPU only once in the first execution. Otherwise, the CPU will transfer data to
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the GPU at every GPU kernel launch. In general, several optimizations require
information about the CPU thread, such as id or partial results.

• Improvement. SPar generates FastFlow code for dealing with parallel multi-core
code. In the FastFlow framework, we define the routine of a CPU thread as a C++
class. In this case, it is possible to add information and define methods that allow
the programmer to access or modify the data.

2. Excessive copies of GPU kernels.

• Limitation. GSParLib compiles a GPU kernel during the execution time. The
optimized choice for running the same GPU kernel several times is reusing the
same compiled GPU kernel. GSParLib’s original version had a limitation of kernel
recompiling that we solved, as we highlighted in Section 3.4. SPar’s compiler
generates a GPU code with a similar overhead. The generated code by SPar
performs a complete copy of all GPU kernels of the application for each stream
element. For instance, if the application receives ten million stream elements,
SPar will perform ten million copies. SPar’s original version defines the stream
element as a C++ class that contains the GPU kernels from all stages of the
stream pipeline. However, performing those copies for each stream element is an
expensive operation.

• Improvement. A strategy to overcome this overhead is creating a C++ class for
each CPU thread. The CPU thread can store its ID, a Boolean type, and its list
of GPU kernels, in this case, the GPU kernels that this CPU thread will execute.
Then, the CPU thread can check if it is processing a stream element for the first
time. If positive, the CPU thread performs a copy of the GPU kernels. If negative,
the CPU thread does not perform a copy of the GPU kernels. When we use this
optimization, the amount of copies is equivalent to the number of CPU threads.
For example, suppose four CPU threads execute a stream application. In that
case, SPar will perform only four copies of GPU kernels instead of a complete
copy (a copy of every GPU kernel in the application) for each stream element.

3. Excessive amount of memory transfers.

• Limitation. SPar always performs memory transfers when it launches a GPU
kernel. We modified GSParLib to allow memory reuse (Section 3.4), but this
feature is not supported in SPar.

• Improvement. A solution for this limitation is providing an algorithm in the SPar
compiler to analyze which data SPar can reuse. A common practice is to transfer
data to GPU in the first stage of the stream and transfer data back to the CPU
only in the last stage. If data is always read and never written, SPar can transfer
it to GPU in the first stage and do not transfer it back to the CPU in the last
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stage. Suppose a CPU thread uses shared data between all the stream elements
processed. That means the CPU thread can only transfer the data to the GPU
when processing its first stream element.

4. Thread hierarchy is not configurable.

• Limitation. Although the number of threads per block can broadly impact the
performance of a GPU kernel [AGR+21], SPar does not allow configuring the GPU
thread hierarchy.

• Improvement. SPar’s attribute Pure indicates a GPU kernel. An attribute could
be added to SPar to define the number of threads per block for each GPU kernel.
For instance, we could combine the supposed SPar attribute for configuring the
thread hierarchy with the attribute Pure. If we use the attribute Pure combined with
the attribute GPU_THREADS(32), SPar could create a GPU kernel with 32 threads
per block. If we use the attribute Pure alone, SPar could create a GPU kernel with
the default number of threads per block.

5. Lack of atomic operations.

• Limitation. SPar currently does not support atomic operations, while atomic op-
erations are essential to support different parallel strategies. A case where atomic
operations are necessary is when we need cooperative work between threads of
different thread blocks. However, there is not enough memory on the GPU. To
allow cooperative work between threads of different thread blocks, we can create
a buffer on the GPU global memory for each GPU thread or each thread block.
As any thread of a GPU kernel can access a buffer on the GPU global memory,
GPU threads can check or combine the results of other threads or thread blocks.
Nonetheless, if there is insufficient memory on the GPU, a possible strategy to
overcome this limitation is using atomic operations instead of creating buffers. For
instance, assume that the GPU threads output an integer. Suppose we want to
accumulate the results from all the threads of the GPU kernel. Instead of creat-
ing routines to manipulate buffers, we can use atomic operations for integers and
manually combine partial results from the GPU threads. A similar case occurs in
the MS Benchmarks, as discussed in Section 3.3.

• Improvement. Considering we already added support to atomic operations in
GSParLib, supporting atomic operations in SPar is possible by adding an attribute
that generates a call to GSParLib’s atomic functions.

6. Lack of barriers.

• Limitation. CUDA and OpenCL allow the creation of barriers for thread blocks,
and CUDA currently supports a barrier between the threads of a whole GPU ker-
nel. SPar does not support any barriers, and it decreases its flexibility. To force
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a synchronization of GPU threads in SPar, we must wait until the GPU kernel fin-
ishes its execution. Suppose an algorithm requires several points of synchroniza-
tion between the threads of a thread block. In that case, we have to launch several
GPU kernels, which will impose a significant performance degradation. Other-
wise, if the API allows thread block synchronizing, a single GPU kernel launch is
enough to complete the computations.

• Improvement. We could add two more attributes to the SPar language to over-
come the lack of barriers. We could provide an attribute for a block synchroniza-
tion (all threads from a thread block) and an attribute for a grid synchronization
(all threads from a GPU kernel). Synchronization between the threads of a block
is already available in GSParLib, and it works with CUDA and OpenCL. The syn-
chronization between the threads of a GPU kernel is a feature only supported by
CUDA. However, it is possible to provide a similar feature with OpenCL. In this
case, we could launch a sequence of GPU kernels and apply a barrier between
each GPU kernel launch. It is slower than the CUDA mechanism but permits a
unified interface between CUDA and OpenCL.

4.2 Impact on stream processing with SPar

For evaluating SPar’s performance on stream processing applications, we per-
formed experiments using the same methodology and machine described in Section 3.5.
We tested the legacy stream processing benchmarks (LD, MB, and RT) and the MS bench-
mark. Our goal is to verify how much our GPU optimizations presented in Sections 4.1
and 3.4 impact the performance of the SPar’s extension for GPUs. Legacy stream process-
ing benchmarks are typically not compute-bound and can not fully explore the available GPU
resources. Therefore, they may present limitations for testing SPar and GSParLib optimiza-
tions. For this reason, we complemented our analysis with the MS benchmark. Additionally,
to investigate different aspects of the SPar generated code, we provided three different sce-
narios for evaluating the MS Benchmark. We describe the MS scenarios as follows:

1. MS Scenario 1. We compare the performance of SPar’s original code generated for
GPU against a manual replacement of the GPU source code following the optimiza-
tions described in Section 4.1.

2. MS Scenario 2. We compare the performance of SPar’s original code generated for
multi-core against a manual implementation for multi-core using FastFlow and POSIX
Threads (Pthread). As reported in Section 3.6.4, GSParLib presented a large per-
formance overhead when combined with FastFlow. This scenario aims to verify how
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much performance overhead is imposed by FastFlow against a low-level implementa-
tion using Pthread.

3. MS Scenario 3. This scenario aims to measure the GPU overhead when using dif-
ferent multi-core frameworks. Moreover, we verify if it is worth making SPar able to
generate code for another multi-core framework when targeting GPUs.

Figures 4.1, 4.2, and 4.3 present the performance results for the legacy bench-
marks LD, MB, and RT. Figures 4.4, 4.5 and 4.6 present the performance results for the MS
scenarios 1, 2 and 3. The x-axis lists the number of CPU threads, where the number of
CPU threads corresponds to the number of replicas of each stage (when applicable). For
instance, we can replicate the stages B, C, and D in the MS benchmark 3.3. If we set the
CPU threads as 2, the benchmark will create two replicas of the stages B, C, and D, totaling
6 CPU threads in those stages in addition to the thread in stage A and the one in stage E.
The y-axis presents the throughput (elements per second). Concerning the versions: 1) We
tested serial and parallel multi-core versions with Pthread, FastFlow, and SPar; 2) We tested
all the combinations of Pthread and FastFlow (we named these versions as PT and FF, re-
spectively), using the GSParLib Pattern API (we named these versions as GSPar), with and
without our improvements (we named these versions as New and Old, respectively), and with
CUDA and OpenCL backends (we named these versions as CUDA and OCL); 3) We tested
the SPar’s extension for GPUs (we named these versions as SPar-GPU), with and without our
improvements (we named these versions as New and Old, respectively), and with CUDA and
OpenCL backends (we named these versions as CUDA and OCL).
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Figure 4.1 – SPar’s GPU performance improvement on LD Benchmark.
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Figure 4.2 – SPar’s GPU performance improvement on MB Benchmark.
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Figure 4.3 – SPar’s GPU performance improvement on RT Benchmark.
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Figure 4.4 – SPar’s GPU performance improvement on MS Benchmark Scenario 1.
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Figure 4.5 – Comparison of multi-core versions on MS Benchmark Scenario 2.
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Figure 4.6 – Comparison of GPU versions on MS Benchmark Scenario 3.

4.2.1 Impact on LD with SPar

In the LD benchmark, SPar-GPU-New-CUDA and SPar-GPU-New-OCL were able
to achieve a performance similar to the manual FastFlow implementation with the
GSParLib modified version (FF-Pattern-New-CUDA, and FF-Pattern-New-OCL). On the
other hand, SPar-GPU-New-CUDA presented only a small performance improvement over
SPar-GPU-Old-CUDA, and SPar-GPU-New-OCL presented no performance improvement com-
pared to SPar-GPU-Old-OCL. Although we provided substantial improvements to SPar, the
LD benchmark is not computationally intensive. Thus, the application poorly exploits the
GPU resources.
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4.2.2 Impact on MB with SPar

The GPU implementations perform fewer GPU kernel copies in the MB bench-
mark than LD. However, the performance is still limited in all the GPU versions (Fig-
ure 4.2). SPar-GPU-New-CUDA and SPar-GPU-New-OCL achieved equivalent performance to
FF-Pattern-New-CUDA and FF-Pattern-New-OCL. Nonetheless, they presented no perfor-
mance improvement compared to SPar-GPU-Old-CUDA and SPar-GPU-Old-OCL as MB is also
a non-computationally-intensive benchmark. OpenCL performed better than CUDA because
GSParLib optimizes read-only data in OpenCL. In some cases, it can provide better perfor-
mance than CUDA; that is the case of the MB benchmark. However, the multi-core parallel
version outperforms the OpenCL versions when using more than 9 CPU threads in work-
load B. Additionally, the multi-core parallel version presents an almost linear speedup, which
means that the performance could be potentially improved on a CPU with more cores. In
the MS benchmark, we assign a GPU thread to each position of a matrix’s line. As work-
load B generates small lines, several GPU cores stay idle, imposing a GPU underutilization.
When using the workload C, the GPU versions SPar-GPU-New-OCL and FF-Pattern-New-OCL

outperform the multi-core parallel version for each amount of CPU threads. In this case, as
workload C generates larger loads for the GPU, the workload size improves the utilization of
the GPU resources. For this reason, it is worth using the GPU in workload C and the CPU
in workload B. GPUs require memory transfers and kernel launches for processing stream
elements; They are costly operations that do not worth it when the workload is small, and
the application is not computationally-intensive, as is the case of the MB benchmark.

4.2.3 Impact on RT with SPar

SPar’s original and improved versions achieved similar results in the RT benchmark
(Figure 4.3). RT is a simple benchmark. It only performs a single GPU kernel and does not
fully exploit the GPU resources. Thus, this benchmark is not propitious to highlight the
benefits of SPar’s optimized code for GPUs.

4.2.4 Impact on MS Scenario 1 with SPar

We observe a considerable performance improvement when we compare SPar’s
optimized GPU code to the code generated by the original version of SPar (Figure 4.4).
SPar-GPU-New-CUDA and SPar-GPU-New-OCL can compute up to 261 drones per second with
workload B and 172 with class C. It is respectively 29 (Workload B) and 57 (Workload C)
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times better than the serial version, which processes 9 (Workload B) and 3 (Workload C)
drones per second. In contrast, SPar-GPU-Old-CUDA and SPar-GPU-Old-OCL compute up to
32 (Workload B) and 30 (Workload C) drones per second, which is mostly slower than the
multi-core parallel version (SPar) with Workload B, and only ten times better than the serial
version with Workload C. However, the optimized version of SPar’s GPU code presents up
to 44% of performance overhead when varying the number of CPU threads. The reason is
that FastFlow’s thread affinity mechanism imposes unbalanced computations for the CPU
cores (we explained this FastFlow limitation in Section 3.6.4). In the SPar-GPU-Old-CUDA and
SPar-GPU-Old-OCL versions, such overhead is not observable. Their bottleneck, caused by
excessive memory transfers, is much more expensive and noticeable.

4.2.5 Impact on MS Scenario 2 with SPar

By isolating the multi-core parallel code in scenario 2 (Figure 4.5), we can better
observe SPar’s overhead when dealing with stream processing applications. The Pthread

version performance improves as the amount of CPU threads increases. Pthread perfor-
mance is up to 6 and 7 times better than the serial version. FastFlow has an unstable
performance when the number of replicas is larger than the number of physical cores in
the CPU. SPar multi-core generated code has a similar overhead. Performance overhead of
FastFlow compared to Pthread when using hyper-threading is up to 53%, while SPar is up to
46%. However, after starting using hyper-threading, there is no case where SPar’s multi-core
generated code can achieve a performance similar to Pthread, while FastFlow does.

4.2.6 Impact on MS Scenario 3 with SPar

Scenario 3 presents the performance of SPar’s optimized GPU generated code
compared to a manual implementation using FastFlow combined with GSParLib, and
Pthread combined with GSParLib(Figure 4.6). In scenario 2 (Section 4.2.5), a different per-
formance occurs when using a manual implementation of FastFlow and the FastFlow code
generated by the SPar compiler. Nonetheless, when targeting the combined parallelism from
the CPU and GPU, no performance difference is observed between SPar’s generated code
compared to a manual implementation with FastFlow and GSParLib. The differences in per-
formance between the FastFlow manual implementation and the FastFlow generated code
are similar because the GPU performs most computations.

Regarding the performance differences between SPar’s GPU generated code and
Pthread combined with GSParLib, the best result of Pthread-New-CUDA and Pthread-New-OCL

is only up to 3% better than the best result of SPar-GPU-New-CUDA and SPar-GPU-New-OCL.



91

However, the Pthread based versions did not present any overheads when dealing with
stream elements’ flow. In distinction, SPar-GPU-New-CUDA and SPar-GPU-New-OCL presented
up to 45% of degraded performance when using hyper-threading. It occurs due to the Fast-
Flow overhead caused by the thread affinity (we explained this FastFlow limitation in Sec-
tion 3.6.4).

4.3 Impact on programmability with SPar

This section discusses aspects of SPar’s programmability compared to the other
frameworks tested. Figure 4.7 presents the results for each implemented benchmark. Fig-
ure 4.7(a) presents the results for the benchmarks LD, MB, and RT. Figure 4.7(b) presents
the results for the MS benchmark’s scenarios. The x-axis lists the benchmarks, and the y-
axis presents the number of source lines of code. We used the software SLOC [Whe] to collect
the source lines of code. This metric does not represent code productivity. However, it helps
give a general idea about the effort of an API through the necessary code intrusion [Roc20].
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Figure 4.7 – Source Lines of Code of each Benchmark tested.

Concerning the multi-core versions, Pthread requires a manual implementation of
each component necessary in a stream processing application, including the creation of
queues for the communication between stages, functions for adding elements in the stages’
queues, and techniques for dealing with the communications between different threads.
FastFlow offers algorithmic skeletons for programming stream processing applications. This
way, burdens such as creating queues for communications between stages or schedule
mechanisms are unnecessary. However, the user still has to implement verbose routines,
such as creating a C++ class for the computations of each stage. SPar largely improves the
programmability over Pthread and FastFlow by automatically generating all routines neces-
sary for a stream application. This way, SPar requires less programming effort than FastFlow,
while FastFlow requires less effort than Pthread.
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When dealing with GPUs, the programming effort is even more challenging. GSPar-
Lib facilitates GPU programming, but several mechanisms still must be provided. Addition-
ally, exploring the parallelism of the CPU combined with the GPU is not an easy task. Due to
these characteristics, the number of source lines of code of the GPU versions is up to 3 times
larger than the serial version. The GPU versions with GSParLib require more significant
programming effort than the SPar versions, even when programming the unified interface for
CUDA and OpenCL of GSParLib’s modified version. SPar-GPU-Old and SPar-GPU-New can
successfully abstract the parallelism of both CPU and GPU. The amount of source lines of
code of those two versions is slightly different because most GPU optimizations are internal
to GSParLib.

4.4 Final remarks about SPar

This chapter presented a study for evaluating SPar’s performance and programma-
bility for both CPU and GPU. Table 4.1 summarizes the results by presenting the perfor-
mance improvement of the optimized version of the SPar extension for GPUs over the orig-
inal version. The first column indicates the API used. The second column indicates the
benchmark used. The third column indicates the parallelism exploited (data or stream paral-
lelism). The fourth column indicates the metric measured (speedup or throughput). The fifth
column indicates the percentage of the performance improvement.

Table 4.1 – Performance improvement of the optimized version of the SPar extension for
GPUs over the original version.

API Benchmark Parallelism Metric Improvement
SPar’s extension for GPUs LD Stream Throughput 14.52%
SPar’s extension for GPUs MB Stream Throughput 1.54%
SPar’s extension for GPUs RT Stream Throughput 0.00%
SPar’s extension for GPUs MS Stream Throughput 771.68%

Our investigation highlighted the main limitations of SPar’s compiler’s generated
code. The results demonstrated that the generated code for the CPU has significant perfor-
mance losses in controlling the flow of stream elements in a stream processing application.
This limitation also interferes with the generated code for GPU. It leads to different over-
heads. The performance is up to 53% slower than using a lower-level API such as Pthread
for providing the CPU routines.

Concerning the GPU, the original SPar’s compiler generates GPU code with sev-
eral performance costs, such as excessive amounts of memory transfers and copies of GPU
kernels. Those overheads significantly decrease the GPU performance, presenting poor im-
provements over the serial or multi-core parallel implementations. When SPar utilizes the
GSParLib’s modified version, it obtains a considerable performance improvement on robust
applications. As we can see in Table 4.1, the optimized version of the SPar’s extension for
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GPUs is up to 771,68% better than the original version in the MS benchmark. In contrast,
we observe less significant improvements when testing the optimizations on non-robust ap-
plications, such as the benchmarks LD (14.52%), MB (1.54%), and RT (0.00%).

The main programmability limitation of SPar is the lack of functionalities such as al-
lowing the programmer to configure the thread hierarchy, declare barriers or perform atomic
operations. Other patterns should also be added to SPar to allow an efficient approach for
different applications. Overcoming those limitations is crucial to improve SPar’s flexibility
to allow efficient parallelism on robust stream applications such as the MS benchmark. As
SPar uses C++ attribute annotations, we can extend its functionalities without impacting the
programming effort. Once our results demonstrated that Pthread achieved a more stable
performance than FastFlow on stream processing applications. A future version of SPar’s
compiler could generate Pthread code for the CPU or provide means to solve the overheads
present in the FastFlow.

The next chapter presents the related work concerning GSParLib and SPar. We
briefly describe representative GPU frameworks based on structured parallel programming
and code annotations. Additionally, we discuss works that also evaluated the NPB programs
using GPUs.
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5. RELATED WORK

The most popular framework for parallel programming in multi-core architectures
is OpenMP [Kum02]. In contrast, the most popular frameworks for GPU accelerators are
CUDA, OpenCL, and OpenACC [KH10]. OpenMP provides parallelism through high-level
abstractions as directives. CUDA and OpenCL are low-level APIs that require a good knowl-
edge about GPU programming from the programmers. OpenACC offers abstractions similar
to OpenMP, but the programmer still needs to know details about the hardware and GPU pro-
gramming techniques to achieve good performance [CJ17]. Although CUDA, OpenCL, and
OpenACC are the most well-known frameworks for GPU programming, other GPU frame-
works are available. As related work, we selected work directly related to SPar and divided
them into two groups. The first group comprises GPU frameworks based on wrappers and
structured parallel programming because SPar generates GPU code using GSParLib’s in-
terface. The second group comprises frameworks for heterogeneous platforms that can
generate GPU code through annotations. We present representative work for each group in
the following Sections 5.1 and 5.2. We also discuss the related work that provided the NPB
with GPUs in Section 5.3.

5.1 Frameworks Based on Wrappers and Structured Parallel Programming

In this section, we briefly present GPU frameworks based on wrappers and parallel
patterns that are related to GSParLib, which is the framework used by SPar to generate
GPU code. SkelCL [SKG11] is a C++ framework that generates OpenCL code. It provides
the patterns map, reduce, zip, scan, and stencil. To implement the parallel patterns, the
programmer must create a class with the pattern desired, and use as parameter a string with
the code that must run in parallel. The low level OpenCL code is then generated by SkelCL.
The author published their latest paper about SkelCL in 2014. The SkelCL approach is very
similar to GSParLib [Roc20].

Thrust [NVI] is a C++ template library integrated with CUDA and developed by
NVIDIA. Thrust supports the parallel patterns map (named as transform), reduce, stencil
and scan. Patterns are written as C++ STL functions and annotated with the keyword
__device__, then each function is converted to a GPU kernel by the NVIDIA compiler. Al-
though Thrust is a framework developed by NVIDIA, Thrust’s programming model signifi-
cantly diverges from CUDA, and its primary goal is to require minimal effort to write GPU
programs. However, recent research about programmability highlighted that Thrust’s inter-
face and concepts increase the programming difficulties compared to CUDA [DSU20].
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Like GSParLib, Boost.Compute [Lut] is a C++ framework that offers two APIs, a
low-level API and a high-level API. The low-level API is an OpenCL wrapper, while the high-
level API provides structured parallel programming. Boost.Compute support the patterns
map (named as transform), reduce, gather, and sort. Like Thrust, to use each pattern from
the high-level API, the programmer must implement an STL function.

FastFlow [APD+15] is a C++ framework based on parallel patterns that supports
both stream and data parallelism. FastFlow offers several parallel patterns for CPUs such
as pipeline, farm, parallel for (map), parallel for reduce (map and reduce), and stencil.
For GPUs the single parallel pattern available is named as loop-of-stencil-reduce, which
can be used to implement the patterns map, reduce, and stencil. Like Thrust and
Boost.Compute, FastFlow also uses templates to provide the implementation of the parallel
patterns. Similar to the concept of GSParLib, FastFlow can also generate code for CUDA
and OpenCL. However, the programmer must provide the GPU kernel with pure CUDA and
OpenCL syntax.

SkePU [ELK18] is another C++ library based on parallel patterns. It provides the
parallel patterns map, reduce, mapReduce, stencil, scan, mapPairs, mapPairsReduce, and
mapOverlap. The programmer must use C++ templates to apply parallelism using the paral-
lel patterns available. SkePU can generate OpenMP code for CPUs or CUDA and OpenCL
for GPUs. Unlike GSParLib, SkePU uses smart data containers and custom data structures
resident on the host memory. When using accelerators like GPUs, the smart data contain-
ers automatically manage the memory device. They identify when to allocate memory or
transfer data. The drawback of this approach is the need to provide a non-native C++ data
structure. Another drawback is when the algorithm behind the smart data containers does
not perform the best choice to optimize the memory transfers.

HIP is a C++ API that allows the programmer to use a single source code that
can run on AMD and NVIDIA GPUs [AMD]. HIP generates Radeon Open Compute (ROCm)
code for AMD GPUs and CUDA for NVIDIA GPUs. Analogous to CUDA, ROCm is a platform
for AMD GPUs. HIP is similar to GSParLib’s Driver API. It is a wrapper over GPU mecha-
nisms, offers a unified interface for both GPU backends, and has no noticeable overhead
compared to CUDA [KS19]. The syntax for writing a GPU kernel is equivalent to CUDA. In
opposite to GSParLib’s Pattern API, HIP does not provide any parallel patterns.

Kokkos is a C++ API that offers portability over different HPC platforms [TLGA+22].
Kokkos currently supports CUDA, HIP, SYCL, HPX, OpenMP, OpenMPTarget, and C++
threads as backends, and provides abstractions for parallel execution and data manage-
ment. Thus, when using Kokkos, the user provides a single source that can run on different
HPC platforms. However, the programmer must manually provide CUDA or HIP code when
targeting a particular architecture such as a GPU. Kokkos provides three parallel patterns:
for, reduce, and scan.



96

Table 5.1 presents general information about the related work compared to GSPar-
Lib. We sort the frameworks in alphabetical order, except the last one, GSParLib. Column
GPU Backend indicates which GPU backend the framework supports. For example, Thrust
only supports CUDA. Column GPU Backend Abstraction indicates if the framework requires
low-level code from the backend. For instance, FastFlow requires GPU kernels using CUDA
and OpenCL syntax. Column Supported Patterns lists all the GPU parallel patterns sup-
ported by the framework. Column Stream Affordable indicates if the GPU mechanisms re-
quired for programming stream applications are transparent to the user or facilitated through
high-level abstractions. The main mechanisms are thread-safety for manipulating the GPU
and asynchronous GPU kernel launches (commonly CUDA streams and OpenCL command
queues). Others can be included, such as batch processing.

Table 5.1 – General Information about Frameworks based on Structured Parallel Program-
ming.

Ref. Name GPU Backend GPU Backend
Abstraction

Supported Patterns Stream Affordable

[Lut] Boost.Compute OpenCL Yes Gather, Map, Reduce,
Sort

No

[APD+15]
Fast Flow CUDA, OpenCL No Map, Reduce, Stencil No

[AMD] HIP CUDA, ROCm Yes Not available No

[TLGA+22]
Kokkos CUDA, HIP,

SYCL
No for, reduce, scan No

[SKG11] SkelCL OpenCL Yes Gather, Map, Reduce,
Scan, Stencil

No

[ELK18] SkePU CUDA, OpenCL Yes map, reduce,
mapReduce, stencil,
scan, mapPairs,
mapPairsReduce,
mapOverlap

No

[NVI] Thrust CUDA Yes Map, Reduce, Scan,
Stencil

No

[Roc20] GSParLib CUDA, OpenCL Yes Map, Reduce Yes

Only GSParLib, FastFlow, and SkePU provide support to both CUDA and OpenCL
(Table 5.1, column GPU Backend). However, the FastFlow developers discontinued the GPU
support. CUDA is the standard form to exploit parallelism on NVIDIA GPUs. It provides
many mechanisms for exploiting advanced GPU parallelism strategies, and NVIDIA is the
main GPU manufacturer. However, CUDA only supports NVIDIA GPUs. On the other hand,
although OpenCL offers fewer resources than CUDA, OpenCL allows exploiting the paral-
lelism on GPUs of different vendors and even other accelerators. Thus, supporting CUDA
and OpenCL is essential for the best performance and portability.

Most related work provide abstractions over CUDA and OpenCL low-level mecha-
nisms, except FastFlow and Kokkos (Table 5.1, column GPU Backend Abstraction). When
a GPU framework requires CUDA and OpenCL low-level routines, it increases the program-
ming effort and the level of expertise necessary for programming the GPU.

GSParLib offers fewer parallel patterns than most related work because GSParLib
is still an initial project (Table 5.1, column Supported Patterns). While the parallel patterns



97

map and reduce from GSParLib offer a considerable flexibility to approach different problems,
a larger set of parallel patterns improves the programmability.

In contrast, the related work is not affordable for stream processing (Table 5.1, col-
umn Stream Affordable). GSParLib automatically provides mutual exclusion sessions for
CPU threads when the programmer manipulates critical GPU resources such as allocating or
freeing memory. Also, GSParLib automatically creates CUDA streams and OpenCL queues
and manages them to allow asynchronous GPU kernels. These features are obligatory for
approaching a stream processing application with GPUs. Additionally, GSParLib offers an
abstraction for batch processing that is an optimization for stream processing on GPUs. The
related work commonly only provides wrappers over CUDA streams and OpenCL command
queues. Consequently, the user must manually implement and manage all the GPU mech-
anisms required for stream processing, imposing a significant programming effort.

5.2 Frameworks Based on Code annotations

This section presents frameworks based on code annotations that can generate
code for heterogeneous architectures targeting GPUs.

OpenMP [Opeb] is a standard in the industry for multi-core CPUs, and it allows the
application of parallelism in a source code through the use of directives. From version 4.0
onwards, OpenMP started supporting code generation for GPUs.

OpenACC [Opea] is a framework based on code annotations that generate GPU
code. The basic directives available on OpenACC are similar to OpenMP. However, Open-
ACC has a more extensive set of directives and functionalities. It also exposes some low-
level features of GPUs, such as thread hierarchy.

hiCUDA [HA11] is a framework developed by the academia that offers a high-level
abstraction for CUDA using pragma directives. Each directive is attached to a specific CUDA
functionality. Compared to OpenMP and OpenACC, hiCUDA exposes more GPU low-level
mechanisms and increases the flexibility to approach different problems. On the other hand,
hiCUDA requires knowledge about the concepts of CUDA programming, while OpenMP and
OpenACC do not.

XscalableMP-ACC (XMP-ACC) [LTO+11] is an extension of XscalableMP
(XMP) [Xca]. XMP is a framework that uses high-level abstractions similar to OpenMP
but targets distributed parallelism instead. XMP-ACC was developed by the academia and
added extensions to enable XMP to generate GPU code. Similar to hiCUDA, XMP-ACC only
generates CUDA code, and the directives are similar to OpenMP and OpenACC.

XcalableACC (XACC) [NMS+14] is another extension of the XMP framework, but
XACC targets the generation of GPU code with OpenACC instead of CUDA. Both exten-
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sions are similar. They improve the programmability but still require GPU and distributed
programming details, such as memory copies between CPU and GPU or between nodes.

Automatic Heterogeneous Pipelining (AHP) [PCR12] is aimed at pipeline applica-
tions, where the computations of a stage can be assigned to CPU cores or a GPU. When
using AHP, the programmer must provide two parallel versions of the pipeline stages. One
version must be optimized to run on CPU cores, and another must be optimized to run on
the GPU. Once the programmer provides the parallel versions of the stages, the AHP au-
tomatically schedules the tasks between the CPU and the GPU. The literature names this
programming model as hybrid programming [KH10,SE15,DR13].

Table 5.2 presents general information about the related work compared to SPar.
We sort the frameworks in alphabetical order, except the last one, SPar. Column GPU Backend

indicates which GPU backend the framework supports. Column Annotation mechanism in-
forms the mechanism used by the framework to offer the functionality of annotations. Col-
umn Simultaneous Parallelism lists the capacity of simultaneous parallelism. For exam-
ple, OpenMP supports running parallel code simultaneously on the CPU and GPU. Column
Architecture Abstraction indicates if the framework abstracts details about the architecture
targeted. For example, when using SPar, a programmer can offload code to a GPU with-
out worrying about writing specific code to GPU. Column Stream Parallelism Abstraction

indicates if the framework abstracts the stream parallelism.

Table 5.2 – General Information about Frameworks based on code annotations.
Ref. Name GPU backend Annotation

mechanism
Simultaneous
Parallelism

Architecture
abstraction

Stream Par-
allelism
abstraction

[PCR12] AHP CUDA Pragma CPU, GPU No Yes
[HA11] hiCUDA CUDA Pragma GPU No No
[Opea] OpenACC Compiler depen-

dent
Pragma GPU No No

[Opeb] OpenMP Compiler depen-
dent

Pragma CPU, GPU No No

[NMS+14]
XACC OpenACC Pragma GPU, Dis-

tributed
No No

[LTO+11] XMP-ACC CUDA Pragma GPU, Dis-
tributed

No No

[Roc20] SPar GSParLib C++ attributes CPU, GPU, Dis-
tributed

Yes Yes

There are several advantages of SPar compared to the related work. As we can
observe in Table 5.2 (column GPU Backend Abstraction), only SPar, OpenMP, and Open-
ACC offer portability between GPUs of different vendors by being able to generate CUDA
and OpenCL code. The other frameworks only generate CUDA code. Concerning the
mechanism of annotation, only SPar uses C++ attributes (Table 5.1, column Annotation

mechanism). C++ attributes are part of the C++ language and inherit all its resources. Among
the related work, SPar is also the single framework that offers the opportunity to explore
three levels of parallelism, CPU, GPU, and distributed (Table 5.1, column Simultaneous

Parallelism). Moreover, SPar is the single work that completely abstracts the architecture
(Table 5.1, column Architecture Abstraction). The programmer provides the source code
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annotated with C++ attributes. Then, the compiler generates parallel code for the CPU, GPU,
or cluster without requiring any other low-level mechanisms. Finally, only AHP and SPar of-
fer abstractions for exploiting stream parallelism (Table 5.1, column Stream Parallelism

Abstraction). However, when using AHP, the programmer must manually provide the GPU
kernels. In opposite, SPar automatically generates the GPU kernels through the C++ at-
tributes.

Overall, SPar requires much less programming effort than the related work. SPar
is unique at entirely abstracting the stream parallelism on the CPU combined with the data
parallelism on the GPU. Moreover, SPar allows portability for GPUs of different vendors.

Nonetheless, SPar also presents limitations. OpenMP and OpenACC offer different
directives for optimizing the serial code before applying the GPU parallelism. For instance,
OpenACC offers directives like loop collapse that applies loop collapsing in the serial code
and reduce the number of branch operations. Currently, SPar does not offer any attributes
for GPU optimizations. Thus, the programmer must manually apply the transformations in
the serial code before annotating the C++ attributes.

When we compare SPar to AHP, we can observe another limitation. AHP can
assign a task to the CPU or the GPU through scheduling mechanisms. Depending on the
application, this technique can provide substantial performance improvements. In contrast,
SPar does not support hybrid parallelism yet.

5.3 NPB approaches with GPUs

The GPU research community has been widely using the NPB suite in recent years.
Researchers use NPB for different purposes, such as testing a hardware optimization, a new
compiler, or a new parallelism strategy. However, researchers commonly use an already
parallelized version of the NPB to serve as a basis for continuing their research. Therefore,
the main related work, the most utilized and cited ones, provided a parallel version of the
NPB for GPUs using CUDA, OpenCL, or OpenACC.

In 2011, Seo et al. [SJL11] provided the first complete implementation of the NPB
with OpenCL. In 2014, Xu et al. [XTC+14] provided a complete implementation of the NPB
with OpenACC. Those two approaches had several limitations. For instance, the GPUs used
for the implementation and experiments had a low memory capacity and a low number of
cores, limiting the evaluation of performance and programmability. Concurrently, in 2020, Do
et al. [DKO+19] provided optimizations for the implementation done by Seo et al. [SJL11],
while we provided a CUDA version of the NPB and an analysis of the literature [AGDF20].
These two approaches are more recent and presented better results than previously due to
optimized parallelism strategies and more powerful GPUs.
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Porting the NPB for GPUs is challenging because it requires extensive refactoring
and robust parallelism strategies. Thus, most of the literature uses those implementations
mentioned above to conduct their research ( [SJL11,XTC+14,DKO+19,AGDF20,AGR+21]).
For instance, Kang et al. [KL20] evaluated our NPB CUDA version [AGDF20] in the context
of edge device computing.

Nonetheless, none of the frameworks discussed in Section 5.1 (Boost.Compute,
FastFlow, HIP, Kokkos, SkelCL, SkePU, and Thrust) were explored using the NPB. Given
this context, our investigations with GSParLib contribute to evaluating the performance and
programmability of structured parallel programming for GPUs when approaching robust com-
putations such as those present in NPB. Concerning the frameworks based on code an-
notations, only OpenMP [STKC17] and OpenACC [XTC+14] were explored with the NPB
suite. However, the performance evaluation is limited in the work presented by Shen et
al. [STKC17]. The authors implemented the OpenMP 4.5 specification using the open-
source OpenUH compiler. Although the NPB was able to be compiled with the authors’
implementation, the performance was far worse than a manual implementation of NPB with
CUDA and OpenCL.
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6. CONCLUSION

In this work, we conducted a study to assess the performance and programmability
aspects of GSParLib and SPar on representative applications. The GSParLib and SPar pro-
gramming abstractions to support GPUs were in their early stages. They provided only basic
features to exploit GPU resources and were previously evaluated only on smaller scenarios.
Consequently, it was unknown whether GSParLib and SPar would be able to address robust
computations and provide a competitive performance outcome.

Our investigations revealed that GSParLib and SPar have considerable limitations
regarding performance and programmability. GSParLib was not able to recognize or en-
able GPU resources and required manual insertion of routines and hacks using CUDA and
OpenCL programming models. In contrast, conceptually, GSParLib should offer a unified in-
terface for both CUDA and OpenCL GPU backends. When we investigated the performance,
we observed different overheads in the internal mechanisms of GSParLib. The main issues
were excessive memory transfers, recompilation of GPU kernels, inefficient thread hierarchy,
expendable GPU kernel launches, barriers, and branch operations.

Once SPar generates GSParLib code for GPUs, it inherits all the limitations present
in GSParLib. Regarding SPar itself, its main limitations were the lack of functionalities to
express parallelism. For instance, SPar does not support synchronizing GPU threads or
performing atomic operations. This limited flexibility turns some parallelism strategies un-
feasible to be implemented. Moreover, the CPU code generated by the SPar compiler for
controlling the stream elements’ flow also presented other limitations. The CPU’s unstable
performance highly impacts the GPU; in our experiments, it degraded the throughput perfor-
mance by up to 50%. Another limitation was that the CPU performs excessive amounts of
memory transfers and data copies.

Given these limitations, when approaching robust computations such as the ones
present in NPB or the MS benchmark, GSParLib and SPar display huge performance losses.
In some cases, the GPU performance was worse than the CPU’s serial version.

In the second step of the study, we investigated methods and techniques to solve
performance and programmability limitations on GSParLib and SPar. Our results culminated
in a set of optimizations and improvements to GSParLib and a discussion about possible
improvements to SPar. We summarize the main insights and achievements of this inves-
tigation as follows: 1) We presented a methodology to develop more agnostic frameworks
independent of low-level programming interfaces; 2) GSParLib is now supporting a unified
interface for CUDA and OpenCL; 3) GSParLib is now recognizing and providing abstrac-
tions for GPU resources such as shared memory and atomic operations; 4) GSParLib is
now able to achieve equivalent performance to CUDA on robust applications due to new and
optimized internal mechanisms. Therefore, GSParLib’s updated version provided by this
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work can approach more robust applications while delivering higher performance. Although
we also provided optimizations to SPar, we did not modify SPar’s compiler to generate the
optimized GSParLib code automatically.

GSParLib and SPar have unique features among the available frameworks of the
industry and academia. GSParLib is now fully supporting a unified interface for the stan-
dard APIs for GPU programming while presenting a performance equivalent to CUDA. The
necessary mechanisms to exploit stream parallelism are transparent to the user. GSParLib
automatically provides mutual exclusion sections when allocating or deleting GPU memory.
GSParLib also automatically creates and manages CUDA streams and OpenCL command
queues to allow asynchronous GPU kernels. GSParLib uses native C/C++ containers in-
stead of requiring a new type of data and works with standard C/C++ compilers such as g++

instead of requiring a separated compiler. On the other hand, SPar is a unique framework
based on code annotations that generate code for stream processing targeting CPU and
GPU, combining stream and data parallelism.

Once GSParLib’s most critical limitations were treated by this work, other research
opportunities remain open:

• Provide new mechanisms to GSParLib. Our optimized version of GSParLib can
recognize and enable GPU resources of the underlying hardware. Also, we provided
abstractions for functionalities such as atomic operations for integer and floating-point
numbers. However, future works can add more abstractions to allow other GPU re-
sources or mechanisms.

For instance, NVIDIA recently introduced the cooperative groups feature. This mech-
anism allows the synchronization of GPU threads from different thread blocks. A tradi-
tional form to synchronize threads from different thread blocks in CUDA is launching a
GPU kernel and wait it finishes its execution. However, GPU kernel launches and this
kind of barrier are costly operations.

Another recent feature from NVIDIA is CUDA Graph. CUDA Graph is similar to CUDA
streams in functionality. It allows the programmer to launch asynchronous GPU ker-
nels, which is required by stream processing applications. However, CUDA Graph
considerably reduces the communication between the CPU and the GPU to manage
the asynchronous GPU kernels. Consequently, CUDA Graph presents a substantial
performance improvement over CUDA streams [HLLL22].

• Provide new parallel patterns to GSParLib. The results from this work demonstrated
that the map and reduce patterns from GSParLib are flexible enough to approach ro-
bust computations such as those present in NPB. However, future work can add new
parallel patterns to improve GSParLib’s programmability. For instance, if the patterns
stencil, scan, gather, and scatter are available in GSParLib’s Pattern API, then the
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programmer does not need to implement a variation of the map parallel pattern to use
those functionalities, requiring less programming effort.

• Provide support to other accelerators. Although GSParLib supports only GPUs, the
framework could support other many-core accelerators such as Field Programmable
Gate Arrays (FPGA) and Intel Many Integrated Core (MIC). Like GPUs from AMD man-
ufacture, the OpenCL can be used to exploit parallelism on other many-core accelera-
tors.

• Evaluate and improve support for multiple GPUs on GSParLib. Currently, GSPar-
Lib’s Driver API supports the use of multiple GPUs. The user can allocate memory or
launch a GPU kernel by specifying the GPU id. However, future work can investigate
if there is no overhead in the internal mechanisms of GSParLib when using multi-
ple GPUs. Concerning GSParLib’s Pattern API, the parallel patterns currently do not
support multiple GPUs. GSParLib should be able to distribute the computations of a
parallel pattern among several GPUs. Nonetheless, the current GSParLib version can
only assign the computations to a single GPU.

• Provide GPU runtime optimizations to SPar. Future work can provide GPU opti-
mizations to SPar that work during the execution time. For instance, SPar could auto-
matically implement methods to vary the number of threads per block to process a GPU
kernel and choose the best configurations as SPar processes new stream elements.
Other important optimizations can be considered. Currently, SPar cannot process very
large amounts of data such as petabytes. In this case, the GPU should not accept a
new stream element except when there is enough device memory. Additionally, CPU
threads keep copies of GPU kernels until the end of the application; if SPar no longer
uses specific GPU kernels, they could be deleted by SPar to free memory. Those op-
timizations are pertinent for improving SPar’s performance and flexibility to approach
different stream applications that consume large volumes of data.

• Provide a study of programmability with GSParLib and SPar. In this work, we used
the number of source lines of code to have a general idea of how GSParLib and SPar
can impact the GPU programmability. Future work can concisely study programma-
bility by combining quantitative and qualitative approaches. The study could consider
other quantitative metrics such as the number of keywords, additional functions, and
pointers necessary to port an application to GPUs. Concerning a qualitative approach,
it could conduct experiments with undergraduate students. The students can imple-
ment parallel algorithms using GSParLib, SPar, and state-of-the-art GPU frameworks
such as CUDA, OpenCL, and OpenACC. Then it is possible to collect how long it takes
to develop the GPU code and collect other information. For instance, the students can
report the main difficulties and facilities of using each framework.
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• Evaluate SPar’s GPU extension on data parallelism applications. We evaluated
SPar’s GPU extension only on stream processing benchmarks. When targeting stream
benchmarks, SPar generates several routines to control the flow of data, and when
using the GPU, SPar combines the CPU and GPU. However, SPar can also generate
parallel code for data parallelism without generating routines concerning the stream
processing domain. In this sense, future work can evaluate SPar’s performance and
programmability when using the GPU on applications that only offer data parallelism,
such as the benchmarks in the NPB suite.

6.1 List of published papers

6.1.1 Publications as main author

• Efficient NAS Benchmark Kernels with CUDA. 28th Euromicro International Con-
ference on Parallel, Distributed and Network-based Processing (PDP), Västerås,
2020 [AGDF20]. This paper provides a CUDA implementation for the NPB kernels
(CG, EP, FT, IS, and MG) and reports our experience programming the benchmarks.

• NAS Parallel Benchmarks with CUDA and beyond. Software: Practice and Experi-
ence (SPE), 2021 [AGR+21]. This paper continues our previous work. We provide a
new CUDA implementation for the NPB kernels (CG, EP, FT, IS, and MG) and pseudo-
applications (BT, LU, and SP). We define a set of design principles for GPU program-
ming and use those principles to guide the implementations. We conduct a compar-
ative study with the literature, analyzing parallelism strategies, programmability, and
performance. Finally, we discuss how different aspects of algorithms can impact GPU
performance and how they are related to GPU parameters.

6.1.2 Publications as co-author

• The NAS Parallel Benchmarks for evaluating C++ parallel programming frame-
works on shared-memory architectures. Future Generation Computer Systems
(FGCS), 2021 [LGM+21]. This paper provides a port of the NPB from the original
Fortran to C++. Additionally, we conduct a broad study of parallel programming for
multi-core architectures by implementing the NPB with OpenMP, TBB, and FastFlow.
We conducted experiments with different multi-core systems (Intel, IBM Power, and
AMD) and compilers (GCC, ICC, and Clang).
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