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SEQUÊNCIAS DE ESTRUTURAS DE COALIZÕES EM SISTEMAS

MULTIAGENTES APLICADAS A RESPOSTA A DESASTRES

RESUMO

A formação de coalizões é um tópico de interesse da comunidade científica que estuda

sistemas multiagentes devido aos desafios emergentes na utilização dessa técnica em aplicações

práticas, assim como em virtude da complexidade envolvida para computar uma solução para o

problema. Uma coalizão é uma organização de curta duração de agentes formada para atingir

um objetivo em comum de seus integrantes. A teoria dos jogos cooperativos estabelece um me-

canismo formal para análise dos grupos formados por diferentes agentes: as coalizões. Assim,

o problema é modelado utilizando jogos de funções características (do inglês Characteristic-

Function Game (CFG)) no qual o produto final de tal jogo é chamado de estrutura de coalizões:

uma partição de um conjunto de agentes em coalizões. Entretanto, nem todos os problemas

encontrados na prática podem ser resolvidos eficientemente utilizando uma única estrutura de

coalizões. Por exemplo, pode ser necessário a formação de uma hierarquia de grupos na qual

uma estrutura de coalizões é requerida por nível hierárquico. Na presente tese, problemas de

formação de coalizões que são interdependentes são investigados. Especificamente, jogos de

formação de coalizões são resolvidos individualmente e existe uma interdependência entre as

soluções dos diferentes jogos. Visto a escassez de trabalhos científicos nesse tópico, um novo

jogo é proposto, chamado de jogos sequenciais de funções características (do inglês Sequential

Characteristic-Function Game (SCFG)), o qual visa modelar o relacionamento entre estruturas

de coalizões subsequentes para o problema descrito por uma sequência de CFGs correspon-

dente. O novo jogo proposto é estendido para modelar restrições induzidas sobre cada CFG

na sequência de jogos. Além disso, por meio de uma análise teórica conclui-se que o pro-

blema subjacente ao SCFG é PSPACE-completo. Considerando uma perspectiva algorítmica,

um algoritmo exato para computar soluções de instancias SCFG, assim como dois algoritmos

heurísticos, são propostos. O desafio final do presente trabalho é modelar uma operação de res-

posta a desastres que emprega o sistema de comando de incidentes (do inglês incident command

system), utilizando as técnicas e algoritmos propostos.

Palavras-Chave: Jogos Coalizionais, Geração de Estruturas de Coalizões, Interdependência

de Estruturas de Coalizões, Applicações Práticas de Jogos Cooperativos, Resposta a De-

sastres.



SEQUENCES OF COALITION STRUCTURES IN MULTI-AGENT

SYSTEMS APPLIED TO DISASTER RESPONSE

ABSTRACT

Coalition formation has long been an interesting topic of research in Multi-Agent Sys-

tems, either for its practical applications or complexity issues. A coalition is commonly under-

stood as a short-lived and goal-directed structure, in which the agents join forces to achieve a

goal. Cooperative game theory has been used as a formal mechanism to analyse the problem

of grouping agents into coalitions. The problem is then modelled by a Characteristic-Function

Game (CFG) in which the outcome is a coalition structure: a partition of agents into coalitions.

However, not all problems can be e�ciently solved using a single coalition structure. For in-

stance, one might be interested in a group hierarchy in which a coalition structure per level is

required. In this thesis, we investigate coalition formation problems that are interdependent.

In particular, we focus on the interdependence among solutions (i.e., coalition structures) pro-

duced by each game individually. Given the lack of work on this topic, we propose a novel

game named Sequential Characteristic-Function Game (SCFG), which aims to model the re-

lationships between subsequent coalition structures in a sequence of CFGs. We approach the

resulting problem under both theoretical and practical perspectives. We extend the proposed

game to allow fine-grained constraints being induced over each CFG in the sequence. Also,

we show that the underlying SCFG problem is PSPACE-complete. From an algorithmic view-

point, we propose an exact algorithm based on dynamic programming, as well as two heuristic

algorithms to compute solutions for SCFG instances. We show that there exists a trade-o� in

choosing one algorithm over the others. Moreover, we model a disaster response operation

that employs the incident command system framework, and we show how one can apply our

proposed framework and algorithms to solve such an interesting problem.

Keywords: Coalitional Games, Coalition Structure Generation, Interdependence of Coalition

Structures, Practical Applications of Cooperative Games, Disaster Response.
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1. INTRODUCTION

Multi-Agent Systems (MAS) is a sub-area in Artificial Intelligence that investigates the

interaction between di�erent software entities. Such entities are called agents and can be better

described as computer systems capable of independent actions to achieve their goals. They can

also control physical devices, like a robot. Each agent can then perceive its environment, reason

about it, and perform actions on it (Wooldridge, 2009). Both humans and software entities can

fulfil these requirements. Whenever more than one agent are acting and interacting in the

same environment, we have a MAS. The interaction might take place in di�erent manners, for

instance, by sharing a common resource or exchanging messages. As a possible outcome of this

interaction, the agents in a MAS might decide to cooperate to bring about a particular state

of a�airs. For instance, whenever two buttons must be pushed simultaneously at two di�erent

locations. Therefore, mechanisms are needed to model how those software entities establish

cooperation.

Coalition formation has long been an interesting topic of research, either for its prac-

tical applications or complexity issues. In order to increase the e�ectiveness of the agents in

a MAS, we can organise them into coalitions, in which the agents collaborate with each other

in order to achieve individual, common, or global (i.e., system level) goals (Wooldridge, 2009,

Chapter 13). A coalition is usually a short-lived and goal-directed structure (Horling and Lesser,

2004). To guide the decision process of how to group agents, game theoretic constructs provide

powerful tools. From this viewpoint, a coalition is a set of agents who may or may not work

together. Each coalition has the ability to obtain a certain utility represented by a numeric

value. Then we aim to maximise the overall value of all coalitions in the system. This set of

coalitions is known as a coalition structure. Coalition formation approaches have been applied

to several areas such as ride-sharing (Bista�a et al., 2017b), cloud federation formation (Hadjres

et al., 2020), collective electricity consumption shifting (Akasiadis and Chalkiadakis, 2017), E-

commerce (Sukstrienwong, 2018), supply chain (Ben Jouida et al., 2017), and in task allocation

problems (Mouradian et al., 2017; Mousavi et al., 2019).

However, not all problems can be e�ciently solved using a single coalition structure.

Consider for instance the Incident Command System (ICS) (Irwin, 1989), a popular system for

disaster management. A part of this system establishes a modular hierarchy that adjusts itself

according to the demands of a given disaster response operation. For instance, just one aspect

of it requires resources (e.g., experts and equipment) to be distributed to a group hierarchy. A

group hierarchy may be modelled by a sequence of CFGs, one per level. Nonetheless, picking

the optimal solution of each level may not lead to a feasible overall solution: optimal coali-

tion structures may not be compatible with one another. Therefore, we should avoid solving

each game in isolation. Given this background, in this thesis, we investigate coalition forma-

tion problems that are interdependent. In particular, we focus on the interdependence among

solutions (i.e., coalition structures) produced by each game individually. We shall look how
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interdependence is addressed in coalition formation frameworks available in the literature and

compare it with our approach. To demonstrate its generality, we aim to apply it to real-world

problems. In particular, to disaster response which has a major social and economical impact

on the communities a�ected by disaster events.

1.1 Main Contributions

Our main contributions are:

1. We propose a novel game named Sequential Characteristic-Function Game (SCFG), which

aims to model the relationship between subsequent coalition structures computed by a

corresponding sequence of CFGs. We show that our game can be used to model a variety

of extended CFGs, like constrained and task-based CFGs. This contribution is partially

published in (Krausburg et al., 2021b).

2. We integrate SCFG with Valuation Structure (VS) (Greco and Guzzo, 2017) to express

game-specific constraints. The new form of the game is named Sequential CFGs induced

by VSs (SEQVS) and is published in (Krausburg et al., 2021a). By using VS one can

model special agents that are supposed to stay in di�erent coalitions and also represent

additional constraints in the form of an interaction graph among the agents in the system.

We equip each CFG in our sequence of games with a corresponding VS to constrain the

coalitions that can be formed on that particular game.

3. We further expand the VS framework to consider constraints on the size of coalitions.

Greco and Guzzo (2017) pointed it out as an appealing extension to the VS framework. We

claim that size constraints are an important feature for many applications. For instance,

consider a ride-sharing problem (Bista�a et al., 2017b) in which a car has a limited number

of seats available. Thus, we propose Sized Valuation Structure (SVS) and Sequential

CFGs induced by SVSs (SEQSVS) by combining VS with the size constraints proposed

in (Rahwan et al., 2011).

4. We give an exact algorithm based on dynamic programming that solves SEQVS instances

(Krausburg et al., 2021a). This new algorithm can be adapted to deal with any SCFG

and SEQSVS instances which makes it the first exact algorithm for sequential CFGs. We

empirically evaluate our algorithm and show that its running time is by several orders of

magnitude better than a brute-force algorithm.

5. We show that the corresponding SCFG decision problem is PSPACE-complete.

6. We propose a hierarchical-clustering algorithm for solving SCFG instances named MC-
Link; it is published in (Krausburg et al., 2021b). It is inspired by C-Link (Farinelli et al.,

2016) a near-optimal algorithm for coalition structure generation problems in CFGs. We
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show that MC-Link computes a solution for SCFG-based games faster than other ap-

proaches introduced in this thesis, however it lacks the completeness property.

7. We then investigate how Monte Carlo Tree Search (MCTS) can be applied to solve SCFG

problems. We propose UCT-Seq which is based on the UTC algorithm (Kocsis and

Szepesvári, 2006). We then evaluate it under general conditions and show that although

(usually) slower than MC-Link, it can compute solutions of grater utility values.

8. We model the ICS hierarchy problem as a sequence of coalition formation problems by

using SEQSVS. In particular, we model the River Roaring Flood scenario introduced in

the ICS training course (U.S. Department of Agriculture, 2021) and compute a hierarchy

of resources that can be deployed for the disaster response operation.

9. We make all experimental material gathered during this work available in the repository

https://github.com/smart-pucrs/SCFG. Hopefully, the repository above will continue to be

improved with di�erent results, approaches and applications resulting from the use of the

SCFG framework.

To the best of our knowledge, there are no other algorithms for solving SCFG instances

except the ones proposed here, as it is the first time this sort of game has been addressed.

1.2 Thesis Outline

This thesis is organised as follows. In Chapter 2, we describe the background for

understanding our work. Moreover, we discuss some related work on coalition formation liter-

ature as well as how one can express interdependence in similar fields. Chapter 3 introduces

our formal framework to study the interdependence of CFGs, that is, Contribution 1. We dis-

cuss how it relates to the existing literature and provide useful extensions to it, namely, SEQVS

(Contribution 2) and SEQSVS (Contribution 3). In Chapter 4, we investigate the cost of solv-

ing SCFG-based problems. We introduce an exact algorithm to solve SEQVS, Contribution 4,

and prove that it is correct. Moreover, we provide a complexity result showing that SCFG is

PSPACE-complete (Contribution 5). Given this bad news, in Chapter 5 we discuss heuristic

approaches to address such a di�cult problem. We propose two heuristic algorithms and ex-

tensively experiment with them in general scenarios. These are Contribution 6 and 7. Our next

step, in Chapter 6, is to evaluate how a sequence of CFGs can be applied to model a real-world

problem. Precisely, the problem of forming a hierarchy of resources based on the ICS frame-

work. We experiment with two distinct manners of forming this hierarchy in a synthetic scenario

leading to Contribution 8. Finally, in Section 7 we make some final considerations about our

overall work and discuss the open venues in this exciting and di�cult problem. In addition,

in Appendix A we provide a glossary containing the main variables (and their corresponding

meaning) used throughout this work.

https://github.com/smart-pucrs/SCFG
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2. BACKGROUND AND RELATED WORK

In this chapter we provide the background required for understanding our work. We

shall introduce the frameworks commonly found in the coalition formation literature to model

the problem of grouping agents to cooperate to achieve a given goal. The central topic is

how to partition a set of agents into disjoint coalitions (i.e., groups of agents) and is usually

approached with a game theoretical perspective called Coalitional Games. Also, we looked up

in the coalition formation literature approaches that output a sequence of interrelated coalition

structures. It turned out this is an unexplored topic and therefore, we could not perform any

direct comparison. Instead, we discuss approaches that are close to ours. That is, some sort of

interdependence appears in the frameworks of interest.

The first topic covered here is Multi-Agent System (MAS). We discuss what an agent

is and how many agents in a given system organise themselves to achieve their goals. This

is a broad topic, required though, to understand where our work is located in the coalition

formation literature. In particular if one considers the techniques proposed in this work as part

of an autonomous system. In Section 2.2, we present formal frameworks to model coalition

formation problems. That is, how the agents get into groups. Then, we discuss in detail in

Section 2.3 the Coalition Structure Generation (CSG) problem, which is the main focus of our

work. Moreover, in this thesis we also propose an algorithm based on Monte Carlo Tree Search

(MCTS) and the background on the topic is introduced in Section 2.4. Finally, in Section 2.5,

we discuss some problems that require, on some level, interdependence among solutions.

2.1 Multi-Agent Systems

There is no universally accepted definition of what an agent is. Nonetheless, in this

work we consider the definition proposed by Wooldridge. Wooldridge (2009, page 21) defines

an agent as follows: “An agent is a computer system that is situated in some environment, and

is capable of autonomous action in this environment in order to meet its delegated objective”.

In other words, an agent observes its environment, reasons about it and produces an action that

brings it towards its objectives. The process of observing the environment results in perceptions

acquired by an agent. It can gather perceptions through sensors as well as from other agents. In

the light of the acquired information, an agent reasons about how to act in order to accomplish

its objectives, which is fundamental for autonomous agents and many approaches have been

proposed to address this problem. Among them, the most successful ones are by means of

Agent Programming Languages (APL); for instance, Jason (Bordini et al., 2007). The reasoning

process results in actions performed by the agent. For instance, a robot controlled by an agent

moving forward in open ground.
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Another important definition is that of intelligent agent (Wooldridge, 2009). Intelligent

agents have three main capabilities: (i) reactivity, they are able to perceive their environment

and respond to the changes that occur in it; (ii) proactiveness, they take the initiative in order to

satisfy their current objectives; and (iii) social ability, they are able to interact with other agents.

In a MAS, we have more than one agent interacting in the same environment. These gathered

agents can share the same goal, which makes themselves cooperative agents, or they can pursue

their own agenda, making themselves sel�sh agents. The necessity of establishing cooperation

and coordination among the agents in a MAS has triggered calls to develop techniques that

consider intelligent agents. Therefore, in Section 2.1.1 we discuss how agents might get together

and thus, achieve cooperation. In Section 2.1.2, we introduce approaches that focus on the

organisation of a set of agents. Those approaches are able to express concepts that are usually

found in real-world organisations, and therefore applications.

2.1.1 The Emergence of Cooperation

When cooperation is required, intelligent agents might organise themselves in order to

achieve their goals. Such organisation guides how the members interact with each other. Horling

and Lesser (2004) introduce several organisational paradigms, such as hierarchies, holarchies,

coalitions, teams, congregations, societies, federations, markets and matrix organisations. In

particular, we describe two of them: coalitions and teams; which are the most interesting for

our purposes. Coalitions are goal-directed and short-lived; they are formed for accomplishing

a purpose. After that, its members disband. In a coalition we may have agents that are both

cooperative and self-interested. Within a coalition one member may act as a leader, although

coalitions have no explicit hierarchy. Coalitions can be viewed as a single atomic entity, but

overlapping coalitions can also exist. One key characteristic is that members from di�erent coali-

tions do not coordinate their actions. Teams are similar to coalitions, what di�ers one from

the other is the members’ goals. A team consists of a number of cooperative agents that have

agreed to work together toward a common goal (Horling and Lesser, 2004). That is, the team’s

members attempt to maximise the utility of the team itself. In general, each agent takes one or

more roles required by the team’s goal. An example of coalitions and a single team is depicted

in Figure 2.1.

In multi-agent systems, there are a number of agents interacting in the same environ-

ment. These agents can execute their own tasks, but sometimes one task may require more e�ort

than a single agent can o�er. To address this issue, the agents can strategically and temporarily

get together in order to improve their performance or to accomplish tasks they could not do

alone. Coalition formation studies how we address the problem of how to group agents so as

to maximise the reward they get for their e�orts. When considering coalitions, we mean just a

set of agents that will work together. In case an agent works alone, then we call it a singleton
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Figure 2.1: Coalition (A) and Team (B) organisational paradigms.
Source: Horling and Lesser (2004)

coalition. A partition of a set of agents into coalitions is called a coalition structure. In Section 2.2

we introduce a formal framework to model this problem.

Sandholm et al. (1999) defined the coalition formation process. They studied how the

process of joining agents into groups occurs and what purpose those agents accomplish. They

divided the coalition formation process into three activities.

1. Coalition structure generation: in this activity a set of agents is partitioned into disjoint

coalitions. Here, we form coalitions in order to find a coalition structure that maximises

the system overall performance (i.e., social welfare).

2. Solving the optimisation problem of each coalition: once we have defined the coali-

tion structure, the coalitions in it begin to plan how to address their own problems and

eventually come up with a plan to be carried out.

3. Dividing the solution value among the agents: this is related to the division of the

coalition reward among the coalition members themselves right after the achievement of

the coalition’s goal. Usually, the outcome of the optimisation problem is used as reward1.

Wooldridge (2009) referred to those activities as the cooperation life-cycle; we depict this cycle

in Figure 2.2. It summarises how the agents may cooperate with each other to accomplish their

desired goals. Given a set of agents, we put them together based on some criteria (e.g., distance

to a given position); after that, the coalition starts to decide which agent will be responsible for

which task, then they create a plan to accomplish the goal. Additionally, the coalition structure

generation may be built endogenously or exogenously (Michalak et al., 2009). In endogenous

coalition structure generation, the agents decide among themselves the best way to split the set

of agents. In the exogenous approach, there is a system designer that puts the agents together.

In the remainder of this work we consider an exogenous approach. In many applications

there exists indeed a system designer who plots what to do the with the agents available in

the system. Of course, the criteria to form a coalition of agents might consider the agents’

uniqueness. For instance, particular capabilities that complement each other as a requirement

1In order to investigate the division of the reward among the coalition members, we can use game theory concepts
such as the core and the shapley value (Shoham and Leyton-Brown, 2009).
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to achieve a system goal. As a domain of interest, we refer to disaster response operations. In this

sort of application there exists a planning section and a commander (or a unity of command)

who is responsible for responding to a disaster event. The responders (i.e., trained resources)

are managed by the assigned superiors to minimise the losses (in every sense). In the CSG

viewpoint, the agents in a coalition formation process represent the set of trained resources. We

discuss in depth this application in Chapter 6.

2.1.2 An Organisation of Agents

In multi-agent systems, the agents may also organise themselves in some sort of organ-

isation and define norms that rule the agents’ interaction. In addition to APLs, that define the

behaviour of autonomous agents, some frameworks are available in the literature to help mod-

elling coordination. The presence of a system designer is required to establish what is expected

from this organisation of agents. Among those frameworks, we refer to Moise (Hübner et al.,

2007, 2010) and Electronic Institutions (Sierra et al., 2004).
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In the Electronic Institutions platform (Sierra et al., 2004), agents adopt roles and

interact in order to achieve their individual and organisational goals; it is a social middleware.

The interaction between agents occurs by the exchange of speech-act messages through agent

group meeting (called scene) in which a role represents a standardised behaviour. When more

than one scene are connected, a workflow is formed and called the performative structure.

Agents can enter, leave, create, and destroy scenes. The ontology, common language, and

knowledge representations are encapsulated in the dialogical framework. In this framework,

the agents’ behaviour are a�ected by obligation and prohibition rules.

Another approach, the Moise organisation modelling language (Hübner et al., 2007),

allows the specification of structural, functional, and normative dimensions of an organisation

of agents. Moise is designed to be organisational centred (i.e., the organisation exits a pri-

ori) in which the structural and function dimensions could be specified independently and the

normative dimension (deontic approach) establishes the link between the two.

At the structural specification there are three levels: (i) the individual level defines the

behaviour that an agent is responsible for when it adopts a role; (ii) the social level specifies the

relationship (links) between the roles (either authority, acquaintance, or communication); and (iii)

the collective level establishes the roles that compose a group. Moise also checks when a group

of agents is well-formed. For this purpose it checks the minimum and maximum number of

agents that must participate in a group, the compatibility between any two roles (i.e., when one

role can replace other within group), and the number of groups formed. Note that the collective

level may be organised into hierarchies. For instance, in a soccer team of agents, the team as a

whole is the main group and it could be split into two sub-groups, one for defence and one for

attack.

The functional dimension describes how the organisation goals are to be achieved.

This specification is done be means of schemes which are goal decomposition trees. In such

models, the root is a global goal and it is decomposed into sub-goals that can be achieved by

the agents. In order to fulfil a scheme, a plan, which is an instance of one goal decomposition

tree, can be defined. Three operators are used for designing a plan: (i) sequence; (ii) choice; and

(iii) parallelism. With a sequence operator, a goal can be achieved only after the achievement

of the previous one. In the choice operator, a single goal in a the set of goals must be achieved.

Finally, in the parallelism operator, all goals must be achieved, but they can be executed in

parallel. Another important concept in Moise is that of a mission. A mission is a set of goals

from a scheme that is assigned to an agent to carry out. Once the agent is committed to a

mission, it must fulfil the goals designated for that mission.

At the normative dimension, it is defined what is permitted or obliged. The roles

played by the agents are connected to the missions. When a mission is permitted to a given

role, an agent that adopts that role can commit to that mission. In an obligation statement, an

agent playing the role must commit to that mission. The organisational specification is stored in
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a XML file and the agents can reason about the organisation and modify it at run-time (Hübner

et al., 2007).

Considering disaster response operations, the understanding of roles (e.g., from the

structural specification) is important to develop rapid actions in emergency teams. Teammates

need to be aware of their responsibilities (individual level) as well as the each other’s responsi-

bilities (team level) (Power, 2018). This knowledge leads to implicit coordination between the

members of a team in which no communication is needed to complete a particular task. For

instance, if during a disaster response operation a victim requires medical assistance, an agent

in the team adopting the role of paramedic is expected to be the most skilled one to deal with

that task at hand.

2.2 Formal Frameworks for Modelling Coalition Formation

We will formally describe the coalition formation process as a Characteristic-Function

Game (CFG) under the perspective of Cooperative Game Theory (also called Coalitional Games)

(Shoham and Leyton-Brown, 2009, Chapter12). In a CFG, one partitions a set of agents A in

which each component of this partition is called a coalition, C ⊆ A, and the partition itself is

a Coalition Structure (CS). We use CA to denote the set of all coalitions over A.

De�nition 1 (Coalition Structure CS ). Given a set of agents A = {a1, . . . , an} a coalition

structure CS is a partition of A into coalitions. That is, for all C,C ′ ∈ CS , C 6= C ′, C ∩C ′ = ∅
and

⋃
C∈CS = A. We use CSA to denote to the set of all coalition structures over A.

To evaluate how good each coalition is, one quantifies it using a valuation function

designed specifically for each application of interest.

De�nition 2 (Characteristic Function v(.)). Given a set of agents A = {a1, . . . , an} a character-
istic function v is a valuation function v : 2A → R. That is, v maps every coalition C ∈ CA onto

a real value.

A CFG Γ is then a pair 〈A, v〉. A value for a coalition structure is computed as follows:

V (CS ) =
∑

C∈CS v(C). The goal is to a CS that

CS ∗ = arg max
CS∈CSA

V (CS ).

We introduce in Example 1 an instance of this problem.

Example 1. Consider a set of agents A = {a1, a2, a3}. The feasible coalitions are: {a1}, {a2},
{a3}, {a1, a2}, {a1, a3}, {a2, a3}, and {a1, a2, a3}. Therefore, the space of all partitions over A

is CSA = {{{a1}, {a2}, {a3}}, {{a1}, {a2, a3}}, {{a2}, {a1, a3}}, {{a3}, {a1, a2}}, {{a1, a2, a3}}}.

In case of CFG with transferable utilities, the agents agree on how to distribute the

reward received by the coalition (Shoham and Leyton-Brown, 2009, Section 12.1). The outcome



24

of a coalitional game is then given by a pair (CS ,x) where CS is a coalition structure and x is a

payo� vector which distributes the value of each coalition among its members. The payo� vector

is defined as x = (x1, . . . , xn) ∈ Rn. Let k be the size of a coalition structure CS , |CS | = k.

Two conditions hold for the payo� vector:

(i) for all ai ∈ A, xi ≥ 0; and

(ii)
∑

ai∈Cj xi ≤ v(Cj) for any 1 ≤ j ≤ k.

An imputation is when a payo� vector satisfies two additional conditions:

(i) it is e�cient such that
∑

ai∈Cj xi = v(Cj) for any 1 ≤ j ≤ k; and

(ii) it satisfies the individual rationality, that is xi ≥ v({ai}) for all ai ∈ A.

This is the classic form of the game and to the interested reader, we refer to (Rahwan et al., 2015)

for a survey on this topic. Alternatively, some extensions to this problem have been proposed

in the coalition formation literature and we introduce them in the sections below.

2.2.1 Coalition Formation with Overlaps

Apart from the classical viewpoint on coalition formation, one might consider coali-

tions with overlaps in which the constraint of disjoint coalitions in a coalition structure is

dropped. That is, any two coalitions may share members. An agent that participates in more

than one coalition contributes something2 to the coalitions it is a member of. This sort of game

makes no assumptions on how an agent acts to achieve the goals of all coalitions that it partic-

ipates. Instead, it focus only on how to determine to which and how many coalitions an agent

will contribute.

This idea is formalised as Overlapping Coalition Formation (OCF) games (Chalki-

adakis et al., 2008) in which one considers only resources available to the agents. Formally a

OCF game is a tuple 〈A, v〉, where A = {a1, . . . , an} is the set of agents and v : [0, 1]n → R is

the characteristic function. The authors no longer use the term coalition, instead, they define

a partial coalition as a vector c = (r1, . . . , ri, . . . , rn) where ri is the amount of resource agent

ai contributes to that partial coalition c. Note that ri ∈ [0, 1] (without loss of generality) and

ri = 0 means agent ai is not a member of the coalition. In order to retrieve only the agents that

contribute something to a given coalition, the authors define the support of a partial coalition

supp(c) = {ai ∈ A | ri 6= 0}.

De�nition 3. (Coalition Structure with Overlaps CS (Chalkiadakis et al., 2008)) Given a set

of agents A = {a1, . . . , an}, a coalition structure CS is defined as a list of partial coalitions

CS = (c1, . . . , ck) (alternatively a matrix n× k (Zick and Elkind, 2011)), such that:

2The notion of contribution is addressed here in a abstract way, but it could be money, time, or any other
feature of real-world domains.
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(i) cj ∈ [0, 1]n;

(ii) supp(cj) ⊆ A for all j = 1, . . . , k; and

(iii)
∑k

j=1 r
j
i ≤ 1 for all ai ∈ A.

It is important to note also that an agent is not obligated to allocate all of its resources

to the coalitions it participates. Moreover, given a partial coalition c where its support is

supp(c) = C, the agents from C could form various overlapping coalitions (i.e., many coalitions

with the same support) (Chalkiadakis et al., 2010).

Some variations of overlapping games were proposed in the literature, among them

is a discrete version of OCF (Zick et al., 2012). In this setting, a weight vector w is defined

and each agent ai has a positive integer weight wi ∈ w which can be distributed to di�erent

coalitions. Moreover, one could consider coalitions that are bounded on the number of agents.

In k-bounded OCF (Zick et al., 2012) there is a bound k on the size of every coalition. Thus,

the assigned value to a partial coalition c is set to zero, v(c) = 0, if the number of agents that

contribute to c is greater than k, |supp(c)| > k. Chalkiadakis et al. (2008) introduce U-�nite

games in which a coalition structure is bound in size by U . In their setting, a game is said

to be U-�nite if for any outcome (CS,x) such that |CS| > U and x ∈ I(CS) where I(CS) is

the set of imputations over CS; there exists a (CS ′,y) such that |CS ′| ≤ U and y ∈ I(CS ′)

and pi(CS,x) ≤ pi(CS
′,y) where pi is the payo� for each agent i = 1, . . . , n. Note the U-value

could be designed as a function on the number of agents; if U(n) <∞. The size of a coalition

structure may be either constrained on v(.) or on the allowed outcomes; |CS| ≤ U .

Generally, the collaboration between agents in a MAS is goal oriented and many stud-

ies in the literature have addressed this sort of problem using task allocation techniques. One

of the first studies concerning overlapping coalitions was introduced in (Shehory and Kraus,

1998), which focused on tasks. In their approach, the agents have capabilities that quantifies

their ability to perform specific actions. The problem then becomes task allocation via coali-

tion formation in which tasks are organised in a precedence order. Precedence here means that

given any two tasks ti, tj ∈ T , where T is a set of tasks, if there exists a precedence relation

ti ≺ tj , ti must be accomplished before tj . It is important to note that each agent has a number

of capabilities and each task requires a number of capabilities. Therefore, a coalition can only

achieve a given task i� it possesses all capabilities required by the task. The problem the authors

aim to solve is how to assign tasks ti ∈ T to coalitions of agents Ci ⊆ A such that
∑

i v(Ci) is

maximised and the precedence order is holds. Similar setting is also proposed in (Lin and Hu,

2007; Xu and Li, 2008; Zhang et al., 2010; Chalkiadakis et al., 2010; Zhang et al., 2011).

Rahwan et al. (2013) also studied the problem regarding overlapping coalitions and

tasks. Their setting is similar to discrete OCF (Zick et al., 2012), however adding tasks. The

number of coalitions an agent may be part of is limited by the number of resources it has. If

the maximum number of resources each agent has is one, then we have the classic CFG. We

could also set the maximum number of resources to 2n−1, then an agent could participate in all
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coalitions. One could also consider a game with overlaps in which agents are geographically

dispersed. The approach proposed by Zhang et al. (2017b) is built on the top of OCF to consider

distributed agents. The main di�erence is regarding the coalitions, an agent forms a coalition

with the agents within its communication range.

The overlapping problem was also addressed in bargain models (Nguyen, 2015). A

bargain model is defined in terms of rounds (or periods) in which agents execute some proce-

dures. For instance, in each round an agent is selected to make a coalition proposal that could

be accepted or rejected by the others. The main idea behind this setting is to distribute the

decision on the coalition formed and the individual profits. At each period, a feasible coalition

and a proposer from that coalition are chosen. Agents are asked to agree on the division of

surplus, if all agents that belong to that coalition agree, then the coalition forms. Instead of

resources, tasks, etc., this setting only focuses on the final value of the characteristic function.

Doing so, agents can join as many coalitions as they desire (as long as the game is running).

2.2.2 Coalition Formation with Externalities

In coalitional games, a coalition is not influenced by the other coalitions that belong to

the same CS. In practical terms, the valuation function assigns a value to any coalition regard-

less of the CS it belongs. In the opposite direction, Partition Function Games (PFG) take into

account as well the coalitions that belong to the same CS. This is also called games with exter-

nalities. Therefore, the value of each coalition depends on the chosen coalition structure (Thrall

and Lucas, 1963). In general, there are two ways in which a coalition is a�ected by others. A

positive externality in which the value of a coalition might increase (e.g., two coalitions with

overlapping goals, as soon as the goal is satisfied, both coalitions are rewarded). On the other

hand, a coalition can also be negatively a�ected by others (e.g., two coalitions that share the

same resource) (Chalkiadakis et al., 2011).

We follow Chalkiadakis et al. (2011, Section 5.2) to formally define a PFG. In a PFG,

one assumes as input a tuple ΓP = 〈A, u〉, where A = {a1, . . . , an} is a set of agents and u is a

partition function (explained below). Note that both PFG and CFG share the same underlying

structure and we only change the way we interpret the valuation function. PFG introduces the

concept of embedded coalition, which combines a coalition with the CS to which it belongs.

De�nition 4. (Embedded Coalition EC) An embedded coalition EC is a pair EC = (C,CS ),

where C ⊆ A, CS ∈ CSA, and C ∈ CS .

We use ECA to denote the set of all embedded coalitions over A.

The coalition structure follows the same definition as in the classic view of the game

(see Definition 1). The partition function u of the game is then defined as u : ECA → R. The
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overall goal is to find a coalition structure that

max
CS∈CSA

∑
C∈CS

u(C,CS ).

Note that the set of all coalition structures CSA is the same in both CFG and PFG.

In order to enumerate all the embedded coalitions, one needs O(nn) space which is

not tractable (Rahwan et al., 2015). In this direction, some concise representations have been

proposed for PFG, for instance, an extension to MC-nets (Ieong and Shoham, 2005). An MC-

rule is composed of pattern→ value, where pattern indicates the absence/presence of a sub-set

of agents in a coalition C. Then, the value of C is computed by summing up the value term in all

applicable MC-rules over it. In a PFG setting a MC-rule is extended in order to state the desired

coalition structure such as PO|P1, . . . , Pk → value, where PO means the expected coalition

structure and P1, . . . , Pk state the presence or absence of agents in a coalition (Michalak et al.,

2010a). Alternatively, partition decision trees can be used to represent PFG (Skibski et al.,

2015, 2020a). In a rooted directed tree, non-leaf nodes are agents, leaf nodes are labelled

as payo� vectors and edges indicate the coalitions formed by the agents. The game is then

modelled by many partition decision trees. The authors show that this representation enables

polynomial computation of almost all extensions to the Shapley value for PFG. In addition,

di�erent methods for solving coalition structure generation instances under partition decision

tree representations were also proposed in the literature (Zha et al., 2017).

2.2.3 The Role of Constraints

In practice many applications do not need to take into account all possible combina-

tions of agents in order to output a suitable coalition structure. For example, sometimes there

are constraints that narrow down the number of di�erent coalitions allowed. These constraints

might occur for many reasons, for instance, due to short-range communication, trust relations,

or physical constraints (Voice et al., 2012b). The question is then how to model them.

Rahwan et al. (2011) introduced the first systematic study of Constrained Coalition

Formation (CCF). In this setting not all coalition structures are feasible (i.e., can be formed).

A CCF game ΓC in its general form is given by a triple 〈A,CScst , v〉, where A is the set of

agents, CScst is the set of allowed coalition structures and v is the characteristic function. The

idea is the same as in a CFG, however now the solution is one of those CSs given as input.

Moreover, the authors noted that in some settings the constraints can be reduced to the ones

applied only to coalitions instead of CSs. For instance, two agents a1, a2 ∈ A must belong to

di�erent coalitions. This constraint must hold in all feasible CS. Let Ccst be the set of all feasible

coalitions. Then, CScst = {CS ∈ CSA | CS ⊆ Ccst}; that is, the set of all coalition structures

that are locally constrained.
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Although CCF games are expressive (i.e., one can state only the CSs of interest), it

might be intractable to list out all feasible coalition structures. A modified version of the locally-

constrained CCF problem was proposed to address this; it is called the basic CCF model (Rah-

wan et al., 2011). The constraints are now expressed in the form of: (i) sizes of the coalitions;

and (ii) subsets of agents whose presence in any coalition is viewed as desirable3 or prohibited.

The size constraint S ⊆ N is the set of permitted coalition sizes. The set of desirable constraints

(called positive constraints), which are denoted as P ⊆ 2A such that a coalition C satisfies a

constraint P ∈ P if P ⊆ C. In the same way, the set of prohibited constraints (negative con-

straints), which are denoted as N ⊆ 2A such that C satisfies a constraint N ∈ N if N * C. A

coalition is considered feasible if it has at least one positive constraint, no negative constraint,

and the size of the coalition is permitted. Formally, a coalition C ⊆ A is feasible, if: (i) P ⊆ C

for some P ∈ P ; (ii) N * C for all N ∈ N ; and (iii) |C| ∈ S. A coalition structure is only

feasible if it contains only feasible coalitions. Therefore, a basic CCF model is given by a tuple

〈A,P ,N ,S, v〉.
Another sort of modelling constraints is to model the relationship between any two

agents in the system using a graph. The underlying model is given by an undirected graph

G = (A,E), where A = {a1, . . . , an} is a set of agents and E ⊆ A × A is a set of edges

connecting any two agents. A coalition C is allowed to form i� the induced sub-graph of C

over G is connected. Similarly to a classic CFG game, a characteristic function v : 2A → R is

assumed as input to evaluate the coalitions; and hence the coalition structures. In graph-based

coalition formation some properties can be drawn to help finding a solution for the problem. For

instance, if a valuation function v follows the independence of disconnected members property

given below.

De�nition 5 (Independence of Disconnected Members (IDM)). Given a graph G = (A,E),

a function v : 2A → R is independent of disconnected members if for all ai, aj ∈ A with

(ai, aj) /∈ E, and coalition C with ai, aj /∈ C,

v(C ∪ {ai})− v(C) = v(C ∪ {ai, aj})− v(C ∪ {aj}).

That property states that ai and aj do not have any synergy, hence placing both in the

same coalition does not contribute to improving the marginal contribution of ai to the coalition.

Interestingly, any game in which the valuation function is given by the sum of edges mapped

onto weights (i.e., real numbers) has the IDM property (Voice et al., 2012a). That is, suppose

that the graph G is weighted. That is, G = (A,E,w), where w : E → R is the weight function.

Then the valuation function is given by v(C) =
∑

ai,aj∈C w(ai, aj) and follows the IDM property.

The rule-based (i.e., basic CCF model) and graph-based constrained games do not

represent the same set of problems. To show why, we reproduce an example introduced by

Greco and Guzzo (2017). Assume a set of agents A = {a1, a2, a3}.
3Desirable here refers to a subset of agents that must be in the same coalition. A feasible coalition must fulfil

at least one of the desirable constrains.
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Example 2 (Limitation of Graph-Constrained Games). Suppose we want to model a constraint

in which all coalitions are feasible but the ones in which a1 and a3 are together. That is, the

coalitions {a1, a3}, and {a1, a2, a3} are unfeasible. If we try to model this problem as a graph-

based game G = 〈{a1, a2, a3}, E〉, there must not exist a path from a1 to a3 in E. However,

one cannot model that as the edge (a1, a2) is required for the feasible coalition {a1, a2}, and
similarly, the edge (a2, a3) for the feasible coalition {a2, a3}. Therefore, the coalition {a1, a2, a3}
is feasible, which should not be the case.

This problem can easily be modelled by a basic CCF assuming the following tuple

〈{a1, a2, a3},P ,N ,S, v〉, where P = {{a1}, {a2}, {a3}}, N = {{a1, a3}}, and S = {1, 2, 3}.

Example 3 (Limitation of basic CCF Games). Suppose now that we want to model a constraint

in which all coalitions are feasible but the one in which a1 and a3 are alone in the same coalition.

That is, the coalition {a1, a3} is unfeasible. If we try to model this problem with a basic CCF

using N = {{a1, a3}}, then the coalition {a1, a2, a3} becomes unfeasible; it should not be case.

If we let the negative constraints empty, N = ∅, then we need to model the intended constraint

in the set of positive constraints. However, if {a1} ∈ P , then {a1, a3} is feasible; it should not

be the case. If {a1} /∈ P , then {a1} is unfeasible; it should not be the case.

This problem can easily be modelled by a graph-based game. We just have to make sure

(a1, a3) /∈ E and one can reach a3 from a1. Therefore, G = 〈{a1, a2, a3}, {{a1, a2}, {a2, a3}}〉.

Aware of this limitation, Greco and Guzzo (2017) proposed the concept of Valuation

Structures (VS) to combine both worlds. A VS is induced over a CFG, that is, it modifies

how the original game is played. The general idea is that some agents are incompatible with

one another, called pivotal agents, in such a way that they must stay in di�erent coalitions; a

negative constraint over a coalition. Moreover, they assume the relation between any two agents

is modelled using an undirected graph; called interaction graph.

De�nition 6 (Valuation Structure σ (Greco and Guzzo, 2017)). Given a CFG Γ = 〈A, v〉, a
valuation structure is a tuple σ = 〈G , S , α, β, x, y〉 induced over Γ, Γσ, where:

• G = (A,E) is a undirected graph, where E ⊆ A× A;

• S ⊆ A is a set of pivotal agents;

• α, β : S → R are mappings assigning to pivotal agents a real value; and

• x, y ∈ R are constants to modify the value of any coalition that does not contain pivotal

agents.

The combination of a graph with a set of pivotal agents poses the constraints of the

game. The semantics of this game state that a coalition C is allowed i�: (i) the induced sub-

graph of C over G is connected; and (ii) |C ∩ S | ≤ 1. The remaining variables are used to
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modify the given valuation function v. This is done using Equation 2.1.

valσ(v, C) =

α(ai)× v(C) + β(ai) if {ai} = C ∩ S

x× v(C) + y otherwise
(2.1)

Pivotal agents may have important characteristics that make them di�erent from the remaining

agents. For this reason, the authors provide a way to manipulate the valuation function to take

that into account.

Another way to consider negative constraints over a graph game is signed-graph

games (Skibski et al., 2020b). In this modelling, a game is a tuple 〈A, v, E+, E−〉, where 〈A, v〉
is a CFG and G± = 〈A,E+, E−〉 is a signed graph. The edges in E+ have the same semantic

as regular edges in an interaction graph, that is, the induced coalition must be connected. On

the other hand, an edge (ai, aj) ∈ E− indicates that agents ai and aj cannot be placed in the

same coalition. One can see that the set of pivotal agents can also be represented in this game

by having S × S ⊆ E−.

Another approach view all coalitions as feasible, nonetheless the coalition structure

size is bounded by a constant k (Skibski et al., 2016); it goes on the opposite direction as locally-

constrained games (Rahwan et al., 2011). The inspiration for this sort of game is that many

physical and organisational restrictions are in the coalition structures rather than the coalitions.

For instance, in a organisation, any coalition is feasible, but no coalition structure may contain

more coalitions than the number of leaders available. Moreover, Skibski et al. (2016) investigate

this setting in the context of PFG in which the value of a coalition is a�ected by the CS it is

member of. Similarly, Präntare et al. (2021) consider a k number of tasks and then aim to

form a coalition structure to carry out the k-tasks; therefore, the size of a CS is bounded by k.

However, the authors approach this problem under the perspective of a permutation problem.

Formally, the game is given by a triple 〈A, T, v〉, where A = {a1, . . . , an} is a set of agents,

T = 〈t1, . . . , tk〉 is an ordered set of tasks, and v : 2A× T → R. Thus, one produces an ordered

coalition structure CS = 〈C1, . . . , Ck〉 according to the set of tasks T . That is, task ti is assigned

to coalition Ci for all 1 ≤ i ≤ k. In case ti is not allocated to any coalition, then ∅ appears at
position i in CS .

2.3 Algorithms for the Coalition Structure Generation Problem

Given the frameworks introduced above, many algorithms have been proposed to solve

the coalition structure generation problem. That is, the problem of finding a coalition structure

that maximises the joint value of its coalitions given a valuation function. First, we introduce

graphical (classic) ways of representing the search space for this problem. Then, we introduce

some well-known algorithms that solve a CFG. We explain in details C-Link, which is used in

the remainder of this work. Our next step is to introduce some algorithms that take constraints
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into account. In particular CFSS, which also plays an important role in the remainder of this

work.

2.3.1 Search Space Representation

To find an optimal coalition structure CS ∗, one might firstly organise the search space

in a representation that guides the search. Using this representation one should be able to

exhaustively enumerate the set CSA without repeating any CS. The first representation was

proposed by Sandholm et al. (1999) and it is called coalition structure graph. The search space

is viewed as a graph in which each vertex correspond to a coalition structure. The graph is

divided into levels, L1, . . . , Ln. Each CS in level Li contains exactly i coalitions. For instance,

consider Figure 2.3 which depicts a coalition structure graph for four agents. One edge links any

two vertices i�: (i) they belong to two consecutive levels Li and Li−1; (ii) a coalition structure

at level Li−1 is formed by performing a pairwise union operation on coalitions in a CS at level

Li.

{a1, a2, a3, a4}

{a1, a3}{a2, a4}{a2}{a1, a3, a4}{a1, a2}{a3, a4}{a1}{a2, a3, a4} {a3}{a1, a2, a4} {a1, a4}{a2, a3} {a4}{a1, a2, a3}

{a1}{a3}{a2, a4} {a2}{a4}{a1, a3}{a3}{a4}{a1, a2}{a1}{a2}{a3, a4} {a1}{a4}{a2, a3} {a2}{a3}{a1, a4}

{a1}{a2}{a3}{a4}
Level
(4)

(3)

(2)

(1)

Figure 2.3: The coalition structure graph for four agents.
Source: Sandholm et al. (1999)

Another approach for representing the search space was proposed by Rahwan et al.

(2007b) and is based on the coalition structure con�guration. A configuration is a grouping of

coalition structures according to the size of their coalitions. For instance, both coalition struc-

tures {{a1}, {a2, a3}} and {{a3}, {a1, a2}} follow the configuration {1, 2}. This encoding is then
represented by an integer partition graph (Rahwan and Jennings, 2008a) in which each vertex

correspond to a configuration (i.e., a sub-space). Levels are also considered in this representa-

tion in which each level Ls represents a sub-space containing s coalitions per coalition structure.

For instance, level L2 in Figure 2.4 contains only CS of size 2 (vertices {3, 1} and {2, 2}). More-

over, the sub-space {3, 1} contains all CSs that have one coalition with three members and a

singleton coalition. An edge connects any two vertices if a pairwise sum operation on a con-

figuration results in a integer of the destination vertex. For instance, configuration {2, 2}, in
Figure 2.4, can reach only configuration {2 + 2}.
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{4}

{3,1} {2,2}

{2,1,1}

{1,1,1,1} (L4)

(L3)

(L2)

(L1){{a1, a2, a3, a4}}

{{a1, a3, a4}, {a2}}
{{a1, a2, a4}, {a3}}

{{a2, a3, a4}, {a1}}

{{a1, a2, a3}, {a4}}

{{a1, a2}, {a3, a4}}
{{a1, a3}, {a2, a4}}

{{a1, a4}, {a2, a3}}
{{a1, a2}, {a3}, {a4}}
{{a1, a4}, {a2}, {a3}}
{{a2, a4}, {a1}, {a3}}{{a3, a4}, {a1}, {a2}}

{{a2, a3}, {a1}, {a4}}
{{a1, a3}, {a2}, {a4}}

{{a1}, {a2}, {a3}, {a4}}

Figure 2.4: The integer partition graph for four agents.
Source: Rahwan and Jennings (2008a)

2.3.2 Algorithms for Coalition Structure Generation

Rahwan and Jennings (2008b) divide the algorithms that solve the coalition structure

generation problem into classes. They are: (i) based on dynamic programming; (ii) heuristic;

and (iii) anytime optimal algorithms. A number of algorithms have been proposed in each of

these classes and we discuss some of them below.

In anytime optimal algorithms an initial solution, usually guaranteed to be within a

bound from the optimum, is generated. After that, the quality of the solution is improved

establishing progressively better bounds as the search goes on, until an optimal solution is

found (Rahwan and Jennings, 2008b). Rahwan et al. (2007a, 2009b) proposed the IP algo-

rithm, designed to follow the properties of optimality, ability to prune, discrimination, anytime,

and worst-case guarantee. The space of possible coalition structures is represented as integer-

partition subspaces. The amount of search needed is reduced with a branch-and-bound tech-

nique. A minimum and a maximum bound are evaluated for each subspace. These bounds are

used to speed up the search in two ways: (i) if the minimum bound of a subspace is greater

than the maximum of another subspace, the latter subspace must not be searched; and (ii) if

the current best solution is greater than the maximum of a subspace, this subspace is cut o�.

The IP algorithm is guaranteed to find an optimal solution when run to completion (Rahwan

et al., 2009b).

A distributed version of IP was introduced in (Michalak et al., 2010b), the first de-

centralised algorithm for solving the CSG problem. This algorithm uses filters on the input

(reducing the communication) and applies the techniques from (Rahwan and Jennings, 2007)

to distribute the calculation of possible coalitions among the agents. Other algorithms devel-

oped to find an optimal coalition structures are (Sandholm et al., 1999; Dang and Jennings,

2004). Sandholm et al. (1999) introduce an algorithm that searches through the first two levels

and the last level of the coalition structure graph. After that, a breadth-first search is used and

it continues as long as there is time left or until the entire graph has been searched. Dang

and Jennings (2004) improve on the algorithm proposed by Sandholm et al. (1999). It searches

through the same three levels as the algorithm in (Sandholm et al., 1999) does. After that, in-
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stead of searching for all the remaining levels, it searches some subsets of each remaining levels

based on the coalition structure cardinality within the level.

In the dynamic programming class of algorithms the main advantage is the lower time

complexity. Some algorithms are guaranteed to find an optimal solution in O(3n) for n agents.

The drawbacks are: (i) it requires more memory; and (ii) it needs to complete the execution

of the algorithm in order to output a solution. The first algorithm that used the dynamic

programming paradigm is DP (Yeh, 1986). It is designed to solve the complete set partitioning

problem. The time complexity and space complexity were shown to be O(3m), where m is the

number of rows of an auxiliary table necessary to represent the number of elements in binary

notation. For instance, for seven elements m is equal to three. DP iterates over all coalitions

of size 1, then coalitions of size 2, and so on, up to the grand coalition. When the size of a

coalition is greater than 1, the algorithm compares the value of the coalition with the sum of

the previous coalitions’ sizes that compose this bigger coalition. For instance, DP evaluates the

coalition {a2, a3} with the sum of coalitions {a2} plus {a3} and it stores the best way of splitting

the coalition.

Rahwan and Jennings (2008a) showed that the DP algorithm performs many redundant

operations. They introduced the ODP algorithm which avoids approximately two thirds of the

operations of DP (Rahwan et al., 2015). They show these redundant operations when DP is

evaluated on the coalition structure graph: an optimal coalition structure can be reached from

di�erent paths. ODP identifies a priori what are the relevant movements to be executed without

any need for extra memory requirements. If there exists in the coalition structure graph one

path from any node to any other node in the graph, ODP eventually finds an optimal coalition

structure.

The fastest version of ODP was proposed by Michalak et al. (2015). It combines both

ODP and IP algorithms, resulting in the ODP-IP algorithm. This hybrid algorithm avoids the

limitations of its two components and improves on the advantages of each. First the authors

show that the movements made by DP in the coalition structure graph can also be visualised on

the integer partition graph, which is used by IP. When DP makes a movement from coalition

structure node {{a1}, {a2, a3, a4}} to {{a1}, {a2}, {a3, a4}}, it also moves from subspace node

{3, 1} to {2, 1, 1} in an integer partition graph as depicted in Figure 2.5. One edge in the integer

partition graph is represented by some edges in the coalition structure graph. ODP can avoid

only some edges from a coalition structure graph of a given size which means the edge that

links two subspaces in the integer representation cannot be cut o�. In order to address this

problem, Michalak et al. (2015) proposed a size-based version of ODP which evaluates all or

none of the movements that link two nodes in an integer partition graph; it is called sb-ODP or

IDP. Combining IP and sb-ODP results in ODP-IP, which is an anytime algorithm and its time

complexity is O(3n).

Another approach uses the inclusion-exclusion principle (Björklund et al., 2009) to

solve the set partitioning problem. In such an approach, the information is encoded into ex-
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{a1,a2,a3,a4}

{a1,a3}{a2,a4}{a2}{a1,a3,a4}{a1,a2}{a3,a4}{a1}{a2,a3,a4} {a3}{a1,a2,a4} {a1,a4}{a2,a3} {a4}{a1,a2,a3}

{a1}{a3}{a2,a4} {a2}{a4}{a1,a3}{a3}{a4}{a1,a2}{a1}{a2}{a3,a4} {a1}{a4}{a2,a3} {a2}{a3}{a1,a4}

{a1}{a2}{a3}{a4}

(a) Coalition structure graph representation of ODP.

{4}

ODP

{3,1} {2,2}

{2,1,1}

{1,1,1,1}

(b) IPG representa-
tion of ODP.

{a1,a2,a3,a4}

{a1,a3}{a2,a4}{a2}{a1,a3,a4}{a1,a2}{a3,a4}{a1}{a2,a3,a4} {a3}{a1,a2,a4} {a1,a4}{a2,a3} {a4}{a1,a2,a3}

{a1}{a3}{a2,a4} {a2}{a4}{a1,a3}{a3}{a4}{a1,a2}{a1}{a2}{a3,a4} {a1}{a4}{a2,a3} {a2}{a3}{a1,a4}

{a1}{a2}{a3}{a4}

(c) Coalition structure graph representation of IDP.

{4}

IDP

{3,1} {2,2}

{2,1,1}

{1,1,1,1}

(d) IPG representa-
tion of IDP.

Figure 2.5: Comparison of search space representation between coalition structure graph and
integer partition graph in an example of four agents for ODP and IDP algorithms.

tremely large numbers and has a theoretical time complexity O(2n). However, it does not take

into account the time required to manipulate such huge numbers. In practice the algorithm

runs in O(6n) (Rahwan et al., 2015).

When it comes to PFGs, one approach is to prune parts of the search space whilst

computing an optimal solution. For instance, Michalak et al. (2008) propose the use of bounds

on the value of a coalition (regardless of its coalition structure) in games with positive and neg-

ative externalities with super- and sub-additivity valuations. Rahwan et al. (2009a) determines

bounds based on the partition of a coalition instead of the coalition itself. Moreover the bounds

developed can be applied to any positive and negative externality classes.

Metaheuristic algorithms are used when the number of agents is very large, hence the

problem becomes harder to solve. This kind of algorithm is usually fast; however, it may not

provide any guarantees on the quality of its solutions. Shehory and Kraus (1998) proposed some

greedy distributed anytime algorithms to the set partitioning and set covering problems. First,

the algorithms compute the value of all possible coalitions. Then a distributed greedy procedure

is run. It re-calculates the coalitional values; after that, the agents form the preferred coalitions.

The time complexity of the algorithm is O(2n), but it can be reduced to (nk) by inserting a

constraint on the coalition size, in which k represents the highest size allowed. However, it still

remains a NP-Complete problem (Shehory and Kraus, 1998).

A genetic algorithm was introduced by Sen and Dutta (2000). The algorithm starts

with a randomly generated coalition structure. It iterates through three stages: (i) evaluation; (ii)
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selection; and (iii) recombination. It evaluates all the members of the coalition structure, selects

members based on these evaluations and modify or exchange their content, so new members

are generated. An algorithm based on simulated annealing was proposed in (Keinänen, 2009).

The algorithm starts generating random coalition structures. It takes one CS and evaluates its

neighbourhood. For a neighbour CS ′, the algorithm compares if it is better than the current

coalition structure. If it is, then the algorithm moves to CS ′. Otherwise, the algorithm only

moves to the neighbour based on a probability that decreases over time.

The greedy algorithm proposed by Mauro et al. (2010) is based on Greedy Random-

ized Adaptive Search Procedures (GRASP) (Feo and Resende, 1995). GRASP is an iterative

process composed of two phases: (i) a constructive phase in which a feasible solution is pro-

duced; and (ii) a searching phase in which a local search is performed on the neighbourhood

of the constructed solution. The algorithm starts o� with an empty coalition structure. Then,

one agent is added to it, as a singleton coalition or as member of some coalition. After that, a

local search is performed in the neighbourhood of this coalition structure. The neighbourhood

is defined according to five operations: split, merge, shift, exchange, and extract operations.

The algorithm finishes when all the agents are added to the coalition structure.

Integer programming can also be used for computing CSs in CSG problems. Once a

formulation of the problem is designed, it can be applied to any integer programming solver (Rah-

wan et al., 2015). However, this approach is slower than both IDP and IP, and it runs out of

memory for problems with around 20 agents in the experiments reported by Rahwan et al.

(2007a).

2.3.3 The Coalition Linkage Algorithm

C-Link (Farinelli et al., 2016) is a heuristic algorithm (anytime under some conditions)

with time complexity O(n3). It starts o� from the coalition structure of singletons, and to

produce a new coalition structure it evaluates all the moves resulting of a merger of any two

coalitions (see Figure 2.6). It selects the move that produces the greatest numeric gain, which

cannot be undone. Gain is a clustering concept that, when parsed to the coalition formation

problem, is described by Equation 2.2.

gain(Ci, Cj) = v(Ci ∪ Cj)− v(Ci)− v(Cj) (2.2)

The equation above states that the gain of merging two coalitions is the di�erence

between the coalition values with and without placing the agents in the same coalition. After

evaluating all available moves, the algorithm merges the two most suitable coalitions. This

is determined through a linkage function; four such functions are proposed: (i) single-link; (ii)

complete-link; (iii) average-link; and (iv) gain-link. Functions (i), (ii), and (iii) are based on

pairwise relations between the agents that belong to the same coalition, whilst (iv) considers
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Figure 2.6: An example run with four agents for C-Link. The red ovals represent the selected
column and row to be merged, and t represents an iteration.

the coalition itself and not individual members. For the remainder of this work, we consider

only the gain-link (GL) defined in Equation 2.3, as it obtained the best results in the experiments

reported by Farinelli et al. (2016).

lf GL(Ci, Cj) = gain(Ci, Cj) (2.3)

The algorithm iteratively updates a partition linkage matrix PL (initially a n×nmatrix,

that is, a CS of singletons) which is filled out with the value returned by the linkage function

lf (Ci, Cj) for entry (i, j) (note that the diagonal of the matrix is not relevant). The algorithm

picks the entry in the table PL resulting in the greatest value of the linkage function and performs

a merger. Once this is done, the matrix is updated with the new coalitions and their respective

values from the linkage function. The algorithm stops when there is no advantage in merging

any two coalitions—when the linkage function for all coalitions in the matrix has zero or a

negative value.

2.3.4 Reduction in the Search Space

After introducing some algorithms that solve the coalition structure generation prob-

lem, we discuss constraints applied to the process of forming coalitions. This is an important

topic as by reducing the number of feasible coalitions and CSs, one reduces hence the search

space.

Rahwan et al. (2011) introduced an algorithm to solve locally constrained coalition

formation games using the basic CCF framework. It first transforms the set of agents and

constraints (i.e., the set of desirable/prohibitive rules and sizes of the allowed coalitions) into

an isomorphic representation that outputs only the feasible coalitions. After that, it starts

searching for an optimal coalition structure.
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Voice et al. (2012b) argued that the current state of the art on coalition formation

algorithms is not designed for problems over synergistic graphs. To address this, they proposed

an algorithm to enumerate all the feasible coalitions, titled D-SlyCE and another algorithm to

find an optimal feasible coalition structure, titled DyCE. In their proposed model, coalition

formation with sparse synergies, the set of feasible coalitions is constrained by a graph where

vertices represent the agents. The coalition is considered feasible if and only if it is an induced

sub-graph on the synergistic graph.

The SlyCE algorithm conducts a depth-first search over a tree representation of the

set of feasible coalitions. SlyCE has been proved to be correct (i.e., it only evaluates feasible

coalitions), complete (i.e., it can enumerate all feasible coalitions), and non-redundant (i.e., it

never evaluates the same coalition twice). Moreover, the search space can be distributed to the

agents in the system so that the computation of di�erent coalitions are performed simultane-

ously. This version of the algorithm called is D-SlyCE (Voice et al., 2012b) and is shown to have

the same properties as SlyCE; that is, it is correct, complete, and non-redundant.

DyCE (Voice et al., 2012b) uses a dynamic programming technique to find an optimal

coalition structure. It is based on IDP (Rahwan and Jennings, 2008b) with the addition of an

initial phase in which the feasible coalitions are enumerated using SlyCE. Then, the authors

construct a feasible coalition structure graph (a directed graph) containing nodes that corre-

spond to feasible CSs (i.e., CSs that contain only feasible coalitions). Two nodes are connected

by an edge in the resulting graph if a coalition in the first coalition structure is split into two

smaller feasible coalitions in the second node. DyCE evaluates only some edges that connect

the nodes of a coalition structure graph, like IDP does. To summarise, SlyCE provides the

feasible coalitions to DyCE. After that, DyCE goes through each coalition of size 1, . . . , n cal-

culating a value for them. Here, SlyCE is used again in order to provide the feasible subsets of

the coalition that is under evaluation.

2.3.5 Graph Colouring-based Approach

DyCE has some drawbacks, as mentioned in (Bista�a et al., 2014): (i) it requires an

exponential amount of memory in the number of agents; and (ii) it is not an anytime algorithm.

To overcome those limitations, the authors proposed a new way of searching through the search

space of CSs in the CSG problem. The search space is represented in a tree-like manner and

each node corresponds to a feasible coalition structure. The root is the coalition structure

of singletons connecting compatible agents (that is, their singleton coalitions). They use the

edge contraction technique to go from one coalition structure to another. The edges connecting

coalitions in a given node of the tree are coloured using the notion of 2-coloured graph (Cormen

et al., 2009). Precisely, the colours green and red. A red colour means the edge cannot be

contracted, and a green edge means the otherwise.
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Figure 2.7: A tree-like representation of the space of coalition structures.
Source: Bista�a et al. (2014)

To generate a new node, one green edge is chosen to be contracted, meaning two

coalitions are merged. After merging the coalitions, a new graph representing the resulting CS

is generated and the contracted edge is coloured red at the parent node. Moreover, parallel

edges are merged and the resulting edge is coloured red if one of its parallel edges is red-

coloured; it is coloured green otherwise. This procedure is repeated for all the remaining green

edges. For instance, consider the root node in Figure 2.7, and let G be its corresponding graph

and CS its corresponding coalition structure (by parsing the nodes in G to coalitions). When

the edge between coalitions {A} and {B} is contracted, a new graph is generated with the

corresponding CS CS ′ = {{A,B}, {D}, {C}}. This edge is then coloured red in G. After some

iterations, the edge connecting coalitions {B} and {C} in graph G is contracted and a new

graph G′′ is generated; the corresponding CS is CS ′′ = {{B,C}, {A}, {D}}. Note that the edge
coloured previously in red (i.e., edge ({A}, {B})) determines the colour of edge ({A}, {B,C})
in graph G′′. The algorithm paints the contracted edge in red and goes on with the execution.

The CFSS algorithm uses a branch-and-bound technique that focuses onm+a (monotonic-

antimonotonic) functions; a general class of characteristic functions. An m + a function is the

sum of a supperadditive and a subadditive functions (Bista�a et al., 2017a). A supperadditive

function has a monotonic behaviour. That is, given two coalitions C,C ′ ⊂ A : C ∩ C ′ = ∅, the
value of the union of these coalitions is no less than the sum of the coalitions’ separate values,

v(C ∪C ′) ≥ v(C) + v(C ′). Conversely, a subadditive function has an antimonotonic behaviour.

The value of the union of these coalitions is no greater than the sum of the coalitions’ separate

values, v(C ∪ C ′) ≤ v(C) + v(C ′). Then, a bound is assessed for each subtree rooted at any

given node in the tree and is computed based on subadditive value of the current CS plus the

supperadditive value of the CS containing the grand coalition. If the bound for a subtree is
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lesser than the best solution found so far, then it is pruned. For anytime performance, in the

worst-case scenario, the CFSS algorithm provides solutions that are at least 88% of the optimum.

2.4 The Monte Carlo Tree Search Method

Monte Carlo Tree Search (MCTS) is usually applied to problems that contain in-

tractable search spaces. Instead of a single algorithm, it is better described as a family of

algorithms (Browne et al., 2012) due to the changes required in the searching mechanism to

meet each problem’s requirements. An algorithm that implements MCTS iteratively builds a

tree considering at each expansion (i.e., a new node being added to it) the statistical infor-

mation collected during former explorations (e.g., following a given path in it). This current

knowledge is then used to perform a best-first search to determine where to expand the tree.

We shall introduce how the MCTS works and after that, we discuss two approaches that have

used this method to solve the coalition structure generation problem.

2.4.1 The Overall Method

In the MCTS method, one may interpret a node in the tree as one of the possible

states of a problem. A transition from the current node to one of its child nodes is given by an

action being carried out at that state. As MCTS is based on a tree search, we always assume

an initial state (i.e., the root of the tree) and conduct a best-first search on its branches (i.e.,

select iteratively the branch that leads to the greatest immediate reward). To follow this method,

one performs the four steps explained below to implement an MCTS-based algorithm. A single

iteration is depicted in Figure 2.8.

Selection: Starting always at the root node, one recursively selects child nodes until a terminal

or not fully expanded node is reached (e.g., there exists actions that have not been carried

out in the current node). Note that the selected node might not be a leaf node. To select a

child node among the options, we use a utility function to establish priority. The greater

the utility value, the greater the priority. This priority order might change as the number

of iterations increases leading to di�erent parts of the tree being explored during the

search.

Expansion: Once a node has been selected, the algorithm adds a child node of it to the tree. To

create a child node, the algorithm needs to consider the available actions for that particular

state. To avoid keeping adding nodes that result from the same action, one should keep

track of the actions that have not been carried out in it yet. The standard procedure is

to select a random action among the options. Note that a single child node or more can

be added to the tree per iteration (Browne et al., 2012). Moreover, in some problems, the



40

Figure 2.8: An iteration in the MCTS method.
Source: Browne et al. (2012)

space of actions can be either continuous or finite (intractably large tough) (Kim et al.,

2020). In those cases, a common approach is to progressively expand a node’s frontier

once the corresponding number of visits to it is above a given threshold (Lee et al., 2020).

Simulation: In a simulation, one aims to evaluate quickly how promising a subtree rooted at

the current node is. This procedure is called default policy (aka. play-out or role-out) and

results in a reward. In its simplest form, one considers a reward to be a scalar, which, for

instance, might represent either a victory or a defeat condition (Browne et al., 2012). In

some cases, a reward might be a vector of values.

Backpropagation: The simulation step results in statistics that are propagated back throughout

the path that led to the simulated node. It consists of the reward that is used to update a

node’s attributes and an increment in the number of visits to each node in the path.

The selection and expansion steps constitute the tree policy which is an important de-

cision point in MCTS. It not only determines which nodes are to be expanded, but also which

path is to be explored next. This leads to the well-known problem to trade o� exploration

and exploitation. That is, continue exploring a single path that is leading to good results, or

explore new paths in hope to achieve better results. A standard algorithm for MCTS is called

UTC (Kocsis and Szepesvári, 2006) and its main contribution is to consider the node selection

step as a multi-armed bandit problem (Auer et al., 2002). To do so, they proposed the heuristic

UCB1 as introduced in Equation 2.4:

UCB1 = X̄j + 2C

√
2 lnN

Nj

(2.4)
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where N is the number of times the current node has been visited, Nj is the number of times the

child node j has been visited and X̄j its value, and C > 0 is a constant. The first component of

the equation represents the exploitation term and second the exploration. One can see that the

exploration term increases in value as the number of visits to that child node remains constant.

Many di�erent strategies exist for dealing with particular characteristics of MCTS. For

instance, Yoshizoe et al. (2011) consider an MCTS as a depth-first search instead of a best-first

search. After a simulation in a given node, the procedure only returns to the root node if one

of its child nodes has now a more promising path. Otherwise, it continues the search at deeper

levels of the tree. Variations exist also to view an MCTS as a directed acyclic graph (Childs

et al., 2008). This is motivated by the fact that di�erent nodes may represent the same state.

As in MCTS one deals with intractable search spaces, we repeat the above four steps

until a halting criteria is met. Usually, this criterium may represent a budget in terms of time

or number of iterations. Once it is achieved, one returns a winning action. There are di�erent

strategies to decide which action to return. One can choose the action that has the greatest

node’s value, the root’s child visited more frequently, etc. We refer to (Browne et al., 2012) for

a broad discussion on MCTS.

2.4.2 MCTS approach to the Coalition Structure Generation Problem

MCTS has been applied recently to the coalition structure generation problem. Wu

and Ramchurn (2020) apply the method discussed above to find a coalition structure in the

context of CFG. They propose the CSG-UCT algorithm, which is based on UCT (Kocsis and

Szepesvári, 2006). In their formulation, each node in the tree corresponds to a CS CS ∈ CSA.

The root node is the CS containing only singleton coalitions. The set of actions available at each

node is a set containing all pair-wise union operations that can be carried out on the given CS.

For instance, the CS {{a1}, {a2}, {a3}} has the child nodes {{a1, a2}, {a3}}, {{a1, a3}, {a2}},
and {{a1}, {a2, a3}}. Consider as a more comprehensive example the coalition structure graph

in Figure 2.3.

To select a node, the authors apply the UCB1 heuristic where the exploitation compo-

nent is the maximum value found for a node in the corresponding subtree. A roll-out on a node

representing the CS CS consists in merging two coalitions that results in the greatest gain:

C1, C2 = arg max
C′1,C

′
2∈CS

[v(CS ′)− v(CS )] (2.5)

where CS ′ = CS ∪ {C ′1 ∪ C ′2} \ {C ′1} \ {C ′2}. Note that a roll-out always ends at the CS of the

grand coalition. Once the iteration budget is reached, one only needs to conduct a best-first

search to find the best solution found.

MCTS is also applied to a similar problem in which each coalition is allocated to a task

in an ordered coalition structure (Präntare et al., 2021). Given a vector of tasks T = 〈t1, . . . , tm〉,
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one aims to form an ordered partition of A, CS = 〈C1, . . . , Cm〉, in such a way that each ti
is assigned to Ci for all 1 ≤ i ≤ m. In case ti is not allocated to any coalition, ∅ appears

at position i in CS . The search is conducted over one agent at time choosing a position in

the CS to place it in. This choice is performed by picking the best position after a predefined

number of iterations (i.e., finished roll-outs). Therefore, a node is a composition of agents

already allocated to coalitions and a permutation of the remaining agents to the m positions.

The root node always hasm child nodes which represents the assignment of the current agent to

one of the positions. To define a priority among child nodes, Präntare et al. (2021) add a third

component to UCB1 (originally proposed in (Schadd et al., 2012)), which represents a possible

deviation of the child node. The exploitation component is the average value of previous roll-

outs through that node. In a roll-out, the authors select a position to assign an agent based

on an uniform distribution. The most visited child node of the root is selected as the position

where to place the current agent.

2.5 Interdependence of Solutions

The interdependence of solution refers to how two or more problems in which their

solutions (i.e., the outcome of an algorithm) depend on each other. As this is the main topic in

this thesis, it is important to understand how correlated areas have addressed it.

Many variations of coalitional games have been proposed, for instance, considering

tasks (Rahwan et al., 2013), constraints (Rahwan et al., 2011), etc. (for a more comprehensive

list we refer to Section 2.2). Our new framework, to be discussed in the next chapter, extends

the idea of coalition structure in the literature (Rahwan et al., 2015) to a total order of such

structures in which the interdependence between them is established by a binary relation. In

fact, some coalitional games are a specialisation of this framework as we will show in Section 3.3.

The idea of interdependence between CFGs are reminiscent of combinatorial auc-

tions (Feldman et al., 2015; Krysta and Ventre, 2015) and overlapping coalition formation (Zick

et al., 2012). Combinatorial auctions address the problem where, given a set of items, a set of

buyers place bids for a subset of such items (each buyer may evaluate di�erently each item)

and the goal is to maximise the overall buyers’ social welfare given a partition of items (Krysta

and Ventre, 2015). On the other hand, coalition formation with overlaps drops the constraint

of disjoint coalitions in a given coalition structure (Zick et al., 2012). A coalition becomes a

vector (of length |A|) and each agent establishes a desired contribution to it; a contribution of

0 means the agent does not participate in that coalition. It can be noted that both approaches

output a single coalition structure and therefore address a di�erent problem than ours.

A related field to coalition formation is clustering. It plays an important role, especially

in dealing with databases, when one aims to group objects based on given criteria. Di�erent

approaches for this problem have been proposed and some of them are related to ours, for

instance, meta-clustering (Ferone andMaratea, 2020). In that setting, the aim is to group di�erent
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clustering solutions for a given database and therefore, a meta-clustering algorithm works over

solutions of clustering algorithms. Another interesting problem is top-k clustering (Guedes et al.,

2016). In that problem, given a three-tuple graph having a set of vertices, edges, and attributes,

the goal is, from a set of candidate solutions, to select k partitions that maintain quality and

are dissimilar from each other.
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3. SEQUENCES OF CHARACTERISTIC-FUNCTION GAMES

Our main contribution in this chapter is a new sort of game called Sequential Charac-

teristic Function Game (SCFG). It provides the underlying framework for the remaining work

developed in this thesis. The current literature in coalition formation, as we discussed in Chap-

ter 2, lacks mechanisms to model the interdependence among the solutions produced by dif-

ferent CFGs. In fact, to the best of our knowledge, Partition Function Game (PFG) is the only

game in which a sort of interdependence is exploited: more precisely, a dependence between a

coalition and its coalition structure. The games we introduce here allow us to consider coalition

structures that are somehow related to each other and therefore should not be evaluated in iso-

lation. Moreover, although we describe it as a sequence of games, one should bear in mind that

all games are not to be solved in isolation. Otherwise, it could lead to sub-optimal outcomes.

Prior to introducing our formal framework, we explain in Section 3.1, by using a

simple example, the core ideas of why one should relate di�erent coalition structures. Based

on a better understanding of the problem we aim to solve, in Section 3.2 we propose the SCFG

framework. We show by introducing some running examples how one could explore the core

concepts in it to model di�erent applications. In Section 3.3, we discuss again the coalition

formation literature comparing it with the proposed framework. We show that indeed many of

the existing frameworks are special cases of SCFG. Our final step in Section 3.4 is to further

study constraints applied to an SCFG setting. Two extensions to our game are then proposed

to refine which coalitions are allowed to form in each game in the sequence.

3.1 Motivation and Main Notions

Andy (a), Bobby (b), and Carol (c) are planning to go shopping. To do so, they need

to travel to a store and there buy certain articles. We assume that each agent has a desire to

visit a di�erent store and some of them expect help from the others to help choosing its articles.

Two situations occur in this example that require the agents to make a joint decision:

1. to which store are they supposed to go? and

2. to whom should each agent ask for an opinion to buy its articles?

We analyse this particular scenario considering two distinct CFGs.

The first game models their preferences for travelling, where di�erent coalitions travel

to di�erent stores. v1({a}) = v1({b}) = v1({c}) = 1, v1({a, b}) = v1({b, c}) = 2, and

v1({a, c}) = v1({a, b, c}) = 4. So Andy enjoys travelling with Carol, and even larger coalitions

are also preferred because they will lower the costs. The second game models the shopping

itself. Andy is hoping for Bobby’s or Carol’s help to decide the best article to buy, although

Bobby knows much more about those items than Carol. However, if both Bobby and Carol are
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together, they only talk about life and are of no help to Andy. Thus, v2({a}) = v2({b, c}) =

v2({a, b, c}) = 0, v2({b}) = v2({c}) = v2({a, c}) = 1, and v2({a, b}) = 3.

The optimal CS CS in game 1 (namely {{a, c}, {b}} with a value of 5) is not optimal in

game 2 (where the optimal is {{a, b}, {c}}, with a value of 4). If we take {{a, c}, {b}} (optimal

in game 1) for both games, we get 5 in game 1 but 2 in game 2, so a total of 7. Similarly, if we

consider the optimal structure in game 2 ({{a, b}, {c}}) and pick it for both games we get also

a total of 7. We may choose di�erent structures for the two games and take the optimal in each

round: v1({{a, c}, {b}}) + v2({{a, b}, {c}}) = 9. Both coalition structures are optimal as there

is no other with a greater value in each game separately. It means that Andy and Carol travel

together to the same store, and Bobby goes to another one (first round). In the second round,

Andy and Bobby are supposed to buy articles together, but this is no longer feasible since they

are at di�erent stores.

In this problem, there is an interdependence between the solutions of the two games

that must be considered in order to output the final overall solution. We note that this interde-

pendence might be related to the order in which each outcome (i.e., coalition structure) is used.

In the example above, the agents form each CS at di�erent points in time; the first to travel to

a store and then to buy articles. However, that might not always be the case. Another sort of

interdependence might correspond to related structures adopted by the agents. For instance,

consider a hierarchical organisation. The decisions made at upper levels of the hierarchy a�ect

all subsequent levels, that is, all the agents placed in lower levels. We study the connection

between di�erent games by analysing possible solutions produced by each game separately and

checking whether or not they are feasible together.

3.2 Sequential CFGs

To solve the problem stated above, we model the interdependence between the games

with a binary relation R on the set of all coalition structures CSA. We do so to state that the

agents buying articles together must have travelled to the same place. This is important when

there are restrictions on the coalition formation so that the sequence of individually optimal

structures is not feasible. In our motivational example, the optimal sequence of CSs has a value

of v1({{a, b, c}}) + v2({{a, b}, {c}}) = 8; travelling together to the same store but buying at

di�erent departments.

We now define sequences of CFGs as a formalisation for scenarios of the type described

above, where the set of agents is {a, b, c}, we have two characteristic function games ordered

as Γ1 and then Γ2, defined by their characteristic functions v1 and v2. In that case, we have

a sequence of length two. The outcome of that game should be a pair of coalition structures

〈CS 1,CS 2〉 that respects the relation R and results in the greatest value of v1(CS 1) + v2(CS 2).
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De�nition 7 (SCFG G). A Sequential Characteristic-Function Game (SCFG) G is a tuple

〈A,H,R〉 where:

• A is a set of agents A = {a1, . . . , an};

• H is a totally ordered set of CFGs H = 〈Γ1 = 〈A, v1〉, . . . ,Γh = 〈A, vh〉〉;

• R is a binary relation on CSA ∪ ∅ (all coalition structures over A); (∅,CS ) ∈ R means

that CS is allowed to appear in the beginning of a solution sequence.

We always use h to denote the length of the game sequence.

De�nition 8 (FCSS CS, CSS CS). A solution for an SCFG G is a Feasible Coalition-Structure

Sequence (FCSS) CS = 〈CS 1, . . . ,CSh〉 respecting relation R: CS i R CS i+1, 0 ≤ i < h. We

set CS 0 = ∅. We call this condition feasibility. If a sequence is not feasible, we omit the F and

call it a Coalition-Structure Sequence (CSS).

The main point is that we cannot just take the optimal CS of each game (see Sec-

tion 3.1) whenever we seek a sequence of CSs that maximise the overall value. We need to

make sure that the sequence is feasible, which is specific to each particular application. More-

over, R can only model two subsequent positions. Consider Example 4.

Example 4. Assume a company is starting a new branch for a new product. A set of employees

will work on the development of this product and to make the employees familiar with one

another, the company proposes a training session1. The session is divided into three intercon-

nected projects in which a coalition structure is formed for each one of them. The first two

projects address participants’ technical skills, hence they use the same characteristic function.

The last project addresses general skills and has a specific valuation. Therefore, the company

aims to form an FCSS

CS = 〈CS 1,CS 2,CS 3〉.

Out of the three CSs in the FCSS above, we can only link both CS 1 and CS 2, and CS 2

and CS 3. To promote the employees to get to know each other during the training session, one

might be interested in putting them in di�erent coalitions during the execution of each project.

To do so, we might use the binary relation below.

De�nition 9 (RH ). For any subsequent CS ,CS ′ ∈ CS, CS RH CS ′ i� for all a ∈ A,C ∈
CS , C ′ ∈ CS ′, s.t. a ∈ C, it holds that if a ∈ C ′, then C ∩ C ′ = {a}.

By enforcing RH , employee a will have di�erent teammates in both first and second

projects, as well as in the second and third project. However, that does not hold for the first and

third project. With R defined as a binary relation on the set of coalition structures we cannot

1This application is related to the employee training problem introduced by Zhang et al. (2017a); here presented
as a simplified version though.
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express, for example, that two agents must not work together more than once throughout the

sequence of projects. To produce such an outcome, we would have to quantify over the coalition

structures along the sequence. Formally, for Example 4, given any CS ,CS ′ ∈ CS, we require

for all a ∈ A, C ∈ CS , C ′ ∈ CS ′: if a ∈ C and a ∈ C ′, then C ∩ C ′ = {a}. We aim to address

this in future work.

Another important notion in Definition 7 regards the outcome produced in the first

CFG. The pair (∅,CS ) extends the underlying concept of R (i.e., relating solutions computed

by CFGs) by determining which CSs may begin a sequence. In practical applications, this

might reduce significantly the search space as we do not search the space of pairs of coalition

structures; instead, we search the space of single coalition structures. Consider the example

below.

Example 5. A fire brigade is called to act upon a wildfire incident that is approaching a town.

The entire fire brigade has enough experts and resources to fight o� simultaneously the wildfire

event in nine di�erent fronts. To be ready for any new incident, the brigade supervisor decides

to take all the resources and experts to the field. The brigade will be then divided initially into

four coalitions, and as soon as a new demand appears, one of these coalitions split itself up to

fight o� the wildfire in a new front.

As one is interested in forming a new CS as new demand is detected, the binary relation

connecting the outcomes can be designed as follows.

De�nition 10 (RO). For any subsequent CS ,CS ′ ∈ CS, CS RO CS ′ i� there is C ∈ CS s.t. all

other coalitions C ′ ∈ CS , C ′ 6= C, are also contained in CS ′, and CS ′ contains two additional

coalitions C1, C2 with C1 ∪ C2 = C.

As relation RO ensures that from the initial CS only one coalition is allowed to split,

as soon as a new demand appears the fire brigade advances to a new coalition structure in

CS. Therefore, the supervisor allocates all resources to CS CS 1 ∈ CS in advance. Doing so,

the resources to be assigned to the next front (i.e., the ones that will form a new coalition) are

already placed together. An important detail in Example 5 is that the brigade is initially divided

into 4 coalitions. To model it, one can do as follows: (∅,CS ) ∈ RO for all CS ∈ CSA such that

|CS | = 4.

So far, we have introduced the SCFG framework and its solution concept (i.e., an

FCSS). However, we have not discussed how one compute a value for an FCSS. This is addressed

in Definition 11.

De�nition 11 (V). Given an FCSS (similarly a CSS) CS = 〈CS 1, . . . ,CS k〉, where 1 ≤ k ≤ h,

the value for CS is calculated by V(CS) =
∑k

i=1 Vi(CS i), where Vi(CS i) =
∑

C∈CS i
vi(C).

The goal is then to solve the optimisation problem by finding an optimal FCSS CS∗:

CS∗ = arg max
CS
V(CS).
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3.3 SCFG and Similar Problems

Given the formal definition of our new sort of game, we investigate how it relates

to the existing literature on coalition formation. To this purpose we consider: (i) Constrained

Coalition Formation Game (CCFG); (ii) Task-Based Characteristic-Function Game (TCFG); (iii)

discrete overlapping coalitions; and (iv) combinatorial auctions. Then, we investigate Partition-

Function Games (PFG) which carries the notion of interdependence between a coalition and

the coalition structure it belongs.

We introduce the games above as special cases of SCFG. That means, given any instance

of a particular game, it can be modelled by a corresponding SCFG instance i�:

1. there exists at least one optimal solution in the original game instance that corresponds

to an optimal solution in the SCFG instance; and

2. the value of both optimal solutions are equal.

Rahwan et al. (2011) investigated constraints being applied to the coalition formation

problem. They proposed a general model CCFG as a tuple 〈A,CScst , v〉 where A = {a1, . . . , an}
is the set of agents; CScst ⊆ CSA is the set of feasible coalition structures; and v assigns a real

value to each coalition. An optimal coalition structure is one with the greatest value. For more

details about this setting we refer to Section 2.2.3. Interestingly, this formulation to represent

constraints can also be expressed using an SCFG. We show that all coalition structures CS for

a CCFG ΓC are in one-to-one correspondence to the FCSS CS for a corresponding SCFG and

the values are identical.

Lemma 1. Constrained coalition formation games CCFG, as defined in (Rahwan et al., 2011),

are special cases of SCFGs.

Proof. Let 〈A,CScst , v〉 be a CCFG with h coalition structures CScst = {CS 1, . . . ,CSh}. We con-

struct an SCFG G with h copies of the ordinary characteristic function game 〈A, 1
h
v〉. Therefore

we get Γi with 1 ≤ i ≤ h where vi(C) := v(C)
h

. This is our set H. The relation R is defined by

CS R CS ′ i� CS ,CS ′ ∈ CScst . So we essentially repeat the same game h times. The modified

v ensures the right value.

Similarly, we show that Task-Based Characteristic Function Games (Rahwan et al.,

2013), formally defined as 〈A, T, v〉, are also special cases of SCFGs. In this setting, we are

given a set of tasks T and a characteristic function v which assigns a value to each pair coalition

and task (one coalition works on one task): v : 2A × T → R. An optimal CS CS ∗ is one where∑
C∈CS v(C, tC) is maximal, where tC ∈ T are di�erent tasks in T : tC 6= tC′ for C 6= C ′.

Lemma 2. Task-Based Characteristic Function Games TCFG, as defined in (Rahwan et al.,

2013), are special cases of SCFGs.
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Proof. Consider a TCFG 〈A, T, v〉; it su�ces to construct an equivalent CCFG ΓC = 〈A′,CS ′cst , v
′〉.

Let A′ := A ∪ T and let the feasible coalition structure CS ′cst consist of all coalition structures

CS for A′ that satisfy: (1) for all C ∈ CS : |C ∩ T |= 1, and (2) C \ T 6= ∅. Thus, the feasible

coalition structures for A′ are exactly the coalition structures of the original A. This allows us

to define v′ : A′ → R by v′(C ′) := v(C, t) where C ′ = C ∪ {t} (which is well defined because of

our definition of feasible coalition structures in R). Clearly, the optimal CS∗ of an SCFG for

ΓC corresponds to the optimal CS ∗ for TCFG and has the same value.

Another interesting setting we study is called Discrete Overlapping Coalition Forma-

tion games (DOCF) (Zick et al., 2019). For more details see Section 2.2.1. DOCF drops out

the constraint imposed by a CFG in which an agent can participate in only a single coalition.

In this setting, a game ΓO gets as input not only a set of agents and a valuation function, but

also information about how the agents are able to split their forces and contribute to several

coalitions. The agents can therefore decide to enter one coalition with 30%, others with 20%,

etc; however, the overall sum is at most 100%. Zick et al. (2019) model this using a vector

(W1, . . . ,Wn) where Wi ∈ Z+
0 . Therefore, a DOCF is of the form ΓO = 〈A, (W1, . . . ,Wn), vDOCF〉.

The set W = {0, 1, . . . ,W1} × . . .× {0, 1, . . . ,Wn} contains all possible ways that the n agents

can contribute to the coalitions. This leads to the definition of a partial coalition c = (c1, . . . , cn),

where c is simply an element of W . The characteristic function vDOCF in a DOCF is a mapping

from W onto R+
0 (one should assume vDOCF((0, . . . , 0)) = 0).

A CS in an DOCF is a finite list of partial coalitions (c1, . . . , ck) subject to:

(i) ci ∈ W for all i = 1, . . . , k;

(ii) for all aj ∈ A, we have
∑

c∈CS cj ≤ Wj : cj ∈ c.

The aim is, as usual, to find a CS with a maximal value (sum of the values of all partial

coalitions in it).

Lemma 3. Discrete overlapping coalition formation games DOCF, as defined in (Zick et al.,

2019), are special cases of SCFGs.

Proof. Let a DOCF ΓO = 〈A, (W1, . . . ,Wn), vDOCF〉 be given. The idea to construct a correspond-

ing 〈A′,H,R〉 is to view each contribution of an agent as a new agent on its own. Therefore,

we model the fact that agents can contribute to several coalitions by replacing each agent ai by

Wi-many new agents ai,1, ai,2, . . . , ai,Wi
where each agent corresponds to a weight of 1. These

agents can be seen as mini-clones of the original agent. For any chosen weight ≤ Wi we simply

take that many agents.

Therefore, the set A′ contains W1-many agents of sort 1, W2-many agents of sort 2,

. . . , and Wn-many agents of sort n. Now coalitions C ∈ 2A
′
are in many-to-one correspondence

(surjective mapping) with partial coalitions of DOCF: We simply reduce C by counting all

agents of the same sort (each of these mini agents contributes exactly 1). We get a vector
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cC ∈ W containing as entries exactly the number of agents of this sort, and use it to assign the

characteristic function

vnew(C) := vDOCF(cC).

Our analysis therefore shows that on the level of coalitions, we can simulate a DOCF

by one single CFG.

Now we are slightly modifying the original notion of a CS in a DOCF, without changing

its semantics.

1. In the original definition, the authors use a finite list, rather than a multiset. However,

the ordering does not play any role so that we choose a multiset in order to get a better

representation and thus a simpler equivalence to a SCFG. Both definitions are equivalent.

2. In the original definition, the authors use “
∑

c∈CS cj ≤ Wj”, but this can be wlog replaced

by “
∑

c∈CS cj = Wj”. The reason is that in the original definition, all the missing agents

also form a coalition, but its value must be 0 (otherwise it would only increase the value

of the whole CS). So from the viewpoint of the maximal CS, we might as well include this

missing coalition, as it does not add anything.

So for now a CS in a DOCF is a multiset of partial coalitions {c1, . . . , ck}, such that

for all aj ∈ A, we have
∑

c∈CS cj = Wj .

What about coalition structures in 〈A′,H,R〉 and in 〈A, (W1, . . . ,Wn), vDOCF〉? As

above, by identifying agents of the same sort, each CS over A′ transforms into a multiset which

is a CS in a DOCF (this is a many-one reduction). And this mapping is surjective, each CS in

a DOCF comes from (possibly several) CS over A′.

So we end up with |H|= 1 and the trivial reflexive R: an optimal feasible FCSS of our

SCFG are exactly in correspondence with an optimal CS in DOCF.

Apart from coalition formation problems, we also investigate how SCFG relates to

similar problems. In combinatorial auction problems (CAP) (Krysta and Ventre, 2015), we are

given as input a tuple 〈A,U, V 〉, where A = {a1, . . . , an} is the set of agents, U = {u1, . . . , um}
is a set of goods, and V = {v1, . . . , vn} is the set of private valuation functions (one for each

agent) vi : 2U 7→ R. The goal here is to maximise
∑n

i=1 vi(Ui) for a partition U1, . . . , Un of items

from U between the agents.

Lemma 4. Combinatorial auction problems CAP, as defined in (Krysta and Ventre, 2015), are

special cases of SCFGs.

Proof. Given a CAP tuple 〈A,U, V 〉, we have to define a corresponding 〈A′,H,R〉. To this end,

we set A′ := A ∪ U as the new set of agents. We define H by the set of games Γ′i = 〈A′, v′i〉
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(i ∈ A, ordered in that way) where v′i is based on the original valuations of CAP and defined by

v′i(C) =

vi(C \ {ai}) if C ∩ A = {ai};
0 otherwise.

This is well-defined as C \ {ai} ⊆ U for C ∩A = {ai}, and all other coalitions get a value of 0.

The coalitions with (potentially) nonzero value in coalition structures for the game Γ′i have the

form U ′ ∪ {ai} for U ′ ⊆ U and their value is vi(U ′), so they correspond to the Ui in the CAP.

Now we have to model the fact that the Ui are a partition of U and that the solutions of

the CAP correspond exactly to the solutions of the SCFG. We do this by choosing an appropriate

relation R: (CSi,CSi+1) ∈ R if, by definition,

1. CSi = {Ui ∪ {ai}, A \ {ai} ∪ U \ Ui} and CSi+1 = {Ui+1 ∪ {ai+1}, A \ {ai+1} ∪ U \ Ui+1} ,
where Ui, Ui+1 ⊆ U , and

2. Ui ∩ Uj = ∅ for i 6= j, and

3.
⋃
i Ui = U .

The function V(CS) =
∑

CS∈CS

∑
C∈CS v

′
i(C) ensures that an optimal FCSS will have

the same value as an optimal partition of items for the CAP.

Our final step is to study Partition-Function Games (PFG) (Chalkiadakis et al., 2011,

Section 5.2). We refer the reader to Section 2.2.2 for more information regarding that game.

This is an interesting game as the value of a coalition C is influenced by the CS to which it

belongs; that is, the other coalitions might influence the value of C. This is called externalities.

This leads to the definition of an embedded coalition EC which is a pair (C,CS ), where C ⊆ A,

CS ∈ CSA, and C ∈ CS . The set of all embedded coalitions is denoted as ECA. A PFG ΓP is

given by a tuple ΓP = 〈A, u〉, where A = {a1, . . . , an} is a set of agents and u : ECA → R is a

mapping that assigns a real number to an embedded coalition (C,CS ). We show that PFGs are

also special cases of SCFGs.

Lemma 5. Partition-Function Games PFGs, as defined in (Chalkiadakis et al., 2011), are special

cases of SCFGs.

Proof. Given a PFG ΓP = 〈A, u〉, we need to represent all embedded coalitions that u assigns a

value to. We do so by creating a corresponding SCFG instance G = 〈A,H,R〉 and inserting in

H as many games Γ = 〈A, v〉 as exists embedded coalitions EC ∈ ECA. Let ECA be arranged in

any order. Therefore, Γi = 〈A, vi〉 ∈ H and h = |ECA|. We let the valuation vi(C) correspond

to u(ECi) when the coalitions match. Precisely,

vi(C) :=

u((C ′,CS )) if C = C ′ : (C ′,CS )i ∈ ECA;

0 otherwise.
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Now, we let R be the set containing pairs (CS ,CS ′) where CS = CS ′. We construct R while

building the sequence of games in such a way that for every embedded coalition (C,CS ) we

have CS R CS ; that is, R is reflexive.

Clearly, given an optimal CS CS ∗ that is a solution of game ΓP , there exists a corre-

sponding FCSS CS∗ of the same value as only the valuation vi evaluates an EC ECi ∈ CS ∗ :

ECi ∈ ECA with a value di�erent from 0.

In this section we have compared SCFG with existing frameworks in the literature.

Our next step is to investigate fine-grained constraints that could be applied to R.

3.4 Level-dependent Constraints

So far we have considered a sequence of CFGs in which the feasibility is given by pairs

of coalition structures in R. This sort of constraint is applied to every game in the sequence.

However, in some applications, coalition structures at particular positions might have their

own peculiarities. For instance, at position 3 the sizes of the coalitions are restricted: only

sizes smaller than 3 are allowed. Let CS s be a coalition structure that follows this constraint

and assume a three-game sequence: h = 3. For the above constraint to hold, we must have:

CS R CS s, where CS can be any coalition structure. However, if CS 1 R CS 2 and CS 2 R CS 3

where CS 3 does not follow the size constraint above, but is a solution of games Γ2 and Γ3, then

〈CS 1,CS 2,CS 3〉 must be a solution, which we might not want.

3.4.1 Constraints Applied to Transitions

In order to avoid situations like the one above, one might model constraints in the

transition from one level (i.e., position) to the next one. Consider again the example above. We

can determine which CSs are feasible in the transition from level 2 to level 3 as a binary relation

on its own. Let R2 ⊆ CSA × CSA be such a relation. Then, we let (CS ,CS s) ∈ R2 be the only

pairs in R2 such that CS can be any coalition structure. Clearly, the sequence 〈CS 1,CS 2,CS 3〉
is no longer feasible as (CS 2,CS 3) /∈ R2. We formally define this sort of game.

De�nition 12 (SCFG with multiple relations Gmult). An SCFG with multiple relations Gmult is
a tuple Gmult = 〈A,H,R〉 where:

• A is a set of agents A = {a1, . . . , an};

• H is a totally ordered set of CFGs Γi = 〈A, vi〉, 1 ≤ i ≤ h; and

• R is an ordered set of binary relations R = 〈R1, . . . , Rh−1〉 such that Ri ⊆ CSA × CSA :

1 ≤ i < h.
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Doing so, we can express constraints on the transition between subsequent positions

in the sequence. Regarding the solution concept of an SCFG, we slightly modify it.

De�nition 13 (CS). A solution for an SCFG with multiple relations Gmult is a Feasible Coalition-
Structure Sequence (FCSS) CS = 〈CS 1, . . . ,CSh〉 respecting the relations in R:

CS 1 R1 CS 2, . . . ,CSh−1 Rh−1 CSh

such that Ri ∈ R : 1 ≤ i < h.

Quite interestingly, it turns out this new form of game is in essence an SCFG modelled

in a particular way to take those transitions into account. We show that the solutions of SCFGs

with multiple relations correspond, in fact, to solutions in SCFGs.

Lemma 6. Any SCFG with multiple relations Gmult can be modelled as an ordinary SCFG G
over a superset A′ ⊇ A of agents.

Feasible solutions are in one-to-one correspondence and have identical values.

Proof. Given a SCFG with multiple relations Gmult over the set A, we define an ordinary G over

A′ with a relation R over CSA′ . We need to let R distinguish between the levels a coalition

structure belongs.

We let A′ := A and add in it new distinguished agents a′1, a
′
2, . . . , a

′
h; one for each level.

Although we have now many more coalition structures, we only need to consider very few of

the new ones. Precisely, we consider only those coalition structures that contain exactly one of

the new agents as a singleton coalition: {a′i} must be contained in a CS CS and no other {a′j}.
Then we interpret this CS as being on level i.

The values of the CFGs are taken from the original game by forgetting all new agents

a′i in any coalition and assigning all coalitions consisting of only the distinguished agents the

value of 0. R is chosen such that Ri is selected when the CSs have the required form explained

above and simulates 〈R1, . . . , Rh−1〉.
Then any feasible solution of the extended game Gmult corresponds to a feasible solu-

tion in the ordinary game over the larger set of agents, and the values are the same.

3.4.2 Constraints on Games

Another way to address the problem previously mentioned is to consider constraints

applied to a CFG itself. Considering a single CFG, constraints have long been studied in the

coalition structure generation problem (Rahwan et al., 2015) and a number of approaches have

been proposed, for instance, graph-based games (Voice et al., 2012b; Bista�a et al., 2014) and

rules-based games (Rahwan et al., 2011). We discussed this topic in details in Section 2.2.3.
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Example 6. Consider again the training session setting in Example 4. Suppose some of the

company’s employees have already worked together in past projects and the company has kept

track of this. To form an initial trust relationship, the human resource department has estab-

lished that all members of a team must be connected (directly/indirectly) through the social

network recorded by the company. In each project, to avoid homogeneous team, participants

should possess di�erent skills.

In the example above, one can see that the social network among employees can be

easily modelled by a graph in which each node corresponds to an employee. As the teams

are meant to have a variety of skills that correspond to the expectation of each project, we

can drop in the graph those edges connecting employees of similar skills. For the training

session problem at hand, three di�erent social networks (i.e., graphs) are created: one for each

project. Topological-oriented constraints provide a good starting point to model constraints that

come up from each CFG in the sequence. An interesting approach in the literature that uses

a graph to model a CFG problem is based on the concept of Valuation Structure (VS) (Greco

and Guzzo, 2017). The authors show that there exists problems that are solved either by rules

(prohibition/permission) or by graph-oriented means. To address that limitation, a VS combines

both worlds: prohibition constraints and an interaction graph. Therefore, in this section, we

investigate how to integrate Valuation Structures (VS) to further express constraints on each

CFG in an SCFG instance. The resulting integration is published in (Krausburg et al., 2021a).

Recall that in a VS setting σ = 〈G , S , α, β, x, y〉 (Definition 6), the graph G and the

set of pivotal agents S determine the set of allowed coalitions Cσ: a coalition C ⊆ A is allowed

to form if and only if the induced sub-graph of C over G is connected and C contains at most

one pivotal agent: |C ∩S | ≤ 1. This induces the set CSσ of all allowed coalition structures over

A: all coalitions in it must be allowed as described above. The mappings α, β and the constants

x, y are used to modify a given valuation v (Equation 2.1).

In this work, we are interested in constraints applied to the coalitions and therefore, we

consider only G and S and leave out the remaining variables that modify a valuation. Without

loss of generality, one may assume α : S → R : s 7→ 1, β : S → R : s 7→ 0, and x = 1, y = 0.

Given an ordinary CFG Γ = 〈A, v〉, we let Γσ be the game 〈A, v〉 induced by a valuation
structure σ = 〈G , S 〉. Our main notion below is an ordered sequence of games 〈Γσ11 , . . . ,Γ

σh
h 〉

which requires a corresponding sequence of coalition structures 〈CS 1, . . . ,CSh〉 as solution.

De�nition 14 (Sequential CFGs induced by VSs (SEQVS)). A sequential CFG induced by a

sequence of VSs is a tuple G = 〈A,H,Π,R〉, where:

• A is a set of agents;

• H is a totally ordered set Γ1 = 〈A, v1〉, . . . ,Γh = 〈A, vh〉 of CFGs;

• Π is a totally ordered set consisting of σi = 〈Gi, Si〉 with the VS parameters described

above, one for each game i = 1, . . . , h;
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• R is a binary relation on the set of all coalition structures CSA∪{∅} so that (CS i,CS i+1) ∈
R i� CS CS i+1 may follow CS CS i in a sequence forming a solution to the game (as defined

below); (∅,CS i) ∈ R means that CS i is allowed to appear in the beginning of a solution

sequence.

This tuple determines the sequence Γ = 〈Γσ11 , . . . ,Γ
σh
h 〉 of CFGs induced by VSs, with Γi =

〈A, vi〉 and σi = 〈Gi, Si〉, where vi are characteristic functions and σi ∈ Π, for i = 1, . . . , h (h

denotes the length of both sequences).

We now define a solution concept for such games.

De�nition 15 (SEQVS Optimisation Problem). We call a sequence CS = 〈CS 1, . . . ,CSh〉 of
coalition structures from CSA, a potential solution for 〈Γσ11 , . . . ,Γ

σh
h 〉 if:

1. each CS i is a solution of Γσii ; and

2. it respects the relation R: CS i R CS i+1, 0 ≤ i < h (we set CS 0 = ∅).

We call such a sequence a Feasible Coalition-Structure Sequence (FCSS). In case a sequence

does not follow the constraints above, we simply omit the F and call it a Coalition-Structure

Sequence (CSS). We use a function V to determine a value V(CS) for any FCSS (and CSS)

CS, which is given by
∑h

i=1 Vi(CS i), where Vi(CS i) =
∑

C∈CS i
vi(C), 1 ≤ i ≤ h.

A solution for a SEQVS game instance is an optimal FCSS

CS∗ = arg max
CS
V(CS).

By adding Valuation Structures to the SCFG framework, one can further specify which

CSs are allowed in each position of the sequence. Usually, in an SCFG setting, any pair can be

placed in any position of the sequence as long as it does not make it unfeasible. For instance,

consider Figure 3.1 in which an optimal solution in an SCFG instance is no longer feasible in a

SEQVS setting.

However, constraints on the number of agents a coalition may have are left out of the

VS framework, hence of SEQVS. One should note that it is not possible to model this sort of

constraint using only an interaction graph and prohibition rules. In fact, Greco and Guzzo

(2017) pointed it out as a future direction to extend the VS framework. To better understand

the importance of size constraints, consider Example 7.

Example 7. Consider again the wildfire incident in Example 5. Suppose the fire brigade has at

its disposal nine wildland fire trucks (type 3 Fire Engine)2. Each wildland fire truck can carry

3 (minimum required to operate the truck) to 5 personnel.

2https://www.piercemfg.com/pierce/blog/types-of-fire-trucks. Accessed on 20 December 2021.

https://www.piercemfg.com/pierce/blog/types-of-fire-trucks
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Figure 3.1: SCFG and SEQVS instances for |A| = h = 3 that share the same R. An optimal
solution in the SCFG instance is no longer feasible in the SEQVS one due to the pivotal agents
in the first game (solid black nodes in G1) and to the graph G3 in the third game. For readability,
we omit in R the pairs that start with ∅; assume that for all CSs in it such pair exists.

In the example above we note a physical constraint imposed by the number of seats

available in a truck. Let d be the maximal number of personnel such a fire truck can carry.

Then, for each game Γi ∈ H : 1 ≤ i ≤ 6 in our sequence, we can compute the maximal number

of personnel each coalition can have d̄i = d × ((h + 1) − i). Then, we require any coalition

to have size |C| ∈ {3, . . . , d̄i}. Any CS that does not comply with the constraint above will

eventually make a CSS unfeasible. For instance, assume a coalition C formed in game Γ5 that

has size |C| = 4. In the next game Γ6, it cannot be split in a CS CS 6 into two new coalitions as

the outcome would not comply with the size constraint determined above.

Size constraints are also important in ride-sharing problems (Bista�a et al., 2017b).

Similarly, a coalition is bounded by the number of seats available in a given vehicle. Moreover,

in Chapter 6, we shall introduce an application in which coalitions are also bounded in size.

Motivated by the examples above, we propose an extension to VS by adding a set of allowed

sizes. In particular, we follow the definition of size constraints in the CCF framework (Rahwan

et al., 2011).

De�nition 16 (Sized Valuation Structure (SVS)). A sized valuation structure π on a CFG game

Γ = 〈A, v〉 is a tuple 〈G , S ,Z 〉, where:

• G = 〈A,E〉 is an undirected graph on the set of agents A (called the interaction graph);

• S ⊆ A is a set of pivotal agents; and

• Z ⊆ N is a set of allowed sizes that every coalition C must follow. That is, |C| ∈ Z .
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The notation for Γπ, Cπ and CSπ relate now to SVS constraints. The set of allowed

coalitions Cπ contains a coalition C such that: (i) the induced sub-graph of C over G is con-

nected; (ii) |C∩S | ≤ 1; and (iii) |C| ∈ Z . This induces the set of all allowed coalition structures

CSπ. We shall extend the definition of SCFG induced by VSs (Krausburg et al., 2021a) to take

into account SVSs. This is done by replacing a VS σ by an SVS π.

Given an ordinary CFG Γ = 〈A, v〉, we let Γπ be the game 〈A, v〉 induced by a sized

valuation structure π = 〈G , S ,Z 〉. Our main notion below is an ordered sequence of games

〈Γπ11 , . . . ,Γ
πh
h 〉 which requires a corresponding sequence of coalition structures 〈CS 1, . . . ,CSh〉

as solution.

De�nition 17 (Sequential CFGs induced by SVSs (SEQSVS)). A sequential CFG induced by

a sequence of SVSs is a tuple G = 〈A,H,Π,R〉, where:

• A is a set of agents;

• H is a totally ordered set Γ1 = 〈A, v1〉, . . . ,Γh = 〈A, vh〉 of CFGs;

• Π is a totally ordered set consisting of πi = 〈Gi, Si,Zi〉 with the SVS parameters described

above, one for each game i = 1, . . . , h;

• R is a binary relation on CSA ∪ {∅}.

This tuple determines the sequence Γ = 〈Γπ11 , . . . ,Γ
πh
h 〉 of CFGs induced by SVSs, with Γi =

〈A, vi〉 and πi = 〈Gi, Si,Zi〉, where vi are characteristic functions and πi ∈ Π, for i = 1, . . . , h.

The solution concept for a SEQSVS as well as the optimisation problem follow the

SEQVS definitions.

Chapter Summary

In this chapter, we investigated the interdependence between solutions for Characteristic-

Function Games (CFGs). We noted a lack of work in this topic and proposed the first general

framework to address it, namely Sequential Characteristic-Function Game (SCFG). Quite inter-

esting, by modelling the interdependence of solutions, one is able to model di�erent frameworks

available in the literature. Among them, we have investigated a general constrained coalition for-

mation, a task-based setting, discrete overlapping coalition formation, partition-function games,

as well as combinatorial auctions. This concludes Contribution 1. Our new setting o�ers many

challenges in terms of computing solutions and modelling such problems, and we showed that

variations of the proposed game (i.e., level-specific constraints) can be in fact modelled in the

original framework. To facilitate the modelling regarding level-specific constraints, we inte-

grated SCFG with valuation structures; a setting in which constraints are induced over a CFG.

This concludes Contribution 2. Moreover, motivated by the fact that constraints on the size
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of coalitions may have are also an important feature in many real-world applications, we pro-

posed a sized-based version of valuation structure and integrated it with SCFG. This concludes

Contribution 3. Our next step is to investigate how di�cult it is to solve problems related to

SCFG.
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4. THE COST OF SOLVING SCFG PROBLEMS

To solve a set of games in which their solutions a�ect one another, no game can

be addressed in isolation. Otherwise, a single-game optimal outcome might drive the overall

solution (in our case, a sequence of coalition structures) away from an optimal result; or even

worse, end up with an unfeasible solution. The coalition formation literature has already pointed

out that to solve a single coalition structure generation problem is F∆P
2 -complete (Greco and

Guzzo, 2017). Exact algorithms (e.g., (Michalak et al., 2015)) were proposed to solve this

problem, but due to its complexity, only small instances can be solved by them (in general,

around 30 agents). Given this discouraging prospect, we seek to understand how bad it can be to

compute optimal solutions to SCFG instances. This is an important step to further comprehend

the problem and come up with alternatives, e.g., heuristic approaches to solve reasonably large

instances, or to discover tractable subclasses of the problem.

In this chapter, we analyse both the SCFG and the SEQVS problems. We propose

in Section 4.1 two exact algorithms to solve SEQVS instances. The first one is a trivial, but

necessary, brute-force algorithm. It allows us to establish a baseline for comparisons in this

challenging problem. Then, we apply a dynamic-programming technique on the search for an

optimal FCSS. This approach results in an algorithm named SDP. Our next step in Section 4.2 is

to experiment with both algorithms in general settings in order to compare them regarding run-

ning time and memory consumption. In Section 4.3, we discuss the challenges that arise while

computing solutions for such problems. We then, in Section 4.4, embark on the computational

complexity of solving SCFG. We show that this problem lays in the class of PSPACE-complete

problems.

4.1 An Exact Approach to Find Sequences of Coalition Structures

An optimal FCSS can be computed by searching exhaustively the search space contain-

ing sequences of coalition structures. The question is how to perform that search, and whether

there are ways to improve it. In the sections below we shall address these topics.

4.1.1 Preliminaries

We note that both SCFG and SEQVS are built upon a given binary relation on the set

of all coalition structures; that is, R ⊆ CSA × CSA. Therefore, we say that both SEQVS and

SEQSVS are SCFG-based problems. This means they share R-related properties and we can

exploit them to design mechanisms that work for all of them. For instance, an algorithm that

solves SCFG problems can be adapted to take into account also VSs of a SEQVS game.
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In Chapter 3, we introduced the idea of starting a sequence of CSs with ∅ (i.e., it is
always the case that CS 0 = ∅). This simple modelling allow us to constrain the initial position

of a sequence to potentially few options (depending on the application domain). One can easily

identify them by looking up in R pairs of the form (∅,CS ) : CS ∈ CSA.

Moreover, we note that to enlarge a sequence of CSs CS, one needs to find the pairs

of CSs in R that match the last element of CS. This allows us to construct a set of CSs that are

feasible regarding a preceding CS CS (we use the words feasible and compatible interchange-

ably).

De�nition 18 (XCS ). Given a coalition structure CS and a binary relation R ⊆ CSA × CSA,

we construct the set XCS containing all coalition structures that may follow CS according to

R. That is, XCS = {CS ′ ∈ CSA | CS R CS ′}.

In case additional constraints per level are given, then we need to take into account

the particular level l of the constraints in Definition 18. We remind the reader that in a SEQVS

game, the allowed coalition structures at level l are given by CSσl ; similarly, CSπl in SEQSVS

context.

De�nition 19 (XCS
l ). Given a coalition structure CS and a particular level l of the sequence,

1 ≤ l ≤ h, we construct the set XCS
l containing all coalition structures CS ′ that:

1. CS R CS ′; and

2. CS ′ ∈ CSσl ; similarly, CS ′ ∈ CSπl .

It will be clear from the context whether we are considering a SEQVS or a SEQSVS

problem. Condition (2) means, in a SEQVS game, that all pivotal agents at level l remain in

di�erent coalitions in CS ′, and given a coalition C ∈ CS ′, the induced sub-graph of C over the

corresponding interaction graph at level l is connected (see Definition 14). For a SEQSVS game,

the above conditions hold plus the fact that the size of C must be allowed (see Definition 17).

Again, we note that all three games defineR on CSA. Therefore, the properties shown

to hold in SCFG also hold for SEQVS and SEQSVS. In the remainder of this section we shall

consider only SEQVS problems.

4.1.2 A Brute-force Algorithm

To search for an FCSS, we need to consider: (i) the number of agents and games; (ii)

the valuation structures; and (iii) the binary relation R. The idea of our brute-force algorithm

is to construct an FCSS iteratively, and at each iteration, to check the feasibility of introducing

a new CS CS ′ at level l in the sequence. The feasibility here is given in Definition 19. To search

through the search space, we use the procedure in Algorithm 4.1. Once a sequence of CSs is

complete, that is, the length of the candidate FCSS matches the number of games in H, we
compare its value with the best FCSS found so far and keep the one with the greatest value.
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Algorithm 4.1 A brute-force algorithm.

Input:
A, a set of agents
H, a sequence of CFGs
Π, a sequence of VSs
R, a binary relation

Output:
CS∗, an optimal FCSS

1: for all CS ∈ X∅1 do
2: bruteforce_sequence(〈CS 〉)
3: return CS∗

4: procedure bruteforce_sequence(CS)
5: if |CS| = h then I sequence is complete
6: if V(CS) > V(CS∗) then
7: CS∗ ← CS
8: return
9: l← |CS|
10: CS ← CS[l]
11: for all CS ′ ∈ XCS

l+1 do
12: bruteforce_sequence(CS · 〈CS ′〉) I concatenation operation
13: return

4.1.3 Dynamic Programming Algorithm

The motivation for using a dynamic-programming technique is that the feasibility of

inserting a new CS into a sequence is given only by the last element of the sequence (a pair of

CSs that is inR). Therefore, our problem displays optimal substructure regarding CS CS , because

we can determine an optimal subsequence of coalition structures to CS , then use memoisation

to keep such partial results. Doing so, we avoid recomputing the optimal subsequences when

we need to try the various possible next CS CS′ that may follow each of those subsequence.

Consider as an example Figure 4.1. Once we reach level i and evaluate coalition structure

CS ′ = {{a1}, {a2, a3}}, the CSS CS′ does not change regarding CS ′. Thus, the best we can do

to compute a subsequence ending at CS CS ′, is to get a subsequence CS′ of length i − 1 that

maximises the subsequence value and keep it in memory.

Our algorithm then constructs such sequences iteratively from their beginning. That

means, we only need to keep in memory the subsequences at one level of the game sequence—in

particular those subsequences that have optimal value up to the CSs at that level—besides the

ones for the next level. Consider again the example in Figure 4.1. This intuition is applied to the

remaining sequences until we reach level h. Once we do, the number of FCSS will be bounded

by the number of CSs in CSσh ; each containing a single optimal subsequence in memory. To

return an optimal solution, we just pick the one maximising the value among the options. We

give a recursive definition of the value of an optimal FCSS below.
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Figure 4.1: An example of optimal substructure regarding coalition structure {{a1}, {a2, a3}}.

Lemma 7. Given a coalition structure CS , the value of an optimal CS starting with CS (where

CS is feasible at level l = 1) can be computed by f(CS , 1), where f(CS , l) is defined recursively

as follows: 
Vh(CS ) if l = h;

−∞ if XCS
l+1 = ∅;

Vl(CS ) + maxCS ′∈XCS
l+1

(f(CS ′, l + 1)) otherwise.

In the algorithm, to compute the value of an optimal CS for a given SEQVS instance,

we iterate over the pairs in X∅1 and use Lemma 7, as follows: CS∗ = maxCS∈X∅1
(f(CS , 1)).

Note that the recursive definition given above needs to return a particular value (i.e.,

−∞) for the non-feasible sequences. We address that di�erently in the algorithm itself.

We use four auxiliary tables in Algorithm 4.2 to determine an optimal FCSS. Two

tables store the values of sequences for two subsequent iterations. The other two tables record

the optimal subsequences themselves. Note that the size of the tables is bounded by the number

of pairs in R and VS for that particular iteration.

The first step is to go through the feasible starting CSs and store them and their values

in the two tables (lines 2-4). To check the feasibility of a sequence, we use the same procedure

as in the brute force algorithm (Section 4.1.2). We always use as index for the tables the last

CS inserted in the subsequence: we know precisely which game we should solve for a given CS

based on its position in the subsequence.

The second step is to iterate from the second game until we reach h. We record the

values and sequences in two temporary tables so as not to overwrite the last iteration’s records

while they are still needed. For all subsequences recorded in the last iteration, we get the last

element CS of it and iterate over XCS
i where i represents the next position in the sequence

(lines 7-9). For each CS ′ ∈ XCS
i , we concatenate it with the subsequence and record the new

sequence and value in the two temporary tables only if its value is higher than the one already

stored for that CS ′ (i.e., the index). At the end of each iteration, we overwrite the content of the

tables from the last iteration (i.e., f and t) with the contents of the ones for the current iteration.
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Algorithm 4.2 The SDP algorithm.

Input:
A, a set of agents
H, a sequence of games
Π, a sequence of VSs
R, a binary relation

Output:
CS∗, an optimal FCSS

1: initialise_list(f, t)
2: for all CS ∈ X∅1 do
3: f[CS ]← V1(CS )
4: t[CS ]← 〈CS 〉
5: for i← 2 to h do
6: initialise_list(f ′, t′)
7: for all CS ∈ t do
8: CS ← CS[i− 1]
9: for all CS ′ ∈ XCS

i do
10: value← f[CS ] + Vi(CS

′)
11: if value > f ′[CS ′] then
12: f ′[CS ′]← value
13: t′[CS ′]← CS · 〈CS ′〉
14: (f, t)← (f ′, t′)
15: return t[arg max(f)]

To retrieve an optimal FCSS CS∗, we search for the maximum value in table f and

retrieve its index. The retrieved index corresponds to the optimal FCSS in table t.

Theorem 1 (Correctness). For any given SEQVS, SDP determines an optimal FCSS CS.

Proof. Assume an optimal FCSS CS∗ = 〈CS 1, . . . ,CSh〉. By the definition of the set X, we have

CS 1 ∈ X∅1 , CS 2 ∈ XCS1
2 , . . . , CSh ∈ XCSh−1

h . For all CS ∈ X∅1 , SDP stores them in memory (i.e.,

at index CS , in t, it stores CS as a subsequence and in f its value); they represent subsequences

of length 1. Let I denote the set of all indexes currently in t. Then, in the next iteration i, SDP
goes through the set X =

⋃
CS ′∈I X

CS ′

i , that is, the set of all the coalition structures that are

allowed to follow all current subsequences. For every CS ∈ X, we search in t the subsequences

that are feasible when CS is appended to them and pick the one of highest value in f. Note

that CS is the end of a CSS and we only need to keep one of its precedent subsequences; the

one of highest value. We do that by properly updating the tables f′[CS ] and t′[CS ]. At the end

of each iteration, tables f and t are always updated with the optimal subsequences and values.

We repeat the procedure until we reach level h and therefore we construct CS∗ (i.e., it is in t).

SDP essentially uses the same process as in Lemma 7, but filtering out subsequences that are

not feasible. To select the CS∗ as the outcome, we just need to return the sequence for index

arg max f.
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We note that the optimal substructure property discussed above is inherent to SCFG

instances because its is built on the top of R. Therefore, SDP is also a suitable tool to solve any

problem related to SCFG.

4.2 Experiments

In this section, we experiment with the two algorithms introduced in Section 4.1. We

implemented them using Python (version 3.8) and conducted all experiments in a virtual ma-

chine with 32 GB of RAM and a CPU with four single cores of 2095 MHz each. The re-

sults below were originally reported in (Krausburg et al., 2021a). All material is available at

https://github.com/smart-pucrs/SCFG.

4.2.1 Preliminaries

We experiment with SEQVS instances containing a small number of agents and games.

Precisely, we range from 2, . . . , 10 agents and also compute solutions for sequences containing 2,

4, 8, and 10 games. Even for those small instances, we set a timeout of one hour for the algorithms

to output a solution. Regarding the metrics for our comparison, both algorithms output a

solution of same quality, therefore, we compare the running time and memory consumption.

For each CFG Γ ∈ H, we draw a value for any coalition C ⊆ A from v(C) ∼ N(µ, σ2)

where µ = |C| and σ =
√
|C|. This distribution is called NDCS and was introduced by Rahwan

et al. (2009b). We use NDCS because it has the property of letting all coalition structures

in CSA to have the same probability of being an optimal one. This way, the search space is

not biased towards a particular subspace (e.g., the more agents in a coalition, the greater the

value). In all experiments we use a table to store in advance the values for all coalitions. Each

game assumes a di�erent valuation drawn from the distribution. That means, we are keeping

in memory h tables which store the value of every single coalition.

Regarding the VSs, we generate all interaction graphs randomly: an edge connects

any two agents if p ≤ 60 where p ∼ U(0, 100). Regarding the pivotal agents, we randomly pick,

from A, q agents and insert them into the corresponding set of pivotal, where q ∼ U(0, dn
3
e).

We use n
3
to avoid picking up all agents from A as pivotal agents.

We consider four binary relations as given below.

De�nition 20 (R1, R2, R3, R4). Given any two coalition structures CS ,CS ′ ∈ CSA, we define

R1: (CS ,CS ′) ∈ R1 i� CS 6= CS ′;

R2: (CS ,CS ′) ∈ R2 i� |CS | = |CS ′|;

R3: (CS ,CS ′) ∈ R3 i� for all C ′ ∈ CS ′ there is a C ∈ CS such that C ′ ⊆ C and |CS | < |CS ′|;

https://github.com/smart-pucrs/SCFG


65

R4: (CS ,CS ′) ∈ R4 i� CS = CS ′.

R3 models a hierarchical group structure, which is important for various application

scenarios. As an example, consider Figure 6.1. The first two relations (representing constraints

that are quite general) are used in our empirical evaluation as worst-case scenarios. R1 forces us

to compare a CS with the maximum number of compatible coalition structures, whileR2 reduces

this search space significantly. The last relation, although synthetic, allows us to investigate how

exact algorithms behave in case no branching during the search is allowed, that is, only one

option of CS is feasible. All four relations allow every CS to begin an FCSS: for every CS ∈ CSA

it is the case that (∅,CS ) ∈ R (to not reduce the search space, i.e., CSs that might start a

sequence, in our experiments). We implemented generative algorithms for all four relations.

Those algorithms compute each set XCS (without taking into account the valuation structures)

for both brute force (short bf in the charts) and SDP algorithms.

4.2.2 Time Analysis

We depict the running time results in Figure 4.2. We see that SDP is faster by several

orders of magnitude in R1, R2 and R3 if compared with the brute force approach for any

h. This shows that the memoisation technique applied in SDP plays an important role while

computing FCSSs. InR4, as only one candidate is possible for the next position in the sequence,

both algorithms had a similar running time. That relation means for SDP that only a single

subsequence is available for every CS in every position i. Similar behaviour occurs when h = 2,

as this means that an FCSS is a single pair of CSs inR and therefore, SDP cannot take advantage

of an optimal substructure during the construction of a sequence. Besides, as we increase the

number of games h for any given n, the running time of SDP does not increase significantly;

this is because it constructs the sequences keeping in memory the subsequences. However, the

number of agents plays a significant role, and therefore is an issue to be addressed.

4.2.3 Memory Analysis

In this experiment, we record the peak of memory used by each algorithm. It stands

for the amount of memory we would have to have available to run them. For that purpose, we

use the Python package malloc-tracer (version 1.7.0)1 to capture the memory consumption

of the process that is running the algorithm instance. We depict the results in Figure 4.3.

Note that brute-force algorithm and SDP swap their positions in comparison with the

running-time experiments. As expected, SDP consumes more memory, by several orders of

magnitude, than the brute-force approach. We also note that the amount of memory needed

1https://pypi.org/project/malloc-tracer/

https://pypi.org/project/malloc-tracer/
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Figure 4.2: Comparison of running time in log scale between the brute force (bf) and SDP
algorithms. In case a timeout is fired, we do not depict the corresponding point in the |A| axis
for that particular h. For instance, line bf_h=8 when R = R1 had timeouts from |A| = 5 to
|A| = 10.

by each relation is very similar. That is because all CSs are feasible in the beginning of a

sequence. This holds independently of the number of games h, as we use the most memory in

the transition from one level to the next one. We expect that real-world applications will further

reduce the number of CSs allowed to start a sequence.

We also note that the memory consumption for R3 is low when there is no solution.

For instance, when the number of agents is |A| = 7, we can have a hierarchy of, at most, 7 levels.
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Figure 4.3: Comparison of peak of memory in log scale between the brute force (bf) and SDP
algorithms.

4.3 Discussion

In the experiments reported above, we can clearly see that SDP is the right choice over

the brute-force approach to be used as bottom line for comparisons in experiments, despite its

use of memory. We do not expect SDP (and possibly any exact algorithm for SCFG problems)

to be employed in a wide range of applications due to the fact it has to go through the whole

space of coalition structures, in particular if there is no narrow number of CSs that may start

a sequence. However, if the problem at hand is small enough and the first games are supposed

to produce a small number of CSs, then it might be used in practice.

In future work, another interesting exact approach to investigate for SCFG problems

regards branch and bound techniques. In this paradigm, one partitions the search space into

subspaces and bounds them in order to prune (i.e., avoid) unpromising subspaces. An example
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of this technique being applied to an algorithm that solves the CSG problem is found in (Rahwan

et al., 2009b). In case the search space is biased, for instance, small coalitions are evaluated

to greater values, a branch and bound mechanism may prune many CSs. A main challenge is

then to come up with a good strategy to partition the search space.

In both Algorithms 4.1 and 4.2, we assume generative algorithms that can precisely

generate all CSs that may follow a given one. That is, they build e�ciently the set R. This is a
strong assumption given the fact that generating this set is a di�cult part of the overall problem.

Moreover, e�cient generators might mean application-dependent generators being applied to a

specific problem. Further work on problems related to SCFG should design generators that are

application-independent by exploiting the structure of the framework itself. In the next chapter,

we take the first step towards solving this particular problem for SEQSVS settings.

Both SCFG and VS pose constraints in the (sequence of) coalition structures that we

can be formed. A SCFG addresses the sequence dimension and VSs (or SVSs) the position-

specific dimension. Note that whether the VSs or the relation R of an SCFG is more restrictive

depends on the specific domain. For some classes of applications, R could potentially be more

restrictive than the interaction graphs plus pivotal agents and size constraints. In the experi-

ments reported in this chapter, we considered the approach to generate the pairs of coalition

structures in R and, after that, to check the constraints of the corresponding VS. In the next

chapter, we shall consider the other way around as well: VS being used to generate CSs that

are then filtered out by R. However, no in-depth comparison between those two approaches is

carried out within this thesis. We leave it as future work further experimentation and to assess

the implications that choice.

4.4 Complexity

Given a SCFG G = 〈A,H,R〉 and a number k, we can ask whether the SCFG instance

has an FCSS solution CS with value at least k. In this section, we show that this decision

problem as formalised below is PSPACE-complete.

De�nition 21 (SEQCFG). We define the decision problem SEQCFG as the following language:

{〈G, k〉 | G is an SCFG for which there exists an

FCSS CS with V(CS) ≥ k}.

Theorem 2. SEQCFG is PSPACE-complete.

Proof. To show that SEQCFG ∈ PSPACE, consider a depth-first algorithm that systematically

checks all feasible sequences until one is found with value at least k. Using R we can expand

all sequences systematically and search the whole tree exhaustively. Consider Algorithm 4.1,

for instance. We only need to store the currently being checked sequence of feasible coalition
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structures and some constant space to check the relation R for the next element (if R is com-

pactly represented and needs unfolding as previously discussed). So the space complexity is

O(|A| lg |A| × |H|).
To show PSPACE-hardness, we give a polynomial-time reduction from Generalised

Geography GG to SCFG (GG is PSPACE-complete (Lichtenstein and Sipser, 1980)).

Given a GG instance 〈GGG, u1〉 where GGG = (V,E) is a directed graph and u1 the

initial vertex, we generate an SCFG G = 〈A,H,R〉 as follows. Let the set A be defined as

A = V ∪ {p1, p2, p3, p4,⊗}, where p1, . . . , p4 and ⊗ are special agents with the specific purpose

explained below. The agents p1 and p2 represent Players I and II respectively. Agent p3 is the

agent used to mark the coalition used to keep track of vertices that have not yet been visited by

any player, while p4 is the agent of the coalition for the vertices that have already been visited.

Agent ⊗, when in a coalition with agents p1 or p2, is used with the specific purpose of denoting

that a player has no further moves allowed. We use CI , CII , CO (open nodes), and CC (closed

nodes) as shorthand for sets of agents to which, respectively, the agents p1, p2, p3, and p4 belong.

Each turn for any of the two players is represented by a game. Therefore, we have

at least |V | games in H to represent the worst-case scenario in which all vertices are chosen.

However, we use ⊗ to denote that a player has no further moves thus, we require an additional

game inH. This last game represents the fact that one of the players must choose⊗; that is, both
players have no more moves available. Note that in the worst case there will be as many turns

as vertices in GGG plus one; shorter GG games will have the last move copied over repeatedly

until the last game in the SCFG game. Therefore, h = |V |+ 1.

Now, consider the binary relationR. We cannot assume it to be the set of exhaustively

generated pairs of coalition structures that follow the rules of the GG problem. This would

require exponential time to construct such a set for a given GG instance. Instead, we assume

R to be given as a generative algorithm (see Section 4.3), in which given a CS, it generates all

CSs that may follow it. To do so, we just need to keep a copy of the GG instance 〈GGG, u1〉 in
memory and follow a few rules. Below we give such an algorithm, but first, consider Figure 4.4.

It contains a simple example of a GG instance reduced to an SCFG instance. We also show the

subsequent CSs generated by R.
To make it general, initially (i.e., at the first SCFG game), the only coalition structure

in the domain of R is {{p1}, {p2, u1}, {p3, u2, u3, . . . , uk,⊗}, {p4}}; note u1 is the vertex where

Player I makes the initial move from. We use ∅ as the first element of the pair containing that

CS to enforce it. The next coalition structure in the allowed sequences must represents a move

from Player I, choosing for instance u2, hence {{p1, u2}, {p2}, {p3, u3, u4, . . . , uk,⊗}, {p4, u1}},
and so forth. To denote that no further moves are allowed to player j, the coalition {pj,⊗}
appears in the codomain of R. In case a winning strategy does not require all nodes in V to be

used, the last game’s outcome is replicated until game h (e.g., the CS in blue in Figure 4.4).



70

Figure 4.4: Generating a SCFG from a GG instance.

The following rules determine R by generating the feasible coalition structures at the

successor level2, that is, build the set XCS . In the first game only one solution is feasible: the

initial vertex where Player I makes its first move move from. Then, for each CS in CSA:

1. if ⊗ ∈ CI , CI ∈ CS , then for every CS ′ ∈ XCS we have ⊗ ∈ C ′I : C ′I ∈ CS ′. Similarly, for

⊗ ∈ CII .

2. if CS = {{p1, û}, {p2}, CO, CC} (i.e., one possible move was for Player I to move to vertex

û), then for each uk such that (û, uk) ∈ E, {{p1}, {p2, uk}, SO \ {uk}, SC ∪ {û}} ∈ XCS

(that is, each uk is one possible response movement by Player II);

3. for the same CS pattern as in the item above, if there is no uk such that (û, uk) ∈ E then

{{p1}, {p2,⊗}, CO, CC ∪ {û}} ∈ XCS (that is, Player II got stuck);

4. for CS = {{p1}, {p2, û}, CO, CC}, there are two more rules that are very similar to the two

items above except that it is Player I rather than II that is moving.

Regarding the characteristic functions for the 1, . . . , h− 1 games: they simply return 0

for all coalitions. In game h, vh returns value 0 for all coalitions except {p2,⊗}, which is

valued 1. Doing so, at game h we properly evaluate a winning strategy: if Player II has no

further moves, coalition {p2,⊗} is in the CS at level h, then Player I has a winning strategy.

Otherwise, Player II has a winning strategy.

The SCFG instance generated with the help of the above procedure for a GG instance

〈GGG, u1〉 is 〈G, k〉 where G is an SCFG as described above and k = 1 is the target.

The reduction can be clearly done in polynomial time given that:

2Note that we cannot generate R exhaustively otherwise the reduction would not take polynomial time.
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• |H| is at most the number of vertices in GGG plus one;

• |A| is the number of vertices plus the five special agents;

• the characteristic functions can be compactly represented as stated above; and

• R can also be compactly represented as an algorithm that follows the 4 rules exactly as

stated above on the representation of the graph GGG (which is kept in memory). Although

this does not a�ect the reduction, note that determining R on-the-fly is also quite e�cient

in this particular case (linear in the degree of GGG).

Note that, in a similar reduction but between the optimisation versions of the problems

we could easily change the characteristic functions so that an optimal FCSS provides us the

means to determine the winning strategy for Player I with the least number of moves.

Chapter Remarks

In this chapter, we investigated the challenges in solving optimally SCFG-based prob-

lems. We started out by proposing two exact algorithms to output an optimal Feasible Coalition-

Structure Sequence (FCSS). A brute-force algorithm provides the baseline for comparisons on

this problem. Our main contribution here is an algorithm based on dynamic programming

called SDP. We showed empirically that SDP is faster by orders of magnitude compared with

a trivial brute-force algorithm. However, the trade-o� comes in terms of memory consumption

in which SDP requires much more memory than the brute-force approach. Both algorithms in

our experiments computed solutions for small instances of the problem only (up to 10 agents

and 10 games), which narrows down their use in practical applications. This concludes Contri-

bution 4. We noted that to solve an SCFG-based problem, an e�cient method is to design an

application-dependent generator of pairs of CSs. Even in those cases the complexity of solving

SCFG lays in the class of PSPACE-complete problems, hence concluding Contribution 5. Given

those findings, in the next chapter we investigate heuristic approaches to solving SCFG-based

problems.
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5. HEURISTIC APPROACHES TO SCFG

Our main goal in this chapter is to propose heuristic approaches to solve the problem

of finding a sequence of feasible coalition structures. This problem is already intractable for

small instances (as discussed in Section 4.3) and therefore, we need to find algorithms that

can produce solutions quickly. Moreover, the challenge is also how to find those solutions as

depending on R and the level constraints only a few might exist. The algorithms we propose

here are designed to solve SEQVS and SEQSVS instances. However, as discussed in Chapter 4,

both SCFG and its variations (i.e., SEQVS and SEQSVS) share the main underlying concept:

the relationR. Therefore, one can easily adapt the proposed algorithms to deal with any SCFG-

based problem.

This chapter is structured as follows. In Section 5.1, we propose a hierarchical-

clustering algorithm, inspired by C-Link, for solving SCFG instances. We refer to Section 2.3.3

for the description of how C-Link works. Our next step is to investigate how to apply Monte

Carlo Tree Search to the SCFG problem. Our main strategy explained in Section 5.2 is to assign

to each node in the tree a coalition structure, and then find a path corresponding to an FCSS.

Doing so, we avoid local optima as we eventually explore di�erent paths in the tree. Finally,

in Section 5.3, we extensively evaluate both algorithms under general conditions. We compare

their solutions with the one computed by SDP, although only for small instances. Then, we

scale up the size of the instances to compare their performance in more challenging scenarios.

5.1 Hierarchical Clustering Algorithm to Compute an FCSS

We take as inspiration the clustering-based algorithm named C-Link (Farinelli et al.,

2016), and construct a new algorithm called MC-Link (Krausburg et al., 2021b). MC-Link was

originally proposed to address SCFG instances only. However, in (Krausburg et al., 2021a) we

extended it to deal with SEQVS instances as well.

5.1.1 The Multiple Coalition Linkage Algorithm

TheMC-Link algorithm follows the same general idea adopted for C-Link (Section 2.3.3);
it starts o� with the coalition structure of singletons and merges two coalitions based on a func-

tion that measures the suitability of such a merger. Nonetheless, in our context we have a

sequence of CSs of singletons. The underlying intuition is that each game Γi has a correspond-

ing table PLi. We perform the most suitable movement for a table PLi (i.e., a merger), then

advance to the next table PLi+1 and repeat the process (see Figure 5.1). Doing so, we are able

to construct the tables PL (one at time) whilst enforcing the relation R, which is also given
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Figure 5.1: An example run with four agents for MC-Link. The red ovals represent the selected
column and row to be merged, and t represents an iteration. MC-Link received as input RH

(Definition 9), and a sequence of two CFGs; the games use the same characteristic function.

as input. As we construct CSs based on mergers, we only need an algorithm that checks the

feasibility of a pair of CSs in R.
An algorithm for SCFG needs to take into account that:

1. A CSS CS may not be feasible right from the beginning. In MC-Link, all CSs start o�

with singleton coalitions which may not be acceptable by R (e.g., R3 in Definition 20). In

fact, a CSS might become feasible only after several iterations of MC-Link.

2. To calculate a value for an FCSS, we must consider the sequence as a whole. For instance,

considerR3 andRH . R3 generates constraints being applied in only one direction (top to

bottom). On the other hand, RH leads to constraints being imposed in both directions.

Condition 1 suggests that we need to look for an FCSS even if that would mean choosing a non-

suitable merger (i.e., choosing zero or negative values). Condition 2 indicates that the search

is conducted in rounds, and at each round only one merger per table is carried out.

We show in Algorithm 5.3 the pseudocode for MC-Link1. It starts by initialising a CSS

CS with as many coalition structures of singletons as there are games in H. Then, we start

looking for a CSS that is feasible according to R (lines 3-16).

We check the feasibility condition using the Boolean function Feasible (e.g., line 3).

It checks whether all pairs of subsequent CSs in a candidate solution are in R. In case an index

is provided (e.g., line 34), we check if CS ĈS at that index is feasible in relation to both the

preceding and succeeding positions in the sequence.

1Note that in (Krausburg et al., 2021b) we did not introduce the possibility of stating coalition structures that
may begin an FCSS (i.e., (∅,CS ) ∈ R : CS ∈ CSA). To keep compatibility with the original work, we do not
change MC-Link algorithm for SCFG problems, although it can be easily done.
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Algorithm 5.3 The multiple coalition linkage algorithm.

Input:
A, a set of agents
H, a sequence of CFGs
R, a binary relation on CSA

Output: CS, an FCSS

1: CS ← 〈{{a1}, . . . , {an}}1, . . . , {{a1}, . . . , {an}}h〉
2: M̂ ← 〈∞1, . . . ,∞h〉
3: if ¬ Feasible(CS, R) then
4: i← 1

5: while i ≤ h− 1 do

6: PL← FillTable(i,CS, vi)

7: M̂ [i]← maxj,k PL(j, k)

8: if M̂ [i] > −∞ then I merger is available

9: ĵ, k̂ ← arg maxj,k PL(j, k)

10: CS[i]← (CS[i] \ {Cĵ} \ {Ck̂}) ∪ {Cĵ ∪ Ck̂}
11: i← i+ 1

12: else

13: if i = 1 then

14: return ∅ I No FCSS could be found for R
15: else

16: i← i− 1

17: i← 1

18: while maxM̂ > 0 do

19: PL← FillTable(i,CS, vi)

20: M̂ [i]← maxj,k PL(j, k)

21: if M̂ [i] > 0 then I a suitable merger can be carried out

22: ĵ, k̂ ← arg maxj,k PL(j, k)

23: CS[i]← (CS[i] \ {Cĵ} \ {Ck̂}) ∪ {Cĵ ∪ Ck̂}
24: i← i+ 1

25: if i > h then

26: i← 1

27: return CS

28: procedure FillTable(i,CS, v)

29: s← |CS[i]|
30: let PL be a s× s matrix initialised with −∞
31: for j ← 1 to s do

32: for k ← j + 1 to s do

33: ĈS ← (CS[i] \ {Cj} \ {Ck}) ∪ {Cj ∪ Ck}
34: if Feasible(i, ĈS ,CS,R) then

35: PL(j, k)← slf (v, Cj, Ck) I Equation 5.1

36: return PL
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In the beginning, if the sequence is not feasible, then we go through the tables PL

merging two coalitions even if there is no suitable merger to carry out (e.g., all have a negative

value). In this phase, a merger is considered impossible if it is constrained by relation R (i.e.,

the respective entry in table PL receives −∞). In that case, we go back to the prior position

in the sequence, construct the table, and repeat the procedure. If a merger is possible, then

the new entry value is computed using Equation 5.1. Note that MC-Link selects the correct

characteristic function based on the table it is evaluating at the moment.

slf (v, Ci, Cj) = v(Ci ∪ Cj)− v(Ci)− v(Cj) (5.1)

Once a first FCSS is found, we go to the next phase, improving it (lines 18-26). We

iterate over the sequence, performing one merger per table, but now, we consider only suitable

mergers (i.e., values greater than zero). If no such value is available in any table, then the

algorithm returns the current FCSS up to that point (line 27).

5.1.2 MC-Link Analysis

By Condition 1, we know a CSS CS may not be feasible from the beginning of an

execution, and its feasibility will depend on R. However, we show that, if such FCSS CS

exists, MC-Link will be able to find it for a particular set of relations, namely RH , RO , and R3.

We pick those three relations as they are inspired by real-world applications.

Theorem 3. Given an SCFG G = 〈A,H,R〉, in which R ∈ {RH ,RO ,R3}, MC-Link eventually

outputs an FCSS CS, if one exists.

Proof. For relation RH this result immediately follows: the CSS containing only coalition struc-

tures of singletons is feasible. For R3, we start o� from a CSS CS containing only singleton

coalitions. The CS CS 1 ∈ CS will dictate how CS 2 is to be constructed. That is, it is not

constrained by any other coalition structure in CS and hence for its table PL1 the condi-

tion maxj,k PL1(j, k) > −∞ holds; thus, a merger is carried out. In fact, for each table PLi,

1 ≤ i ≤ h, at most n− i mergers can be carried out (recall mergers of negative or zero gain are

allowed). As h ≤ n, underR3 an FCSSCS is eventually found. ForRO , we haveRO ⊂ R3.

Based on the theorem above (and hence the relations above), we can claim that MC-
Link has two interesting properties:

Convergence: MC-Link converges to a solution. This is due to the fact that at most n−1 mergers

can be done per table PL. As we need to evaluate h tables, our algorithm provides an

outcome after at most n× h mergers. This applies to any binary relation on CSA.
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Anytime: As soon as MC-Link finds a CSS that satisfies relation R, it becomes an anytime

algorithm, since its solution from that moment on will only be improved at each iteration

until no more mergers between coalitions are feasible.

Regarding the complexity of MC-Link to compute a solution for an SCFG problem, we

shall assume any R to be given in an algorithmic form. Moreover, let α and β, in the result

below, denote its time and space complexity, respectively.

Theorem 4. The time complexity of MC-Link is O(h2n3α), and the space complexity is O(n2 +

hn+ β).

Proof. MC-Link has two phases that share the same CSS CS. Each CS ∈ CS has a correspond-

ing table PL that can be constructed, when required, in n2 × α steps. To make CS feasible,

MC-Link needs at most time O(hn3α), as we need at most (h − 1) × (n − 1) steps to find an

FCSS. To improve an FCSS CS, as the worst-case scenario, we assume that the CSS of single-

tons is feasible, so no merger was carried out. Then, R makes it possible only one merger per

iteration (from 1 to h). That is, we reach the grand coalition in a single table in h × (n − 1)

iterations. As we have h tables, the time complexity of MC-Link is O(h2n3α). However, we only

need space O(n2 + hn+ β), as we evaluate one table at time and can construct it directly from

a CS ∈ CS. Although the final complexity depends on α and β, it is expected that MC-Link is

typically polynomial.

We also empirically evaluate MC-Link to assess how our algorithm performs when we

vary the number of games and scale up the number of agents. As storing the value of every

coalition in a table is not feasible, we set every game to be evaluated according to v(C) = |C|2.
We pick this valuation v based on the properties shown above. We know MC-Link converges and
we want to evaluate it in the worst-case scenario, which is when all feasible movements of each

table are performed. Hence, we need v to be super-additive. We scale the number of agents up

to n = 100, and pick relation R3 for this particular analysis. We show the results in Figure 5.2.

Each line represents a di�erent number of games and appears in the figure when the

number of agents is su�cient (if h > n there exists no hierarchy for R3). We can see that even

with a heuristic approach, the running time increases significantly. However, even real-world

problems may not require a large number of di�erent games (e.g., the problems described in

Section 3.2). In addition, the characteristic function may limit positive gains of mergers to a

few coalitions, thus less operations would be required.

The reader should bear in mind that MC-Link might not compute a solution for a given

problem, even though such a solution exists. MC-Link adopts a greedy strategy based on the

valuation functions, and those values might not be compatible with the constraints at hand.

That is, mergers that produce a great gain might lead to sequences of coalition structures that

are unfeasible. Recall that MC-Link cannot undo a merger. Therefore, in problems that require

a great number of constraints, one must choose carefully the valuation functions.
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Figure 5.2: MC-Link running time for di�erent lengths of H and varying the number of agents.

5.1.3 MC-Link for SEQVS instances

As originally proposed in (Krausburg et al., 2021b), MC-Link is designed to cope with

SCFG instances. However, we extend it to deal with SEQVS instances as well, so as to enable

comparisons with algorithms not restricted only to SCFG problems. This extension was first

introduced in (Krausburg et al., 2021a) to further analyse the experiments aimed to compare

SDP with the brute-force algorithm.

Apart from checking each game’s valuation structure, we insert a further check to

make sure a sequence of CSs holds the feasibility property. This is required to make MC-Link
compatible with a wider range of binary relations. Therefore, we modify the improving phase

in the original MC-Link. To understand the reason why this is the case, consider the example

below.

Example 8. ConsiderR2 from Definition 20: all CSs in a sequence must have the same number

of coalitions. Suppose MC-Link is improving on the FCSS containing only CSs of singletons. It

carries out a merger in each CS in the sequence up to position i. In that game, no merger is

allowed because the combination of pivotal agents and interaction graph makes it unfeasible;

that is, for all CS ∈ CSσi it holds that |CS | = n. As a carried out merger in MC-Link cannot

be undone, it is not the case that the current sequence of CSs will eventually become feasible

(CSs CS 1, . . . ,CS i−1 already have size n− 1).

To cope with that requirement, we distinguish between the CSS we are modifying

during a particular iteration, and the best FCSS CS∗ found so far. Initially, the best FCSS is

the one computed during MC-Link’s first phase. Also, we insert an additional check in case
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Algorithm 5.4 Modifications to MC-Link’s improvement phase.

1: if i > 0 and not (CS[i] ∈ CSσi and (CS[i− 1],CS [i]) ∈ R) then
2: if M̂ [i− 1] ≤ 0 then
3: return CS∗ I the best FCSS found so far
4: else
5: i← i− 1
6: else
7: i← i+ 1

no merger is allowed in the current table. Precisely, we add an else condition for Line 21 in

Algorithm 5.3. The new steps are introduced in Algorithm 5.4. In case no merger is allowed at

the current position i, we check if the corresponding CS is still compatible with the preceding

one in the sequence. If not so, and there are no longer mergers available at position i−1, the CSS

will never become feasible, and we then return the best FCSS found so far. Otherwise, we return

to the previous CS and carry out another merger continuing with the ordinary procedure. The

FCSS CS∗ is updated every time we reach position h. In the example above, MC-Link would

stop to iterate and return the FCSS containing only singleton coalitions, even though it had

performed a merger on each i− 1 CSs.

5.2 A Monte Carlo Approach to SCFGs

As noted in the section above, MC-Link is not complete because under certain con-

straints it might not be able to find an FCSS even though one exists. Thus, we investigate

alternatives to that problem and decided to design and evaluate an algorithm based on Monte

Carlo Tree Search (MCTS) for the SCFG problem. MCTS has received much attention in re-

cent research due to its achievements in particular applications. For instance, MCTS is used in

AlphaGo (Silver et al., 2016) in order to select an action to be played in a game called Go.

It has also been applied to various problems such as intention scheduling (Dann et al., 2020),

and even the coalition structure generation problem (Wu and Ramchurn, 2020).

Two MCTS steps are particularly important for an algorithm that solves SCFG in-

stances. They are:

(i) the generation of pairs of coalition structures; and

(ii) the simulation of a path in the tree.

For a discussion on the MCTSmethod, we refer to Section 2.4. The main problem in Step (i) was

already introduced in Section 4.3, and here we shall focus on domain-independent approaches.

Step (ii) refers to quickly reaching a terminal state in the tree, which is also not trivial for

problems containing constraints. In the sections below, we propose the UCT-Seq algorithm and

discuss how we address in it the two steps mentioned above.
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5.2.1 A General MCTS Approach to SCFG

In this section, we introduce a general MCTS algorithm based on UTC (Kocsis and

Szepesvári, 2006) to solve the problem of finding a sequence of coalition structures (i.e., the

underlying SCFG problem). In particular, we consider here the SEQSVS framework as it fits

well the application we shall introduce in Chapter 6. In our formulation, a single node is not

seen as a solution to the SCFG problem. Instead, each node represents a single CS. Thus, we

are interested in finding a path in the tree that reaches level h. This path corresponds to an

FCSS.

Let Tree(root) be a tree with root root iteratively built using UCT-Seq. The root root

corresponds to ∅. We do so to point out which coalition structures may start a sequence. This

procedure is the same as the one used in Chapter 4 to design the exact algorithms. Given any

node x of Tree(root), we use Tree(x) to denote the subtree rooted at x (i.e., the tree induced by

the descendants of x). Let path = 〈root, y1, . . . , yk〉 be a unique sequence of nodes in the tree.

We use length(path) to denote the length of a path. Note that the maximum height of the tree

Tree(root) is equal to the length of the sequence of games; that is, h. Once UCT-Seq finds a

path path such that length(path) = h+ 1, it will have found a corresponding FCSS. Each node

in the tree is defined to have the data structure below.

De�nition 22 (Node). A node x is a tuple

x = 〈parent,CS , l, children,N, val, expanded, terminal, i〉,

where:

• x.parent is a pointer to the parent node;

• x.CS is a coalition structure from CSA;

• x.l is the level where x is placed in the tree, that is, length(〈root, . . . , x〉)− 1;

• x.children is a finite list of child nodes;

• x.N ∈ Z+ is a counter of visits to the node;

• x.val ∈ R is the cumulative reward of the node;

• x.expanded is a Boolean variable stating whether the node has been fully expanded;

• x.terminal is a Boolean variable stating whether the node is terminal; and

• x.i is an index with the specific purpose explained below.

Alternatively, we use y and z to refer to nodes as well.
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Algorithm 5.5 A Monte Carlo tree-search approach to the SCFG problem.

Input:
A, a set of agents
H, a totally ordered sequence of CFGs
Π, a totally ordered sequence of SVSs
R, a binary relation on CSA

t, a time budget to run the algorithm
Output:

CS, an FCSS
1: procedure MCTS(A,H,R, t)
2: CS ← ∅
3: root← CreateNode(NIL, ∅) I root.parent, root.CS
4: while not (timeout(t) or root.terminal) do
5: x← TreePolicy(root)
6: ∆← DefaultPolicy(x)
7: Update(x,∆)
8: if x.terminal then
9: if x.l = h then
10: CS′ ← RetrieveFCSS(x)
11: if V(CS′) > V(CS) then
12: CS ← CS′

13: Remove(x)
14: return CS

A node is only distinguishable given the attributes x.parent, x.CS , and x.l. The

Boolean variable x.expanded is true when the whole set Xx.CS
x.l (Definition 19) has been added

to the x.children. The Boolean variable x.terminal is set to true either if: (i) x.l = h; or (ii)

x.expanded ∧ |x.children| = 0. The last attribute x.i is used to retrieve a CS from a list that

corresponds to Xx.CS (Definition 18). That is, during the search we construct the set XCS ; it is

based only on R. Essentially, each node at a di�erent level filters out incompatible CSs given

the VS constraints of the subsequent level. Note this list is shared among all nodes, therefore,

each node keeps an index pointing out to the next CS to evaluate.

At the beginning of the execution, the tree contains only node root where root.CS = ∅.
This is the same mechanism introduced for the exact algorithms in Section 4.1.1. To select

a node, we apply the tree policy, which returns a node. We consider in this procedure both

selection and expansion steps. First, let us discuss the expansion step. Consider the root node.

We need to select an action (i.e., a transition from one CS to another) which can be applied

at that particular state. We can construct the set of actions that are compatible with it using

the set X∅ (see Definition 18 and 19). To do so, we assume a generative algorithm gen(CS )

to generate compatible CSs. In case it is e�cient, then {CS ′ ∈ gen(x.CS )} = Xx.CS . However,

we investigate procedures that can deal with any R by generating potentially many more CSs

than needed, and therefore {CS ′ ∈ gen(x.CS )} ⊇ Xx.CS . Such a procedure, for instance, can

generate the complete set of coalition structures CSA. We discuss the generation of coalition
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Algorithm 5.6 Selection of a node to expand.

1: procedure TreePolicy(x)
2: if not x.terminal then
3: if not x.expanded and bx.Nαc ≥ |x.children| then
4: ProgressiveWidening(x) I tries to expand x.children
5: if |x.children| > 0 then
6: y← arg maxz∈x.childrenUCB1 (z)
7: return TreePolicy(y)
8: return x

structures in Section 5.2.2. Thus, we construct Xx.CS on the fly and use a list Act [x.CS ] to store

the compatible CSs.

Despite the choice of a generative R, the set Xx.CS might still be very large. In fact,

depending on R, a CS CS can relate to every other CS CS ′ ∈ CSA. Therefore, we apply a

progressive widening mechanism, in particular, we follow (Lee et al., 2020) and use the heuristic

in Equation 5.2 in order to expand the list of child nodes of a non-terminal node x:

bx.Nαc ≥ |x.children| (5.2)

where α ∈ [0, 1] is the expansion factor. If the above condition holds, then we retrieve a CS

from Act [x.CS ][x.i ]. In case a node x has added all CSs from that list to x.children, then we call

the generative algorithm to produce a new CS.

To select a node from the current node x, we execute Equation 5.3 on its list of child

nodes.

y = arg max
z∈x.children

UCB1 (z) (5.3)

We use heuristic UCB1 (Auer et al., 2002) to establish a priority among the current child nodes.

This heuristic is given in Equation 5.4.

UCB1 (z) =
z.val

z.N
+ c

√
log z.parent.N

z.N
(5.4)

It states that less frequently visited child nodes progressively increase their priority. This is given

by the second component of the equation which is influenced by a exploration factor c which is

chosen prior to the execution of the algorithm. In our case, we use the standard value c =√
2 (Dann et al., 2020). The first component of Equation 5.4 is the exploitation term. In case a

child node y has not been visited yet, that is, y.N = 0, then we use Vy.l(y.CS )+c
√

log z.parent.N .

Doing so, the exploration term eventually makes y be chosen even if the exploitation term is

low. In case Equation 5.3 does not have a single solution, we randomly select a node among

the options. We introduce the tree policy in Algorithm 5.6.

Once a node has been selected to be simulated, we estimate how good its subtree can

be by carrying out the default policy. This is another challenging part of the problem as we
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Algorithm 5.7 Simulation on a given node.

Input:
b̄, the maximum number of branching attempts
d̄, the deepest relative level to achieve

1: procedure DefaultPolicy(x)
2: if x.l = h then
3: return Vl(x.CS )
4: if x.N > 0 then
5: return 0
6: return Rollout(x.CS , x.l,min(x.l + d̄, h))
7: procedure Rollout(CS , l, depth)
8: if l ≥ depth then
9: return Vl(CS )
10: ∆← −∞
11: CS ′ ← Split(CS , l + 1)
12: if (CS ,CS ′) ∈ R then
13: Act [CS ].add(CS ′)
14: if CS ′ ∈ CSπl+1 then
15: ∆← Rollout(CS ′, l + 1, depth)
16: for i← 0, b̄ do
17: CS ′ ← Merge(CS ,CS ′, l + 1) I CS ′ ∈ CSπl+1 or CS ′ ← NIL
18: if CS ′ = NIL then
19: break
20: ∆′ ← Rollout(CS ′, l + 1, depth)
21: ∆← max(∆,∆′)
22: if ∆ = −∞ then
23: ∆← 0
24: return Vl(CS ) + ∆

do not know which actions can be carried out at the selected node. We perform a depth-first

search to try to reach an end of a sequence (that is, a coalition structure at level h). Our

approach consists in generating a baseline coalition structure by performing split operations

on the simulated CS. A split operation divides a coalition into two or more subsets. From this

baseline CS, we start carrying out merger operations. A single merger operation merges two

coalitions. We discuss how we apply those operations in Section 5.2.3. However, the above

heuristic is neither guaranteed to find a subsequent CS nor to reach the end of a sequence.

Therefore, we assume as input:

• a maximum number of attempts b̄ to generate CSs at each level; and

• a maximum relative depth d̄ to simulate in the subtree.

We introduce the default policy in Algorithm 5.7.

The last step is to update the tree statistics according to the new simulated node (and

its subtree). Usually, x.val is a cumulative value of all rewards collected up to that point averaged

by the number of visits on the given node (Browne et al., 2012). We follow the same approach
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Algorithm 5.8 Statistics update regarding a selected path.

1: procedure Update(x,∆)
2: while x.parent 6= NIL do
3: x.N ← x.N + 1
4: x.val← x.val + ∆
5: x← x.parent

updating the path with the reward generated by a roll-out. In case a selected node has already

been simulated (e.g., no action available in the selected path), we return a reward of 0. Doing

so, nodes in which it is di�cult to find actions (i.e., compatible coalition structures) gradually

decrease the priority in Equation 5.4. We are left to update properly the visited nodes’ counters.

We introduce those steps in Algorithm 5.8.

In case the selected node is a terminal node at level h, we are in a position to evaluate

an FCSS. We backtrack the path from the terminal node up to the root, and return the FCSS

CS′. Recall that each path path in the tree is in one-to-one correspondence to a CSS (a path

may not reach level h). At this point, if it leads to the best solution found so far, then we store it,

otherwise we continue the search. As a terminal node will not provide any further information

for the search, we remove it from the tree so as not to bias the search towards it. This is

addressed di�erently in some works in the MCTS literature in which an MCTS solver (Winands

et al., 2008) back-propagates the game-theoretical values of ∞ or −∞. No further search is

conducted on nodes having value of −∞.

Given the overall MCTS method employed by UCT-Seq, one can show an interesting

property as follows.

Theorem 5. UCT-Seq is complete whenever the generative algorithm generates all compatible

coalition structures given a preceding one.

Proof. We just need to show that for every node in the tree all possible child nodes are added to it.

In the worst-case scenario, only the generator will find CSs to expand the UCT-Seq tree. We note

that, given a preceding CS CS , for all levels 1 ≤ l ≤ h, it holds that XCS
l ⊆ XCS (if the problem

of interest does not require constraints per level, then one should consider XCS
l = XCS ). If a

generator gen computes all compatible CSs, then we have at least {CS ′ ∈ gen(CS )} ⊇ XCS
l for

any given level l. As UCT-Seq starts o� from the node root corresponding to ∅, every CS in X∅1
will correspond to a child node of root. The search proceeds until UCT-Seq reaches level h− 1,

where given a node x at that level, every CS in Xx.CS
h will be added to the tree. Once a terminal

node is evaluated, it is removed from the tree. Recall that a node y is terminal if (i) it is placed

at the tree level h; or (ii) it has added all Xy.CS
y.l+1 to its list of child nodes and all of those nodes

have already been removed from the tree. Therefore, UCT-Seq eventually builds the complete

search space of an SCFG-based instance and finds a solution for the problem.

One can easily note as well that UCT-Seq not only computes a solution for the problem

(provided the assumption above), but it also finds eventually an optimal solution. However, for
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most real-world applications, one cannot a�ord the time required by UCT-Seq to search the

entire search space. Such applications usually require large instances to be solved. Therefore,

we think of UCT-Seq from a heuristic perspective, where we only run it for as long as we can

reasonably wait for a result.

5.2.2 The Generation of Coalition Structures

An important part of the MCTS method is to select an action to apply on a state

and hence expand the tree. If the set of actions is small, one can select an action based on

some distribution. For instance, in Go, one has approximately 250 actions available at each

state (Silver et al., 2016). Once a node is expanded, for each action a prior probability of

selecting it is calculated. In a continuous-action space, for instance in (Lee et al., 2020), an

action is sampled from a computed policy network (the same policy is used during a roll-out).

Although our set of actions is finite, it is intractably large. In fact, it is of size Ω(n
n
2 ), where

n is the number of agents. To address this problem, we propose an algorithm inspired by

CFSS (Bista�a et al., 2014), which is graph-based and anytime, to generate the CSs that may

follow a given CS. CFSS uses 2-coloured graphs to keep track of the coalition structures that

have already been evaluated. For more details on this algorithm we refer to Section 2.3.5.

De�nition 23 (2-coloured Graph Gc induced by Γπ). Given a CFG Γ = 〈A, v〉 induced by an

SVS π = 〈G , S ,Z 〉, where G = 〈A,E ′〉, a 2-coloured graph GΓπ is a tuple 〈V,E, c, w〉 where:

• V = {{a} | a ∈ A}, that is, each vertex represents a coalition C ⊆ A;

• E = {({u}, {r}) | (u, r) ∈ E ′};

• c is a function E → {green, red}; and

• w is a function E → R.

In particular, we let w((u, r)) = gain(u, r) (see Equation 2.2).

Moreover, regarding the constraints imposed by an SVS π. Let π̄ be a relaxed version

of the constraints in π = 〈G , S ,Z 〉 such that π̄ = 〈G , S , {1, 2, . . . ,max(Z )}〉. Also, let Cπ̄ be the
set of coalitions that are feasible regarding π̄. That is, for all C ∈ Cπ̄: (i) |C ∩ S | ≤ 1; (ii) the

sub-graph of C induced over G is connected; and (iii) |C| ≤ max(Z). Note that Cπ̄ ⊇ Cπ. To
colour an edge, we first check the VS constraints. Given an edge e = (u, r), if u ∪ r /∈ Cπ̄, then
c : e 7→ red. That is, the resulting coalition has more than one pivotal agent or its size is bigger

than the maximum size allowed. Note that the sub-graph of u ∪ r induced over G is connected

given Definition 23, as the coloured graph is build on the top of the interaction graph. The

remaining edges are initially coloured green. We shall use e ∈ GΓπ : e ∈ E when it is clear from

the context.
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We follow a similar procedure introduced by Bista�a et al. (2014, Definition 3) to

contract a green edge. Their definition is adapted to our context and introduced below.

De�nition 24 (Green Edge Contraction (adapted from (Bista�a et al., 2014))). Given a 2-

coloured graph GΓπ = 〈V,E, c, w〉 and a green edge e = (u, r), where e ∈ E, the result of the

contraction of edge e is a graph GΓπ ′ obtained by performing the contraction of the edge e in

graph GΓπ . Whenever two parallel edges are merged into a single one, the resulting edge is

coloured red either if at least one of them is red-coloured or the resulting coalition u ∪ r /∈ Cπ̄.
It is coloured green otherwise.

Before introducing our algorithm to generate CSs, let us introduce some additional

notation. Let CS e be the coalition structure represented by graph GΓπ ′ after the contraction

of edge e in GΓπ . Moreover, given the preceding CS CS in the sequence, we construct Ē =

{e ∈ E | c(e) = green,CS e ∈ CSπ, (CS ,CS e) ∈ R}, the set of all edges that result in a CS

compatible with CS . Algorithm 5.9 introduces the steps to generate a CS. Note we need to

generate a CS (i.e., an action in the context of MCTS) and suspend the execution until a new

CS is requested. We use the keyword yield to denote that the algorithm returns a CS and is

suspended. We use the variable counter to enforce a number of attempts to return a CS. Doing

so, UCT-Seq will then decide whether it continues searching for a feasible CS in the generator

or explores a di�erent path in the tree.

As an example, consider Figure 5.3. We aim to generate the set of CSs compatible

with CS = {{a1, a2, a3}, {a4}}. We draw a green-coloured edge in Figure 5.3 using a dashed

line when the edge is not in Ē. The feasibility of pairs in R is given by the same number of

coalitions in the coalition structures; that is, R = R2. The set XCS
l contains only a single CS,

namely CS ′ = {{a1, a3}, {a2, a4}}. However, 7 additional coalition structures are checked by

the generator. Edges not in Ē represent that a resulting CS (i.e., the CS resulting from an edge

contraction) is not feasible yet. For instance, consider a GΓπ where every vertex is a singleton

coalition. Let Z = {1, 3}, then no contraction of any edge results in a coalition that follows the

size constraint. In fact, at least two edge contractions must be carried out to reach a coalition

of size 3.

We show that the generator explained above cope with the requirement in Theorem 5.

That is, the procedure generates all coalition structures that may follow a given one in an FCSS.

Theorem 6. Given a preceding coalition structure CS and a level l, for all coalition structures

CS ′ ∈ XCS
l there exists a corresponding node in the tree rooted at node GΓπl .

Proof. Assume by contradiction that there exists a coalition structure CS ′ ∈ XCS
l that does not

have a corresponding node in the tree rooted at node GΓπl . Recall that a CS CS ′ ∈ XCS
l i�

CS R CS ′ and CS ′ ∈ CSπl . Therefore, it must be the case that for all coalitions C ′ ∈ CS ′,

their induced sub-graphs over the interaction graph Gl are connected. The trivial case is when

CS ′ corresponds to GΓπl . If not so, the corresponding edges in GΓπl of the sub-graphs induced

by the coalitions C ′ ∈ CS ′ over Gl must be green coloured. Otherwise, CS ′ would not follow
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Algorithm 5.9 A coalition structure generator for SEQSVS.

Input:
CS , a coalition structure representing the first element in a pair in R
t, number of attempts to generate a CS CS ′

1: counter ← 0
2: GΓπ ← Init(G) I interaction graph G
3: return GenCS(GΓπ , counter)
4: procedure GenCS(GΓπ , counter)
5: while Ē 6= ∅ do
6: counter ← 0
7: e← arg maxe′∈Ē w(e′)

8: GΓπ ′ ← GreenEdgeContraction(GΓπ , e) I Definition 24
9: Mark e with colour red in GΓπ

10: yield CS e I return a CS compatible with CS and suspend the execution
11: GenCS(GΓπ ′, counter)
12: while there exists green edges in GΓπ do
13: counter ← counter + 1
14: if counter > t then
15: counter ← 0
16: yield NIL I no solution found so far; suspend the execution
17: e← arg maxe′∈GΓπ w(e′) : c(e′) = green

18: GΓπ ′ ← GreenEdgeContraction(GΓπ , e)
19: Mark e with colour red in GΓπ

20: GenCS(GΓπ ′, counter)
21: return

the pivotal or maximum size constraints. We know that every node in the tree will have as

many child nodes as it has green edges. Any green edge in a node is only coloured red i�: (i)

it has been tried before; or (ii) the resulting coalition is not feasible regarding the pivotal and

maximum size constraints. All green edges in the tree are eventually contracted. Therefore,

CS ′ has a corresponding node in the tree.

Given this result, the one below immediately follows.

Corollary 1. UCT-Seq is complete given the generator above.

Proof. The proof follows from Theorems 5 and 6. The generator yields all corresponding CSs

in its tree that are compatible with a preceding one CS and follow the SVS constraints of the

current level l. As XCS
l ⊆ XCS and for a SEQSVS problem the coalition structures of interest

are in XCS
l , UCT-Seq eventually finds a solution for the problem.

To speed up the search, we keep in memory a list of CSs compatible to x.CS (i.e., the

CS represented by node x) regardless of the level in which x is in the tree. Let Act [CS ] be such

list. Once the gen(CS ) is run to completion, then Act [CS ] ⊇ XCS
l . We note that more than

one node may represent the same CS but at di�erent parts of the tree. Moreover, one should

note that UCT-Seq and MC-Link share the same greedy principle while selecting coalitions to
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Figure 5.3: A running example to generate the set XCS
l where CS = {{a1, a2, a3}, {a4}}.

merge. The main di�erence between the generation procedure described above and MC-Link is

that UCT-Seq eventually tries di�erent CSs and thus, it can potentially avoid local optimum.

5.2.3 Simulation of a Sequence of Coalition Structures

The generator discussed above addresses a single level of the sequence. In a simulation,

one is interested in quickly reaching a terminal state, which, for an SCFG problem, is a CS at

level h. This step is referred as either roll-out or play-out and a standard approach for this is to

select actions randomly at each level of the simulated tree (Browne et al., 2012). However, this

is not always the case. For instance, Wu and Ramchurn (2020), in the context of the coalition

structure generation problem, use an informed search to reach a terminal state, which ends up

to be the grand coalition. In our case, we do not know beforehand which actions are applicable

at the node of interest. By employing an informed search (e.g., using the characteristic functions

to guide the search), it is not guaranteed that the procedure will reach a terminal state. In fact,

the values assigned to coalitions might not be related to the constraints posed by both R and

the VSs. That means, well-evaluated coalitions might lead to dead ends in a sequence of CSs.

In a simulation, we conduct a series of split and merger operations on the CS CS of

the newly expanded node. Other operators have been used in the CSG literature. For instance,

Mauro et al. (2010) used split, merge, shift, exchange, and extract operations. However, they

noted that one needs to be careful about applying di�erent operators on coalitions in order to

avoid repeating CSs.

The split operations are first based on: (i) the VS constraints of the subsequent level

l + 1; then on (ii) random operations. Given a coalition C, if |C ∩ Sl+1| > 1, then we split

the pivotal agents into singleton coalitions. Let ĈS be a set of coalitions containing initially

only singletons of pivotal agents. For each remaining agent a ∈ C \ Sl+1, we decide whether to

include it in a coalition C ∈ ĈS (if C ∪ {a} ∈ Cπ̄l+1) or keep it in a singleton {a} ∈ ĈS with a
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Algorithm 5.10 A procedure to split coalitions in a coalition structure.

1: procedure Split(CS , l)
2: CS ′ ← ∅
3: for all C ∈ CS do
4: if |C ∩ Sl| > 1 or |C| > max(Zl) then
5: CS ′ ← CS ′ ∪ BreakUpConstraints(C, l)
6: else
7: for all C ′ ∈ Component(C,Gl) do
8: CS ′ ← CS ′ ∪ BreakUpContribution(C ′)
9: return CS ′

10: procedure BreakUpConstraints(C, l)
11: CS ′ ← ∅
12: for all a ∈ C ∩ Sl do
13: CS ′ ← CS ′ ∪ {{a}}
14: for all a ∈ C \ Sl do
15: CS ′ ← CS ′ ∪ {{a}}
16: for all C ′ ∈ CS ′ : C ′ 6= {a} do
17: if C ′ ∪ {a} ∈ Cπ̄l and U(0, 1) ≤ 0.5 then
18: CS ′ ← (CS ′ ∪ {C ′ ∪ {a}}) \ {C ′} \ {{a}}
19: break
20: return CS ′

21: procedure BreakUpContribution(C)
22: CS ′ ← ∅
23: C ′ ← C
24: for all a ∈ C do
25: if U(0, 1) ≤ 0.5 then
26: C ′ ← C ′ \ {a}
27: CS ′ ← CS ′ ∪ {{a}}
28: if C ′ 6= ∅ then
29: CS ′ ← CS ′ ∪ {C ′}
30: return CS ′

probability of 50%. The size procedure occurs if |C| > max(Zl+1). In case both constraints are

satisfied, then the disconnected components of C induced over Gl+1 become the new coalitions

and we let any agent a ∈ C form a singleton coalition with a probability of 50%. The overall

procedure to split a coalition structure for the subsequent level l is introduced in Algorithm 5.10.

The procedure described above produces a single coalition structure. Our next step

is to merge coalitions. The procedure is introduced in Algorithm 5.11. We merge any two

coalitions C,C ′ ∈ CS ′ i� C ∪ C ′ ∈ CS π̄l+1 with a probability of 50%. In case a merger is

feasible, i.e., allowed by R and the SVS, (CS l,CS
′) ∈ R and CS ′ ∈ CSπl+1 , then we return CS ′

and repeat the procedure until we reach the maximum depth in a simulation; otherwise we try

other mergers until no further mergers are possible.

To potentially contribute to the expansion of the tree (i.e., selecting new coalition

structures as child nodes), once a CS compatible with CS CS according to R is found, we add
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Algorithm 5.11 A procedure to merge coalitions in a coalition structure.

1: procedure Merge(CS ,CS ′, l)
2: Ĉ, Ĉ ′ ← randomly select C,C ′ ∈ CS ′ s.t. C 6= C ′, C ∪ C ′ ∈ Cπ̄l
3: ĈS ← (CS ′ \ {Ĉ} \ {Ĉ ′}) ∪ {Ĉ ∪ Ĉ ′} I return NIL if none is found
4: if (CS , ĈS ) ∈ R then
5: Act [CS ].add(ĈS ) I construction of set XCS

6: if ĈS ∈ CSπl then
7: return ĈS

8: return Merge(CS , ĈS , l)

it to the list Act [CS ]. Doing so, two distinct local searches contribute to the construction of the

set XCS , namely the generator and the simulation.

5.2.4 Discussion

MC-Link and SDP di�er fundamentally (besides the fact that SDP is exact) in how

they address the SCFG problem. MC-Link relies only on the valuation functions to apply a

greedy strategy and come up with a good FCSS (in terms of value). On the other hand, the

exact algorithms introduced in Chapter 4 rely on a procedure to generate pairs of coalition

structures. UCT-Seq combines both worlds by employing the MCTS method. In a simulation,

it performs random moves to modify a given CS (following the SVS constraints) to try to reach

a terminal state in the tree. It also relies on a generator to compute compatible CSs in case the

simulation procedure fails to find them. The latter strategy employed by UCT-Seq provides an

important property for this sort of algorithm: the completeness property (Corollary 1).

Many components of the UCT-Seq algorithm might influence the outcome produced

after the time budget is finished. Of special concern is how to deal with constraints in this

approach. In case both generation and simulation steps fail to produce child nodes (i.e., placing

new CSs in the list Act) in a given number of iterations, the UCB1 heuristic can converge easily

to the same value for all nodes and from that moment on, only exploration is carried out (i.e.,

breadth-first search). This might increase the running time when the only way out is provided

by the generator. That is, one needs to run the generator a few times until it computes a CS

of interest. As future work for those cases, one might investigate the possibility of running

other instances of UCT-Seq for the same problem but with di�erent parameters. Alternatively,

UCT-Seq could adjust its MCTS parameters as soon as it detects a convergence in the UCB1

heuristic.

Regarding the simulation, it plays an important role in the MCTS method. It might

be interesting to investigate and compare in future work other approaches:

Informed search: use the valuation functions to guide the search. This is the strategy adopted

in CSG-UCT (Wu and Ramchurn, 2020), in which the authors, in a simulation step, merge



90

continuously the two coalitions that lead to the greatest gain until the grand coalition is

formed. In this particular case, the simulation running time increases significantly O(m3)

where m is the size of the coalition structure. Another drawback is in cases the valuation

function is not aligned with the constraints. For instance, the coalitions of greatest values

are unfeasible.

Unfeasible coalitions: use the incompatible coalitions in a CS to guide the search. Recall that

a relation R states which coalitions structures are compatible. This compatibility can be

derived from the coalitions that belong to the CS of interest. In that case, instead of

developing algorithms that check whether a pair of CSs are in R, it could also return

what coalitions do no follow the constraints required by R. This new information can be

used by general-purpose simulation algorithms to guide the search. In case the constraints

follow from the CS itself (e.g., the CS requires an exact size s) the whole CS is returned.

Also, we aimed at providing general algorithms that could be applied to any domain of interest.

However, if the time performance is a critical issue, one should consider both generation and

simulation that are domain dependent.

One should also bear in mind that UCT-Seq cannot tell quickly whether an instance is

hard to solve or impossible to solve, unless the infeasibility of the sequence of games is given at

games in the initial positions. In case the infeasibility comes from games in the last positions of

the sequence, UCT-Seq will continue expanding CSs in the upper levels hoping that a CS which

will make the whole sequence feasible is still to be found.

5.3 Experiments

In this section we report on the experiments carried out to compare MC-Link with

UCT-Seq. Those are the only available heuristic approaches to compute approximate solutions

for SCFG-based problems. To assess the quality of their solutions, we use SDP as a reference.

We discuss this procedure in detail in Section 5.3.2. Then, in Section 5.3.3, we increase the set of

agents and compare the performance of UCT-Seq with MC-Link in more challenging instances.

5.3.1 Preliminaries

To evaluate the proposed algorithms, we pick di�erent characteristics functions to

understand how well they perform. The valuations follow from the CSG literature (Michalak

et al., 2015). We remind the reader that a characteristic function v calculates a value for every

coalition C that can be formed by the agents in A. We experiment with characteristic functions

that draw a value from the distributions below.

Uniform for all C ∈ 2A, v(C) ∼ U(0, |C|).
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Modi�ed Uniform a first value for a coalition follows U(0, 10× |C|), then it is increased by a

random number r ∼ U(0, 50) with probability of 20%.

Agent-based Uniform each agent ai ∈ A is assigned a random number pi ∼ U(0, 10). Then,

for each coalition C : ai ∈ C, agent ai contributes to C a value pCi generated based on

pCi ∼ U(0, 2pi). Hence, v(C) =
∑

ai∈C p
C
i .

Normal for all C ∈ 2A, v(C) ∼ N(10× |C|, 0.01).

Modi�ed Normal a coalition receives a value drawn fromN(10×|C|, 0.01), then it is increased

by a random number r ∼ U(0, 50) with probability of 20%.

Agent-based Normal similar to Agent-based Uniform. For each ai ∈ A, pi ∼ N(10, 0.01) and

for each coalition C : ai ∈ C we have pCi ∼ N(pi, 0.01). Hence, v(C) =
∑

ai∈C p
C
i .

NDCS for all C ∈ 2A, v(C) ∼ N(|C|, |C|).

Exponential for all C ∈ 2A, v(C) ∼ |C| × Exp(1).

Beta for all C ∈ 2A, v(C) ∼ |C| ×Beta(0.5, 0.5).

Gamma for all C ∈ 2A, v(C) ∼ |C| ×Gamma(2, 2).

We compare the algorithms in terms of quality of the outcome, running time and

memory consumption.

Quality of the outcome: this metric refers to the value computed by V(CS). In particular, we

are interested in the distance between two computed solutions. In small instances, when it

is possible to compare solutions with the optimal value, we shall use the averaged optimal

ratio (Definition 25 below). In instances in which an optimal outcome is not feasible, we

use the quality improvement ratio (Definition 26 below). We set MC-Link as the baseline

and evaluate whether the solution computed by UCT-Seq is of a better quality ratio (> 0)

or poorer quality ration (< 0).

Running time: refers to the required time to compute a solution. For SDP and MC-Link mea-

suring the running time is straightforward: we run the algorithm and record the precise

time it took to output a solution. For UCT-Seq, we slightly modify this procedure. Recall

that UCT-Seq requires us to set a time budget to compute a solution. Hence, this metric

would always result in the same running time2. Instead, we record for UCT-Seq the precise

moment that the best solution so far is found and use it to compare with the solutions

computed by the other algorithms. That means, as an example, that the best solution

found by UCT-Seq after the time budget of 60 seconds might have been found after only

20 seconds.
2In case the instance of interest is small enough, then it would indeed finish before the time budget is finished.
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Memory consumption: refers to how much memory an algorithm requires to compute a so-

lution for the problem. We compare the peak of memory in that regard. To keep track of

this metric, we use the Python package malloc-tracer (version 1.7.0)3.

De�nition 25 (Averaged Optimal Ratio (AOR)). Given an optimal FCSS CS∗ computed by

SDP and an FCSS CS computed by either MC-Link or UCT-Seq, an averaged optimal ratio

metric is calculated as follows: √
V(CS)2

V(CS∗)2
.

De�nition 26 (Quality Improvement Ratio (QIR)). Given an FCSS CS computed by MC-Link
and an FCSSCS′ computed by UCT-Seq, the quality improvement ratio is computed as follows:√

V(CS′)2

V(CS)2
− 1.

Regarding the algorithms, we consider only SEQVS problems. This is due to the fact

that size constraints are particularly di�cult for MC-Link as the transition from one size to the

next one must be contained in that set of constraints. For instance, in SEQSVS instances in

which all coalitions must follow |C| > 3 MC-Link will not be able to compute a solution as it

starts o� from the CS of singletons and any initial merger will result in a coalition |C| = 2 which

will force MC-Link to halt. To avoid that, we consider only corresponding SEQVS instances

by setting Z = {1, . . . , n}. Moreover, both MC-Link and UCT-Seq use an algorithm to check

whether a pair of CSs is compatible. On the other hand, SDP uses a generative algorithm for

each relation R of interest. Both MC-Link and UCT-Seq are implemented in Python 3.8.10.

5.3.2 Approximation of the Optimal Value

In this experiment, we evaluate how close the solutions computed by the heuristic

approaches are to the optimal value. To do so, we run both MC-Link and UCT-Seq for small

instances and compare the outcome of each run with the one outputted by SDP. SDP computes

an optimal solution (Theorem 1) and is faster than a brute-force algorithm (see Section 4.2).

This makes SDP the perfect baseline for the experiments that follow. Out of the four binary

relations experimented with SDP, we chose to evaluate the worst-case relation and the one that

enforces a hierarchy of agents. That is, we experiment with R1 and R3 (Definition 20). This

implies that we can experiment with a set of agents containing 1 . . . 7 agents for R1, and 1 . . . 10

agents for R3. Moreover, for R1 a sequence containing 10 CFGs is feasible. On the other hand,

for R3 that number depends on the size of the set of agents A, as we cannot have a hierarchy

3https://pypi.org/project/malloc-tracer/

https://pypi.org/project/malloc-tracer/
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that demands more agents than the quantity available in it. For instance, a set containing four

agents can never form a five-level hierarchy.

Before conducting each experiment, we draw a value for each coalition C ⊆ A from

a distribution and store it in a table. For each game Γ ∈ H, we always sample new values;

this means, all valuations are di�erent, but from the same distribution. Similarly regarding the

constraints, we generate a new set of constraints for each experiment containing a di�erent

number of agents and games as well as a di�erent sort of valuations. That means, a new set of

constraints is generated even if we change only the valuation functions. Doing so, we evaluate

the algorithms in many more di�erent settings. We generate all interaction graphs randomly:

an edge connects any two agents if p ≤ 60, where p ∼ U(0, 100). Regarding the pivotal agents,

we randomly pick, from A, q agents and insert them into the corresponding set of pivotal, where

q ∼ U(0, dn× 0.2e). We use n× 0.2 to avoid picking all agents from A as pivotal agents.

Regarding the MCTS parameters, we experiment with the ones that follow.

Simulation depth d̄: it determines the maximum level in a simulated subtree and is bounded

by h. For instance, given h = 4, d̄ = 2, and a node in the first level, a simulation tries

to achieve coalition structures at the third position in a sequence. For nodes located at

the second and third levels, it always tries to achieve a coalition structure at the fourth

position in the sequence. We experiment with 2, 3 and 4, and 10.

Simulation degree b̄: it determines the branching factor of the simulated subtree; that is, how

many attempts to find compatible CSs the simulation makes. We experiment with the

values of 3 and 7.

Exploration factor γ: it determines the minimum number of child nodes a given node should

have based on its visiting counter. As an example, suppose that for a given node x, its

visiting counter is x.N = 1000 and γ = 0.4. If |x.children| < 16, then UCT-Seq tries to

expand node x’s list of child nodes. In the same setting when γ = 0.6, |x.children| < 64

should be true for the expansion procedure to take place. We experiment with the values

of 0.4 and 0.6.

Moreover, we let UCT-Seq run for 60 seconds in each instance. We conduct the experiments

described above in a machine with 32 GB of RAM and a CPU with four single cores of 3400 MHz

each.

We report in Figure 5.4 the results when h = 10 and R = R1. In general, UCT-Seq
achieves results that are slightly inferior to the ones computed by MC-Link. Both algorithms alter-

nate solutions of better quality when we experiment with coalition values drawn from di�erent

distributions. They also tend to a negative steepness as we increase the number of agents, which

indicates they will a have poor performance in larger instances. Moreover, for small instances

the UCT-Seq parameters seem to not interfere in the solution produced by the MCTS-based

approach.
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Figure 5.4: Comparison of MC-Link and UCT-Seq solution quality given an optimal solution
when h = 10 and R = R1. We depict the results of UCT-Seq for the settings b̄ = 3, d̄ = 3,
γ = 0.4 (line UCT-Seq_3_3_0.4) and b̄ = 7, d̄ = 10, γ = 0.6 (line UCT-Seq_7_10_0.6).

Next, we turn our attention to the running time of each algorithm. To analyse the

running time in UCT-Seq, we look at each instance individually and plot the amount of time

required by MC-Link to output a solution (a solid circle in the charts). Then, we compare it with

UCT-Seq varying the parameters listed above. In Figure 5.5, we depict the results when h = 10,

R = R1, and n = 7. We see that in general MC-Link is faster than UCT-Seq to compute a solution

of better quality if compared with the ones produced by UCT-Seq after a similar amount of time.

For instance, when the distribution is exponential, MC-Link achieves ≈ 75, 98% of the optimal

value after 0, 21 second. On the other hand, line UCT-Seq_3_3_0.6 after 0.23 second achieves a

ratio of ≈ 60.81%. Similar running times for a similar solution quality occur only in instances in

which the coalition values were drawn from the NDCS distribution. Recall that this distribution

is known for producing an unbiased search space. For instance, MC-Link achieves ≈ 76, 16% of

the optimal value after 0, 19 second. Nonetheless, line UCT-Seq_3_10_0.6 after ≈ 0, 11 seconds

had already achieved ≈ 78, 84%. Regarding the di�erent parameters of UCT-Seq, although
there is no clear winner for all the settings, we see in some cases a di�erence in the running

time even though the final solution quality is similar. For instance, for the modified uniform

valuations, line UCT-Seq_3_3_0.4 achieves its final quality value, ≈ 84, 13% of the optimal

value, after ≈ 3, 45 seconds, whilst line UCT-Seq_3_10_0.4 takes ≈ 27, 97 seconds to achieve

≈ 84, 19% (its final solution is computed after ≈ 55, 89 seconds with a ratio of ≈ 85, 49%).

Next, we consider the narrow relation R3. It reduces significantly the search space, so

it is interesting to evaluate the performance of both algorithms in such settings. We depict in

Figure 5.6 the results when h = 2. For this number of games there should exist a solution for

games containing 3 . . . 10 agents (considering the settings introduced above). One can clearly

see that MC-Link has poorer performance than UCT-Seq. This is the case for all distributions.

That means, the greedy approach of merging the two coalitions that provide the greatest gain



95

0 10 20 30 40 50 60
time in seconds

0.4446

0.6634
0.7739
0.8869

A
O

R
uniform

MC-Link
UCT-Seq 3 3 0.4
UCT-Seq 3 3 0.6
UCT-Seq 3 10 0.4
UCT-Seq 3 10 0.6

UCT-Seq 7 3 0.4
UCT-Seq 7 3 0.6
UCT-Seq 7 10 0.4
UCT-Seq 7 10 0.6

0 10 20 30 40 50 60
time in seconds

0.3881

0.5542
0.6927

0.9423
modified uniform

0 10 20 30 40 50 60
time in seconds

0.6702

0.8108
0.8845

0.9650
agent based uniform

0 10 20 30 40 50 60
time in seconds

0.99929

0.99948

0.99964

0.99990

A
O

R

normal

0 10 20 30 40 50 60
time in seconds

0.5390

0.6855
0.7834

0.9307
modified normal

0 10 20 30 40 50 60
time in seconds

0.99897

0.99939
0.99960

0.99982
agent based normal

0 10 20 30 40 50 60
time in seconds

0.3828

0.5691
0.6829

0.8380

A
O

R

ndcs

0 10 20 30 40 50 60
time in seconds

0.2106

0.4629
0.6173

0.8278
exponential

0 10 20 30 40 50 60
time in seconds

0.4926

0.6590
0.7688

0.9320
beta

0 10 20 30 40 50 60
time in seconds

0.3021

0.4489
0.5611

0.7510

A
O

R

gamma

Figure 5.5: Comparison of MC-Link and UCT-Seq running time and solution quality given an
optimal solution when n = 7, h = 10 and R = R1. Each UCT-Seq line follows the same pattern
UCT-Seq_b̄_d̄_γ.

does not payo� in such a narrowed down search space (if no backtrack is allowed). This claim

is supported by the experiments conducted for h = 4; that is, a sequence of four CFGs. In

the results depicted in Figure 5.7, MC-Link falls behind UCT-Seq for all distributions as well.

Moreover, in some cases (i.e., for the modified normal distribution when n = 6, and for the

NDCS when n = 5) MC-Link cannot find a solution. This empirical observation is in accordance

with the results in Section 5.1.2 where we show that MC-Link is not complete.

However, even though the performance of MC-Link decreases for more restrictive bi-

nary relations, one should recall that for R1 MC-Link is faster than UCT-Seq to compute a

solution. It remains to be shown how fast it is for R3. Again, we evaluate the improvement

made by UCT-Seq throughout a time budget of 60 seconds when n = 10 and h = 4. We report

the results in Figure 5.8. One can see that the performance of UCT-Seq improved in comparison

with the experiments conducted with R1. In fact, UCT-Seq, in general, outperforms MC-Link in

the long term. Moreover, after similar running times, UCT-Seq computed solutions of similar

quality or better than MC-Link. However, the quality in uniform-based valuations is greater than
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Figure 5.6: Comparison of MC-Link and UCT-Seq solution quality given an optimal solution
when h = 2 and R = R3. We depict the results of UCT-Seq for the settings b̄ = 3, d̄ = 2,
γ = 0.4 (line UCT-Seq_3_2_0.4) and b̄ = 3, d̄ = 2, γ = 0.6 (line UCT-Seq_3_2_0.6).
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Figure 5.7: Comparison of MC-Link and UCT-Seq solution quality when h = 4 and R = R3.
We depict the results of UCT-Seq for the settings b̄ = 3, d̄ = 3, γ = 0.4 (line UCT-Seq_3_3_0.4)
and b̄ = 7, d̄ = 4, γ = 0.6 (line UCT-Seq_7_4_0.6).

in normal-based distributions. Regarding the MCTS parameters, once again one can see no

clear winner while comparing the quality of the solutions and the corresponding running time.

Another feature to consider is how much memory the proposed algorithms require.

Based on the experiments in Section 4.2, we know SDP requires a considerable amount of

memory to compute a solution. We expect the same to hold for UCT-Seq as we maintain in

memory a tree of coalition structures, even though we remove from it the nodes that cannot

improve the current result in any way. In our analysis, we record the peak of memory used

by each algorithm for the same set of experiments as the one described above. We chose the

NDCS-based valuations for this comparison.
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Figure 5.8: Comparison of MC-Link and UCT-Seq running time and solution quality given an
optimal solution when n = 10, h = 4 and R = R3. Each UCT-Seq line follows the same pattern
UCT-Seq_b̄_d̄_γ.

First, we analyse all algorithms for a sequence containing only two CFGs. In the results

depicted in Figure 5.9, one can see that MC-Link consumes much less memory, by several orders

of magnitude, than both SDP and UCT-Seq. This is expected as MC-Link keeps in memory only

a sequence of tables (one per game) and the maximum size of a single table is n2, which is

used to store a coalition structure of singleton coalitions. Regarding UCT-Seq, the simulation

parameters play almost no role in the peak of memory amount. In fact, the only parameter

that influences it is the exploration factor. In general, the simulation parameters do not require

anything to be kept in memory (apart from the list of compatible CSs regarding R). When

R = R1 (Figure 5.9a) both factor values (γ = 0.4 and γ = 0.6) converge to the same amount

of memory when the number of constraints in R is minimum. This suggests new nodes are

always being added to the tree during the search. When it comes to R3 (Figure 5.9b), we note a

di�erence in memory consumption regarding the exploration factor. For instances containing

7, . . . , 9 agents, the exploration factor of 0.6 consumes more memory than the one of 0.4. When

γ = 0.6, a node requires less visits to it to expand its list of child nodes. It suggests that in R3,
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Figure 5.9: Comparison of the peak of memory used by SDP, MC-Link and UCT-Seq as we scale
up the number of agents for 2 CFGs.

the tree gets wider as there exist more paths that are not reaching level h yet. Therefore, no

node can be removed.

Interestingly, SDP matches the peak of memory consumption of UCT-Seq for 2 CFGs

and 10 agents (i.e., when R = R3). To better discuss this trend, we introduce in Figure 5.10

the peak consumption for 10 CFGs when R = R1. UCT-Seq peak of memory converges to the

same amount when the instances have more than 4 agents. Approximately, the same plateau

is achieved by SDP in the instance containing 10 agents in Figure 5.9. It seems that the tables

kept in memory to store the values of every coalition (each coalition has 10 di�erent values)

are limiting the amount of memory the algorithms can use. We can conclude that UCT-Seq is

the algorithm that consumes the most memory among SDP, MC-Link, and also the brute-force

algorithm.
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In all experiments conducted in the small instances above, as the number of agents

increases, the quality of the solutions computed by both algorithms decreases. We expect it to

continue for larger instances. In our next set of experiments, we shall scale up the number of

agents. However, it is not feasible anymore to compare MC-Link and UCT-Seq solutions with

an optimal one. Instead, we evaluate the improvement in quality using MC-Link as baseline.

5.3.3 Scaling Up Comparison

In this section we scale up the number of agents in the experiments. We set the

number of agents to 20, 30, 40, and 50, and the number of games to 2, 4, 6, and 8. We limit the

experiments to 8 CFGs as we empirically noted that UCT-Seq demands a considerable amount

of time to output a solution for this setting (we introduce the results below). However, we do

not expect real-world applications to require several games.

We follow our former experiments and consider onlyR1 andR3 (Definition 20). More-

over, the coalition values are drawn from the 10 distribution introduced in Section 5.3.1. All

games in an instance draw values from the same distribution. However, storing the value of

every coalition in a table is no longer feasible due to the number of agents and games. Instead,

we draw a value from a given distribution on demand, that is, every time the valuation function

is called. This procedure does not allow us to compare the precise quality of the solutions out-

putted by both algorithms, rather to estimate their values. To do so, we run each experiment

many times and average their results. We set the number of repetitions to 30.

To generate the constraints, for each experiment containing a di�erent number of

agents and games a new set of constraints is computed. This di�ers from the former experiments

because all instances with valuations from di�erent distributions use the same set of constraints.

That is, we only change how we compute a value for a coalition. We create all interaction

graphs randomly with a probability of 60% of an edge to connect any two agents. Regarding

the pivotal agents, we randomly pick, from A, q agents and insert them into the corresponding

set of pivotal, where q ∼ U(0, dn× 0.2e).
In our first set of experiments we set the number of games to 4 and introduce the

results in Figure 5.11. Recall that we use the QIR metric (Definition 26) to compare the quality

of the outputted solutions. Moreover, we set the UCT-Seq time budget to 60 seconds. The error

bars in the charts below stand for a confidence interval of 95% calculated on the 30 solutions

based on the t distribution. One can see that as we increase the number of agents UCT-Seq
maintains a better quality performance than MC-Link. In fact, that holds for all distributions;

even for R1 (Figure 5.11a), in which UCT-Seq computed poor solutions in the experiments in

Section 5.3.2. One can see as well that for R3 (Figure 5.11b) the general quality improvement

ratio decreases when compared with R1. This is expected as the FCSSs of great values might
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Figure 5.11: Comparison of MC-Link and UCT-Seq performance as we scale up the number of
agents for 4 CFGs.

have been constrained by R3. Regarding the UCT-Seq parameters, one can see no clear dif-

ference to determine which configuration is the best. Depending on the distribution at hand,

a configuration leads to an estimated solution of better quality than the other configuration.

Moreover, the error bars in the charts overlap, showing solution qualities in both configurations

may lay within the same range.

In our second set of experiments, we increase the number of games to 8 and depict

the results in Figure 5.12. This time the time budget is set to 120 seconds. UCT-Seq remains

computing solutions of better quality for R1 in all distributions (Figure 5.12a). However, when

it comes to R3, one can clearly see that the UCT-Seq performance decreased. In fact, in all

distribution but in the modified uniform and normal, the confidence interval dropped below

the MC-Link baseline quality. In those two distributions, an additional value is summed up to

the coalition value based on a probability of 20%. It suggests that UCT-Seq is more likely to

detect good combinations of coalitions in valuations that show that property. Again, no clear
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Figure 5.12: Comparison of MC-Link and UCT-Seq performance as we scale up the number of
agents for 8 CFGs.

best combination of UCT-Seq parameters. As a matter of fact, all combination of parameters

seem to lead to similar results in all experiments conducted.

Our next step is to evaluate the running time of both algorithms as we scale up the

number of agents. To do so, we run each algorithm 30 times and average the required time

to output a solution. For UCT-Seq, again, we set the time budget to 60 seconds for instances

containing 2 and 4 CFGs, and 120 seconds for instances containing 6 and 8 games. We record

the precise moment (in seconds) that a new FCSS was found and use that record during the

comparison. For instance, suppose that for an instance containing 2 games (60 seconds time

budget) the best solution was found after 30 seconds. Therefore, we store 30 seconds as the final

record. Moreover, we keep UCT-Seq running until it finds at least one solution for the problem;

even if the time budget is finished. In this experiment we consider only the NDCS distribution

as it provide unbiased search spaces (Rahwan et al., 2009b). We depict the running time results

in Figure 5.13.
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Figure 5.13: Comparison of MC-Link and UCT-Seq running time as we scale up both the number
of agents and games.

One can see an increase in MC-Link running time to compute a solution as we vary the

number of agents. Thus, the number of games is not the most significant factor that impacts

the running time performance of MC-Link. When it comes to UCT-Seq, it requires more time

than MC-Link to find a good solution. In fact, UCT-Seq keeps finding better solutions even

when the time budget is almost out. This is particularly the case for R1 (first line of charts

in Figure 5.13) where there exist many compatible coalition structures. On the other hand,

for R3 (second line of charts in Figure 5.13) when h = 8, we notice that the time budget of

120 seconds is not enough for computing solutions in that instance because the confidence

interval indicates expected running time above the time threshold. In fact, when n = 50, in

20 out of 60 repetitions (2 configurations of MCTS parameters) the UCT-Seq required more

than 120 seconds to compute a solution. Regarding UCT-Seq parameters, one can see again

no clear di�erence in performance regarding the configurations. However, this behaviour can

also be related to the time budget. Increasing it reasonably could be determinant for both

configurations to reach the same outcome.

5.3.4 Discussion

Having concluded the experiments with both heuristic algorithms, a number of con-

clusion can be stated. In general, given the same amount of time, MC-Link computes better

solutions, in terms of the value of the sequence, than UCT-Seq. However, MC-Link can easily

be caught in a local optimum and, more importantly, it is more sensible to constraints than

UCT-Seq, in particular the ones regarding sizes. In MCTS-based algorithms, one continues
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trying di�erent solutions as long as there is time available for that and therefore, it can avoid

local optima. However, to do so, UCT-Seq requires more time than MC-Link.

One should choose first MC-Link as an algorithm for solving SCFG-based problems

whenever it can compute a solution for them. Although both algorithms eventually output a

solution (in the UCT-Seq case, not only a solution, but an optimal solution as well), MC-Link
requires less time to do so. In fact, at the time of writing, we lack mechanisms to estimate

the UCT-Seq running time for any given application. The only alternative is to estimate it

beforehand empirically.

As we have noticed throughout this section, there is no general configuration of MCTS

parameters that determines a good result for every problem. This decision is domain dependent.

Nonetheless, we also noted that di�erent combinations of parameters generally share similar

quality solutions as they fall within the same range, given a 95% confidence interval. This

suggests that the parameters we have experimented with do not have a huge impact on the

UCT-Seq performance. Further investigations are required to determine the reasons for this

behaviour. For instance, it may be relevant to compare the number of compatible coalition

structures that are being found in both simulation and generation procedures.

Chapter Remarks

In this chapter, we proposed two di�erent heuristic algorithms to compute an FCSS.

The first algorithm, named MC-Link, is based on a hierarchical clustering method in which it

starts o� from the sequence of CS of singletons and mergers any two coalitions if the resulting

merger is compatible with the preceding CS. Then, it advances to the next CS in the sequence

and continues carrying out the same procedure until no merger is allowed. Our second algo-

rithm is based on Monte Carlo Tree Search (named UCT-Seq) and was developed to avoid local

optima in which MC-Link might be caught on. Two main challenges come up when designing

an MCTS approach for SCFG-based problems. The first one is to generate compatible actions

with the current state (i.e., transition from one CS to another). The other challenge regards

the simulation of a path in a subtree. We proposed domain independent methods to solve both

challenges. We experimented extensively with both algorithms and concluded that usually MC-
Link is faster than UCT-Seq to compute a solution. However, as UCT-Seq can explore di�erent

parts of the search space, given enough time, UCT-Seq eventually outperforms MC-Link in terms

of the quality of the outcome. Those two algorithms conclude Contribution 6 and 7.
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6. CASE STUDY

In this chapter, we show how one can use the SCFG framework to model a real-

world application. To this end, we consider a disaster response problem in which coalitions of

resources (e.g., firefighters, rescuers, and robots) must respond to a disaster incident. Disaster

response is a sensitive topic due to its major social and economical impact on the a�ected

communities. Usually, a team of responders is required to perform several tasks in the damaged

environment (hot zone), for instance, save victims. In case there is no prior knowledge about

the current situation (or specific tasks) that the responders will have to deal with, then they

must be prepared for a large number of di�erent tasks. In this context, we have to distribute

the set of available resources into teams; each possessing the required expertise and abilities to

comply with the designated objectives. In general, this sort of application can be modelled by

a single CFG. However, our main goal is to model the complete chain of command of a given

response operation following the constraints imposed by it, which makes the use of a single

CFG no longer possible (details in the sections below).

To bring about our goal, we first introduce the ICS (Irwin, 1989), a management system

designed for disaster response operations, in Section 6.1. We then, in Section 6.2, simplify the

ICS problem to consider only a fraction of its overall hierarchy: the Operations Section. This

section is responsible for acting upon the damaged zone and is organised into a three-level

hierarchy. In Section 6.3, we introduce a concrete example of a disaster response operation: the

Roaring River Scenario (RRF). It is used as part of the ICS training course (U.S. Department

of Agriculture, 2021). Having introduced it, we show in Section 6.4 how to model this scenario

and present two variations of the RRF problem. In the first variation, in Section 6.5, we assume

that resources acting upon the damaged zone can form coalitions only with the superiors (i.e.,

a personnel resource responsible for a set of resources) determined by the Operations Section

chief. In the second variation, we relax that constraint and allow the resources to form coalitions

on their own (i.e., without the presence of superiors in it). This is the main topic in Section 6.6.

Finally, in Section 6.7, we discuss the main findings and achievements in our approach to model

the problem of assigning resources throughout a chain of command.

6.1 The Incident Command System Framework

The Incident Command System (ICS) (Irwin, 1989) is designed to deal with multiple

organisations that respond to a disaster incident. Multiples incident managers are intended to

work together seamlessly. It was initially developed during a series of wildfire events occurring

in southern California in 1970. Since then, it has become so popular that it is now adopted and

used by FEMA (in the US) to respond to disaster events (FEMA, 2017).
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Figure 6.1: The Operation Sections hierarchical organisation on the left-hand side. On the
right-hand side, two sequences of coalition structures of length three. Each of them represents
a three-level hierarchy of agents starting at di�erent CSs.

The ICS establishes several general guidelines to respond to disaster incidents. Among

them, two are of particular importance to our work.

Span of Control: the ratio of command among superiors and subordinate units: 1
λ
; meaning

that one superior is responsible for at most λ subordinate units.

Modular Organisation: the organisational structure is adjusted according to the complexity

of the current event following the span-of-control guidance. For instance, if the event

occurs over a large area, then the span of control for a supervisor may be reduced (e.g.,

from five to two or three subordinate units per supervisor). This ratio is closely related to

the characteristics of a disaster event.

While the ICS’s overall organisational structure is much richer (five main sections are

defined), we focus on the Operations Section (OpS) as it already contains several key com-

ponents. It acts upon the damaged area of the disaster event, and its responsibilities include

achieving command objectives, tactical operations, contingency planning, among others. We

depict in Figure 6.1 the OpS hierarchical organisation. Branches, at the upper level, are di-

vided into divisions/groups. Divisions are allocated to geographical areas of the incident (e.g.,

because of di�erent jurisdictions). Groups represent a functional aspect of the operation (e.g.,

rescue group). The number of branches, divisions, and groups depends on the span-of-control

ratio (referred as λ here), which can make the units more manageable by their superiors. At the

bottom level, resources are organised into Task Forces (TF), Strike Teams (ST), or even Single

Resources (SR). Those are components of a partition of divisions and groups. A resource can

be a person or an individual piece of equipment (Irwin, 1989). Heterogeneous resources con-

stitute task forces, whilst strike teams are homogeneous. Usually the number of organisational

levels follow a bottom-up approach, in which once a superior is overwhelmed a new level is created

to make it fit into the span of control.

Applying the span of control feature to the coalition structure generation problem

means that a coalition in the upper organisational level may be split into at most λ coalitions in

the following level (i.e., the subordinate units). This mechanism establishes a chain of command
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in the ICS, in which each resource must have a supervisor. The authority system within a section

is as follows:

chief: a person responsible for a section;

director: a person responsible for a branch;

supervisor: a person responsible for either a group or division;

leader: a person responsible for either a task force, strike team, or single resource;

We shall use the term superior to capture the notion of leadership in a unity.

Figure 6.1 illustrates the problem we are facing: a series of coalition structures, further

refined at each subsequent level. The main problem is to find the best assignment of agents into

branches, groups, etc., respecting several constraints coming from the overall ICS process (size

of groups, superiors in each group, etc.). The question is then, how to represent all constraints

induced by an ICS instance over the sequence of coalition structures (one CS per hierarchical

level). We return to this problem in the section below.

The disaster response operation is guided by Incident Objectives (IO). They lead

to activities that must be carried out; for example, an IO to establish situational awareness.

During the management cycle (FEMA, 2017), given the current IO, the superiors should identify

the requirements for accomplishing them and then gather the relevant resources. To provide

an e�cient and e�ective resource identification (even across di�erent jurisdictions), the ICS

recommends to classify them according to their characteristics.

Capability: the core capabilities for which a resource is useful. Examples of core capabilities

are critical transportation and situational assessment (FEMA, 2015).

Category: the function for which a resource would be most useful. Examples of functions are

firefighting, health and medical (FEMA, 2017).

Kind: a broad characterisation of what a resource is. They are classified as either personnel,

team, facility, equipment or supply.

Type: describes a resource’s level of minimum capability to perform its function. One deter-

mines a resource’s type based on the resource kind and the mission envisioned for it. To

do so, the level of capability will follow from the resource’s size, power, and capacity (for

equipment) or experience and qualifications (for personnel and teams). Types are organ-

ised in a decreasing order Type 1 > Type 2 > . . . > Type k in which Type i is a higher

capability than Type i+ 1 for 1 ≤ i < k (FEMA, 2017).

To illustrate the core idea, consider Example 9. FEMA provides a set of predefined types in the

Resource Typing Library Tool (RTLT)1.

1https://rtlt.preptoolkit.fema.gov

https://rtlt.preptoolkit.fema.gov
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Example 9 (Ambulance Ground Team). Consider an ambulance ground team as introduced

in (FEMA, 2019, page 193). As capability, it provides basic life support and transports 2 non-

ambulatory patients. It is tagged with category emergency medical services. It has resource kind

team. Finally, the resource is tagged as Type 3, which means a crew of 2 personnel.

The success of the ICS framework in practice will depend on many factors as high-

lighted by Jensen and Waugh Jr (2014, Section 4). Out of those factors, we emphasise:

1. how well trained the participants are for using the ICS;

2. the pre-incident relationship between supervisors with one another as well as with their

subordinates; and

3. the authority system must be recognised as legitimate.

This leads to a need to specify the coalitions allowed to be formed as well as the chain of

command among the resources. To this end, we formulate the problem of forming the OpS

hierarchy as a SEQSVS problem.

6.2 The Operations Section as a SEQSVS Problem

We intend to model the distribution of resources throughout the hierarchy in such a

way that the span of control is enforced. Moreover, we model the problem as a hierarchy instead

of a single level (a single CS that represents the last hierarchical level) for twofold reasons:

1. We need to distribute the superiors to the coalitions that they can extract the most. We

note that a coalition acting upon the hot zone (i.e., a TF, ST, or SR in the last hierarchical

level) is influenced not only by its corresponding leader, but also by the superiors of upper

levels. The same reasoning applies to the leaders in which a good relationship is expected

throughout the chain of command. This is motivated by Jensen and Waugh Jr (2014,

Section 4) in which the authors discuss the importance of superiors.

2. We need to enforce the span of control between subsequent levels. Doing so, we form the

chain of command.

We showed in (Krausburg et al., 2021b) that the hierarchical structure required by the

Operations Sections, designed to enforce the span of control, can be modelled by the SCFG

framework. Given this result, we embark on the practical modelling of this important section

of the ICS. First, we establish what is expected from a single CFG. Then, given a sequence of

games, we determine the interdependence among their solutions.
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6.2.1 A Single CFG Problem for Disaster Response

Usually, disaster response operations inspire problems in which one assigns agents

to accomplish a set of tasks announced by the command centre. Ayari et al. (2017) model a

disaster response incident in which tasks have di�erent priorities, deadlines and are composed

of sub-tasks. To carry out a task, an agent needs a number of resources, and therefore the

agents responding to the event form coalitions to meet a task requirement. Mouradian et al.

(2017) focus specifically on robots. Each robot has two vectors of capabilities, one for sensing

(e.g., cameras) and other for acting (e.g., arms). Similarly, to complete a task, the required

sensing and acting capabilities must be met. To deal with tasks announced during a flood-

inspired disaster event (e.g., to collect samples of water), Basegio and Bordini (2018) investigate

composed tasks; each demanding particular roles to be carried out. Roles are mapped onto

capabilities that are possessed by the robots acting upon the flood incident. Ramchurn et al.

(2010) focus on the allocation of tasks given spatial and temporal constraints. This game is

motivated by the RoboCup Rescue competition which is inspired by an earthquake incident in

Japan.

The coalition structure generation problem has already been used to model a response

to a disaster incident. Wu and Ramchurn (2020) model a scenario in which a satellite, pow-

ered by radioactive fuel, has crashed in a sub-urban area (this scenario was first introduced by

Ramchurn et al. (2016) as an agent-based planning problem). The emergency services, that

respond to this incident, are composed of medics, soldiers, transporters and fire-fighters. These

are the roles. The scenario is modelled as a grid where responders must accomplish a set of

rescue tasks by dropping o� the targets at specific locations in the grid. A target can either

be a victim, animal, fuel, or other resource; therefore, four targets are considered. Each task

demands a set of roles in order to be carried out (a mapping targets onto roles). Each agent has

a di�erent di�erent level of capabilities while playing each of the four roles. This information

may represent its training for that role, past experience, etc. Doing so, one can estimate the

performance pCk of a coalition C to rescue a specific target k by summing up the capabilities of

each individual responder in C for each role required by target k. To determine a partition of

the resources, the function v(C) =
∑4

k=1 p
C
k is used. This way, Wu and Ramchurn (2020) form

coalitions that can deal with as many targets as possible.

In our particular application, we consider a CFG Γ = 〈A, v〉, where A = {a1, . . . , an}
is the set of resources assigned to the Operations Section. Moreover, a set of roles R is used

to easily identify resources, assigning them where they are needed. Each resource has a set

of capabilities which allows them to adopt roles in a disaster response operation. We use the

function cap : A ∪ R → 2Cap to map resources and roles onto a set of known capabilities Cap.

Doing so, we can construct the set of roles that a resource ai ∈ A may adopt, adopt(ai) = {r ∈
R | cap(r) ⊆ cap(ai)}. Given a disaster incident, the Operations Section must achieve a set of

incident objectives IO = {o1, . . . , om}. Each of them demands a set of roles, demand : IO → 2R.
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It should be clear now that this application can indeed be modelled using MAS organisation

frameworks as the ones discussed in Section 2.1.2.

A CFG Γ is induced by a Sized Valuation Structure π = 〈G , S ,Z 〉, where G = 〈A,E〉
is an interaction graph and S ⊆ 2A is a set of pivotal agents for that particular game. The

set Z establishes how many resources may participate in any coalition C ⊆ A. Moreover, for

each special agent in the game ai ∈ S (i.e., a superior), we assume he/she is responsible for

accomplishing a set of incident objectives IO. We use the function resp : S → 2IO to select the

objectives assigned to a given superior. Note that superiors might share an incident objective.

For instance, two task forces are deployed to rescue victims at di�erent locations. Both superiors

might share the same general goal of rescuing victims. Now, for a superior ai ∈ S , we can

construct the corresponding set of roles ai expects to have at its disposal to achieve its assigned

IOs expect(ai) = {r ∈ R | o ∈ resp(ai), r ∈ demand(o)}.
In this modelling we assume that a disaster response management system is available

in which the information above can be queried. This system will provide the set of capabilities

Cap as well as the set of roles R available for the disaster response operation. This assumption

is not disregarded from real-world operations as agencies that undertake them use systems to

help managing resources. For instance, consider the Interagency Resource Ordering Capability

(IROC)2 system used by agencies in the USA to manage resources as well as the incident itself.

Unfortunately, anonymised information about the resources was not disclosed.

Moreover, the use of capabilities is motivated by the requirements that each role ex-

pects from a resource. For instance, consider the position Fire Behavior Analyst3 defined by

the National Wildfire Coordinating Group in the USA. For this particular role, a resource is

expected to have concluded a set of training courses, a certain level of fitness condition, and

specific experiences4. As a second example, consider the position Wildland Fire�ghter defined

in the RTLT5. This role demands a number of concluded training courses, a certain physical

condition, and professional licenses. All of these requirements become capabilities in our model.

6.2.2 A Sequence of CFG Problems for Disaster Response

To connect each level of the hierarchy we use the SEQSVS model G = 〈A,H,Π,R〉.
The Operations Section contains three hierarchical levels: branch, group/division, and TF/ST/SR

levels. As stated in Section 6.1, the intuition behind the ICS hierarchy is to build it following

a bottom-up approach. Once leaders are overwhelmed, new hierarchical levels are created. We

follow this intuition and model the hierarchy in a bottom-up way as well. That means, our first

CFG corresponds to the bottom level of the hierarchy (i.e., TF/ST/SR level). Moreover, we use

2https://famit.nwcg.gov/applications/IROC
3https://www.nwcg.gov/positions/fban
4https://www.nwcg.gov/positions/fban/position-qualification-requirements
5https://rtlt.preptoolkit.fema.gov/Public/Position/View/4-509-1028

https://famit.nwcg.gov/applications/IROC
https://www.nwcg.gov/positions/fban
https://www.nwcg.gov/positions/fban/position-qualification-requirements
https://rtlt.preptoolkit.fema.gov/Public/Position/View/4-509-1028
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an additional CFG to keep track of the span of control of the OpS chief. That will be the fourth

game in our sequence in which only the grand coalition will be allowed to form. Therefore,

Γ = 〈Γπ11 ,Γ
π2
2 ,Γ

π3
3 ,Γ

π4
4 〉.

The set of pivotal agents in each game are the corresponding superiors at each hi-

erarchical level. We shall use throughout this chapter L to denote the set of all superiors.

That is, L =
⋃4
i Si. Regarding the size constraints, we set Z2 = Z3 = {1, . . . , n}. In the first

game, a coalition can have at most λ + 1 members (a superior and λ resources). Therefore,

Z1 = {1, . . . , λ+ 1}. In the last game, only the grand coalition is allowed, Z4 = {n}.
To connect the outcomes of the CFGs in the sequence of games, we design R as

follows.

De�nition 27 (Rbasis). Given CS ,CS ′ ∈ CSA, the pair (CS ,CS ′) ∈ Rbasis i�:

1. |CS | > |CS ′|; and

2. for all C ′ ∈ CS ′ there exist at most λ + 1 coalitions C ∈ CS such that
⋃
j C = C ′ : 1 ≤

j ≤ λ+ 1;

Moreover, (∅,CS ) ∈ Rbasis for all CS ∈ CSA.

Note that, without the fourth game (i.e., the OpS level) the CS of the branch level

CS 3 could have any number of coalitions. In fact, it could easily overwhelm the OpS chief. By

adding the fourth game, in which the CS CS 4 contains only the grand coalition, we enforce that

|CS 3| ≤ λ+ 1.

We delay on introducing the interaction graphs as they are specific to the problem

at hand that we want to solve. In this chapter we consider two di�erent problems. Thus, in

Sections 6.5 and 6.6 we introduce how we model the remaining constraints for each variation

of the main problem; which we introduce below.

6.3 The Roaring River Flood

As an application of SCFG, we aim to model a fraction of the hierarchy provided in

the the Roaring River Flood (RRF) scenario (U.S. Department of Agriculture, 2021). It is a

part of an ICS training course of the United States Department of Agriculture (USDA). In this

scenario, due to heavy rains, a severe flooding is now inundating the roaring river valley. Of

special concern are:

(i) the contamination of food processing plants;

(ii) the heavy damage to a USDA fruit fly research facility which determined the release of

thousands of fruit flies; and
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Figure 6.2: The hierarchical structure of the Operations Section for the Roaring River Valley
scenario.

Source: U.S. Department of Agriculture (2021)

(iii) the widespread livestock losses.

The entire Operations Section for this particular scenario is depicted in Figure 6.2. However,

we focus on modelling only the Vet Services and PPQ branches (the dashed red square). These

two branches o�er a good balance between complexity and easy explainability.

We extract the incident objectives directly from the ICS training course (U.S. Depart-

ment of Agriculture, 2021); in total, six are listed out. Each objective relates to a particular

group in the hierarchy in Figure 6.2. They are as follows:

• euthanize su�ering animals;

• dispose of animal corpses;

• identify relocation sites and relocate animals;

• control the movement of host material;

• eradicate fruit flies; and

• survey and identify fruit flies.

The last goal contains two main objectives that are unified for the Survey/ID Group (see Fig-

ure 6.2). In fact, in the training course description (U.S. Department of Agriculture, 2021),

3 strike teams are responsible for surveying fruit flies and 1 strike team has as its main goal

identifying fruit flies. Therefore, in the remainder of this chapter, we consider seven main IOs

as introduced in Table B.3.
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Although the RRF scenario provides a good explanation of the disaster response op-

eration, it does not provide all the necessary information to model and solve the problem of

distributing resources to act upon the damaged zone. For instance, it does not provide which

resources are identified and available for that particular operation. By identified resources we

mean resources that are classified according to the FEMA specification available in Section 6.1.

To continue modelling this application, we are to assume the missing information.

The set of capabilities: given the above mentioned incident objectives, we define a list of

capabilities to be available for the RRF disaster response operation. We introduce the

complete set of capabilities in the appendix in Table B.1.

The set of roles: we looked up roles in the Resource Typing Library Tool6 that are expected

to provide similar capabilities as the ones determined above. In Table B.2, we introduce

the list of roles along side with their respective set of capabilities Ids. Those roles are

proposed based on the ICS concepts of capability and type. We note that both information

can be merged into di�erent roles in which each role is a combination of a capability and

a type. For instance, the ICS resource typing establishes two types of Veterinary Assis-

tant resource. One can introduce two di�erent roles to represent that information; e.g.,

vet-assist-1 and vet-assist-2. From the gathered set of roles, we extract the expected

capabilities they are supposed to provide. This is a common procedure as the ICS specifica-

tion enforces typing each resource into known skills (called function in RTLT). We consider

only personnel-related kinds (i.e., personnel and team), although the ICS framework spec-

ifies also equipment, facilities and supplies as kinds (FEMA, 2017). In this application we

let them out.

Mapping objectives onto roles: given the IOs above, we assume a set of roles that would be

needed to have them accomplished. We introduce in Table B.3 the mapping of goals onto

a set of roles.

Given the information provided in the ICS training course combined with the comple-

mentary one described above, we are ready to model and solve the RRF problem.

6.4 The RRF as a SEQSVS Problem

We intend to provide the full hierarchy for those two branches. Apart from the coali-

tion structure at the last hierarchical level, we aim to model the relationship of each resource

regarding its superiors. Note this is not limited to its direct superior, i.e., the leader of a partic-

ular task force or strike team. We aim to model the relationship regarding superiors of upper

levels as well. This is due to the fact that their decisions a�ect the work developed in the hot

6https://rtlt.preptoolkit.fema.gov

https://rtlt.preptoolkit.fema.gov
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zone. For instance, how the resources in a particular strike team in the Euthanasia Group get

along with the Euthanasia Group’s supervisor. Furthermore, we need to form the hierarchy

keeping in mind the established span of control in order to not overwhelm any given superior.

We set the span of control to five (1 supervisor responsible for 5 subordinates units)

following the maximum number of task forces in the last hierarchical level (see Figure 6.2). We

assume that a set of resources (i.e., agents) has already been allocated to those branches and are

to be further organised into a sub-hierarchy. Moreover, we assume that for each branch, group,

strike team and task force, a superior has already been assigned by the Operations Section

chief.

6.4.1 Preliminaries

To solve the RRF problem, we assume a set of 101 and 141 resources. We detail those

instances in Section 6.4.2. The set of incident objectives and roles follow from Section 6.3. That

is, nine roles are required in the two branches of interest and seven main incident objectives

are established. We arrange the IOs in such a way that they form subsets as we move down in

the hierarchical structure. For instance, the director of PPQ branch is responsible as well for

achieving the goals from the Survey/ID, Control, and Regulatory groups.

Assigning Roles to the Agents

To assign a role to each agent, we do as follows.

• Each pivotal agent adopts a random personnel role.

• We select |R| agents and assign to each of them a single di�erent role in R. This is to

make sure that all required roles are adopted by at least one agent in the RRF response

operation.

• The remaining agents adopt a role based on a probability associated with each role in R.

To associate a probability value with each role r ∈ R, we compute a bound on the expected

quantity of roles. Assume a pivotal agent s ∈ S1 in game Γ1. Recall that the first game models

the TF and ST level. Given a span of control λ, let er be the number of expected agents adopting

role r computed as follows:

er =
∑

s∈S1:r∈expect(s)

⌈ λ

|expect(s)|
⌉
.

The main idea is that we look up in the leaders (of both TF and ST) to figure out which roles

they need. By summing up all their needs we can estimate the number of expected agents that
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should assume each role. Note that we can do this in a bottom-up approach to find out which

roles are required by supervisors in upper levels as well.

Example 10. Assume S1 = {s1, s2} and the span of control λ = 2. Leader s1 expects roles

{r1, r2}, and leader s2 expects roles {r3}. Then, in the overall operation we expect er1 = 1,

er2 = 1 and er3 = 2 (leader s2 expects a single role and the span of control is set to 2).

The probability of agent a ∈ A adopting role r is then computed using Equation 6.1.

Using this procedure, we first determine whether an agent is of kind personnel or team and then

compute a probability for that particular subset of roles. A resource has 50% chance of being

one of the two kinds.

P (a, r) =
er∑

r′∈R

er′
(6.1)

Example 11. Consider Example 10. The probabilities of agent a adopting a given role (as-

suming all roles to be of the same kind) are as follows P (a, r1) = 0.25, P (a, r2) = 0.25 and

P (a, r3) = 0.5.

Based on procedure described above, we assign roles to all resources in a given in-

stance.

Valuation Functions

Prior to introducing the valuation functions for the four-game sequence, we discuss two

important components of those functions. The first aspect is the relationship among resources.

We assume a function that evaluates the relationship between any two agents, regardless of

whether they are ordinary resources or superiors, relationship : A× A → [0, 1]. Note that the

relationship values does not change throughout the sequence, they remain constant. Then we

can compute the relationship within any coalition using a function relationship : 2A → [0, 1].

The second aspect addresses the roles available in a coalition. we seek to balance

the available roles within a coalition. For instance, suppose a coalition C requires roles r1

and r2, where |C| = 5. It is desirable that C contains 2 agents of role r1 and 2 agents of

role r2, instead of 1 agent of role r1 and 3 agents of role r2. Therefore, we define a function

disturbance : 2A → [0, 1] to calculate how unbalanced are the roles within any coalition.

We combine those two terms above and propose the valuation function in Equation 6.2.

vi(C) = |C| × (relationshipi(C)− disturbancei(C)) (6.2)

The first three games in the sequence Γi ∈ H calculate the coalition values based on the valua-

tion defined above. In the last game, we set it to zero to not modify the overall value computed

for the three main levels, v4 : C 7→ 0. We show the exact instantiation of both components in

the sections that introduce each problem, i.e., Section 6.5 and 6.6.
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The rationale behind the characteristic function in Equation 6.2 is: the more resources

in a coalition the better, given that the coalition has a balanced number of roles. Usually in the

literature the size of a coalition is given as a sub-additive function, i.e., the more agents in it

the greater the loss in value (Bista�a et al., 2017b). However, in our case, the span of control

set for the disaster response operation already takes this matter into account. Therefore, we are

only considering coalitions that are manageable by its corresponding superiors.

Metrics

To evaluate the coalitions that compose a hierarchy, we use two metrics that are related

to the valuation function in Equation 6.2.

Relationship: we aim to form coalitions in which their members get along well with one an-

other. To this end, the greater a relationship value the better the coalition.

Role Disturbance: aims to evaluate the distribution of roles within a coalition. The lesser the

disturbance value the better the coalition.

How those metrics are calculated follows from the components of the valuation function which

we introduce for each RRF problem at hand.

Modifications to UCT-Seq

From the results in Section 5.3.3, we noted the UCT-Seq running-time performance

drops as we increase the number of agents. Indeed, in preliminary experiments, for the instances

containing 101 agents and a timeout of one hour, UCT-Seq computed no solution regardless of

the chosen parameters. To address this problem, we can adjust the generation process of CSs.

Fortunately, a pair (CS ,CS ′) ∈ Rbasis (Definition 27) for the RRF problem requires a CS CS ′ in

which all of its coalitions are a superset of some coalitions in CS (from the bottom level of the

hierarchy up to the uppermost level). To speed up the search, we can just enforce this constraint

in UCT-Seq. To do so, we modify Definition 23 to take into account the preceding CS in the

sequence as follows.

Given a coalition C ∈ CS and an interaction graph G = (A,E ′), let FC be the set of

agents that are compatible with all agents in C according to G . That is, FC = {a′ ∈ A\C | ∀a ∈
C, (a, a′) ∈ E ′}. Then, we modify how a SEQSVS game is induced over a 2-coloured graph.

De�nition 28 (2-coloured Graph Gc induced by Γπ). Given a CFG Γ = 〈A, v〉 induced by

an SVS π = 〈G , S ,Z 〉 and a CS CS , where G = 〈A,E ′〉, a 2-coloured graph GΓπ is a tuple

〈V,E, c, w〉 where:

• V = {C ∈ CS};

• E = {(u, r) | |F u ∩ r| 6= ∅};
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• c is a function E → {green, red}; and

• w is a function E → R.

We basically make the coalitions in CS the initial nodes and the execution of the

generator remains the same. The mechanism above does not make the generator e�cient; that

is, given a level l and a CS CS it generates exactly the CSs in XCS
l . However, it does avoid

computing many CSs.

6.4.2 Roaring River Flood Instances

Our first step is to generate an instance containing 101 agents assigning to each re-

source a single role. That is, we assume that every resource’s capabilities maps onto a single

role. We followed the procedure described in Section 6.4.1 to assign a role to each agent. More-

over, the RRF problem, as introduced in Section 6.3, allows more agents than the 101 stated

above to form a full hierarchy. That is, a hierarchy in which at the TF and ST level all leaders

have λ-subordinate resources. In fact, a full hierarchy is formed with 141 resources: 31 superiors

and 22 × 5 ordinary agents at the last hierarchical level. For this particular case, we are not

interested in agents adopting randomly one of the available roles. Instead, we assign the roles

required by the leaders in its exact quantity. We depict both generated distributions of roles for

101 and 141 resources in Figure 6.3.

The green bars stand for the number of roles required by the leaders at the TF and ST

level of the hierarchy. That is, summing up the roles expected by each leader s ∈ S1. The first

two bars (left to right) show the number of superiors in the RRF instances (i.e., the superiors

in all levels). The blue bars depict the number of agents adopting each role in an instance

containing 101 resources. Similarly, the purple bars show the same information for an instance

containing 141 resources though. Finally, the yellow bars stand for a bound on the quantity of

roles required to solve the problem. This is calculated based on the requirement of each leader

(in the bottom level) and the span of control. For instance, given λ = 5 and 2 leaders who

require 5 resources of the same role r1 each, then the bound for role r1 will be equal to 10.

The complete description regarding each role is introduced in Table B.2 and we shall use their

acronyms to refer to particular roles.

Considering 101 resources, one can see in Figure 6.3 that role ABS is required by a

single leader and only 5 agents are adopting it. This means, supposedly, they should form a

single coalition with the corresponding leader. Quite interestingly, we can note that roles VMT

and ASRTec show a higher demand than availability. That means, some leaders will not get

its desired subordinate resources. Moreover, for this particular instance, no role exceeds its

demand. That is, there are enough leaders for each resource. The roles in which this index is

pushed closer to the limit are ACHO, ASRT, and AADAT. For 141 resources, the available roles

are supposed to match the leaders’ expectations. The special case here is for the task forces
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Figure 6.3: Comparison between required and available roles when resources may adopt at most
one role. Refer to Table B.2 for a description of the roles.

in which the role ASRT takes on the exceeds to complete the required size. This is due to the

fact that a task force in this problem requires three roles while the span of control is set to five.

Therefore, a coalition at the TF and ST level cannot have two resources of each required role.

Our next step is to generate instances in which a personnel agent may adopt at most

3 roles. This can be the case, for instance, when a resource is of higher type (i.e., Type 1) and

is skilled enough to assume any of the remaining types. We assume that resources of kind team

must stick with a single-role-adoption rule. We understand that the corresponding team roles

are too dissimilar in this application. However, it is completely feasible to consider a team that

can play di�erent types. Again, we assume instances containing 101 and 141 resources. We

depict the resulting distributions of roles in Figure 6.4.

One can see a sharp increase in the available roles for the RRF response operation. In

fact, the demand is exceeded in all personnel related roles (team roles end up with letter ‘T’ in

their acronyms). However, one should note that it is not equal to the absolute number of roles

available to be put into work in the damaged zone. Recall that a resource can work only for a

single coalition at the TF/ST level. Once it has decided to adopt a role, the remaining two roles

are no longer available to be assigned to other coalitions.

6.5 A Hierarchy of Resources for the RRF Problem

In this section, we aim to form a hierarchy of resources in which each ordinary re-

source is either accompanied by a superior of the corresponding level or isolated in a singleton
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coalition. We refer to this problem as a fixed-hierarchy. To do so, we introduce below: (i) the

instantiation of the two components of the valuation functions (i.e., the relationship and the

role disturbance); and (ii) the constraints placed on the interaction graphs. Then, we move on

to the experiments.

6.5.1 Components of the Valuation Functions

In this problem, ordinary agents are supposed to be subordinated to a superior. There-

fore, we evaluate the relationship between subordinate agents and the superiors of the corre-

sponding level. To do so, we use Equation 6.3, where C is a coalition, and Si is the set of

superiors of the corresponding level i.

relationshipi(C) =
1

|C \ Si|
×
∑

a∈C\Si

relationship(a, C ∩ Si) (6.3)

In case C is a singleton coalition, then the relationship is set to 0.

Regarding the roles, we do not assume a precise number of roles required by each

superior at the last level of the hierarchy (nonetheless, for the upper hierarchical levels this can

be computed). To figure out which roles are required in a coalition C, we look at the pivotal

agents of the TF and ST level that are in C. Let require(C) be a multiset that counts the role

demands (which role and which quantity) required by a coalition C. That is, require(C) = {r ∈
expect(a) | a ∈ C ∩ S1}. Note that the quantity per role in expect(a) is always a single unity
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because in the TF and ST level, we do not assume a predefined requirement on the quantity of

roles. Let mrequire(C)(.) count the multiplicity of an element in a multiset require(C).

Example 12. Assume a leader l1 ∈ S1 and a coalition C : C ∩ S1 = ∅ formed for the third

game Γ3 (i.e., the branch level). Moreover, let expect(l1) = {r1, r2}. Thus, require(C ∪ {l1}) =

{r1 : 1, r2 : 1}. Now, assume another leader l2 ∈ S1 such that expect(l2) = {r2}. Thus,

require(C ∪ {l1} ∪ {l2}) = {r1 : 1, r2 : 2}.

Similarly, let available(C) be a multiset of roles in C adopted by its ordinary agents.

That is, available(C) = {r ∈ adopt(a) | a ∈ C \ L}.
Now we are in position to calculate the role disturbance within a coalition C. To do

so, we calculate the relative entropy (Kullback-Leible distance) (Dragomir et al., 2000) within a

coalition according to the roles adopted by its agents. Let P (r) be the proportion of agents in

C that adopt role r computed using Equation 6.4.

P (r) =
mavailable(C)(r)∑

r′∈available(C)(mavailable(C)(r′))
(6.4)

Similarly, let Q(r) be the proportion of agents that must adopt role r computed using Equa-

tion 6.5.

Q(r) =
mrequire(C)(r)∑

r′∈require(C)(mrequire(C)(r′))
(6.5)

Then, we can compute the relative entropy using Equation 6.6.

D(P ‖ Q) =
∑

r∈require(C)

P (r) ln
P (r)

Q(r)
(6.6)

To compute the role disturbance within a coalition in the fixed-hierarchy problem we use Equa-

tion 6.7.

disturbancei(C) =
D(P ‖ Q)

ln |require(C)| (6.7)

Consider the example below.

Example 13. Assume a coalition C such that require(C) = {r1 : 1, r2 : 2} and available(C) =

{r1 : 1, r2 : 2}. Then, disturbance(C) = 0. In case, available(C) = {r2 : 2}, then disturbance(C) ≈
0.58. If the quantity of available roles move away from the baseline requirement, then the distur-

bance increases as well. For instance, if available(C) = {r1 : 3, r2 : 2}, then disturbance(C) ≈
0.21. If available(C) = {r1 : 4, r2 : 2}, then disturbance(C) ≈ 0.33.

However, it is not always the case that the disturbance function above can/should

compute a valid result. We consider some special cases:

• if available(C) = ∅, then disturbance(C) = 1;

• if require(C) = ∅, then disturbance(C) = 1; and
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• if |require(C)| = 1, then disturbance(C) = 0 (only resources of the same role required).

6.5.2 Constraints on the Interaction Graph

The set of pivotal agents and permitted sizes are already defined for the problem (see

Section 6.2). All that remains to be done is for us to model the constraints on the interaction

graphs. To do so, given an interaction graph Gi : 1 ≤ i ≤ h, an edge (u, r) ∈ Ei connects a
superior u ∈ Si to any resource if either:

• r ∈ L \ Si and resp(r) ⊆ resp(u); or

• |adopt(r) ∩ expect(u)| ≥ 1.

6.5.3 Experiments

Given the instance above, we run UCT-Seq using the following parameters: (i) b̄ = 5;

(ii) d̄ = 3; (ii) γ = 0.7. These are determined empirically. We set a timeout of 30 minutes and

record the best hierarchy computed within the time budget. We conducted all experiments in a

machine with 32 GB of RAM and a CPU with four single cores of 3400 MHz each. In our first

experiment, we aim to form a hierarchy of 101 resources in which each resource adopts a single

role. We use the relationRbasis (Definition 27) to determine the feasibility in an FCSS. We depict

the resulting hierarchy (without the OpS level) in a bar chart representation in Figure 6.5a. Note

that we depict the hierarchy in its natural representation, that is, first the branch level, then the

group level and finally, the TF and ST level.

One can link the coalitions of di�erent levels by following the coalition Ids. For in-

stance, in Figure 6.5a, at the uppermost level there exists coalitions C1, C2, and C3. The

coalitions subordinated to C1 are the coalitions C11, C12, C13 and C14 in the second level.

Similarly, the coalitions subordinated to C11 are C111 through C116. Underneath each coalition

Id, we depict the corresponding coalition size. In case a singleton coalition corresponds to a

superior of an upper level, we set both relationship and disturbance metrics to 0 (e.g., C14).

The resulting hierarchy in Figure 6.5a let no ordinary resource or superior isolated; all

coalitions have a corresponding superior and a subset of subordinate resources. Our primary

goal was achieved and a fixed hierarchy is delivered by UCT-Seq. Moreover, one can notice

greater relationship values in coalitions located at bottom levels. In the branch level, the average

relationship is ≈ 50%. In the subsequent level it increases to ≈ 56%, and in the third level it

achieves ≈ 76%. Regarding the roles, three coalitions depict a great disturbance value at the

bottom level (C114, C115, and C125). All three coalitions are task forces each requiring 3 roles

in which only 1 role is available and 2 roles are missing. The missing roles are AETRT (required

by all three leaders), ASRTec, and VMT. In the role distribution in Figure 6.3, one can note
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(a) Personnel resources may adopt up to 1 role.
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(b) Personnel resources may adopt up to 3 roles.

Figure 6.5: A hierarchy of 101 resources computed by UCT-Seq for an RRF instance. The first
chart (in both figures) represents the branch level of the hierarchy and the third chart the TF
and ST level.

that those roles were in higher demand than availability. Therefore, we seek to minimise the

loss regarding the final allocation of those resources.
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In our next experiment, we investigate a setting in which a personnel resource may

adopt more than one role (up to three roles). We depict the resulting hierarchy in Figure 6.5b.

One can see in the chart that an ordinary resource is left apart in the resulting hierarchy

(C215), even though this resource contributes to the two upper levels. This resource adopts only

role ABS. Looking again at the role distribution in this instance in Figure6.4, one notices that

more resources can adopt this role than it is demanded. Therefore, it is reasonable that an agent

adopting this role cannot form a coalition with the corresponding leader of the strike team.

Moreover, we see once more two coalitions with a great disturbance value (C114, C115). Those

coalitions require additionally roles AETRT and VMT, which are roles adopted by resources

of kind team and therefore, none of those resources is allowed to adopt more than a single role.

When it comes to relationship, at the uppermost level the average value is ≈ 52%, followed

by ≈ 55% in the second, and ≈ 78% in the third. That means, the overall relationship was

increased when compared with the instance in which any resource must adopt a single role.

Next, we investigate the hierarchy formed by 141 resources when each agent may adopt

only a single role. Recall that for the RRF problem, in this instance, there are enough ordinary

resources (i.e., resources who are not superiors) so that each leader has exactly λ-subordinate

resources. We depict the resulting hierarchy in Figure 6.6.

In this setting no ordinary resource is left apart and one can see that all coalitions in

the last hierarchical are full. That is, each leader has at its disposal λ subordinate resources. The

relationship within the coalitions follow the same pattern as we saw in the former experiments:

greater values at the last hierarchical level. Precisely, in the branch level it achieves 49%, in the

group level ≈ 50%, and 78% in the bottom level. One note a decrease in the relationship value

in the first two levels (when compared to the former experiments), but it matches the value for

the third level. We can also note that the role disturbance plays a role only in the task forces.

This is due to fact that a TF requires 3 di�erent roles but only 5 ordinary resources are allowed

in each coalition.

6.6 A Hybrid Hierarchy of Resources

In the previous section, the resources had no choice other than to form coalitions with

predefined superiors or stay in singleton coalitions. In a variation of the RRF problem, we relax

the fact that all superiors are given as input; some may be given and others will be decided

depending on the result of the computed FCSS, hence the name hybrid. Apart from the span of

control and sets of pivotal agents, the algorithm also determines new coalitions in the hierarchy

based on the characteristic functions. To model this particular problem, we need to make sure

that the span of control continues to be followed. Moreover, we slightly modify the valuation

functions (more precisely, their two components) and the constraints placed on the interaction

graphs. We refer to this particular variation of the problem as a hybrid hierarchy.
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6.6.1 Components of the Valuation Functions

Given the fact that ordinary resources do not need to be in the same coalition as the

pivotal agents, we modify the relationship component to take into account any two agents in a

coalition. This is given in Equation 6.8.

relationshipi(C) =
1(|C|
2

) × ∑
a,a′∈C:a6=a′

relationship(a, a′) (6.8)

In case C is a singleton coalition, then the relationship value is set to 0.

Regarding the role disturbance, we just need to adjust how we compute the proportion

of roles to ignore roles required by superiors. Recall that available(C) is a multiset counting the

quantity of roles adopted by the ordinary agents in a coalition C. This time we use an entropy

value (Dragomir et al., 2000) computed using Equation 6.9. Recall that P (r) is the proportion

of agents in coalition C adopting role r.

H(P ) = −
∑

r∈available(C)

P (r) lnP (r) (6.9)

Then we compute the role disturbance using Equation 6.10.

disturbancei(C) =
H(P )

ln |available(C)| (6.10)

We also consider some special cases:

• if available(C) = ∅, then disturbance(C) = 1; and

• if |available(C)| = 1, then disturbance(C) = 0 (only resources of the same role in C).

6.6.2 Constraints on the Interaction Graph

To allow the resources to form coalitions that do not contain superiors, we add more

edges in the interaction graphs. Let us introduce an auxiliary notation. Let Ra be a set of roles

that are compatible with the roles that resource a may adopt. That is, Ra = {r ∈ demand(o) |
o ∈ IO, adopt(a) ∩ demand(o) 6= ∅}. Then, given an interaction graph Gi : 1 ≤ i ≤ h, an edge

(u, r) ∈ Ei such that r /∈ L connects any two resources if either:

• u ∈ L and adopt(r) ∩ expect(u) 6= ∅; or

• u /∈ L and adopt(r) ∩Ru 6= ∅.



125

6.6.3 Connecting the Outcomes of the Games

We slightly modify the binary relation Rbasis (Definition 27) to achieve a hierarchy

with no mandatory superiors.

De�nition 29 (Rhybrid). Given CS ,CS ′ ∈ CSA, the pair (CS ,CS ′) ∈ Rhybrid i�:

1. |CS | > |CS ′|;

2. for all C ′ ∈ CS ′ there exist at most λ + 1 coalitions C ∈ CS such that
⋃
j C = C ′ : 1 ≤

j ≤ λ+ 1;

3. if j = λ+ 1, then ∃Ĉ ∈ CS : Ĉ ⊆ C ′, |Ĉ| = 1, Ĉ ∩ L 6= ∅.

Moreover, (∅,CS ) ∈ Rhybrid for all CS ∈ CSA.

In the definition above, we introduced Rule 3 to make sure a superior is assigned to

a set of coalitions whenever we reach the span of control plus one. If that is not the case, the

algorithm forms at most λ coalitions and no superior must be assigned to them. As Rhybrid is

enforced on the whole sequence of coalition structures, we cannot make Rule 3 to hold only for

the superiors of the subsequent level in the hierarchy. To address this, one would have to model

it using a binary relation on each transition between games as discussed in Section 3.4.

6.6.4 Experiments

We experiment with the instances for 141 resources introduced in Section 6.4.2. How-

ever, this time considering a hybrid hierarchy. We conducted all experiments in a machine with

32 GB of RAM and a CPU with four single cores of 3400 MHz each. We shall use the same bar

chart representation to show the resulting hierarchy as described in Section 6.5. Recall that we

depict the hierarchy in its natural representation, that is, first the branch level, then the group

level and finally, the TF and ST level. We depict the results in Figure 6.7.

When each personnel resource adopts a single role, two new coalitions are formed

at the uppermost level (see Figure 6.7a). They are coalitions C3 and C4. Quite interestingly,

those coalitions contains 4 out of the 22 leaders of the last level, and only one supervisor of the

intermediate level (out of six supervisors). In fact, the new coalitions remain the same in both

branch and group levels. That is, they do not split themselves from the first level to the next

one. In total, 13 new coalitions are formed: 2, 3, and 8, in the uppermost level to the bottom

level respectively. The average relationship value in the first two levels achieved: ≈ 54% in the

branch level and ≈ 56% in the group level. In the last hierarchical level that average dropped

to ≈ 75%. Thus one can see an increase in upper levels’ relationship at the expense of the last

level’s relationship value.
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The main question is then which goals the new coalitions are prepared to achieve. A

further look reveals that in the branch level the two new coalitions can achieve 2 out of the

7 IOs. Interestingly, coalition C1 has resources who adopt roles that can achieve those two IOs

as well. However, at the bottom level, the average number of IOs each coalition can achieve is

≈ 1, 2 whilst in a fixed hierarchy it approaches ≈ 1, 23. That means most coalitions can work

on a single goal, and whether a hierarchy is hybrid or fixed does not impact this index. Instead,

we expect it to be influenced by the number of roles an agent may adopt, which we experiment

with next.

Our last experiment increases the number of roles a personnel resource may adopt to

three. We consider again 141 resources that must form a hierarchy for the RRF problem. We

depict the resulting hierarchy in Figure 6.7b. This time, 17 coalitions with no superior were

formed. Nonetheless, 9 coalitions out of the 17 belong to the two upper hierarchical levels (3

and 6 coalitions respectively), and only 8 to the last one. Interestingly, two superiors of the

intermediate level are left apart in the hierarchy. Moreover, the average relationship metric

outperforms the values obtained in the former experiment in all three levels: ≈ 57%, ≈ 63%

and ≈ 78% in the first, second, and third level respectively. When it comes to the average of

IOs that the coalitions can achieve at the bottom level, it rises up to ≈ 2, 1. This is expected as

the resources can adopt more roles and hence, in general, the superiors have more flexibility to

assign an IO to a given coalition.

6.7 Discussion

In the two main experiments reported in this chapter, we showed how our approach

can be used to model two variations of the RRF problem. The first one considering a fixed

hierarchy in which all superiors are determined by the OpS chief. The resources have no choice

but to comply with it. In the other variation of the problem, we relax that constraint and allow

ordinary resources to form coalitions on their own. That means, for instance, the resources could

elect a superior among themselves afterwards. In both cases UCT-Seq computed a hierarchy for

the problem at hand, which, in our viewpoint, makes our overall goal achieved. Moreover, the

fact that we are forming coalitions to achieve incident objectives seems to fit well the underlying

core concept in coalition formation. One is interested in grouping agents that want to bring

about some given goal. No concrete task is assigned at this point of the response operation.

For instance, a task in which a resource should dispose of 5 animal corpses at coordinate (x, y).

Doing so, we deliver groups of agents for the first stage of cooperation life-cycle (described in

Section 2.1.1).

We showed how to model task forces and strike teams in our framework. Although

not required in the RRF problem, we believe single resources can also be modelled easily in

our proposed formalism. Regarding modelling divisions, one approach could be to connect

agents over the interaction graph that are in the same jurisdiction; that is, edges connection
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(a) Personnel resources may adopt up to 1 role.
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(b) Personnel resources may adopt up to 3 roles.

Figure 6.7: A hybrid hierarchy of 141 resources computed by UCT-Seq for an RRF instance.
The first chart (in both figures) represents the up-most level of the hierarchy and the third chart
the bottom level.

agents of di�erent jurisdictions are removed. Doing so, one can compute all main elements

in the Operations Section. Our modelling might be extended to take into account the entire

ICS hierarchy as well. However, the problem then turns out to be how to design valuation
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functions that are general enough to describe well coalitions aimed for quite di�erent purposes.

For instance, coalitions of the Planning and Finance Sections (FEMA, 2017). An important

characteristic of MAS and yet to be addressed in the ICS is autonomous software entities. In

the light of the advances in the disaster robotics area (Murphy, 2014), in which an agent might

control a robot, many challenges arise, e.g., how to design a valuation function that brings

together resources of kind personnel and team as well as those autonomous entities. However,

note that those are challenges in any coalition formation framework, not restricted only to

SCFG.

When it comes to modelling the ICS problem using SEQSVS (or SEQVS), the inter-

action graphs are the main tools to model di�erent sorts of constraints. For instance, in our

modelling we used them to link the roles adopted by the resources to the ones required by the

superiors. Although those constraints can be very narrow (i.e., a few edges in an interaction

graph), for the problems introduced in this chapter many FCSSs can be formed. We depict

in Figure 6.8 the quality improvement of the solutions computed by UCT-Seq over time (in all

experiments). We mark in the chart the precise moment an FCSS of greater value was found.

Moreover, for each FCSS computed by UCT-Seq throughout the execution, we mark with a dot

the precise point in time it was found and the current value of the best FCSS found so far; that

explains the discontinuous lines in Figure 6.8. Recall that the time budget in our experiments

was 30 minutes for instances requiring a fixed hierarchy and 1 hour for the hybrid ones.

One can see that the number of improvements on solutions found by UCT-Seq is greater
for hybrid hierarchies, regardless of the time budget. In fact, in those instances, from 30 minutes

on, only 5 updates on FCSSs were carried out. That suggests the heuristic applied by UCT-Seq
works well for the problems as we can see that many more FCSSs were computed. In fact, for a

fixed hierarchy of 101 resources adopting a single role 10.502 FCSSs were computed. When each

personnel resource adopts at most three roles, that number increases to 11.343 FCSSs. When

it comes to 141 resources adopting a single role, 5.151 FCSSs were found after 30 minutes.

On the other hand, for hybrid hierarchies, after approximately 10 minutes UCT-Seq
starts increasing the interval between finding better solutions. Interestingly, to compute a hybrid

hierarchy of 141 resources adopting a single role, UCT-Seq went through 5.434 FCSSs in twice

the time than for a fixed hierarchy of the same size. When we increase the number of possible

roles an agent can adopt, the quantity of FCSSs found increases to 12.865. Note that in both

cases the algorithm found FCSSs until the time budget ran out. This suggests it is much more

di�cult to find FCSSs in the hybrid-1 scenario than in the hybrid-3.

As a matter of fact, one should bear in mind that the ICS application modelled here

lacks feedback from experts on disaster response operations. In particular, incident comman-

ders and section chiefs. They might modify (narrow/relax) the constraints as they see fit as well

as the valuation functions. Our main motivation in this chapter was to show that modelling a

real-world problem is feasible using SCFG, and in particular using SEQSVS. Further e�ort is
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Figure 6.8: Comparison of the running time used by UCT-Seq to progressively improve on
the solution quality. The first component of an approach indicates if the resources must form
coalitions only with superiors (fixed description). The second component indicates how many
roles a personnel resource is allowed to adopt and the third the number of resources available.

required to validate the proposed modelling of the ICS with experts on the topic, although we

followed the ICS, a well-known approach in that area, exactly as reported in the literature.

Chapter Remarks

In this chapter, we introduced the ICS framework and discussed in detail the Opera-

tions Section, which is responsible for the tactical operations in the environment a�ected by a

disaster incident. To demonstrate how one can use one of our proposed frameworks and algo-

rithms to solve a real-world problem, we modelled the roaring river flooding scenario introduced

by an agency in the US as part of an ICS training course. In particular, we modelled two cases:

(i) when resources are required to form coalitions with predefined superiors; and (ii) cases in

which there are designated superiors for the response operation, but the resources are allowed

to form coalitions on their own provided it increases the overall social welfare. We computed a

three-level hierarchy for these problems and showed how one can define metrics to evaluate the

resulting chain of command in terms of the relationship among resources and the role distur-

bance (i.e., missing or more than necessary roles in a given coalition). Although the application

introduced in this chapter was not reviewed by an expert on the topic, we are confident that the

proposed modelling can be used to address the requirements of a disaster response operation.

This concludes Contribution 8. Moreover, we make available all code generated as a product

of this research at: https://github.com/smart-pucrs/SCFG. This concludes Contribution 9.

https://github.com/smart-pucrs/SCFG
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7. CONCLUSIONS

In this thesis, we investigated the interdependence of the solutions computed by dif-

ferent Characteristic-Function Games (CFG) placed in a sequence of games. In particular, we

noted that it is not always the case that individual optimal outcomes (one per game) are com-

patible with one another. Moreover, no game is to be solved in isolation, which means the

solution produced by a CFG might lead to an unfeasible overall solution. To the best of our

knowledge, no formal framework has been proposed to address this particular problem in the

coalition formation literature. Given this unexplored venue, we proposed a new framework

called Sequential Characteristic-Function Games (SCFG) in which one aims to compute a se-

quence of coalition structures. When every CS in that sequence is compatible with its respective

subsequent one (modelled using a binary relation), we call the sequence a Feasible Coalition

Structure Sequence (FCSS). This forms the solution concept for our game.

We extended that new sort of game to take into account constraints that come from

individual games in the sequence. That means, a particular coalition structure might appear

only at a particular position in an FCSS. As a result of this approach, we proposed two new

frameworks. The first assumes a sequence of Valuation Structures (VS) that are induced over

the corresponding CFGs in an SCFG (called SEQVS). A VS allows us to express constraints

in the form of a set of agents in the system that must stay in di�erent coalitions. In addition,

one can further express constraints using an interaction graph over the agents in the system.

To make it possible to model constraints on the size of the coalitions as well, we extend VS.

The resulting framework is called Sized Valuation Structures (SVS), and when combined with

SCFG is called SEQSVS.

Our overall goal was to model a real-world application, in particular, the challenging

Incident Command System (ICS). It establishes guidelines on the best practices one should

follow in order to respond to a disaster incident. It has been put in practice first in the US and

then ended up being used by many agencies in di�erent countries. The problem of interest

for us is how to form a hierarchy of resources taking into account the designated superiors

throughout the chain of command (i.e., a hierarchy) as well as the span of control which defines

a manageable ratio between superiors and subordinate units. Our approach is to interpret each

level of the hierarchy as a di�erent CFG. The overall hierarchy is then modelled by an SCFG.

In particular, we used the SEQSVS framework to model the specifics of each level.

7.1 Summary of Results and Discussion

We investigated the problem above under both theoretical and practical perspectives.

We showed that the corresponding SCFG decision problem lays in the PSPACE-complete class

(Theorem 2). This is already the case when one considers an algorithm that generates precisely
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the coalition structures that may follow each other in the sequence of games. From an empirical

viewpoint, we proposed an exact algorithm based on dynamic programming (called SDP) to
solve SCFG based instances. We showed that even for a reasonable amount of time (1 hour

in the experiments reported here), it can solve only instances containing a small number of

agents (up to 10 agents for large binary relations). However, if compared with a brute-force

algorithm, it is faster by several orders of magnitude. One should bear in mind that SDP
requires a supporting algorithm to generate the CSs that follow each other in the sequence.

To obtain the best performance from SDP, such an algorithm should be e�ective; that is, it

should generate only coalition structures compatible with a given one. Those are not trivial

procedures as we are enumerating the coalition structures that fit together in the binary relation

of the problem at hand. Recall that solving the coalition structure generation problem is shown

to be F∆P
2 -complete (Greco and Guzzo, 2017).

The question is then to show how to avoid the generation of pairs of coalition struc-

tures. We proposed MC-Link which uses a hierarchical clustering method to compute an FCSS

starting with a sequence of CSs of singleton coalitions. It assumes as input a procedure to check

whether or not subsequent CSs in the sequence are allowed. To determine the next CS to check,

it employs a simple greedy procedure based on the gain of merging any two coalitions (Equa-

tion 5.1). This strategy indeed computes a solution in shorter periods of time if compared to all

algorithms introduced in this thesis. However, the side e�ect is that MC-Link does not handle

e�ciently constraints on the size of coalitions and coalition structures. The above characteristic

makes MC-Link incomplete for many problems.

In the absence of a general procedure to compute solutions for SCFG, we turned

our attention once again to algorithms that use a procedure to generate compatible CSs. We

proposed an algorithm based on Monte Carlo Tree Search (MCTS) named UCT-Seq. This

algorithm is complete (Theorem 5) and is guaranteed to produce an optimal outcome given a

su�cient amount of time. Two main challenges arise in this approach: (i) the generation of pairs

of CSs; and (ii) the roll-out of a path to reach a terminal state. To address the first problem, we

exploited the constraints imposed by both VS and SVS. This means we generate a compatible

CS based on the constraints on the next game and filter out incompatible CSs based on the

binary relation of the game. However, even in this approach, the generative algorithm is not

e�cient; it produces many more CSs than required.

To address the second problem, we decided to perform a series of split and mergers

operations in a random manner. We observed that, in general, constraints might not be related

to the values assigned to coalitions. That is, incompatible coalition structures might be good

solutions in terms of valuation in subsequent games. Therefore, there exists a trade-o� in em-

ploying an informed search during a roll-out for this problem. In the experiments reported here,

with up to 50 agents, we noted that MC-Link is faster than UCT-Seq (given a general genera-

tion and roll-out procedure). However, given a reasonable additional amount of time, UCT-Seq
computes solutions of better quality than MC-Link. The combination of the two problems above
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represents the main challenge to come up with a good algorithm to tackle any SCFG related

problem using an MCTS approach.

Aware of the limitations in designing algorithms to compute FCSSs, we investigated

how to apply the mechanism developed so far to a real-world problem. In particular, we con-

sidered the Roaring River Flooding (RRF) scenario used in an ICS training course (U.S. De-

partment of Agriculture, 2021). We showed that SEQSVS provides an elegant way of modelling

the problem of forming a hierarchy of resources to respond to that synthetic disaster incident.

Moreover, we slightly modify our modelling to allow a hybrid hierarchy of resources. That is,

not all superiors of the hierarchy are given, and then we allow coalitions with no pivotal agent

of the corresponding level to form. We then used UCT-Seq to compute solutions for problem

instances containing 101 and 141 resources given a modification in its generation of CSs pro-

cess. The resulting hierarchy delivered a way to analyse and interpret possible vulnerabilities

in the organisation of the resources throughout the chain of command.

7.2 Future Work

Our new game is clearly challenging and opens up various research directions. For

instance, consider the payo� distribution problem, another important aspect of the coalition

formation process. In case the solutions of many CFGs are interdependent, the question is then

if we can reach a stable distribution of the payo� given the current solution concepts available

in the literature (e.g., the Shapley value (Shoham and Leyton-Brown, 2009)). For instance, an

agent might willingly agree to reduce its reward in a set of particular games in the sequence

provided an increase in its reward in a particular subsequent game. This direction will also

require further complexity analysis as well.

Another natural extension to SCFG regards the compatibility of a CS throughout the

sequence rather than in pairs. The SCFG framework models whether two subsequent CSs

are compatible with each other. However, in some applications (refer to the discussion in

Section 3.2) the complete subsequence that precedes a CS might be relevant to determine its

compatibility, not only the preceding CS. The precise relation between SCFG and this sort of

game is to be determined, in particular how it a�ects complexity results presented in this work.

Further e�orts should be made to identify tractable classes of SCFG. As we discussed

throughout this thesis, evaluating the interdependence of the outcome produced by di�erent

games is challenging. Our theoretical analysis combined with our modelling of real-world sit-

uations confirms this hypothesis. While modelling the RRF application, we noted that a small

change in the process of generating compatible coalition structures allowed us to scale up the

experiment to more than 101 agents. That change is relation-dependent; it applies to all prob-

lems that require all coalitions to be a superset of a coalition in a subsequent CS. This raises the

question of how to model constraints that impact on other games. Certainly, one can achieve

this by listing out the CSs of interest in R. However, this is not desirable for real-world ap-
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plications, unless the corresponding relation R can be compactly represented and computed.

Therefore, future work should investigate heuristics and techniques that can be employed by

algorithms to generate pairs of coalition structures belonging to the SCFG relations on-the-fly.

We also mention the improvement of the algorithms proposed here as a possible di-

rection for future work. For instance, regarding MC-Link, we would like to compute solutions

that are within a bound of an optimal solution. When it comes to UCT-Seq, faster and more

e�cient methods to compute the generation of CSs as well as the roll-outs are desirable.

Another venue for future work is related to the ICS. We were not able to validate the

proposed modelling with experts on the topic. This is important to build a robust mechanism.

It is desirable to collect more features that are of interest to those responsible for minimising

the losses in disaster incidents. Also, we aim to gather realistic data regarding disaster re-

sponse operations to feed into our proposed SEQSVS model. Unfortunately, for the time being,

this sort of information is not publicly available, even for research purposes. Nevertheless, we

believe the produced material is mature enough to be brought into discussion in the disaster

response community, for instance, the information systems for crisis response and management

community1.

As a final remark, it is also important to model di�erent domains using SCFG. In

this work we focused mainly on the disaster response domain. However, we expect this type of

game can be used to model other challenging applications. A promising application is training

sessions as discussed in Section 3.2. Instead of considering a single project, one might be

interested in the overall outcome throughout a sequence of projects assessing di�erent abilities

of the participants. Again, the main challenge regards gathering the data for the experiments.

For instance, we would need data about projects carried out by companies, specially large

corporations.

1https://iscram.org/

https://iscram.org/
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APPENDIX A – GLOSSARY

Acronym Var Meaning

— A a set of agents

— n the size of A

— C a subset of agents (coalition)

— CA the set of all coalitions over A

CS CS a partition of A (coalition structure)

— CSA the set of all coalition structures over A

— v(C) a function mapping 2A → R
— V (CS )

∑
C∈CS v(C)

CFG Γ a tuple 〈A, v〉

— G an interaction graph

— S a set of pivotal agents

VS σ a tuple 〈G , S 〉
— CSσ the set of all CSs induced by a VS σ

— Γσ a CFG game induced by a VS σ

— Z a set of allowed coalition sizes

SVS π a tuple 〈G , S ,Z 〉
— π̄ given a SVS π, a tuple 〈G , S , {1, 2, . . . ,max(Z )}〉
— Cπ the set of all coalitions induced by an SVS π

— CSπ the set of all CSs induced by an SVS π

— Γπ a CFG game induced by an SVS π

— H a totally ordered sequence of CFGs

— h the length of H
— R a binary relation on CSA

— XCS {CS ′ ∈ CSA | CS R CS ′}
CSS CS a sequence of CSs

FCSS CS a feasible sequence of CSs

— CS∗ an optimal FCSS

— V(CS)
∑h

i=1

∑
C∈CS i

vi(C) : CS i ∈ CS

SCFG G a tuple 〈A,H,R〉

— Π a totally ordered set of VSs

— Γ a sequence of CFGs induced by VSs

SEQVS G a tuple 〈A,H,Π,R〉

continued on next page
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Table A.1 – continued from previous page

Acronym Var Meaning

— XCS
l a set of CSs in XCS that follow the constraints of level l

— Tree(root) a rooted tree with root root which corresponds to ∅
— x, y, z nodes in the tree

— Tree(x) the tree induced by the descendants of x

— path a sequence of nodes 〈∅, x1, . . . , xk〉
— Act [CS ] a list of CSs built on the fly corresponding to XCS

— x.parent the parent node of x

— x.CS the corresponding CS of x

— x.l the level where x is placed in the tree

— x.children a finite list of child nodes of x

— x.N a counter of visits to x

— x.val the cumulative reward of x

— x.expanded a Boolean variable stating whether x has been fully expanded

— x.terminal a Boolean variable stating whether x is terminal

— x.i an index pointing to the last CS evaluated from Act [x.CS ]

— L a set
⋃h
i=1 Si

— Cap a set of capabilities

— R a set of roles

IO IO a set of incident objectives

— cap a function mapping A ∪R→ 2Cap

— demand a function mapping IO → 2R

— resp a function mapping S → 2IO

— relationship a function mapping A× A→ [0, 1]

— disturbance a function mapping 2A → [0, 1]

— adopt(ai) a set {r ∈ R | cap(r) ⊆ cap(ai)}
— expect(ai) a set {r ∈ R | o ∈ resp(ai), r ∈ demand(o)}
— require(C) a multiset of roles required by the superiors in C

— available(C) a multiset of roles adopted by ordinary agents in C

— er the number of agents that should adopt role r
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APPENDIX B – SYNTHETIC INFORMATION FOR THE

ROARING RIVER FLOOD SCENARIO

To properly model the Roaring River Flood (RRF) problem, we assume two important

information that are missing in the scenario description (U.S. Department of Agriculture, 2021).

Those are: (i) capabilities of interest for the disaster response operation; and (ii) the set of

roles that provide the expected capabilities. In the ICS training course (U.S. Department of

Agriculture, 2021), six general incident objectives are introduced:

1. euthanize su�ering animals;

2. dispose of animal corpses;

3. identify relocation sites and relocate animals;

4. control the movement of host material;

5. eradicate fruit flies; and

6. survey and identify fruit flies.

However, the last goal contains two main objectives that are unified for Survey/ID Group (Fig-

ure 6.2). Thus, we break it into two IOs as introduced in Table B.3.

Given the IOs above, we determine the set of capabilities required to properly respond

to the flood incident. All capabilities are shown in Table B.1.

Table B.1: Capabilities proposed to model the RRF scenario.

Id Capability Description Id Capability Description

(1) handling of animals (2) medical care to ill or injured animals
(3) enforce animal-related laws (4) provide safe and humane capture
(5) containment of animals (6) depopulate animals
(7) evacuation of animals (8) identify and document animals
(9) animal tracking (10) load and unload animals
(11) reunificate animals with their owners (12) search and rescue of animals
(13) triage/prepare animals for transport (14) coordinate captures
(15) medical triage of animals (16) clinical examinations
(17) perform surgery (18) investigate cases of animal disease
(19) support vet duties (20) assess damaged site
(21) assess agriculture infrastructure (22) assist in planning response/recovery
(23) spray chemical products (24) assess behaviour of animals

Our next step in to determine the roles for the RRF problem. To do so, we looked up in

the Resource Typing Library Tool (RTLT)1 roles that have functions similar to the capabilities

above. The set of roles found and their corresponding capabilities are shown in Table B.2.

1https://rtlt.preptoolkit.fema.gov/Public

https://rtlt.preptoolkit.fema.gov/Public
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Table B.2: Roles collected from the resource typing library tool.

Role Id Acronym Capability Ids

Animal Control/Humane O�cer2 (1) ACHO 3, 4, 5
Animal Depopulation Specialist3 (2) ADS 6, 23

Animal Depopulation Team4 (3) ADT 6, 23
Animal Evacuation, Transport, and Re-Entry Team5 (4) AETRT 1, 7, 8, 9, 10, 11

Animal Search and Rescue Team6 (5) ASRT 8, 12, 13, 14
Animal Search and Rescue Technician7 (6) ASRTec 9, 12, 7

Veterinary Medical Team8 (7) VMT 2, 15, 16, 17, 18, 19
Animal and Agriculture Damage Assessment Team9 (8) AADAT 13, 20, 21, 22

Animal Behavior Specialist10 (9) ABS 24

Finally, we map each incident objective to a set of roles. This is process is commonly

conducted by the incident commander or Operations Section chief (FEMA, 2017).

Table B.3: Incident objectives for the RRF and their corresponding group and required roles.

General Incident Task Group Role Ids

euthanize su�ering animals Euthanasia 3
begin the disposal operation Disposal 2, 4, 6

identify relocation sites and relocate animals Relocation 4, 5, 7
control the movement of host material Regulatory 1

eradicate the fruit flies Control 2
survey for fruit fly locations Survey/ID 8

identify fruit flies Survey/ID 9

2https://rtlt.preptoolkit.fema.gov/Public/Position/View/1-509-1333?q=Animal%20Control%2FHumane%20O�cer
3https://rtlt.preptoolkit.fema.gov/Public/Position/View/1-509-1335?q=Animal%20Depopulation%20Specialist
4https://rtlt.preptoolkit.fema.gov/Public/Resource/View/1-508-1222?q=Animal%20Depopulation%20Team
5https://rtlt.preptoolkit.fema.gov/Public/Resource/View/1-508-1223?q=Animal%20Evacuation%2C%20Transport%

2C%20and%20Re-Entry%20Team
6https://rtlt.preptoolkit.fema.gov/Public/Resource/View/1-508-1224?q=Animal%20Search%20and%20Rescue%

20Team
7https://rtlt.preptoolkit.fema.gov/Public/Position/View/1-509-1339?q=Animal%20Search%20and%20Rescue%

20Technician
8https://rtlt.preptoolkit.fema.gov/Public/Resource/View/1-508-1230?q=Veterinary%20Medical%20Team
9https://rtlt.preptoolkit.fema.gov/Public/Resource/View/1-508-1221?q=Animal%20and%20Agriculture%

20Damage%20Assessment%20Team
10https://rtlt.preptoolkit.fema.gov/Public/Position/View/1-509-1331?q=Animal20Behavior20Specialist

https://rtlt.preptoolkit.fema.gov/Public/Position/View/1-509-1333?q=Animal%20Control%2FHumane%20Officer
https://rtlt.preptoolkit.fema.gov/Public/Position/View/1-509-1335?q=Animal%20Depopulation%20Specialist
https://rtlt.preptoolkit.fema.gov/Public/Resource/View/1-508-1222?q=Animal%20Depopulation%20Team
https://rtlt.preptoolkit.fema.gov/Public/Resource/View/1-508-1223?q=Animal%20Evacuation%2C%20Transport%2C%20and%20Re-Entry%20Team
https://rtlt.preptoolkit.fema.gov/Public/Resource/View/1-508-1223?q=Animal%20Evacuation%2C%20Transport%2C%20and%20Re-Entry%20Team
https://rtlt.preptoolkit.fema.gov/Public/Resource/View/1-508-1224?q=Animal%20Search%20and%20Rescue%20Team
https://rtlt.preptoolkit.fema.gov/Public/Resource/View/1-508-1224?q=Animal%20Search%20and%20Rescue%20Team
https://rtlt.preptoolkit.fema.gov/Public/Position/View/1-509-1339?q=Animal%20Search%20and%20Rescue%20Technician
https://rtlt.preptoolkit.fema.gov/Public/Position/View/1-509-1339?q=Animal%20Search%20and%20Rescue%20Technician
https://rtlt.preptoolkit.fema.gov/Public/Resource/View/1-508-1230?q=Veterinary%20Medical%20Team
https://rtlt.preptoolkit.fema.gov/Public/Resource/View/1-508-1221?q=Animal%20and%20Agriculture%20Damage%20Assessment%20Team
https://rtlt.preptoolkit.fema.gov/Public/Resource/View/1-508-1221?q=Animal%20and%20Agriculture%20Damage%20Assessment%20Team
https://rtlt.preptoolkit.fema.gov/Public/Position/View/1-509-1331?q=Animal20Behavior20Specialist
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