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PROPOSTA DE CONTROLE DE MANY-CORES ATRAVÉS DE UMA
APLICAÇÃO DE GERENCIAMENTO

RESUMO

A grande quantidade de cores em sistemas many-core introduziu desafios para gerenciá-
los, incluindo escalabilidade, portabilidade e redução da interferência do gerenciamento
sobre as aplicações em execução. Trabalhos disponíveis na literatura propõem um ge-
renciamento fortemente acoplado ao sistema operacional do many-core. Tal acoplamento
implica em baixa flexibilidade para a modificação das organizações de gerenciamento, e
baixa portabilidade. O estado-da-arte também mostra que poucos trabalhos propuseram
organizações de gerenciamento, sendo que a maioria dos trabalhos se aproveitam de orga-
nizações presentes na literatura, como as baseadas em clusters e por-aplicação, para ava-
liar a qualidade de uma única meta proposta, como, por exemplo, potência ou temperatura.
O presente trabalho propõe uma organização de gerenciamento, denominada de Aplicação
de Gerenciamento (MA), que é fracamente acoplada à sua plataforma alvo. A MA propõe
um gerenciamento como uma aplicação distribuída, permitindo que a mesma se beneficie
do poder de processamento paralelo intrínseco aos many-cores. Comparado a uma orga-
nização baseada em clusters, os custos e os benefícios em gerenciar um benchmark com
restrições de tempo-real usando a MA revelam menor ocupação de memória e maior vazão
de gerenciamento devido à paralelização provida pela MA. Esse trabalho também propõe
uma heurística de mapeamento que separa virtualmente o espaço de busca em clusters
para reduzir o custo de execução, mantendo uma visão centralizada do sistema. Essa heu-
rística também conta com um procedimento de desfragmentação embutido. Resultados são
avaliados contra uma heurística do estado-da-arte em gerenciamento baseado em clusters
e por-aplicação, revelando redução na distância média entre tarefas comunicantes e tempo
de execução da heurística similar à abordagem baseada em clusters. A desfragmentação
usa a migração de tarefas como meio de atuação, conseguindo reduzir a distância entre
tarefas comunicantes usando poucas migrações. O arcabouço da MA é otimizado com a in-
tegração de uma rede intrachip baseada em broadcast, usada para troca de mensagens de
gerenciamento, e com a adição de uma estrutura de monitoramento que se aproveita dessa
rede e do mecanismo de acesso direto à memória para reduzir a sobrecarga de monitora-
mento. A rede reduz a interferência na comunicação das aplicações de usuário e melhora
o tempo de execução, enquanto a estrutura de monitoramento permite menor latência de
gerenciamento. Por fim, a organização MA é aplicada a uma plataforma equipada com um
processador RISC-V, reduzindo o número de instruções executadas e o uso de memória.
O resultado final é uma plataforma many-core que implementa a organização MA com um
processador do estado-da-arte.

Palavras-Chave: many-core, Aplicação de Gerenciamento, ODA, broadcast, RISC-V.



PROPOSAL OF MANY-CORE CONTROL THROUGH A MANAGEMENT
APPLICATION

ABSTRACT

The increasing core count in many-core systems introduced management challenges, in-
cluding scalability, portability, and reducing the management overhead to user applications.
Works available in the literature have their management tightly coupled to the many-core
operating system. This coupling implies low flexibility for modification of the management
organizations and reduced portability. The state-of-the-art also shows that few works pro-
posed management organizations, being that most works exploit organizations present in
the literature, such as cluster-based and per-application, to evaluate the quality of a single
goal, such as power or temperature. The present work proposes a management organiza-
tion called Management Application (MA), which is loosely coupled to its target platform. MA
proposes a management as a distributed application, benefiting from the parallel processing
power intrinsic to many-cores. Compared to a cluster-based organization, the costs and
benefits to manage a benchmark with real-time constraints using the MA revealed improved
memory footprint and higher management throughput due to the parallelization provided by
the MA. This work also proposes a mapping heuristic that virtually separates the search
space in clusters to reduce the execution cost, keeping a centralized view of the system.
This heuristic also has a built-in defragmentation procedure. Results are evaluated against
a state-of-the-art heuristic in clustered and per-application management, revealing reduced
distance between communicating tasks and similar heuristic execution time to the clustered
approach. Defragmentation uses task migration as actuation means, decreasing the dis-
tance between communicating tasks using few migrations. The MA framework is optimized
by integrating a broadcast-based network-on-chip, used for exchanging management mes-
sages, and a monitoring structure that exploits this network and the direct memory access
mechanism to reduce the monitoring overhead. The network reduces the interference in
user applications and the execution time, while the monitoring structure allows smaller man-
agement latency. Lastly, the MA organization is applied to a platform equipped with a RISC-V
processor, reducing the number of executed instructions and the memory footprint. The final
result is a many-core platform that implements the MA organization with a state-of-the-art
processor.

Keywords: many-core, Management Application, ODA, broadcast, RISC-V.
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1. INTRODUCTION

Many-cores emerged from massive hardware and software technology improve-
ments, posing possible solutions for the power wall, memory wall, and Instruction Level
Parallelism (ILP) wall [Manferdelli et al., 2008]. Woo and Lee [Woo and Lee, 2008] following
the emergence of quad-core and octa-core processors, predicted the usage of more than
1000 cores in a single platform. Recently, Esperanto Technologies unveiled its new chip
for machine learning, which contains a superscalar out-of-order quad-core processor, plus
1089 in-order multithreaded RISC-V cores in a single die [Peckham, 2020].

The increased number of cores results in complex resource allocation problems.
These problems are addressed by the many-core management. In a many-core, the com-
munication mechanism must serve all cores with reduced delays, and the performance must
meet the requirements of tasks that are often real-time ones. Power dissipation must also
be under the designed budget, being even more limited in domains such as the Internet of
Things (IoT). Temperature should not exceed the physical limits while being appropriate to
prevent excessive silicon wear. Using proper management structures, many-core systems
are set to meet one or more management objectives that can be conflicting, such as power
versus performance.

Following the complexity introduced by large core count and the resulting manage-
ment challenges, there are also scalability issues. Many-core management scalability has
been solved initially by separating the many-core system into clusters, reserving processors
to manage these areas. Another approach is to reserve one manager processor for each
application running in the system. Both methods present weaknesses. The main drawbacks
of these approaches include the specialization of a set of processors for management, re-
quiring a dedicated Operating System (OS), and the lack of modularity.

The many-core increasing requirements also demand the management to be multi-
objective, to trade-off conflicting goals. These conflicting goals can vary over time and are
hard to change in state-of-the-art platforms due to the management being tightly coupled
(see Definition 1) to the OS and hardware. Fast hardware and software evolution demand
modularity (see Definition 2) and portability (see Definition 3) so the management organiza-
tions can evolve with the platform.

The three concepts regarding the many-core management problems in the litera-
ture can be defined as:

Definition 1. Coupling – it is the degree of interaction between modules of a system. The
software should have low, or loose, coupling [Pressman and Maxim, 2019]. In the context
of operating systems, the coupling measures the dependency between kernel and nonker-
nel modules [Yu et al., 2004]. Many-cores, between management (nonkernel) and kernel,
can be affected by the two highest degrees of coupling: common coupling and content
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coupling. Common coupling occurs when two or more modules reference the same global
structure, possibly leading to uncontrolled error propagation and to unforeseen side-effects
when one of the commonly coupled module changes. Content coupling occurs when mod-
ules share the same code, violating information hiding [Pressman and Maxim, 2019], i.e.,
possibly requiring extensive modification if the design of one of the content coupled module
changes. Tight coupling is connected to fault-proneness, reduced portability, and maintain-
ability. These problems are largely caused by the phenomenon that dependencies within the
code lead to regression faults [Yu et al., 2004].

Definition 2. Modularity – in this work, modularity is defined as the ability to add, modify, or
remove management goals from the many-core, either at design time or runtime. Modularity
at runtime can be achieved by enabling to allocate and deallocate the set of tasks responsi-
ble for managing a goal, allowing to switch the management decision priority based on the
system state.

Definition 3. Portability – it is the ability to use a same management organization, goals,
and heuristics between distinct many-cores while reusing code. Hardware- and OS-dependent
organizations are not suitable for portability, leading to a slow development process and bad
quality ad-hoc adaptations. One way to make the management agnostic of the platform is
to make it work like an user application running in the many-core. Thus, it can be ported to
other platforms by changing only the interactions with lower-level system services as long
as a good programming interface between management and OS is defined.

State-of-the-art management organizations reveal few-to-none concerns with mod-
ularity or portability. In the literature, few works address a management organization ex-
plicitly. These works use consolidated management organizations to evaluate an algorithm
quality, a communication strategy, or any other particularity of a platform. The present work
does not follow the same objective and proposes a framework for the Management Applica-
tion (MA) organization, which is loosely coupled to the hardware and OS, targeting modular
goals.

Section 1.1 presents the motivations that guide the development of this work. Sec-
tion 1.2 briefly presents the target platform of this work. Section 1.3 enumerates the goals of
the work. Finally, Section 1.4 presents the organization of the remaining of this document.

1.1 Motivation

The motivation for this work is twofold:

1. The Author’s previous experience in many-cores showed that system services imple-
mented at the kernel level impose challenges in adding or modifying management
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goals. These goals are tightly coupled to the platform services, resulting in a consid-
erable effort to support different hardware architectures than the one targeted by the
management, often leading to ad-hoc solutions.

2. The state-of-the-art also does not present portable and modular management organi-
zations. Most of these works focus only on the management objectives quality, without
proposing how the management structure is organized. Chapter 3 presents the state-
of-the-art and discusses this problem in detail.

1.2 Target Platform

The Memphis platform [Ruaro et al., 2019a], described in Section 2.4, is used
as the many-core baseline for the present work. This platform was modified during the
MA development to achieve the strategic goal. Modifications were made in the hardware
description, written in C++ with SystemC libraries, in the OS kernel code, written in C and
assembly, and in the system build tools, written in Python.

1.3 Objectives

The strategic objective of this work is to provide a Management Application (MA)
framework for many-core management employing the Observe, Decide, Act (ODA) paradigm
[Hoffmann et al., 2013], loosely coupled (Definition 1) to the operating system and hardware.

To fulfill this strategic objective, it is necessary to meet the following specific goals:

1. Remove the many-core management tasks from the target platform OS, reducing the
latter memory footprint and discarding dedicated OSs for management purposes;

2. Define the method to execute ODA tasks in userspace, making the MA modular (Defini-
tion 2) using a proper communication Application Programming Interface (API), system
monitors, and actuation mechanisms;

3. Develop a mapping heuristic tailored to the MA;

4. Use the Quality of Service (QoS) management objective to evaluate the proof-of-
concept MA with task migration;

5. Make the MA organization agnostic of the hardware, turning it possible to replace the
processor, evidencing portability (Definition 3).
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Figure 1.1: Document organization, highlighting the main work contributions.

1.4 Document Organization

This work is organized as follows. Chapter 2 describes basic concepts related
to many-cores required in this work. Chapter 3 presents the state-of-the-art in many-core
management organizations.

Chapter 4 to Chapter 7 present the original contributions of this work, according to
Figure 1.1:

• Chapter 4 presents the MA framework [Dalzotto et al., 2021b] and a proof-of-concept
implementation to evaluate a QoS management goal through task migration actuation.

• Chapter 5 presents the monitoring framework using a dedicated control Network-on-
Chip (NoC) named BrNoC, to transmit management and monitoring messages, im-
proving the MA performance.

• Chapter 6 details a task mapping heuristic to be used with MA [Dalzotto et al., 2021a].
Two reasons justify this proposal: (i) the change of the management organization in
the target platform that removed its clustering, which was necessary for the former
mapping heuristic, requiring a new one; (ii) the use of the QoS goal for the proof-of-
concept implementation. This goal uses the task migration actuation, which needs a
mapping heuristic.

• Chapter 7 presents the replacement of the original Memphis processor, Plasma, by
the RISC-V processor, demonstrating the portability achieved by the MA approach.

Chapter 8 concludes this work and points-out directions for future work.
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2. BASIC CONCEPTS

Many-cores are Systems-on-Chip (SoC) with simple processors replicated multiple
times instead of few complex processors, granting benefits in power consumption and chip
surface area [Asanovic et al., 2009]. Higher performance in many-cores is achieved with
more explicit parallelism [Shalf et al., 2009].

This Chapter explains many-core concepts that guide this work. Section 2.1 in-
troduces the goals that a many-core management must accomplish. Section 2.2 presents
how a many-core management can be organized to provide those goals. Section 2.3 shows
OS concepts from a many-core software point of view. Finally, Section 2.4 presents the
Memphis many-core platform, used as the baseline architecture for this work.

2.1 Many-core Management Goals

To fully exploit the parallelism offered by many-cores it is necessary to execute
several management tasks, such as: map tasks to cores aiming lower communication delay
and energy; allows these tasks to migrate to avoid hot spots, solve mapping fragmentation,
and meet deadlines; enable Dynamic Voltage and Frequency Scaling (DVFS) to keep the
execution under power and temperature constraints or even target more reliability or lifetime.

According to Rahmani et al. [Rahmani et al., 2018b], developers usually configure
a many-core environment to meet a few fixed objectives, while ignoring the dynamics of
embedded systems goals. Figure 2.1 shows some conflicting goals that the Authors propose
to switch at runtime. Switching goals at runtime based on the environment, the system
changes, and the workload demand is called a multi-objective resource management.

One possible way to implement multi-objective resource management is to use the
ODA control loop [Hoffmann et al., 2013]. This paradigm provides a modular way to organize
the development of new management objectives through the division of roles into observa-
tion, decision, and actuation. It also allows better portability because it is only needed to
update the tasks that interact with the system to port the management organization to an-
other platform, eliminating redesign. The tasks that interact directly with the system are
actuation and observation tasks. The ODA main advantage is the coordinated manage-
ment of the components, which provides more efficiency and facilitates the multi-objective
approach. The ODA control loop is divided into three phases:

• Observe - Extracts information about the system and task status, such as task period,
deadline and execution time, temperature data, and communication latency.
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Figure 2.1: An adaptive resource management scheme. The workload and system
variations trigger a goal switcher that changes the management objectives at runtime. The
different goals can be conflicting, such as “System Throughput" and “Power and Energy".

Source: [Rahmani et al., 2018b].

• Decide - Algorithms that decide the management action. Here enters the multi-objective
approach, where the decision can be made from multiple different data from the ob-
serve phase.

• Act - Applies the decision made in the previous step, integrating the ODA loop to the
hardware or the operating system through techniques such as DVFS, task migration,
establishment of communication paths, and changes in priority of task scheduler.

2.2 Many-core Management Organization

The many-core management organization defines where the management is lo-
cated within the many-core and how it is executed in a many-core. Figure 2.2 presents
the three main organization classes: centralized management, Cluster-Based Management
(CBM), and Per Application Management (PAM).

In centralized management, shown in Figure 2.2a, the designer allocates one Pro-
cessing Element (PE) of the many-core, called Global Manager (GM), to be the controller
of all management actions. Figure 2.2b shows a CBM organization, which besides using a
GM to synchronize the whole many-core management, separates it into regions controlled
by Local Managers (LM). PAM is another distributed way to manage a many-core, shown in
Figure 2.2c, that dynamically assigns a manager for each running application.

The state-of-the art presented in Chapter 3 discusses works related to each orga-
nization, evaluating their pros and cons.
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(a) Centralized
management.

(b) CBM. (c) PAM.

Figure 2.2: Management organizations present in the literature.

2.3 Kernel Designs

Tanenbaum and Bos [Tanenbaum and Bos, 2014] see an OS as a hardware ex-
tension, which implements device drivers and abstraction layers to support application pro-
gramming. They also see the OS as a resource manager, multiplexing their use in time
and space through task scheduling and memory allocation, among other techniques. Fig-
ure 2.3 shows that the OS runs its core software – called kernel – in a privileged Central
Processing Unit (CPU) mode, the kernel mode, with access to all machine instructions and
memory space. Simultaneously, applications run in user mode, having a subset of the CPU
instructions available and only accessing the memory allocated to the application.

Figure 2.3: How a typical system is partitioned. Source: [Tanenbaum and Bos, 2014].

Kernel designs follow specific organization structures, but there are two that stand
out: monolithic and microkernel. The monolithic design is the entire OS linked in a single
binary. It can be very efficient when there are few functionalities and when the size of the
OS remains moderate. In this case, there is a low overhead in calling functions from the
kernel, and procedures can be shared between system services. Kernel functions available
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to applications can be achieved by system calls, or syscalls. Syscalls are triggered by trap
instructions that elevate the CPU privilege from user mode to kernel mode. Linked to a
single binary, the entire OS is executed in kernel mode.

To Biggs et al. [Biggs et al., 2018], running the whole OS in kernel mode can be
considered a flawed design because it increases the system trusted computing base, and
due to the nature of all code containing bugs, it can lead to vulnerabilities. Tanenbaum
and Bos [Tanenbaum and Bos, 2014] cite the same problem leading to full system crashes,
reducing the overall reliability.

The microkernel approach achieves modularity, splitting the functionality of the OS
into small programs. Only the microkernel itself runs in privileged kernel mode, while its
modules run in user mode. It is essential not to confuse this concept with kernel modules in
a monolithic context, where a module represents device drivers being attached to the kernel
and running in kernel mode. The microkernel function is to execute only the minimum nec-
essary for the system to work, like MINIX 3 [Tanenbaum and Bos, 2014], that only schedules
processes, handles interrupts, and manages Inter-Process Communication (IPC).

Figure 2.4 shows a layered organization of privileges that microkernels can take
advantage of, with each module running with a minimum of privilege level. It is possible for
the drivers to run unprivileged, requiring a call to the microkernel to access Input and Output
(I/O).

Figure 2.4: The Intel x86 Ring Architecture. Source: [Reid and Caelli, 2005].

Figure 2.5 shows a comparison between the partitioning of a microkernel and a
monolithic approach, showing that instead of syscalls, microkernel uses IPC to communicate
between services.

This work uses microkernel concepts to apply resource management, such as de-
taching management modules from the kernel and executing this modules in user mode,
and using IPC through message-passing.
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Figure 2.5: Monolithic (left) vs. microkernel (right) privileges. Source: [Biggs et al., 2018].

2.4 Many-core Modeling Platform for Heterogeneous SoCs (Memphis)

Memphis [Ruaro et al., 2019a] is a framework for automatic generation and valida-
tion of many-cores. It allows designing an NoC-based many-core surrounded by peripherals,
with available debugging tools to simultaneously verify hardware and software. The Mem-
phis architecture is an evolution of the Hermes Multiprocessor Systems (HeMPS) [Carara
et al., 2009] Multiprocessor System on Chip (MPSoC), with support for external peripherals,
and a new management kernel.

The Memphis model contains PEs interconnected by the Hermes 2D-mesh NoC
[Moraes et al., 2004]. Hermes is a packet switching NoC, with XY routing and round-robin
arbitration, input buffering, and credit-based control flow. Figure 2.6a shows the homoge-
neous region with PEs and peripherals connected to the many-core borders. Note that one
of the Manager PEs is the GM, while the others are LMs. Figure 2.6b shows the components
of each PE, including: (i) a Plasma CPU [Rhoads, 2001], extended with memory relocation
support for multiprogramming. Plasma has an Instruction Set Architecture (ISA) similar to
the MIPS I, but without unaligned load and store operations; (ii) a true dual-port scratchpad
memory for instructions and data; (iii) a Direct Memory Network Interface (DMNI), integrat-
ing Network Interface (NI) and Direct Memory Access (DMA) modules; (iv ) a Packet-
Switching (PS) Hermes router.

Memphis uses a CBM organization with reclustering support [Castilhos et al., 2013].
This approach uses a GM to control its clusters and to keep the synchronization of the whole
system. Figure 2.7a shows the Kernel Manager, loaded into GM and LM PEs, which only
runs management procedures and do not support user tasks. Figure 2.7b illustrates the
Kernel Slave, loaded into all other PEs, which manages multitask scheduling with param-
eterizable pages, provides a message passing API, and monitors deadlines. Both kernels
use monolithic designs, with all its functionalities, including management, linked to the same
binary and running in the same privilege level. The primary Memphis management goals
are providing QoS and meeting deadlines through task mapping and migration.
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(a) Memphis organization. M – Manager PE,
S – Slave PE.

(b) Memphis PE.

Figure 2.6: Memphis many-core overview. Adapted from: [Ruaro et al., 2019a].

(a) Manager PE. (b) Slave PE.

Figure 2.7: Overview of Memphis kernels organization. Adapted from: [Ruaro et al., 2019a].

Each applications in Memphis is modeled as a Communication Task Graph (CTG).
The CTG is a model to represent functional parallelism, where an application is composed
of parts that are independent of each other and thus are divided into tasks [Rauber and
Rünger, 2013]. A graph node represents each task in a CTG, and the graph edges represent
the communication between these tasks.

A parallel application is often structured in a pattern that is effective for many differ-
ent applications [Rauber and Rünger, 2013]. These patterns provide a specific coordination
structure for the application. The three main patterns used in Memphis applications are:

• Fork-join: a task forks the workload, splitting the computation between worker tasks.
Another task awaits for the workers termination to join the results.
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• Master-slave: a master task controls and distributes the workload to its slaves, or
worker tasks. The master is also often responsible for executing the main part of the
program and joining the results.

• Pipeline: data is forwarded from task to task to perform different processing steps
in sequence. Parallelism is achieved by partitioning the data into streams that flow
through the pipeline stages.

Memphis tasks communicate through Send and Receive primitives provided by
the kernel API. A peripheral called Application Injector (see Figure 2.6a) is responsible for
transmitting tasks to be loaded into the many-core. Figure 2.8 shows how this peripheral
injects an application following a set of well-defined phases:

Figure 2.8: Sequence diagram of the Application Injector protocol.
Adapted from: [Ruaro et al., 2019a].

The protocol work as follows:

1. The Application Injector requests the GM a cluster for the application allocation;

2. The GM answers with the chosen LM address.

3. The Application Injector sends an application descriptor to the LM;

4. The LM runs the task mapping algorithm, sending back the selected PE for each task
mapping;

5. The Application Injector sends the binary code of each task to each selected PE;

6. Slave kernels confirm the allocation to the LM;



28

7. When all tasks are allocated, the LM sends a synchronization message allowing the
application to start.

The framework design flow is guided by files written in the YAML markup language.
A test case is a file that describes the features of the platform, and a scenario is a file
that lists the applications to evaluate. The configuration is interpreted by Python scripts
that generate the hardware model and compile the kernel and applications. The test case
supports parameters of page size, number of tasks per PE, number of PEs in the many-
core, and the peripherals specification. The simulation of the platform can be achieved
with Very-High-Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL)
or SystemC descriptions.

Memphis is an open-source framework with guides and video-tutorial available for
download at https://www.inf.pucrs.br/hemps/memphis.html.

https://www.inf.pucrs.br/hemps/memphis.html
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3. RELATED WORK

Figure 3.1 proposes a taxonomy to guide the many-core state-of-the-art evaluation.
Four orthogononal criteria are adopted:

• Management Organization: defines how and where resource management is imple-
mented, as explained in Section 2.2;

• Architecture: the managed system structure, including the communication infrastruc-
ture (NoC or bus), the memory organization, and the processor architecture;

• Validation: how the work is evaluated – emulation, simulation, or custom implementa-
tion in either Field-Programmable Gate Array (FPGA) or Application-Specific Integrated
Circuit (ASIC);

• Management Goals: the controlled performance figures of the work, such as perfor-
mance, energy, and QoS.

Many-core

Management
Organization Architecture Validation Management Goals

Centralized

CBM

PAM

Interconnection

NoC

Bus

Memory

Shared

Distributed

ISA

Emulation

Simulation

Custom Imple-
mentation

FPGA

ASIC

Performance

Energy

QoS

Figure 3.1: Many-core taxonomy for the related work.

Table 3.1 is an overview of the state-of-the-art in many-core literature. Each row
color represents a management organization (first taxonomy criterion): red is centralized,
green is CBM, blue is PAM, and violet is reserved to other approaches that are considered
as “hybrid”, not belonging to any other organization or belonging to more than one. The
row in orange represents our management organization, the Management Application. The
table columns follows the remaining taxonomy criteria:
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• First column: the title of the work;

• Second column: the many-core architecture, highlighting its main features, such as
number of cores, memory organization, and CPU type;

• Third column: the many-core validation method;

• Fourth column: the management goals the authors try to control. Cells in the fourth
column marked with a P indicate that the work proposes a management paradigm.

Table 3.1: Related work on management organizations.

Work Architecture Validation Method Goals/Paradigm
ARTE: An Application-specific
Run-Time managEment
framework for multi-cores
based on queuing models
[Mariani et al., 2013]

Host processor and 16 MIPS-
like processors with cache-
coherent shared memory bus

Super ESCalar Simulator
(SESC) cycle-accurate sim-
ulation tool [Renau et al.,
2005]

Response time reduction

Defragmentation of Tasks in
Many-Core Architecture [Ng
et al., 2016]

2D mesh NoC, up to 14x14
cores

Extended Noxim (SystemC
simulator) [Catania et al.,
2016]

Total execution time and en-
ergy reduction

Dynamic Allocation/Realloca-
tion of Dark Cores in Many-
Core Systems for Improved
System Performance [Huang
et al., 2020]

Homogeneous 2D mesh NoC,
up to 12x12 Alpha cores

Event-driven C++ network
simulator, and cycle-accurate
many-core simulator [Wang
and Mak, 2013]

Reduce the impact of dark
cores on communication la-
tency and fragmentation

Performance-Aware Re-
source Management of
Multi-Threaded Applications
on Many-Core Systems [Olsen
and Anagnostopoulos, 2017]

16-core Nehalem
Sniper many-core simulator
[Carlson et al., 2011]

Maximize performance keep-
ing the number of hotspots low

Reliability-Aware Runtime
Power Management for Many-
Core Systems in the Dark
Silicon Era [Rahmani et al.,
2017]

Intel Single-chip Cloud Com-
puter (SCC)-like

SystemC system-level simula-
tor based on Noxim [Rahmani
et al., 2015]

Optimize performance while
prolonging the lifetime of the
system by avoiding stress and
thermal hotspots

Thermal-Cycling-aware Dy-
namic Reliability Management
in Many-Core System-on-Chip
[Haghbayan et al., 2020]

Scalable Processor Architec-
ture (SPARC) processors with
NoC-based shared memory

Noculator many-core simulator
[Ausavarungnirun et al., 2014]

Reduce thermal cycling effects

ADAM: Run-time agent-based
distributed application map-
ping for on-chip communica-
tion [Faruque et al., 2008]

Up to 32x32 PEs mesh NoC FPGA prototype
Scheme for a run-time ap-
plication mapping in a dis-
tributed manner

P

Distributed resource manage-
ment in NoC-based MPSoCs
with dynamic cluster sizes
[Castilhos et al., 2013]

Up to 12x12 MIPS-like PEs
in a 2D mesh NoC (HeMPS
[Carara et al., 2009])

Register-Transfer Level (RTL)
cycle-accurate SystemC simu-
lation

Distributed resource man-
agement with dynamic
cluster sizes (recluster-
ing)

P

DRACON: A Dedicated Hard-
ware Infrastructure for Scal-
able Run-Time Management
on Many-Core Systems [Gre-
gorek et al., 2019]

Intel SCC-like baseline with
dedicated structures for hard-
ware managers

Transaction-level Agamid sim-
ulation framework [Gregorek
and Garcia-Ortiz, 2018]

Elimination of user inter-
ference in management
and mitigation of the man-
agement overhead

P

Continued on next page
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Table 3.1 – continued from previous page
Work Architecture Modeling Goals/Paradigm

Hierarchical adaptive Multi-
objective resource manage-
ment for many-core systems
[Martins et al., 2019]

12x12 MIPS-like PEs in a 2D
mesh NoC (HeMPS [Carara
et al., 2009])

RTL cycle-accurate SystemC
simulation

Dynamically adapt the run-
ning applications according to
peaks and valleys of workload
inherent to real systems while
guaranteeing the power cap

Hierarchical dynamic thermal
management method for high-
performance many-core mi-
croprocessors [Wang et al.,
2016]

Up to 25x25 Alpha processors Simulation in MATLAB
Reduce performance degrada-
tion and improve the thermal
reliability

Self-adaptive QoS manage-
ment of computation and com-
munication resources in many-
core SoCs [Ruaro et al.,
2019b]

64 MIPS-like processors con-
nected via NoC (Memphis [Ru-
aro et al., 2019a])

RTL simulations (SystemC
and VHDL)

Dynamic profiling and self-
adaptive QoS management for
soft real-time applications

Application-Arrival Rate Aware
Distributed Run-Time Re-
source Management for
Many-Core Computing Plat-
forms [Tsoutsouras et al.,
2018]

Intel SCC: 24 tiles of 2
cores each connected via NoC
[Howard et al., 2010]

Physical implementation
Regulate application admis-
sion without neglecting its dis-
tributed nature

A Scalable Strategy for Run-
time Resource Management
on NoC based Manycore Sys-
tems [Liao and Srikanthan,
2011]

5x6 PowerPC NoC
NoCsim-UNISIM Cycle-
accurate simulator [Liao et al.,
2011]

Scalable hierarchical
strategy for runtime re-
source management on
embedded manycore
NoCs

P

DistRM: Distributed resource
management for on-chip
many-core systems [Kobbe
et al., 2011]

Up to 32x32 cores NoC System-level simulation
Less management effort
through agent-based dis-
tributed scheme

P

Distributed run-time resource
management for malleable ap-
plications on many-core plat-
forms [Anagnostopoulos et al.,
2013]

Intel SCC: 24 tiles of 2
cores each connected via NoC
[Howard et al., 2010]

Physical implementation
Present a distributed
management framework
for malleable applications

P

System Software for Resource
Arbitration on Future Many-*
Architectures [Schmaus et al.,
2020]

Shared memory within tiles
and message passing through
NoC

FPGA prototype
Allow micro-paralellism, re-
duce OS interference and im-
plement strong monitoring

Self-Aware Cyber-Physical
Systems-on-Chip [Dutt et al.,
2015]

Communication NoC, Sensor
NoC and Introspective Sen-
tient Units

N/A

Define a model of self-
awareness and cyber-physical
systems for autonomous
adaptive management

SPECTR: Formal Supervisory
Control and Coordination for
Many-core Systems Resource
Management [Rahmani et al.,
2018a]

Exynos big.LITTLE ARM octa-
core processor

Physical implementation
Efficiently manage complex
system with multiple goals

This work

Memphis-V: a RISC-V many-
core based on Memphis (see
Chapter 4, Chapter 5, and
Chapter 7)

SystemC simulation

Propose a modular man-
agement framework,
loosely coupled to the
OS, and portable to other
architectures

P

The next Sections discuss the main related work. Section 3.1 discusses the use of
centralized management organization. Section 3.2 describes some CBM works. Section 3.3
lists different PAM organizations. Section 3.4 presents two works that are classified as “hy-
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brid”. Finally, Section 3.5 shows the state-of-the-art final remarks and how the present work
fulfills the observed gaps in the reviewed proposals.

3.1 Centralized Approaches

Centralized is the most straightforward organization architecture for a many-core.
This Section only discusses two works from Table 3.1 which present a different type of
centralized management, where the global resource manager is located outside of the many-
core fabric.

Rahmani et al. [Rahmani et al., 2017] connect a many-core similar to the In-
tel Single-Chip Cloud Computer (SCC) to a host machine controlling runtime application
mapping and Dynamic Power Management (DPM). The many-core tiles are responsible for
scheduling tasks, managing communications, and monitoring sensors. Their work focus on
a multi-objective DPM that also considers performance fulfillment, reliability, and system life-
time. Authors claim to have achieved enhanced throughput, Thermal Design Power (TDP) or
Thermal Safe Power (TSP) constraints, and overall lifetime compared to the state-of-the-art
management policies.

Figure 3.2 shows the Application-specific Run-Time managEment (ARTE) [Mari-
ani et al., 2013], a framework that uses a general-purpose host processor called “fabric
controller” connected to a many-core fabric composed by 16 MIPS-like processors. It uses
queuing models to achieve less response time and meet QoS under power constraints.
Results showed up to 68.5% more performance than traditional approaches and similar be-
havior with reduced overhead compared to Reinforcement Learning (RL) techniques.

Figure 3.2: ARTE many-core structure. Source: [Mariani et al., 2013].

According to Castilhos et al. [Castilhos et al., 2013], centralized management can
be overloaded when answering requests from numerous PEs, also generating a consider-
able amount of traffic around it. Therefore, it is only suited for lower core counts due to its
weak scalability.
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3.2 CBM Approaches

This Section discusses the three works of Table 3.1 which propose a CBM or-
ganization. The remaining CBM works present in the Table only use a previous defined
organization to evaluate management goals.

Agent-based Distributed Application Mapping (ADAM) [Faruque et al., 2008] was
the first hierarchical CBM that follows a centralized manager called a “global agent” that
can borrow resources from other clusters in a “reclustering” technique. This work focus
is a distributed runtime application mapping, which showed more than seven times less
computational effort than a simple centralized mapper. The PEs monitoring also showed
more than ten times lower traffic compared to a centralized organization. HeMPS [Carara
et al., 2009], a platform that later became Memphis, uses these same CBM concepts.

Figure 3.3 shows DRACON [Gregorek et al., 2019]: a dedicated infrastructure for
RunTime Management (RTM) using CBM organization. It has an RTM slave hardware con-
nected to each core that operates as an OS serving system calls and scheduling tasks and
communicates with each other through dedicated management interconnect. Each cluster
has an RTM master hardware, which also communicates with other masters through an-
other dedicated interconnect. DRACON achieves performance improvements from 6.12%
up to 15.21% depending on the workload compared to software-based management and
increases the chip area by 3.01%.

Figure 3.3: RTM components in DRACON. HMST – Hardware Master, HLSV – Hardware
Slave. Source: [Gregorek et al., 2019].

The CBM main advantage is that it is easily scalable to a large number of cores.
However, the disadvantages are: (i) the resulting overhead of lost PEs used only for man-
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agement purposes, mainly occurring on huge many-cores with smaller cluster sizes; and (ii)
the cluster size is essentially static, with its size and location being decided at design time,
impairing the system dynamics.

3.3 PAM Approaches

This Section discusses the three works of Table 3.1 which propose a PAM organi-
zation.

Figure 3.4a shows the PAM approach proposed by Liao and Srikanthan [Liao and
Srikanthan, 2011] that uses a global manager to create rectangular sub-meshes and assigns
one core of this area to be a local manager that will control the application hierarchically.
They justify the internal fragmentation of the sub-meshes as acceptable due to the utilization
wall. This PAM architecture achieved lower resource allocation times and up to 63% reduced
management communication energy compared to a centralized approach.

(a) PAM with global manager. Source: [Liao
and Srikanthan, 2011].

(b) PAM with three levels of hierarchy.
Adapted from: [Anagnostopoulos et al.,

2013; Tsoutsouras et al., 2018].

Figure 3.4: Different PAM organizations.

DistRM [Kobbe et al., 2011] uses the same PAM organization but is fully decentral-
ized without any global synchronization by assigning each manager called “agent” randomly
at application arrival. These managers are based on the concept of multi-agent systems,
distributing the control among agents that have local information about the system and act
independently of each other aiming to solve difficult or impossible problems for a central
management. It achieves 84% of the optimal centralized scheme mapping quality that con-
siders free task migrations while reducing the computational complexity to less than 1% of
the centralized in a 1024 core system with 12.75% of the required network bandwidth.
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Figure 3.4b shows the proposal of Anagnostopoulos et al. [Anagnostopoulos et al.,
2013], which uses PAM in a more deep hierarchical way. They first separate the many-core
into clusters based on “controller cores”, using “initial cores” for temporary resource man-
agement at application arrival, and then finally creating “manager cores” for each application
management and resource exchange. Compared to DistRM, this work shows reduced com-
munication overhead with 70% fewer messages and 64% less message size while gaining
up to 20% speed-up.

PAM addresses the CBM problem of lacking runtime mutability by creating and
killing managers at runtime. However, two main trade-offs exist: (i) a considerable overhead
for applications with a small number of tasks; and (ii) focusing mainly on applications QoS
instead of achieving the whole system goals. DistRM and Anagnostopoulos et al. address
the first issue by using malleable applications, which can adapt their degree of parallelism
using more cores when possible, thus preventing a low number of tasks that would result in
high management overhead.

3.4 Hybrid Approaches

SPECTR [Rahmani et al., 2018a] aims at system autonomy to provide adaptive
management for multi-objective goals. The authors use Supervisory Control Theory (SCT)
to achieve this coordinated autonomy, which breaks the management problems into small-
scale sub-problems solvable by control loops. The platform runs Linux and invokes the
controllers every 50 ms and the supervisor every 100 ms. They benchmark the proposed
solution to show that it could manage conflicting goals adapting to the system changes
and achieving efficient QoS within the power budget. At the same time, state-of-the-art
controllers could not do so. This particular work is scalable by breaking the problems into
simple controllers coordinated by a high-level supervisor but do not evaluate a distributed
memory environment with a large number of cores.

Dutt et al. [Dutt et al., 2015] also aim at autonomy by the awareness of the system
state (self-awareness) and its environment (context-awareness). They call “Cyber-Physical
systems” those combining a rich set of sensors and actuators using a self-aware computing-
communication-control paradigm with adaptive and reflexive middleware to control the ef-
fects of computation on the chip and the interacting environment. Their proposed platform
contains sensing and actuation, self-aware adaptations, cross-layer interactions and inter-
ventions, and predictive modeling and learning. The work focus on defining a model for
self-awareness and cyber-physical systems without enforcing a specific implementation.
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3.5 Final Remarks

Most of the evaluated works in this research [Mariani et al., 2013; Ng et al., 2016;
Huang et al., 2020; Olsen and Anagnostopoulos, 2017; Rahmani et al., 2017; Haghbayan
et al., 2020; Martins et al., 2019; Wang et al., 2016; Ruaro et al., 2019b; Schmaus et al.,
2020; Dutt et al., 2015; Rahmani et al., 2018a; Tsoutsouras et al., 2018] make use of an
organization to evaluate an algorithm, hardware, or framework. This fact resulted in six
centralized resource management works. Adopting this approach is justifiable because of
its implementation simplicity that uses a PE of the many-core to execute the management
procedures. But these proposals present poor scalability to a small number of cores.

The three studied organizations (centralized, CBM, and PAM) rely on dedicated
cores for management, which require specific support from the OS kernel, imposing chal-
lenges to reuse the management procedures in other systems and making it difficult to add
new goals. CBM organization, some reviewed centralized organizations [Mariani et al., 2013;
Rahmani et al., 2017], and DRACON [Gregorek et al., 2019] are tightly coupled to the hard-
ware platform, making it impractical to use an already verified management organization on
different platforms. Despite being scalable, PAM and CBM result in an overhead of reserved
resources for management, reducing the maximum allocated tasks, implying in a potential
loss of parallelism.

Chapter 4 proposes a way to address these limitations, suggesting a new manage-
ment organization that provides a modular method to add new management goals, loosely
coupled to the OS, and independent of the hardware organization.



37

4. MANAGEMENT APPLICATION

This Chapter presents the original first contribution of this work: the MA paradigm
to implement a many-core organization supporting multi-objective goals with the ODA loop.
Ruaro et al. [Ruaro et al., 2021] originally proposed the MA paradigm, but without an ac-
tual implementation to demonstrate its benefits. Section 4.1 details the MA paradigm, and
Section 4.2 the development of a MA proof-of-concept using application mapping and task
migration. Section 4.3 shows the results obtained by the MA. Results presented in this
Chapter were published in [Dalzotto et al., 2021b].

4.1 The MA Paradigm

Figure 4.1 presents an example of a many-core managed by the MA approach.
Each gray tile in the Figure is a PE either free or occupied by user tasks. The blue, red, and
green tiles represent Observation, Decision, and Actuation tasks, respectively. Observation
tasks gather and abstract raw monitoring data. Decision tasks choose an actuation based on
the observed scenario using heuristics. Actuation tasks manage protocols and underlying
hardware using APIs to apply decisions such as controlling DVFS or migrating a task.

The MA tasks can be mapped at different system positions, and their number can
also be defined at runtime according to the workload requirements. Note that the mapping
of the MA tasks presented in Figure 4.1 is just an example. Tasks can be mapped close to
each other, they can be allocated close to strategic regions of the chip where the monitoring
load is higher, or allocated in cores with more computing power, specially for decision tasks
that need to run heuristics at runtime.

The main advantages of the MA paradigm that motivated this work are [Ruaro et al.,
2021]:

• No need for dedicated cores for management execution as in centralized management,
CBM, and PAM. Management tasks can share processors with user tasks.
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Figure 4.1: MA organization. O – Observation, D – Decision, A – Actuation.

• MA tasks are not bound to specific locations as in other paradigms and can be mi-
grated. This possibility brings additional reliability since a task migration can move
a management task from a core that is faulty or violating thermal constraints.

• OS with a smaller memory footprint and easier to maintain since it is not overloaded
or modified with the insertion of new resource management modules. This assumption
follows the microkernel concepts presented in Section 2.3, as the management tasks
also run in user mode.

Identified limitations of the MA are [Ruaro et al., 2021]:

• MA tasks have the maximum scheduling priority over other user tasks and, conse-
quently, cannot share a CPU with Real-Time (RT) tasks. However, MA tasks can
be reactive, staying on a waiting state until an external event triggers its execution,
reducing the overhead on cores shared with user tasks;

• The system designer needs to carefully choose when two or more MA tasks can share
the same CPU, since conflicting tasks can reduce the overall management per-
formance.

The hardware is independent to this proposal, i.e., the Management Application is
hardware-agnostic. Besides being hardware-agnostic, the Management Application should
also be OS-agnostic because the management is loosely coupled to the OS. Despite being
OS-agnostic, the OS must still provides the following services to support MA:

• Low-Level Monitors (LLM): periodically pulls raw data from hardware and redirects
to Observation tasks without executing complex computation. LLM examples include
task execution profiling (whether it is computation- or communication-intensive), RT
constraints, power, thermal, communication latency, and core utilization.
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• Actuation Enforcer (AE): implements drivers and provides APIs to physically apply
the requests from Actuation tasks. Examples are the DVFS driver and the task migra-
tion API, which require privileged memory access.

• Communication API: the OS must provide a secure communication method for MA
tasks, ensuring that user tasks are not allowed to tamper with the system.

Figure 4.2 depicts the MA framework model. In summary, the LLM running at the
OS of each core generates messages periodically. Observation tasks related to task per-
formance, system budgets, and user commands (to force actuations directly), receive and
abstract the monitored data to achieve the awareness about the system status. Observation
tasks know the system goals and can convert raw Monitoring data into Objectives. Objec-
tives are sent to the Decision task that converts them into Actions by using algorithms that
detect when and what resource needs adaptation. If necessary, the Decision task triggers
an Actuation task, which implements the protocols to dynamically change the resources by
interacting with the AE at the OS level.

Figure 4.2: ODA Model used by MA paradigm. There is one LLM for each core. The AE is
implemented by the OS running in each core. Arrows represent the communication

between the entities. MCSoC – Many-core SoC. Source: [Ruaro et al., 2021].

Note that a goal is a high-level loosely defined plan of the system [Rahmani et al.,
2018b], such as a demand for more bandwidth or less power. Objectives are the concrete
action to meet such demand, such as establishing a dedicated network path or reducing the
system frequency and voltage. The conversion of goals into an objective is not straightfor-
ward since different goals can result in one single objective [Shamsa et al., 2019]. Therefore,
in a multi-objective management, the conversion tries to reach a balanced decision among
those goals to apply conflicting objectives.
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4.2 Proof-of-concept Implementation

The proof-of-concept is achieved by modifying the Memphis platform described in
Section 2.4 to use the MA paradigm. The proposal focuses on providing an MA-based task
mapping with a complete set of ODA tasks of the MA for migrating RT tasks at runtime when
deadline violations are detected by the MA system. Section 4.2.1 details the modifications
made to the Memphis kernel to support MA and improvements added to the platform. Sec-
tion 4.2.2 details the new message-passing API implemented to support MA communication.
In Section 4.2.3, the new application injection protocol is described alongside the new MA
Injector. Finally, Section 4.2.4 describes the set of the MA ODA tasks used to provide task
migration to RT tasks that violate deadlines.

4.2.1 Kernel modifications and platform improvements

The Memphis platform originally uses CBM, with different kernels in management
cores and cores for user tasks. The first step to support MA is to remove the dedicated
management kernel, creating a many-core running the same kernel in all cores. The many-
core kernel is refactored, leaving only essential functions, such as task scheduling, message
passing API, and task management for allocation and migration. The following data struc-
tures changed:

• Task Location: contains the location of tasks of the same application for all tasks
running in the PE. This structure is changed, so that each task in the PE stores the
location of the other tasks of its application locally, enhancing security and easing task
migration. Security is enhanced because there is no more a global structure with all
tasks identifiers (ID), avoiding access to a forbidden ID by a malicious task. Task
migration is simplified since this structure contains only its own task data and can be
easily transferred to the PE that will receive the task.

• Message Request Repository: this structure keeps the incoming message requests
from consumer tasks destined to all producer tasks running in the PE. This mes-
sage request is used by the handshake of the platform message-passing protocol. It
changed to store the requests per task, also easing migration and enhancing security.

• Message Pipe: is a buffer with a parameterizable number of entries that stores the
pending output messages of all tasks running in the PE. This buffer changed, so each
task in the PE has its own buffer supporting a single message, adding the possibility
to migrate tasks with a pending output message, and reducing the kernel size.
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• Migrated Tasks: is a circular buffer added to store information about the tasks that
migrated from the current PE and where they are migrated to. This buffer has a limited
size since it serves the consumers of migrated task messages when they request a
message to the PE where the migrated task was first mapped. Producer tasks are
updated when the migrated task issues a message request. Additionally, the circular
buffer size should be enough to avoid overwriting during the application lifespan.

Additionally to the kernel refactoring, the Memphis platform build system is rewritten
to unify platform and scenario generation, application compilation, simulation, and debug-
ging in a single executable while also adding the steps to build the MA.

Support for versions up to 11 of the GNU C Compiler (GCC) for the MIPS architec-
ture is added to replace the previous version 4 limitation. This is made possible by modifying
the linker configuration and updating the inlining declarations. This update benefits a possi-
ble support for different ISAs, such as RISC-V that has GCC support starting in version 7,
standardizing compiler versions for all targets.

The kernel low-level functions, such as context switching, interrupt handling, and
system bootloader are refactored to be detached from the high-level kernel code written
in C, also aiming to facilitate the support for different ISAs. This detachment is done by
implementing these functions as a Hardware Abstraction Layer (HAL) so that another ISA
HAL can be swapped into the platform.

An initial step to standardize Memphis software libraries is developed with the ad-
equacy of stdlib and string functions arguments and return values, and with the inclusion of
the stdio library, providing a total of 12 standard C functions in the platform. The Memphis
APIs library is also refactored with a new set of helper functions for ODA tasks.

4.2.2 Communication API

The management tasks of the MA can be reactive. The triggers for these reactions
can come from numerous sources. However, the Memphis message API only supports
receiving messages from a known producer due to the platform applications being modeled
as a CTG. Thus, there is a need to provide a new communication API to MA.

Memphis provides two classes of communication messages: request and delivery.
A producer task generates a delivery only when it has received a request, indicating that
the consumer has allocated buffers and is ready to receive the message. The problem is
that each request is emitted for a single producer defined at design time. The consumer
is blocked until the message is delivered, thus preventing it from receiving messages from
other sources than the designed.
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Figure 4.3 shows the new messaging API diagram for management purposes using
a new initial handshake step. When a producer wants to send a message, a data available
packet is generated containing the producer task identifier (ID) and location. This packet
is sent to the consumer to be stored in a structure inside the Task Control Block (TCB).
When the consumer calls the receive message function, it will check the First In, First Out
(FIFO) data available structure for the producers trying to send messages. The consumer
then sends a message request to the producer, knowing its task ID and location from the
data available message. Finally, the producer kernel dispatches the stored message inside
a message delivery packet.

Figure 4.3: Sequence diagram of the new message-passing API for management
communication.

This mechanism is similar to the MPI_ANY_SOURCE directive of the Message Passing
Interface (MPI) used in task-to-task communication. The main difference of the new proto-
col from the MPI_ANY_SOURCE is that it also supports sending and receiving messages both
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ways from kernel-to-task, peripheral-to-task, and peripheral-to-kernel. This communication
results in a message-passing IPC. Figure 4.4 depicts the 32-bit flit used for the communica-
tion addressing. The lower bits still represent the X and Y addresses of the target used in
Memphis. A new bit (K) indicating kernel (1) or task (0) destination is added. The upper bits
indicating a forced exit port (E) at the address destination for peripherals has priority over
the K bit to keep compatibility with the former messaging protocol.

31 29 28 27 16 15 8 7 0

E K UNDEFINED X Y
3 1 12 8 8

Figure 4.4: Format of the communication address. K – Kernel message, E – Port to force
exit at the NoC borders, enabling the communication with peripherals.

4.2.3 Task injection

The Application Injector of Memphis is adapted in this work to address the new
communication API and the removal of clustering. Figure 4.5 shows the diagram of the new
Application Injector protocol. The first injection step occurs when the peripheral detects a
new application and reaches its injection time configured at design time. The Injector sends
a message to the MA Mapper Task containing a description of the application tasks to be
used by the mapping algorithm. After a successful mapping, the Mapper Task answers the
peripheral with an array containing the mapped task IDs with their mapped locations. Using
the same communication API, the Application Injector sends the tasks binaries one by one
to each mapped PE. The target PEs inform the task mapper MA that the task is allocated.
When all tasks are allocated, the task mapper is responsible for sending a task release
message containing all the application tasks locations back to each allocated PE kernel.

The Application Injector can be seen as an external communication interface re-
ceiving applications to run in the platform. For security reasons, it is necessary to separate
the deployment of management tasks from user tasks. Thus, a second peripheral is added
to the Memphis platform, called MA Injector. This new injector behavior is similar to the
Application Injector, using the same protocol shown in Figure 4.5.

The MA Injector main functional difference from the Application Injector is that it in-
jects the MA Mapper Task first, without negotiation, sending it to a PE defined at design time.
The MA Injector only sends the remaining MA tasks after that, but this time negotiating with
the Mapper Task. At system startup, all external interfaces of the many-core are disabled,
except the MA Injector interface. Thus, this new peripheral can be seen as a flash memory
containing a trusted boot code. Once all MA tasks are loaded in the system, the mapper
task releases the external interfaces, e.g. the interface used by the Application Injector.
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Figure 4.5: Application Injector protocol sequence diagram.

4.2.4 Migration ODA

Section 4.1 presented the three components required by the platform to support
the MA framework (LLM, AE, and Communication API). The Communication API is detailed
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in Section 4.2.2. The existing OS migration support in Memphis is used as the AE, triggered
by messages issued by the Actuator. The QoS LLM is implemented in the task scheduler of
each PE. Every time the task scheduler is called by the OS, it updates the timers of the RT
tasks. After updating, it checks if the PE reached the monitoring period configured at design
time to send the RT timers to the Observer task of the application.

The OS knows whom to send LLM messages to, by coupling an Observer task to
each monitored user task when the mapper releases it to run, notifying its nearest Observer
task. The mapper does this by checking a tag inserted into each task binary file, indicating
whether the task is Observer, Decider, Actuator or user task, and its Observing, Deciding,
and Actuating capabilities, such as QoS, migration, DVFS, or power management. This fea-
ture also allows the mapper to answer service discovery messages issued by the Observers
and Deciders tasks that request the task that serves each following step in the ODA loop.

The proof-of-concept MA contains a set of ODA tasks working together to guaran-
tee the QoS of an RT application, triggering task migration when deadline violations occur.
The proof-of-concept MA is composed of the following ODA tasks:

• Observer: RT task monitor - Checks for deadline misses for each monitored task,
and in case of occurrence of deadline miss, sends a message to the QoS Decider.

• Decider: QoS - Stores in a buffer with a Least Recently Used (LRU) replacement
policy the latest monitored tasks by the Observer with a deadline violation counter.
After a parameterizable number of deadline misses, it asks for a task migration.

• Actuator: task migration - Runs a mapping heuristic for a chosen task to migrate and
uses the system API to apply the decision.

Note that the RT task monitor Observer could also send information to the QoS
Decider about tasks meeting deadlines with sufficient slack time and processor usage to
execute a DVFS Actuator when supported by the platform, which could lower the frequency
of the processors running those tasks, aiming to improve power efficiency.

In the ODA set described above, the task migration actuator is also the mapper
task. This choice is due to the need for the migration to run a task mapping algorithm to
migrate. Therefore, the mapping procedures and structures can be reused, reducing also
the management memory overhead. The mapper task maintains a global view of the system
resources, but only for mapping purposes. Other management goals can be achieved in a
distributed way by other MA tasks. The mapper MA task implements Decision and Actuation
in the same task by running the mapping heuristic and requesting the allocation to the kernel
and injectors. The mapping heuristic is detailed in Chapter 6.
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4.3 Results

With the platform adapted as described in Section 4.2, the MA is evaluated by three
criteria: implementation cost, maximum throughput, and its impact in an actual benchmark.
Results are organized into three subsections. Section 4.3.1 evaluates the cost of adopting
MA in terms of memory footprint and the number of management packets and discusses the
MA modularity. Section 4.3.2 compares the effects of CBM and MA in an actual benchmark
with QoS constraints. Section 4.3.3 also compares both approaches, but in terms of their
performance with relation to the throughput of management actions.

4.3.1 MA implementation cost

Figure 4.6 compares the CBM and MA management binaries sizes. CBM has
all management tasks inside its kernel, while the MA has the management split into RT
task Observer, QoS Decider, and migration Actuator, which is also a mapper task. The
MA tasks combined are 78.9% smaller than the CBM while keeping the same functionality.
This reduction occurs because the MA has the advantage of no clusters to manage, which
needs more structures in memory and more code for the reclustering procedures. The size
difference between the kernels running in PEs executing user tasks is negligible, even with
the new communication API required by the MA paradigm.
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Figure 4.6: Management binaries size: CBM, MA, CBM kernel, MA kernel.

CBM requires dedicated PEs for management, with a 64.3 kB management kernel
at each of these processors. Any PE can run user tasks in the MA approach, with a kernel
having roughly the same size as the CBM kernel for PEs that run user tasks. The proof-of-
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concept MA application requires 13.6 kB, being distributed in several PEs. This result shows
that the MA makes better use of system resources without requiring more memory.

Table 4.1 shows the number of messages exchanged for CBM and MA related to
Section 4.3.2 experiment. Despite resulting in about 87% more exchanged messages, MA
only increased the total volume of flits by about 20% because the added monitoring and
management messages are small compared to messages exchanged by user tasks. Note
that this case study is simple and contains only one application and one set of MA tasks.
Real scenarios execute several applications and may use many ODA tasks. Such scenarios
reduce the overhead of the MA messages since the distance, in hops, between user tasks
and management tasks reduces by using the MA approach since the MA tasks can be
mapped to strategic regions.

Table 4.1: Message exchange in CBM and MA.

CBM MA
Number of messages 1,443 2,698
Number of flits 77,257 92,830

Another advantage of the MA is modularity. While the CBM approach can only vary
the size of its clusters at design time, changing the number of managers, the MA platform
can vary the number of ODA tasks and change the management goals at runtime by adding
a new set of ODA tasks. Besides modularity, another advantage is portability, which allows
the reuse of ODA tasks in other platforms by updating the LLM, AE, and communication
calls to the target platform API.

4.3.2 MA case study

Experiments in this Section adopt a 3x3 system to verify the MA feasibility. This
small many-core corresponds to one cluster in the CBM and is scalable to larger systems
by increasing the number of clusters. The benchmark is Dijkstra’s shortest path algorithm,
partitioned into seven tasks. In the MA approach, PEs 0x0, 0x1, and 0x2 receive the task
mapping, QoS Decider, and RT task monitor tasks. The CBM manager is mapped at PE
0x0. Both management approaches allow up to four 32 kB tasks per PE.

The RT constraints of all Dijkstra’s tasks have the same deadline and execution
time, and each task is configured to load 25% of the processor by changing the RT period.
The initial task mapping of this application is one PE running four tasks while the remaining
three tasks are split in one other PE each. The reason to adopt this mapping is to induce
deadline misses in the PE loaded with four RT tasks with 25% load each, saturating the PE
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with 100% load. The adopted migration heuristic and the monitoring window are the same
for both management approaches, to make a fair comparison.

Table 4.2 evaluates the time required for the management approaches to detect
and react to deadline misses and the application execution time. The first column details
the events where the time is measured. The second and third columns detail the measured
timestamp for CBM and MA, respectively.

Table 4.2: Timestamps for the Dijkstra’s application using CBM and MA (ms).

Event CBM MA
1st migration request 4.99 5.29
end of 1st migration 5.16 5.48
2nd migration request 9.22 5.37
end of 2nd migration 9.39 5.58
end of application execution 11.80 11.72

CBM reacts quicker than MA for the first acting condition (configured to 3 deadline
misses), firing the migration before MA. This happens due to the MA pipeline structure, with
messages sent from the LLM to the Observer tasks, then from this task to the Decider that
triggers the migration Actuator. However, this pipeline behavior is the MA strength. Observe
the second acting condition. CBM misses this event because it is still finishing computing the
previous decision and actuation procedures (remember that CBM executes all ODA actions
in the same processor). Thus, CBM acts only in a third acting condition. As the MA has the
ODA tasks split into several processors, it can almost simultaneously detect violations from
different tasks.

Even with the increased number of messages due to the separated management
tasks and the increased complexity of the communication API, the application executed
faster using MA (last Table row). The reason behind the application speed up is the faster
MA detection and actuation, which makes Dijkstra’s application benefit from the migration
sooner.

Figure 4.7 depicts this parallelization on a scenario where many LLMs (one for
each PE) send QoS monitoring messages to the nearest Observer task. Observer tasks
gather these data and pack them to the correct Decider task that sends messages based on
the chosen action. Finally, the Actuation tasks apply the decisions via the AE of a chosen
target PE. Note that each entity is running in parallel, showing how the ODA loop introduces
parallelism to the management processes with a pipeline model that truly exploits the many-
core parallel computing power.
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Figure 4.7: The MA pipeline model. The number of LLMs and AEs is one per PE. Observer
tasks are defined at design time, while the number of Deciders and Actuators are a function

of the management objectives.

4.3.3 Management throughput

The third experiment aims to saturate the management infrastructure, using the
previous experimental setup, but with a synthetic task instead of Dijkstra’s application. This
synthetic task generates bursts of deadline miss messages, and for each message, there is
an actuation (task migration).

Figure 4.8 shows on the x-axis the sequential number of the monitoring messages
generated and on the y-axis the time for the management technique to handle an event
(time to execute the observation, decision, and migration). This chart has three regions.
The first region (messages 1 to 5) corresponds to the MA warm-up, i.e., fill the MA pipeline.
In this first region, CBM acts quickly, as observed in Table 4.2. For a short period (messages
5 to 9), the CBM processor can still process the observation messages and execute the
decision. However, from the ninth message onwards, the system reaches a steady state,
with the throughput adapted to the processing capacity of each management method. MA
is faster than CBM due to its parallel nature.

Although small (11.7%), the observed gain is obtained in a system with one ap-
plication and one cluster or ODA set, seeking to illustrate the behavior of the management
techniques. Such gain will increase in real-world scenarios, where multiple tasks generate
monitoring data (QoS, temperature, faults), leading to several decisions.

4.4 Final Remarks

This Chapter presented a new method to manage many-core systems. The Man-
agement Application uses the ODA control loop to parallelize the management, running it
as an user application, being loosely coupled to the platform (Definition 1), resulting in ad-
ditional modularity (Definition 2) and portability (Definition 3). Additional reliability is also
resulted by the loose coupling. Previously, if a management task entered an infinite loop
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Figure 4.8: Delay from monitoring message emission until task migration completion in
CBM and MA.

state, it would completely stall the OS. By separating the management tasks from the OS, if
the former stalls, the latter still operates normally and schedules other tasks to execute.

A proof-of-concept is implemented in the Memphis platform. This platform originally
used the CBM organization. The platform is modified to run a homogeneous kernel with
essential drivers and services, with a new communication API for management tasks to
replace CBM with MA.

The experiments compared the Memphis platform with CBM and MA organizations,
using a set of ODA tasks to manage RT applications through task migration actuation. The
following advantages compared to the state-of-the-art were identified: (i) there is less com-
putational resources reservation for management; (ii) implementation of the management
method as a distributed application. As a consequence of adopting this method, it is ob-
served that MA improves the reactivity to missed deadlines and enhances the execution
time of applications.
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5. MANAGEMENT APPLICATION WITH A DEDICATED
MONITORING FRAMEWORK

This Chapter presents a dedicated monitoring framework, which improves the MA
performance by using the BrNoC [Wachter et al., 2017].

Chapter 4 showed that the Management Application presents an overhead con-
cerning the number of exchanged messages for management purposes. This overhead is
not caused directly by the management messages, which are small. The more significant
number of messages is due to the management communication API, which has an additional
handshake step, and the additional monitoring messages emitted by the LLM.

The minimum packet size transmitted by the Hermes [Moraes et al., 2004] data NoC
is 13 flits in Memphis. These flits identify the service embedded in the packet, the source-
target identifiers, among other functions. The management messages can be smaller since
they carry simple control data, like monitoring or actuation triggers. Thus, when used by
management, the standard packet structure also has an overhead that increases the com-
munication volume and disturbs the data traffic of user applications.

The proposed solution to these issues is to use a dedicated control NoC, based on
a state-of-the-art broadcast NoC, called BrNoC. BrNoC is used to transmit small manage-
ment and monitoring messages. This network has low latency and enhanced fault tolerance
due to the broadcast transmission that results in a flooding behavior, being well suited for
management purposes.

The increased monitoring message volume of the proposed MA also causes an
increase in the number of generated interrupts to processors executing Observer tasks. The
BrNoC is suitable for integrating to the DMNI, due to the BrNoC characteristic of having mes-
sages composed by a single flit. Thus the hardware necessary to connect the BrNoC to the
DMNI is reduced due to the absence of logic to control the packet flow. Exploiting the DMNI
allows direct memory access, eliminating interrupts generated by monitoring messages.

This Chapter is organized as follows. Section 5.1 presents the broadcast network
used in this work and the monitoring framework implementation. Section 5.2 details the man-
agement messages sent through the broadcast network. Section 5.3 presents a comparative
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analysis of the platform with the broadcast network and monitoring framework against the
platform used to evaluate the Management Application in Chapter 4. Finally, Section 5.4
concludes this Chapter with final remarks.

5.1 Framework Implementation

5.1.1 Broadcast NoC

Figure 5.1 details the BrNoC architecture used as base for this implementation. Its
topology follows the same 2D-mesh, used by the data NoC, with North, South, East, West,
and Local ports. The BrNoC modules are: (i) an Input Arbiter and Input Finite-State Machine
(I-FSM); (ii) a central Content-Addressable Memory (CAM); and (iii) an Output Arbiter and
Output Finite-State Machine (O-FSM).

The round-robin Input Arbiter selects the port with data to write into the CAM. To
write a message to the CAM, the I-FSM must assert that the data is not in the memory and
it has available space, marked by the used field.

source target... used pending

... ...... ... ...

Input

Arbiter

O-FSM

I-FSM

Output 

Arbiter

CAM

North

South

East

West

Local

North
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Local

Input

Ports

Output 

Ports

Figure 5.1: BrNoC architecture. Source: [Wachter et al., 2017].

The BrNoC Input and Output logic are independent. A round-robin Output Arbiter
selects a CAM line to propagate to the outputs (broadcast). The O-FSM searches the pend-
ing field for messages that need to be sent. The data is propagated to all ports, except to
the one where it came from.

The most relevant BrNoC feature is that all messages fit in one flit. The payload
size is parameterizable, according to the constraints of the design. The advantages of 1-flit
messages are: (i) no buffers on local ports; (ii) simplified switching mode, which enables
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the broadcast; (iii) smaller router silicon area, corresponding to 50% of a Hermes router1

[Wachter et al., 2017].

The BrNoC has four distinct services: (i) broadcasting to all PEs, which broadcasts
a message to all processors; (ii) broadcasting to a target, which also broadcasts a mes-
sage, but the only processor that receives the message is a defined target ; (iii) broadcasting
without a target, to send internal BrNoC control messages; and (iv ) unicast, implemented
through a backtracking mechanism.

Note that the O-FSM showed in Figure 5.1 only propagates a message to the local
output port when it is a broadcast to all or when a broadcast to the target arrives at its
destination. In this last case, the message is only sent to the local port and is not propagated
to the remaining ports.

A broadcast without a target sent by the source of each propagated message
erases each CAM line. This message releases the CAM line to receive a new broadcast.

The present work implements the BrLite, a simpler version of the BrNoC, without
the unicast service. The unicast service is typically used to obtain a fault-free routing path
between two PEs, which is not exploited by the Memphis platform in this work. Removing
the unicast service enables a smaller CAM by discarding the need to save the broadcast
path and reducing the router logic complexity.

Therefore, BrLite has only three services, listed in Table 5.1: (i) ALL; (ii) TARGET; and
(iii) CLEAR, which is the only case of the broadcast without a target of this implementation.
The CLEAR message is emitted by the message source 180 clock cycles after starting a given
service. This value was tuned by simulation, avoiding losing and retransmitting messages
in scenarios with up to 256 PEs. The advantage of releasing CAM lines automatically in
hardware is the software simplification, which does not need to include the execution of the
message propagation completion in its services.

Table 5.1: Services available in BrLite.

Service Description
ALL Send a message to all processors

TARGET
Broadcast a message and transmit
only to the target processor

CLEAR Clear a CAM line

The BrNoC is generic, enabling its usage parallel to other NoCs and targeting mes-
sages with any format as long as it fits in the payload field. This feature of the BrNoC is
exploited in Memphis by modifying the message format to comply with BrNoC constraints.

Figure 5.2 shows the message header transmitted by the BrLite. The ID is a se-
quential identifier generated by the source processor to discard replicated messages re-
ceived in the broadcast process. The second field, SVC, defines the service. It has 3 bits

1BrNoC: 8-line CAM, 84 bits per line; Hermes: 8-flit buffer depth per port, 32 bits flit width, 5 ports.
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to differentiate the three services provided by the BrLite and up to five monitoring classes
described in Section 5.1.2, which are treated as a TARGET message by the router. The SRC

and TGT fields represent the source processor of a message and destination in the case
of a TARGET message. The PROD field is a requirement of the Memphis platform to indicate
the message producer task identifier. Each message in the BrLite carries a 40-bit PAYLOAD,
resulting in 80-bit messages.

39 35 34 32 31 16 15 8 7 0

ID SVC PROD SRC TGT
5 3 16 8 8

Figure 5.2: BrLite message header (40 bits). The total flit length is 80 bits with the 40-bit
payload.

Additionally, each CAM line has fields dedicated to internal control, as shown in
Figure 5.3. The field USED signalizes if the buffer entry is used by a message, and it is
cleared when a CLEAR message arrives to its entry. Field PEND indicates if the message still
needs to be propagated. Finally, field ORIGIN keeps the port whose message entered the
table to avoid repropagating to the input port. These fields result in only 4 bits for internal
control.

3 2 1 0

USED PEND ORIGIN
1 1 2

Figure 5.3: Control fields in BrLite CAM.

To summarize, the BrLite CAM has eight 84-bit lines corresponding to 672 bits. For
comparison purposes, a 32-bit flit Hermes with an 8-flit buffer at each port requires 1,280
bits for temporary flit storage.

The treatment of messages received from the BrLite to the processor may occur in
two ways:

1. Monitoring messages: the DMNI computes the message writing address in the ob-
servation task memory space and writes this data directly into the memory without
interrupting the processor. This process is further detailed in Section 5.1.2;

2. Control messages (ALL and TARGET): stored in a buffer. The buffer is required to avoid
the BrLite stall due to the time spent interrupting the processor and executing the
message reception. This buffer has a parameterizable size. This implementation has
eight entries, storing the 40-bit payload, the message source address, and the source
task identifier, resulting in a 64-byte buffer per PE. The DMNI raises an interruption to
the OS when the buffer is not empty. The services ALL and TARGET are further detailed
in Section 5.2.
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5.1.2 Monitoring framework

Monitoring can be costly to the PEs holding Observer tasks in the MA due to the
constant reception of packets coming from the NoC and interrupting the processor to handle
them. Therefore, a solution is implemented by exploiting the DMNI to receive monitoring
packets directly to the Observer tasks memory space without interrupting the processor.
The DMNI [Ruaro et al., 2016] joins the DMA and NI functions in a unified design to optimize
the packet reception and transmission performance.

Figure 5.4 shows the original DMNI structure, with the added modules: arbiter and
logic to receive messages from the BrLite. The arbiter gives priority to received broadcasts.
This higher priority is due to the broadcast transmission behavior. A broadcast advances in
the BrLite when all propagated ports acknowledge the reception of a given message. Thus,
the reception of a given message should occur with the minimum delay to avoid performance
loss in BrLite. This priority does not disturb the reception of messages coming from Hermes
because broadcast messages contain a single flit, and the Hermes reception is buffered.

Figure 5.4: Updated DMNI architecture. LUT – Lookup Table

The processor configures receiving and sending through Hermes using MMRs.
The MMRs configure memory addresses to access the memory directly, the memory size
required for reading or writing operations, and control bits to execute the DMNI operations.
The DMNI received new MMRs responsible for setting up to 5 pointers related to monitoring
tables filled when receiving messages from BrLite. These tables are set by the Observer
tasks using the API described in Section 5.2.

The monitoring messages are classified into five types, defined in the SVC field
of the message header (Figure 5.2). These services are treated by BrLite as a TARGET

service, only interrupting the destination processor. These five message types can be used
to monitor constraints such as QoS, throughput, power, and temperature. Note that the
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DMNI only receives the monitoring messages from BrLite. Other messages go to the BrLite
buffer.

Figure 5.5 shows the format of a monitoring table line. Each monitoring table has
its number of lines equal to the maximum number of tasks in the system. Each table line
has two cells: one for the source task ID and one for a 32-bit monitoring payload. In an 8x8
many-core, supporting two tasks per PE (#tasks_PE), a monitoring table has 128 6-byte
lines, resulting in 768 bytes allocated in the Observer task memory space. The number of
tables allocated by the Observer task equals to the number of classes it monitors.

47 32 31 0

TASK ID MON. DATA
16 32

Figure 5.5: Monitoring table line.

Since tasks are constantly entering and leaving the system and can migrate, the
line for each monitored task can change at runtime. Therefore, the DMNI received a Lookup
Table (LUT) to speed up the translation of the task ID to the monitoring table line. This LUT
has the same number of lines that the monitoring table.

The LUT acts as an associative virtual memory scheme. When the DMNI receives
a monitoring message and there is a valid pointer to the monitoring class, the DMNI ac-
cesses the lines of the LUT indexed by the source PE, which defines a search space of
log2 #tasks_PE . Note that the monitoring class and the source PE address are part of the
BrLite message, as shown in Figure 5.2. The LUT line (LL) that matches the message task
ID with one of the stored task IDs gives the monitoring table line address offset (OFF).

Figure 5.6 shows the format of a LL. It contains two fields: the monitored task
identifier (TASK ID, 16 bits) and address offset (OFF, 1 bit). In the previous example, in an
8x8 many-core with #tasks_PE = 2, the LUT size is 128 17-bit lines, resulting in 272 bytes.

16 1 1

TASK ID OFF
16 1

Figure 5.6: A single LUT line (LL).

Equation (5.1) shows how the DMNI obtains the monitoring table line (MTL) ad-
dress.

MTL = MMR[msg.SVC] + (PE ∗ #tasks_PE + LL.OFF ) ∗ 6 (5.1)

where: MMR[msg.SVC] – contents of the MMR related to the monitoring service embed-
ded in the message, which contains the monitoring table base pointer; PE – the monitored
message source PE number; 6 – the size in bytes of the monitoring table line.
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As shown in Figure 5.4, a single LUT is used for all five monitoring tables. If the
monitored task ID is not present in the LUT once a monitoring message arrives at the DMNI,
it is written to a free LUT space. When the task finishes or migrates, a management mes-
sage with the task identifier is generated to clear a LUT entry. This message is detailed in
Section 5.2.

Finally, after computing the MTL address, the DMNI writes into the monitoring table.
Note that monitoring messages can be overwritten without compromising the MA. Therefore
there is no need to verify if the Observer task consumed the previous data before writing
it into the table. For example, consider that the Observer task is monitoring the tempera-
ture. The samples sent by the observed task have slight differences between a couple of
messages, being the behavior observed after several received messages. The same occurs
when monitoring QoS. Note that this method does not apply to hard real-time constraints.

The previous discussion presented the reception of a monitoring or control mes-
sage through the BrLite. In order to send a control message through BrLite, the processor
does not need to configure the DMNI. Instead, it directly injects the single flit message into
the BrLite.

5.2 Management Adaptation

In order to exploit the BrLite and the monitoring hardware (Section 5.1), the man-
agement software is adapted. The MA tasks can access a privileged BrLite communication
API to send, but not receive, broadcast messages directed to the OS to trigger system ser-
vices on the receiving end. The OS can also use the BrLite to send messages to trigger
system services on other PEs.

Table 5.2 lists the BrLite MA API functions. There are two functions to send a
broadcast: send_all and send_tgt. The send_tgt configures the BrLite to send a 40-bit
payload composed of 8 bits indicating the service to trigger and a variable 32-bit message
to a target PE. The send_all has the same functionality but does not specify the target PE
since the message is sent to all processors.

In Table 5.2, another two functions are tailored for Observer tasks: set_table and
announce_observer. The function set_table sets the monitoring table to a pointer and a
defined type. The announce_observer sends a broadcast announcing the Observer task
location for a defined monitoring type.

When an OS receives an Observation announcement message, it checks if the
PE that transmitted this message is the nearest Observer of the announced class. If the
condition is satisfied, the OS stores the Observer task address, that will be used by the LLM.
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Table 5.2: Functions available by the BrLite MA API.

Declaration Description

int send_tgt(char service, unsigned message, short target)
Sends a broadcast to a
target containing a ser-
vice and a message

int send_all(char service, unsigned message)
Sends a broadcast to all
processors containing a
service and a message

void announce_observer(MONITOR_TYPE type)

Announces the current
Observer as a target for
the monitoring type mes-
sages

void set_table(void *pointer, MONITOR_TYPE type)
Sets a table pointer as a
target for monitoring type
messages

This announcement replaces the need to embed the Observer task ID and address into the
message sent to release the user tasks as detailed in Section 4.2.4.

The LLM presented in Section 4.2.4 is modified to use the BrLite. It sends the mon-
itored payload via broadcast using the TGT service to the nearest Observer of the monitored
class. This change simplified the kernel message buffer used previously to send, among
other messages, the monitoring packets, reducing the kernel memory footprint by 1kB.

Using the BrLite to send management and monitoring messages through broadcast
enables the system to decrease the exchanged flits previously increased by the number of
management messages imposed by the MA organization, as detailed in Section 4.3.1. Other
advantages of using the BrLite with MA are:

• A separate network for management messages reduces the interference in user appli-
cation data traffic, enhancing performance;

• The management messages flow in a separate network which user tasks do not have
access, enhancing system security;

• Broadcast messages follow a flood behavior that is fault-tolerant, thus desired for man-
agement purposes;

• The treatment performance of management messages is enhanced due to its small
size;

• Provides a separate flow to monitoring messages through DMNI, reducing processor
interrupts.

This work still uses Hermes for management messages that contain an extended
payload. The reasoning for this is that the broadcast messages cannot carry a payload
larger than what is defined by its flit, which in this implementation is 40 bits. Hermes can
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carry variable-length payloads used to transmit task code, data, registers, and location of
tasks on allocation and migration services.

Table 5.3 lists the messages sent through BrLite, where the first 8 bits contain the
service triggered by the message, and the remaining columns are the 32-bit payload. The Br-
Lite is used by three messages using the ALL service: (i) RELEASE_PERIPHERAL; (ii) CLEAR_-
LUT; (iii) ANNOUNCE_OBSERVER. The other 4 messages use the TARGET service: (i) DATA_AV; (ii)
MESSAGE_REQUEST; (iii) TASK_MIGRATION; (iv ) MONITORING.

Table 5.3: Messages sent through BrLite.

39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RELEASE_PERIPHERAL – – – –

CLEAR_LUT – – – TASK_ID

ANNOUNCE_MONITOR – MON_TYPE – TASK_ID

DATA_AV – – PROD_ADDR CONS_ID

MESSAGE_REQUEST – – CONS_ADDR PROD_ID

TASK_MIGRATION – – ADDR TASK_ID

MONITORING MON_PAYLOAD

The messages listed in Table 5.3 are:

• RELEASE_PERIPHERAL: unlocks the many-core borders to enable communication with
peripherals after loading the MA tasks. The 32-bit message field is unused. The
mapper task generates this message.

• CLEAR_LUT: indicates to all PEs with an Observer task to clear the LUT with the index
of the monitoring table. This message has a 16-bit field with the identifier of the task
to remove from the LUT (TASK_ID). The OS that manages the task that finished or
migrated generates this message. The source PE address from the message header
is used to speed up the address translation.

• ANNOUNCE_MONITOR: announces to all PEs the location of an Observer task. The mes-
sage has a 3-bit field with the monitoring class (MON_TYPE) and an 8-bit field with the
Observer task address (ADDR). The Observer task location is inserted into the source
PE address field of the message header.

• DATA_AV: first handshake step used by the MA communication API, indicating that the
producer has generated a message for a consumer. The 8-bit field stands for the pro-
ducer address (PROD_ADDR), and the 16-bit field is the consumer ID (CONS_ID). Although
PROD_ADDR usually is the same as the SRC present in the message header, it cannot be
used in case of this message is redirected when a migration occurred. The producer
task identifier is obtained from the PROD field of the message header.
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• MESSAGE_REQUEST: handshake for the communication API, used by user and MA tasks,
indicating that the consumer has allocated buffers to receive a message. The 8-bit field
stands for the consumer address (CONS_ADDR), and the 16-bit field is the producer ID
(PROD_ID). Although CONS_ADDR usually is the same as the SRC present in the message
header, it cannot be used in case of this message is redirected when a migration
occurred. The consumer task identifier is obtained from the PROD field of the packet
header.

• TASK_MIGRATION: requests a migration to the kernel, generated by the migration Actu-
ator (mapper task). The 8-bit field stands for the target migration address (ADDR), and
the 16-bit field is the identifier of the task to migrate (TASK_ID).

• MONITORING: sends a monitored data. The LLM generates it. The 32-bit field has a
monitored data payload. The class exemplified in Table 5.3 is the QoS, where the 32-
bit MON_PAYLOAD contains the difference between the slack time and the monitored task
remaining execution time. The monitored task identifier is embedded in the PROD field
of the packet header.

Note that DATA_AV and MESSAGE_REQUEST messages can still be sent by Hermes
when they are directed to a peripheral to avoid the need for the peripheral to implement two
network interfaces (one for Hermes and one for BrLite) and avoid peripherals flooding the
network used for management, which could potentially result in a denial of service attack.

5.3 Results

The usage of BrLite for management with a monitoring framework for MA described
in this Chapter are evaluated using the following criteria:

1. Communication volume: the number of generated flits transmitted through the net-
works, Hermes and BrLite.

2. Communication performance: the execution time of applications running in the refer-
ence platform presented in Chapter 4 versus the platform with the monitoring frame-
work and BrLite presented in this Chapter.

3. Management responsiveness: the evaluation of the MA responsiveness with the added
monitoring framework and BrLite, measured by the latency between actuations.

The QoS of RT tasks is evaluated with a monitoring window set to 500 microsec-
onds in all evaluated scenarios. This window means that for every 500 microseconds, a
monitoring message for all running RT tasks is generated. The reasoning for adopting this
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period is that it provides the best response for both Hermes-only and BrLite with monitoring
framework platforms. The period is smaller than the default scheduling timeslice for RT op-
erating systems, such as FreeRTOS, to provide enough actuation triggers even with short
simulation times.

Section 5.3.1 compares the MA platform with and without the monitoring framework
and BrLite in a small scenario representing a cluster that can scale to a large many-core.
Section 5.3.2 evaluates the scalability of the previous case study in a many-core with 49
PEs.

5.3.1 Cluster evaluation

Experiments in this Section adopt a 3x3 many-core as a cluster representation to
evaluate the MA approach with an enhanced monitoring framework that uses the BrLite to
exchange management messages. The MA in this scenario has three tasks: (i) mapper
and migration Actuator mapped to PE 2x2; (ii) QoS Decider mapped to PE 2x0; and (iii)
RT Observer mapped to PE 0x0. The RT Observer periodically polls its monitoring table to
check for deadline violations. When a violation occurs, it is sent to the QoS Decider, that
after three violations from the same task, triggers a task migration.

The benchmark is Dijkstra’s shortest path algorithm, with seven tasks. Four tasks
are statically mapped in the central PE (1x1) to simulate a scenario with high resource
usage to induce deadline violations and trigger task migrations. The remaining three tasks
are dynamically mapped to surrounding PEs with one hop of distance.

Figure 5.7 compares the execution timelines for both MA approaches: one with only
the Hermes network, in red, and the other with the BrLite and monitoring framework, in blue.
The time in the x-axis is counted since the application is released to execute, disregarding
the many-core and MA setup latencies. The y-axis lists the migration decisions that occurred
during the execution of the application, marked by dots and crosses. At the end of the chart,
the dashed vertical line marks the application completion time for each approach.

In Figure 5.7, the first migration event occurs in the Hermes-only platform. This may
seem that the proposed approach reacts later. In fact, deadline violations are being delayed
due to two factors: (i) NoC interference reduction in application communication provided by
BrLite; and (ii) enhanced application communication protocol due to the use of BrLite in its
handshake (request).

The blue dots show that the monitoring framework with BrLite acts in bursts, further
enhancing the parallel management power of the MA organization. These bursts make the
three first migrations in the proposed approach occur within a 500 microseconds window.
After the first three migrations, the system stops violating most deadlines, making a fourth
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Figure 5.7: Reacting times for Hermes-only and BrLite with monitoring framework
scenarios.

migration event later. The enhanced communication performance and the MA responsive-
ness contributed to a 3% reduced application execution time in the proposed approach.

Note that the minimum latency between migration events is reduced by 74% for
the proposed approach. This is because the monitoring framework is not reactive like the
standard LLM implemented in the Hermes-only approach. The Observer task now runs
periodically, triggering a burst of actuations in a single monitoring window (1st, 2nd, and 3rd

conditions). This fact, along the use of DMNI to transfer monitoring data, enhances the
performance of the Observer task by reducing by 63% the interrupts to the PE holding the
Observer task in this scenario.

Figure 5.8a shows the communication volume in both MA approaches. Each ap-
proach is separated in flits transmitted via Hermes, in red, and BrLite, in blue. Hermes is
still used for messages with big payloads in the proposed framework approach, including
the task injection, which greatly contributes to the communication volume. Despite this, re-
moving small management messages from Hermes resulted in about an 11% reduction in
communicating volume through this network. This reduction results in less switching actions
in Hermes, which is more complex than BrLite. Besides, the reduction represents better
communication availability to applications, translating to the observed reduction in applica-
tion execution time.

5.3.2 Scalability evaluation

Experiments in this Section adopt a 7x7 many-core to evaluate the scalability of the
monitoring framework and BrLite usage. The MA in this scenario has 4 Observers, virtually
dividing the many-core into observation clusters. The Observers are mapped to PEs 2x2,
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Figure 5.8: Communication volume in each NoC for the both evaluated scenarios. A BrLite
flit, 80 bits, is normalized to 32 bits, i.e., multiplied by 2.5.

2x4, 4x2, and 4x4. The Deciders are fitted between the Observers, in PEs 2x3, 3x2, 2x4,
and 4x2. Finally, the mapper and migration Actuator is mapped to the center of Observer
and Decider tasks, which is the system center, in PE 4x4.

Table 5.4 lists the four applications that execute in this scenario. The first column
lists the application name. The second column has a brief description of the application. The
third column marks the parallel model used by the application. The fourth and fifth columns
list the total number of tasks and the number of worker tasks, respectively. Finally, the sixth
column has the PE in which the worker tasks are mapped.

Table 5.4: Applications used to evaluate the monitoring framework.

Application Description Model Tasks Workers PE
Advanced Encryption
Standard (AES)

Encripts and decripts
data

Master-slave 9 8 5x5

Audio/Video
Audio and video encod-
ing and decoding

Fork-join 7 5 5x1

Dijkstra
Finds the shortest path
in a graph

Fork-join 7 5 1x5

Dynamic Time Warping
(DTW)

Pattern recognition Fork-join 6 4 1x1

In Table 5.4, each application has all its worker tasks mapped to the same PE
to simulate a scenario with high resource usage and induce deadline violations to trigger
task migrations. The remaining tasks of each application are mapped dynamically near the
statically mapped workers, resulting in virtual clusters for each application surrounding the
mapping location in the sixth column of the table.
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Figure 5.9 presents the timeline for each application in the two compared ap-
proaches. The time in the y-axis is computed since the first application, DTW, is released to
execute. The scenario with BrLite and the monitoring framework is marked in blue, and the
Hermes-only platform is marked in red. The lines represent a migration event triggered by
the MA.
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Figure 5.9: Reacting times for Hermes-only and BrLite with monitoring framework equipped
scenarios.

In Figure 5.9, the applications AES, Audio/Video, and DTW start migrating earlier
in the Hermes-only platform. This follows what is presented in the cluster evaluation, where
enhanced communication is achieved for user applications using BrLite. Applications AES,
Dijkstra, and DTW also react in instants of migration bursts, as observed in the cluster eval-
uation. This is enabled by the enhanced parallelism of the proposed monitoring framework,
resulting in an average minimum latency between actuations reduced by 77% when disre-
garding the application Audio/Video due to the different number of performed migrations.

To summarize, the average execution time of applications under the proposed ap-
proach is reduced by 8%. The explanation follows the same as in the cluster evaluation.
However, in this scenario, the more significant number of applications running in the sys-
tem evidences the superiority of the proposed approach. On average, the four PEs holding
Observer tasks were interrupted 45% fewer times in the proposed approach than in the
Hermes-only platform.

Figure 5.8b pictures the communication volume in each approach. The transmitted
flits by the Hermes, in red, are reduced by 12% in the proposed approach. The number of
messages transmitted by the BrLite is only 2% of the emitted flits by the Hermes network
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in the proposed approach, evidencing the efficiency of the broadcast NoC for management
purposes.

5.4 Final Remarks

This Chapter presented a monitoring framework and a dedicated NoC for manage-
ment purposes, the BrLite, used alongside the MA organization. The proposed approach
achieved, on average, 8% lower application execution compared to the Hermes-only ap-
proach. The advantages of the proposed platform that enabled this reduction are: (i) 12%
lower communication volume through the data NoC, reducing application communication
congestion; and (ii) use of broadcast for small management messages, enhancing its han-
dling and delivery latency.

The proposed monitoring framework further enhances the management reactivity
of the MA organization. The results evidenced burst actuations explained by exploiting the
DMNI, which resulted in an average of 77% less latency between actuations. This enhance-
ment is explained by the reduced interrupts on processors holding the Observer tasks by an
average of 45%.
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6. MA MAPPING HEURISTIC

This Chapter presents the proposed mapping, migration, and defragmentation al-
gorithm to be used in the Memphis platform with MA [Dalzotto et al., 2021a]. The portability
of the heuristic is due to its implementation loosely coupled to the operating system. For
example, mapping algorithms commonly use data structures shared with the OS, such as
task tables, or commonly know the status of the running tasks. The proposal does not need
to share any information with the OS, running as a standard application.

The literature proposes distributed algorithms [Singh et al., 2013], because they
tend to reduce the mapping search space. These algorithms have the advantage of reduc-
ing execution time and mapping more than one application in parallel. However, there are
two main weaknesses related to distributed mapping algorithms. The first one refers to the
fact that, when restricting the search space to a particular region (e.g., a cluster), there may
be not enough resources to map an application, due to a lack of knowledge of the other
regions of the many-core. Some distributed algorithms use reclustering methods [Castilhos
et al., 2013] to increase the search space if there are not enough resources to map an ap-
plication in the cluster. Mapping more than one application in parallel only makes sense if
the many-core can receive requests in parallel, which is usually not the case, as in the Mem-
phis platform, which has a single interface dedicated to sending applications (Application
Injector ).

Thus, this work proposes using a centralized mapping (or a mapping with a low
degree of parallelism), allowing the mapper to have a complete many-core view, improving
decision making. Despite appearing to be a strategy that goes against the established liter-
ature on mapping algorithms, the technique detailed in this Chapter uses virtual clusters to
reduce the search space and allow better load balancing on the processors. A distributed
version of this heuristic can be implemented by multiple mappers running in parallel, each
one negotiating with a different application source.

Figure 6.1 shows a virtual cluster, or window, in orange, in an 8x7 many-core.
Memphis uses a 2D-mesh NoC topology. Therefore, a window is defined by the x and y
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coordinates of its bottom-left corner and by Wx and Wy representing the window size in the
x-axis and the y-axis, respectively.
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Figure 6.1: A virtual cluster, or window, in the many-core. Wx = 3, Wy = 3, and Stride = 2.

In Figure 6.1, the window x and y are located at the coordinate (2, 2), and its W
(Wx×Wy ) size is 3x3. The reasoning to adopt virtual clusters is to reduce the search space
to map a given application, sliding the window similar to a convolution matrix, advancing
each time by a value called stride, which in the Figure is 2. The mapper assumes that every
PE supports a parameterizable number of memory pages, each page able to contain a task,
without considering memory or processing constraints.

The mapping heuristic contains three main phases: window selection, mapping
order, and task mapping. Before the heuristic execution, the mapper verifies if the system
can run the incoming application, i.e., if there are enough pages not loaded by tasks (free
pages) to map the application. A counter implements this verification, which increases with
the number of application tasks to be mapped, and decreases when an application finishes.

Section 6.1 details the window selection phase for incoming applications. Sec-
tion 6.2 describes the task mapping ordering algorithm. The final phase, the task mapping
algorithm, is detailed in Section 6.3. Finally, Section 6.4 presents the heuristic results in
terms of functional validation, computational complexity, and an evaluation of mapping qual-
ity against Memphis with CBM and hierarchical PAM.

Section 6.5 presents a defragmentation heuristic, executed when a given task fin-
ishes its execution. This heuristic aims to improve an application performance when its map-
ping is non-continuous, i.e., fragmented. Fragmentation is expected in dynamic workloads
scenarios, and few works in the literature add this procedure in their mapping heuristics.
Section 6.6 concludes this Chapter.
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6.1 Window Selection Algorithm

This Section details the first phase of the heuristic, the window selection algorithm,
presented in Algorithm 6.1. The goal of mapping an application into a window is to reduce the
mapping search space, decreasing its computational complexity. The search procedure to
find a window to receive the application starts from the last selected window. The reasoning
for adopting this method is to map different applications side by side, avoiding using the
same many-core region to balancing the execution load, and in the long term, increase the
system lifetime.

Algorithm 6.1 four inputs are the number of tasks of the application (app.#tasks),
the last selected window, Wx , and Wy . The algorithm always succeeds, because there is
a previous resource availability verification. The algorithm returns a window, which contains
the tuple {x , y , Wx , Wy}.

Line 3 advances to the next virtual window, using the current window size (Wx , Wy )
and the stride value. Initial values of Wx , Wy , and stride are 3, 3, and 2, respectively. The
loop between lines 4 to 9 searches the first window with available resources to execute the
application, after the selected last_window , returning it if it exists. The function window_-

pages returns the number of available memory pages in a window. If the first loop does not
find a window, the same process is repeated from the first window (coordinates (0,0), line
10) up to the last window (loop between lines 11–16).

Note that these two loops are inside a “while true” external loop. Suppose the
application requires more resources than those available in the current window size, or the
windows have processors executing tasks belonging to other applications. In this case, it is
necessary to increase the window size.

Lines 17–23 increase Wx or Wy alternately, avoiding to increase the number of
PEs in the window by a large value. The two main loops rerun after increasing the window
size in one dimension. This process continues until a suitable window is found. In the worst-
case scenario, the window may be equal to the system size, with an application mapped
with a high degree of fragmentation and a great hop count between communicating tasks.

Figure 6.2 illustrates the window sliding in a 8x7 many-core, with Wx = 3, Wy = 3,
and stride = 2. The window slides in the x-direction by adding the stride value to the current
x value. After sliding in the x-direction, the y value receives the current y value plus the stride
value. Note that the figure has red windows. These windows are the ones that the stride
reduces to reach the boundaries of the many-core while keeping window size.

Two events use a simpler window definition algorithm. The first one is the static
mapping of some tasks of a given application, which are necessary to map the remaining
task(s). The second one is the request to migrate a given task from a mapped applica-
tion. In both cases, there is already a set of pre-mapped tasks. The algorithm determines
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Algorithm 6.1: Window selection algorithm.
Input: app.#tasks, last_window, Wx, Wy, stride
Output: window

1 increased_x← false
2 while true do

// slide from the following after the last window until the many-core end
3 window← window_next(last_window, Wx, Wy, stride)
4 while window < last possible position do
5 if window_pages(window, Wx, Wy) ≥ app.#tasks then
6 return window
7 end
8 window← window_next(last_window, Wx, Wy, stride)
9 end

// slide the window from the many-core beginning until the last window
10 window← (0, 0)
11 while window ≤ last_window do
12 if window_pages(window, Wx, Wy) ≥ app.#tasks then
13 return window
14 end
15 window← window_next(last_window, Wx, Wy, stride)
16 end

// increase the window alternately in x and y dimensions
17 if increased_x then
18 Wy←Wy + 1
19 increased_x← false
20 else
21 Wx←Wx + 1
22 increased_x← true
23 end
24 end

Window 0 Window 1 Window 2

Window 4 Window 5 Window 6

Window 8 Window 9 Window 10

Window 3

Window 7

Window 11

Figure 6.2: Virtual window sliding in a 8x7 many-core, Wx = 3, Wy = 3, and stride = 2.
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the bounding box relative to the tasks already mapped, excluding the one to migrate, if it
is the case. The bounding box is the window, defined by its left-bottom coordinates and
its width/height (the Wx /Wy parameters, respectively). Thus, the task(s) to be mapped or
migrated use this window as the search space. If it is necessary to increase its size, the
algorithm uses the same procedure of Algorithm 6.1.

6.2 Task Mapping Ordering Algorithm

This Section describes the second phase of the heuristic, the task mapping order-
ing algorithm. This step is, in effect, independent of the window selection and thus could run
in parallel with the first phase. The result of this phase is the mapping order used in the map-
ping algorithm (Section 6.3). An appropriate mapping order, although not guaranteed to be
optimal, reduces the mapping fragmentation and the hop distance between communicating
task pairs.

Before detailing the task mapping ordering algorithm, Definition 4 to Definition 6
detail the application model adopted by the current work.

Definition 4. Application (App) – is a directed and connected CTG(T , E) that models each
application. Each vertex ti ∈ T represents a task, and each edge eij ∈ E represents commu-
nication from ti to tj . Assuming that edges eij are modeled implicitly in ti (see Definition 5),
an application with N tasks is represented as:

App = {t0, t1, ..., tN−1}

Definition 5. Task (ti) – is a vertex of the CTG. Each task ti is a tuple with its identification
and a list of communicating tasks connected by its edges eij . Communicating tasks are
divided into successors and predecessors. Successors, sui , are tasks receiving data from
ti . Predecessors, pri , generate data to ti .

ti = {id , {su0, su1, ...}, {pr0, pr1, ...}}

Definition 6. Initial task (ini) – is a task ti whose predecessors set is empty, i.e., there are
no edges directed to it.

Figure 6.3 illustrates a 5-task application modeled as a CTG. In this example, t0 is
the initial task because it does not have predecessors. The t0 successors are {t1, t2}, while
t4 predecessors are {t2, t3}.

Algorithm 6.2 details the task mapping ordering algorithm. The loop between lines
5–9 creates the Initials set, i.e., a set with all application initial tasks. The loop between lines
11–21 acts as a breadth-first search algorithm to traverse the CTG. At line 12, the Order
list receives an initial task, ini . Next, lines 14–28 add all non-added successors of ini into
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Figure 6.3: Application modeled as a CTG.

Algorithm 6.2: Task mapping ordering algorithm.
Input: App // Definition 4
Output: Order

1 Order← ∅
2 Initials← ∅ // Definition 6
3 task_index← 0
4 inserted← 0

// search for initial tasks
5 foreach ti ∈ App do
6 if ti .Predecessor = ∅ then
7 Initials.insert(ti )
8 end
9 end

10 while inserted ̸= |App| do
// add successors one depth at a time starting from initials - breadth-first search

11 foreach ini ∈ initials do
12 Order[inserted++]← ini
13 while task_index < inserted do

// behave like a fifo: order the successors of the first inserted tasks
14 foreach sui ∈ Order[task_index].Successors do
15 if sui ̸∈ Order then
16 Order[inserted++]← sui
17 end
18 end
19 task_index++
20 end
21 end

// add first not ordered task found as an initial to solve cyclic dependencies
22 Initials← ∅
23 foreach ti ∈ App do
24 if ti ̸∈ Order then
25 Initials.insert(ti )
26 break
27 end
28 end
29 end
30 return Order

the Order list. At line 19, the task_index increments, making the loop 14–18 to add the
successors of the next task in the Order list into the Order list.

Note that an application may have cyclic dependencies that make the Initials set
empty or the graph traversal not fully completed by the first run of the loop between lines
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11–21. For example, the Initials set would be empty for the CTG in Figure 6.3 if t4 sent data
to t0. Lines 22–28 clears the Initials set and adds the first task not present in the Order list
into the Initials set. This makes the loop between lines 10–29 to run until the CTG is fully
traversed, i.e., all App tasks are in the Order list.

Table 6.1 illustrates how the application is traversed using the CTG depicted in
Figure 6.3.

Table 6.1: Execution of the task mapping ordering algorithm, using Figure 6.3 as input.

Iteration Lines Order task_index inserted remark
1-9 ∅ 0 0 initial task: t0
12 t0 1

1 14-18 t0, t1, t2 3 t0 successors
19 1

2 14-18 t0, t1, t2, t3 4 t1 successors
19 2

3 14-18 t0, t1, t2, t3, t4 5 t2 successors
19 3
19 t0, t1, t2, t3, t4 4,5 repeats 14-18 twice, exiting

The algorithm adds the initial task, t0, at line 12. Next, the first iteration of lines
14-18 adds the successors of the first Order element to the Order list. The counter inserted
is now equal to three, meaning that there are 3 elements in the Order list. At line 19,
task_index increments, moving the traversal index for the next iteration. At the end of the
third iteration, all tasks are in the Order list (inserted = 5). The loop 14-18 repeats twice,
increasing task_index up to be possible to exit the loop. This process is repeated for each
initial task. The resulting task mapping order is t0, t1, t2, t3, t4.

6.3 Task Mapping Algorithm

This Section details the third phase of the sliding window mapping heuristic: the
task mapping algorithm. This phase uses the results of the two previous phases, the
window , and the Order list. The window reduces the mapping complexity due to the limited
search space. The Order list defines the sequence to map tasks to minimize the communica-
tion cost. The heuristic does not guarantee an optimal mapping result. However, Section 6.5
details a defragmentation procedure that migrates tasks with high communication cost when
space in the system becomes available.

The platform designer can tune the mapping cost-function using two parameters:

• COST_DIFF_APP: cost related to tasks not belonging to the application being mapped
running in the PE under evaluation. This cost prevents PE sharing among different
applications, which is desirable for applications with RT constraints. If two or more
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different applications run in the same PE, one can interfere with the other, leading to
deadline misses.

• COST_SAME_APP: cost related to tasks of the application being mapped running in the PE
under evaluation. This value defines CPU sharing. A large value distributes the tasks
in several PEs, increasing the application parallelism, while small values increase the
CPU sharing, reducing the number of resources used by the application.

Algorithm 6.3 details the mapping algorithm. The external loop (lines 2–24) maps
the tasks sequentially, according to the Order list. The algorithm creates, at line 5, the
Neighbors set with all tasks communicating with ti .

Algorithm 6.3: Task mapping algorithm.
Input: Order, window
Output: Mapping

1 Mapping← ∅
2 foreach ti ∈ Order do
3 cost←∞
4 selected_PE← None
5 Neighbors← ti .Predecessors ∪ ti .Successors
6 foreach PExy ∈ window do
7 if PExy .pages > 0 then
8 diff_app_cost← n_tasks_diff_app(PExy , ti) * COST_DIFF_APP
9 same_app_cost← n_tasks_same_app(PExy , ti) * COST_SAME_APP

10 comm_cost← 0
11 foreach tc ∈ Neighbors do
12 if tc is mapped then
13 comm_cost← comm_cost + manhattan_distance(ti , tc)
14 end
15 end
16 c← diff_app_cost + same_app_cost + comm_cost
17 if c < cost then
18 cost← c
19 selected_PE← PExy

20 end
21 end
22 end
23 Mapping[ti .id]← selected_PE
24 end
25 return Mapping

The loop between lines 6–22 evaluates all PEs in the window, with available re-
sources to receive tasks. The functions n_tasks_diff_app and n_tasks_same_app get the
number of tasks in the PE running different and same applications as the task to map,
respectively, multiplying this by the respective costs. Next, lines 10–15 evaluate the commu-
nication cost, in number of hops, between ti and its neighbor tasks already mapped. Finally,
lines 16–20, select the PE with the smallest cost. The last step executed by the algorithm,
line 23, is to add the PE address to the Mapping set.

The current implementation of the mapping algorithm evaluates the PEs first in the
y-direction and then in the x-direction (lines 6–22 of Algorithm 6.3). The reasoning for this
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order is to complement the window selection, which slides the window first in the x-direction
and then in the y-direction. In this case, a better usage of the window regions is achieved by
setting the stride to less than Wx , overlapping the windows in the x-direction.

Figure 6.4 shows step-by step the mapping of the CTG presented in Figure 6.3,
considering one memory page per PE. Tasks are mapped as follows:

Task 0 Task 1 Task 2 Task 3 Task 4

t0 t0
t1

t0
t1

t2 t0
t1

t2

t3

t0
t1

t2

t3
t4

Figure 6.4: Execution of the mapping algorithm related to CTG presented in Figure 6.3, for
Wx = 3 and Wy = 3.

• t0: this is the initial task, mapped at the bottom-left corner of the window;

• t1: communicates with t0, mapped above it, due to the evaluation order (y-first). The
communication cost between t0 and t1 is 1 hop, i.e., comm_cost(t0, t1) = 1;

• t2: mapped at the right of t0, being comm_cost(t0, t2) = 1;

• t3: communicates with t1, mapped above it, being comm_cost(t3, t1) = 1;

• t4: communicates with {t2, t3} mapped above t2. being comm_cost(t4, t2, t3) = 3.

The average estimated communication cost of this mapping is 1.2 (6 hops divided
by 5 edges). The average communication cost is the main metric used to compare this
mapping heuristic to other state-of-art heuristics.

Note that in the case of task migration, the heuristic does not run the task mapping
ordering phase. This is because the application is already mapped, and just a single task
is migrated. Therefore there is no task mapping order. Thus, it is equivalent to adding only
the task to migrate to the Order set and running the mapping algorithm. With static mapped
tasks, a flag indicating that the task is already mapped controls if the mapping algorithm
needs to compute its costs and map the task. The task mapping ordering phase still runs
the same way to obtain the correct mapping order when the successors of a static mapped
task are dynamically mapped.



75

6.4 Mapping Results

Results in this Section are divided in functional validation and computational com-
plexity in Section 6.4.1, and an evaluation of the mapping heuristic latency and the mapping
quality in Section 6.4.2.

6.4.1 Functional validation and computational complexity

This Section presents the functional validation, enabled by a Python implemen-
tation, of the mapping heuristic and details the computational cost of the sliding window
mapper. This implementation generates logs readable by the many-core debugger software
[Ruaro et al., 2014], allowing debugging and algorithmic optimizations.

Figure 6.5 displays the window of the many-core debugger, showing the applica-
tion mapping for a scenario in an 8x8 many-core, with a single memory page per PE. This
scenario contains eleven different applications, each one marked by a different color in the
Figure. The mapping generated contiguous regions for the applications, minimizing frag-
mentation.

Figure 6.5: Mapping validation on a 8x8 many-core, Wx = 3, Wy = 3, and stride = 2.

Figure 6.6 shows the previous scenario, mapped on a 6x6 many-core, with two
pages per PE. By increasing the number of tasks each PE can run, the result is similar, with
a small hop count between communicating tasks. The cost function of the task mapping
penalizes the PE sharing but still tries to reduce communication costs, so tasks of the same
application tend to share a PE when the number of hops between them is equal or higher
than COST_SAME_APP (2 in the current implementation). Fragmentation is also avoided by the
sliding window, where applications are mapped next to the last used window. This fact also
results in application superposition only when most of the PEs in the system have at least
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one task, with the window reaching the many-core boundaries and returning to its starting
point.

Figure 6.6: Mapping validation on a 6x6 many-core with multitasking (2 tasks per PE),
Wx = 3, Wy = 3, and stride = 2.

Table 6.2 presents the computational cost [Cormen et al., 2009] of each phase
of the mapping algorithm. The first phase of the heuristic, the window selection, starts by
searching a window of size W 2, given by the initial condition of Wx = Wy . In most cases,
when the many-core is not overloaded, the first evaluated window can contain the incoming
application, resulting in an average case expressed by Θ(W 2).

Equation 6.1 computes the number of evaluated windows for a given Wx and Wy in
a complete iteration of the loop between lines 2–23 of Algorithm 6.1. For simplicity purposes,
suppose Wx and Wy are equal, with Wx = Wy = W , thus, each window computation takes
W 2 steps. Also suppose that the many-core Xsize and Ysize are equal, with Xsize = Ysize =√
|PE |. Thus, Equation 6.1 can be simplified, resulting in Equation 6.2.

Table 6.2: Complexity of each phase of the heuristic. W – Window size in one dimension,
N – number of application tasks, |PE | – number of PEs.

Window Selection Task Mapping Ordering Task Mapping

Average Case Θ(W 2) – Θ(W 2 × N)

Worst Case O(|PE |2) O(N) O(|PE | × N2)

nb_windows =
⌈

Xsize −Wx
stride

+ 1
⌉
×
⌈

Ysize −Wy
stride

+ 1
⌉

(6.1)
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nb_windows =

⌈√
|PE | −W
stride

+ 1

⌉2

(6.2)

For the worst case, W increases from an initial value of 1 until it reaches the many-
core size in one dimension (

√
|PE |), the same way nb_windows decreases until it reaches 1.

To contribute to the worst case, suppose that stride = 1, increasing the value of nb_windows
for every iteration. The total number of steps required by the window selection phase of
the heuristic could be described by Equation 6.3. Solving this summation, the worst-case
complexity is expressed by O(|PE |2).

√
|PE |∑

w=1

w2 × (
√
|PE | − w + 1)2 (6.3)

The third column in Table 6.2 shows the complexity of the task mapping ordering
phase. The worst-case complexity of this phase is expressed by O(N), where N is the
number of application tasks (Definition 4), since it verifies all tasks once.

The fourth column in Table 6.2 shows the complexity of the task mapping phase.
The average-case complexity is expressed Θ(W 2 × N). The average case arises when the
selected window has the initial size, and each task only has a few successors or prede-
cessors, which typically occurs. This phase searches for all PEs in the window for each
application task. The worst case occurs when the window W has grown to the many-core
size in one dimension

√
|PE |, and all tasks communicate to each other. Therefore, the

worst-case complexity can be expressed by O(|PE | × N2).

6.4.2 Mapping quality

This Section presents the mapping quality evaluation after its implementation in
the Memphis many-core. The sliding window mapper for MA is compared to CBM and PAM
approaches. The CBM mapping refers to the standard Memphis heuristic, which consists of
selecting one PE of the cluster furthest from tasks of other applications [Tsoutsouras et al.,
2018]. From this PE, the tasks are mapped based on a diamond search [Zhu and Ma, 2000].
The mapping in PAM uses the same heuristic as CBM without restricting the search space
in clusters. Both approaches are distributed since CBM can map one application per cluster
simultaneously, and PAM assigns initial tasks to the initial PE, which maps the application
by negotiating with cluster managers to keep a global view of the system.

Experiments are conducted on a 10x10 many-core, with each PE supporting a
single task. The CBM approach is divided into four 5x5 clusters. The PAM approach is
also divided into the same number of clusters with hierarchical management. All evaluated
scenarios, 14, contain the same set of 9 applications, each one with a different number of



78

tasks, listed in Table 6.3, with a total of 78 tasks, occupying 78% of the memory pages in the
many-core.

Table 6.3: Number of tasks of the applications used in the scenarios.

Application #tasks
AES 9
Dijkstra 6
DTW 6
JPEG 5
Matrix multiplication 6
MPEG4 7
MWD 12
Sorting 15
VOPD 12

Total 78

What differentiates the 14 evaluated scenarios is the order in which the applications
enter the system. One scenario maps applications from the smaller to largest number of
tasks, one from the largest to the smaller number of tasks, one balanced, and 11 random
scenarios.

The performance figure used to evaluate a mapping result is its average communi-
cation cost, comm_cost , detailed in Definition 7.

Definition 7. Average mapping communication cost (comm_cost) – is the average be-
tween the communication costs of mapped applications. The communication cost of an
application, here, is the total number of hops between communicating pairs using a Manhat-
tan distance measure, divided by the number of communicating pairs, corresponding to the
CTG edges.

Figure 6.7 shows the mapping of scenario with a balanced application arrival order
in terms of task count for the three management paradigms. The CBM mapping produced
mostly contiguous mapping, except for the MWD application, in blue, which needed reclus-
tering to fit in the many-core. CBM had a comm_cost = 2.27 hops. The PAM mapping
solved this issued by allowing a search space equal to the system size. In addition to the
4 managers of the CBM, the hierarchical PAM needs one extra manager per application,
resulting in an overhead of 13% of lost mapping space. Besides searching the entire many-
core for the best location to map, PAM reduced the comm_cost just 1.32%, resulting in a
comm_cost = 2.24 hops.

In Figure 6.7, the mapping using the proposed sliding window heuristic has the
overhead of a single manager, which is only 1% of mapping space. Moreover, the average
communication cost dropped by 22% compared to CBM, with a comm_cost = 1.77 hops,
due to the algorithm considering a restricted search space and a task mapping order that
considers the communicating task pairs.
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Figure 6.7: Mapping heuristic comparison between CBM, PAM, and MA.

The analysis of the 14 scenarios showed that on average, PAM and CBM produced
the same average comm_cost = 2.33 hops, indicating that clustering does not penalize
the mapping. The standard deviation of 0.07 in CBM and 0.11 in PAM shows that both
approaches have low fragmentation independent of the application order, indicating that the
algorithm keeps the communication distance close to the average for all scenarios. For
the proposed mapping, the average comm_cost = 1.71 hops, 27% smaller than CBM and
PAM, for the 14 scenarios. A small standard deviation, 0.06, is observed, confirming that
the sliding window mapper is also independent of the order and the size of the applications
entering the system.

The Figure 6.8 shows a graph of the average mapping latency in kilo clock cycles
(Kcycles) for each management paradigm. Each bar represents the average heuristic la-
tency from all evaluated scenarios with the lines marking the standard error. The latency is
measured from the start to the end of the heuristic in the manager processor (CBM, PAM)
or in the mapper task (MA).

In Figure 6.8, the heuristic used by CBM and PAM is the same, but PAM has the
disadvantage of searching the whole many-core for the initial PE, resulting in average 4.3
times higher latency. The sliding window heuristic shows similar results than CBM, being
in average just 3% slower despite being a centralized heuristic. Additionally, it is important
to note that CBM runs directly at kernel level, which incurs in less execution time overhead
compared to MA, which runs at application level.

The standard error showed by the sliding window mapper (1.26) is lower than CBM
(2.2) and PAM (8.87). The reason explaining this result twofold: (a) the MA mapper task is
centralized, thus does not need to spend time synchronizing the system status with man-
agers, as CBM does and PAM does more heavily; and (b) the MA mapper task running the
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Figure 6.8: Mapping heuristic latency for different sized applications in CBM, PAM and
sliding window mapper.

heuristic serves the single purpose of mapping, being more available than the CBM manager
that runs another management goals in the same software.

6.5 Defragmentation

Many-cores supporting dynamic application admission assume that they can start
and terminate their execution at runtime, entering and leaving the system, respectively. Such
a process leads to fragmentation in the application mapping since the availability of free
cores usually will be scattered through non-contiguous regions [Ng et al., 2016]. This is
observed in Figure 6.7, where restricting the search space in clusters (CBM) or virtual clus-
ters (MA) resulted in separated areas with free cores. The adverse effects of a fragmented
mapping include:

• Degradation of the mapped application performance due to increased hop count;

• Interference in the performance in other applications due to the new traffic crossing
regions with already mapped applications.

Figure 6.9 shows the MA scenario of Figure 6.7 when a new instance of the AES
is mapped. The added application, in orange, is fragmented, i.e., it is not in a contiguous
region. The other colored applications are: (i) AES, in pink; (ii) MWD, in blue; and (iii) Matrix
Multiplication, in purple. The remaining applications are greyed out for simplicity purposes.
The colored applications are highlighted because some of its mapped tasks are inside the
new AES application bounding box. The bounding box is the minimum rectangular-shaped
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PE set in which the application is mapped, marked by red lines for the new AES application
in Figure 6.9

Figure 6.9: Fragmentation in a 10x10 many-core. The application in orange is fragmented,
with its bounding box, in red, disturbed by the pink, purple, and blue applications.

For the mapping heuristic to identify the fragmentation, a metric should be defined.
Ng et al. [Ng et al., 2016] identify scattered free cores and act on mapped applications when
the scattering reaches a certain threshold. This way, a contiguous region with free cores is
created before the application arrival. The Authors use three fragmentation metrics:

1. Peri, which is the perimeter enclosing the free cores, demanding migrations to keep
the free core region contiguous all the time;

2. Half-Perimeter Length (HPL), which is the number of hops from the two most distant
points in the free core region bounding box, reducing the restrictiveness of Peri ;

3. Minus, which is the difference between the number of free cores in the greatest free
core region and the predicted number of tasks from the next incoming application,
in order to reduce to the maximum the migration quantity without compromising the
mapping efficiency, but relying on the prediction accuracy.

The migration algorithm proposed in [Ng et al., 2016] needs to evaluate the many-
core space to decide where to migrate the free cores. By computing a central free core
with the minimum manhattan distance to other free cores, the resulting free core region is
obtained. Afterward, each free core is migrated one hop at a time, i.e., the running tasks are
shifted one by one to minimize the application communication cost penalty resulting from
the migration. The Authors’ experiments revealed less than 2.6% overhead related to the
total execution time, with 41% overall execution time reduction and 42% energy reduction
compared to existing mapping algorithms without defragmentation.

Pathania et al. [Pathania et al., 2017] also defragment a many-core prior to the ap-
plication mapping, but in a cached system, that induces cold cache misses when migrations
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occur. Their application mapping demands several constraints to its shape, such as being
limited to using a power of two cores. This way, the number of free cores in a contiguous
area will also be a power of two.

To defragment the mapping proposed in [Pathania et al., 2017], an area with free
cores, called fragment, can be joined with another of the same size to be suitable for the
next incoming application. The migrations involved in this process occur by swapping the
fragment with tasks from a running application instead of sliding the application as in [Ng
et al., 2016]. The Authors achieved an average of 15% improved performance with overall
4.85% less energy, with an execution overhead of 1.77% in a 64-core system compared to
their mapping approach without migration.

Modarressi et al. [Modarressi et al., 2013] propose a defragmentation that can
migrate tasks from all running applications when one application terminates. Their work aims
to reduce the communication energy on a circuit-switched many-core. Compared to their
mapping algorithm without migration, the Authors’ migration approach achieves on average
13% better performance, and 10% reduced energy. It is also stated that bigger applications
benefit more from task migrations due to the likelihood of being mapped in different non-
contiguous regions. On average, each migration step moved a task by 2.69 hops.

In common, these proposals do not consider the actual cost of task migration,
allowing multiple migrations simultaneously to release a region of the system. We propose
a defragmentation procedure using the mapping algorithm presented in this Chapter. This
defragmentation is reactive, occurring when a task exits the system. Contrary to the related
work, the main differences of our proposal include:

• Our defragmentation acts on fragmented applications instead of unallocated areas,
reducing the number of migrations;

• There is no threshold to trigger the defragmentation process;

• The defragmentation is a fine-grain process, i.e., for each finished task, the proposal
evaluates if it is possible to use the freed resource to improve the mapping quality of
another application.

The defragmentation method adopts two metrics:

• Communication cost: enables to evaluate the applications which are more penalized
by a fragmented mapping, represented by a high hop count between communicating
pairs;

• Bounding box of the application: enables to evaluate if the finished task was interfering
in the application mapping space.

Algorithm 6.4 details the proposed defragmentation algorithm. It has two inputs:
freed_pe and Applications. When a given task finishes its execution, it frees a memory
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page in the allocated PE, called freed_pe. Applications are sorted in the reverse order
by its communication cost into the SortedApps set (line 1) to evaluate most fragmented
applications initially, i.e., with greater communication cost.

Algorithm 6.4: Defragmentation algorithm.
Input: freed_pe, Applications

1 SortedApps← sort(Applications)
2 foreach ai in SortedApps do
3 if freed_pe ∈ ai .bounding_box then
4 SortedTasks← sort(ai .tasks)
5 foreach ti ∈ SortedTasks do
6 if compute_cost(ti , freed_pe) < compute_cost(ti , current_pe) then
7 migrate(ti , freed_pe)
8 return
9 end

10 end
11 end
12 end

After creating the SortedApps set, a loop starts looking for the candidate applica-
tion to have a migrated task. The initial condition to evaluate a given application is if the freed
position (freed_pe) is inside the application bounding box (line 3). If this condition is satis-
fied, a set named SortedTasks orders the application tasks according to the hop distance
between its predecessors and successors (line 4). Thus, tasks with a higher hop count are
prioritized to migrate.

The loop between lines 5-10 evaluates the cost to migrate ti from its current position
to the freed PE, according to the mapping cost, as defined in Algorithm 6.3, line 16. If the
new cost is lower than the previous one, the task can migrate. When migration occurs, the
algorithm finishes. Thus, only a single migration can occur per finished task. The reasoning
to execute one migration per finished task is to keep the algorithm simple. Note that other
tasks from the same application may also exit the system when a given task is completed.
Thus, an application leaving the system can trigger multiple migrations.

Note that Algorithm 6.4 does not restrict the migration to fragmented scenarios.
When an application terminates, migrations can occur to enhance another application map-
ping, even if it is not fragmented.

Figure 6.10 shows the previous example of Figure 6.9 when one of the “disturb-
ing” applications finishes its execution. In this case, multiple migrations are triggered for the
AES application, in orange. Note that the advantage of this method is not only the defrag-
mentation but also the migration of tasks to locations where the mapping quality is better,
translated by its lower mapping cost.
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Figure 6.10: Defragmentation in a 10x10 many-core. The application in orange is
defragmented, with its bounding box, in red, now smaller and not disturbed by the

remaining applications.

6.5.1 Defragmentation results

This Section evaluates a case study of the proposed defragmentation algorithm.
For the experiment, an 8x8 many-core without multitasking is used. The mapper task exe-
cutes at the same PE as an application task, being the only PE running two tasks simulta-
neously.

Figure 6.11 presents four mapping states of the experiment. The first state, shown
in Figure 6.11a, is the initial state of the experiment. Initially, the many-core is loaded with
six applications, occupying 100% of the mapping space. In this case, applications DTW, in
green, and JPEG, in purple, are fragmented. The initial comm_cost is 2.11 hops.

DTW Fixed-base JPEG MPEG4 MWD Sorting VOPD

(a) (b) (c) (d)

Figure 6.11: Mapping states before defragmentation (a), after defragmentation (b,c), and
with an extra application after defragmentation (d).

The first time a set of migrations occurs is with the end of the MWD application, in
blue. This is detailed in Figure 6.11b, with the applications DTW and JPEG achieving better
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communication cost through 6 migrations. Although the Figure shows both applications
are still fragmented, DTW reduced its communication cost from 3 hops to 2 hops, while
JPEG reduced from 3.75 hops to 2.5 hops. Overall, both migrated applications had the cost
reduced by 33%, and the total comm_cost to 1.87 hops, 11.4% less than the initial value.

In the mapping state shown in Figure 6.11c, there is no fragmentation. This oc-
curred by terminating the application JPEG, triggering two migrations in the application DTW,
and 1 for the Fixed-base application. DTW had its communication cost reduced by 40%, re-
sulting in 1.5 hops. Note that despite not being fragmented, the application Fixed-base also
had one migration that enhanced its communication cost, reducing by 6.2%, from 1.78 hops
to 1.67 hops. The comm_cost reduced by 16.6%, to 1.56 hops.

Finally, a scenario where the system has terminated applications and a new incom-
ing application, VOPD, is added is detailed in Figure 6.11d. The VOPD mapping is initiated
in a system without fragmentation and is also mapped without being fragmented. Its com-
munication cost is 1.36 hops, which kept the comm_cost in 1.52 hops in the system 92.2%
occupied by tasks.

6.6 Final Remarks

This Chapter presented a mapping heuristic for the MA, loosely coupled to the OS,
that is also unified with the task migration and application defragmentation.

The cost function of many mapping heuristics is reducing the communication en-
ergy or enhancing application performance. These cost functions are related to the hop
distance reduction between communicating tasks, which is the primary cost function of the
proposed mapping. Results obtained with the proposed heuristic are superior to state-of-the-
art approaches due to a centralized decision process, which allows the mapping heuristic
to make decisions based on the global state of the system. Although the literature presents
distributed approaches to reduce the computational complexity, we demonstrate that our
approach does not penalize the execution time due to the adoption of virtual clusters.

The characteristics of the virtual clusters also enhance the communication on XY
routing schemes, prioritizing the application mapping on rectangular areas and decreasing
the communication interference between different applications.

The presented heuristic has a built-in defragmentation procedure. Contrary to the
state-of-the-art, it acts on fragmented applications instead of fragmented free spaces and
enhances mapped applications that are not fragmented. This defragmentation reduced the
average communication cost of the applications mapped in the system by up to 30%.
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7. RISC-V INTEGRATION

RISC-V is an open-source ISA, allowing its use royalty-free in open-source projects
or proprietary products. Its creators avoided defining implementation details as much as pos-
sible, allowing efficient microarchitecture designs for different purposes and technologies,
with support for highly-parallel multicore or many-core implementations [Waterman et al.,
2016a]. Despite this, RISC-V instructions are typically designed to execute in one clock
cycle as long as cache misses are ignored [Patterson and Waterman, 2017].

The Authors in [Patterson and Waterman, 2017] argue that incremental ISAs, which
are the conventional approach to architectures, lead to every new design having to imple-
ment the mistakes of past extensions to maintain backward binary compatibility. RISC-V
offers a base integer instruction set of 32 or 64 bits, with a predefined set of available ex-
tensions, such as multiply-divide (M), atomic operations (A), and single (F), double (D),
and quadruple (Q) precision floating-point. RISC-V can also use extensions to aid simple
designs, such as using the embedded (E) base integer ISA, which has 16 instead of 32
registers present in the standard ISA, and using the compressed instructions (C) extension
[Waterman et al., 2016a].

RISC-V is also extensible concerning its privilege levels that protect software stack
components. RISC-V has four privilege levels: (i) hypervisor, for virtualization purposes;
(ii) machine, for low-level hardware access; (iii) supervisor, for OS execution; and (iv ) user,
for conventional application execution. Only machine-level implementation is mandatory.
Although, to enable a secure embedded system, at least user and machine modes should
be used, while the supervisor mode is intended for Unix-like operating systems [Waterman
et al., 2016b].

Recently, RISC-V was used in many-core platforms. OpenPiton+Ariane [Balkind
et al., 2019] is a platform composed of general-purpose 64-bit RISC-V cores, where each
PE has a private cache and a shared L2 cache slice, interconnected by an NoC. This plat-
form has its own set of peripherals and can be validated by simulation, FPGA, or ASIC
implementations.

BlackParrot [Petrisko et al., 2020] is another general-purpose 64-bit RISC-V core
platform. A PE in this platform can be a RISC-V core, an L2 cache, an accelerator, or a
peripheral. BlackParrot uses a collection of NoCs to guarantee cache-coherence in a 2D
mesh organization. It is validated by simulation and ASIC implementation.

Jang et al. [Jang et al., 2021] propose a mechanism to keep cache coherence in
many-core systems without adding cache coherence logic to the core. The Authors’ primary
motivation is that despite free RISC-V cores being available, most are impractical of using
due to the effort needed to modify to comply with cache-coherent systems. They integrate
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RISC-V cores with their proposed mechanism through an NoC and evaluate using an FPGA
prototype.

This Chapter presents the integration of the RISC-V ISA to the MA-enabled Mem-
phis platform. The motivation for this is twofold. First, to exploit the MA approach character-
istics that enable the architectural portability (according to Definition 3). Second, the devel-
opment of the MIPS architecture previously used in the Memphis platform is discontinued,
and the MIPS company focus switched to RISC-V architectures [Turley, 2021]. The MIPS I
ISA, which dates back to 1985, despite being a load-store modular architecture that shares
characteristics with RISC-V, has delay slots, limiting its microarchitectural implementations.

This Chapter is organized as follows. Section 7.1 presents the RISC-V hardware
model. Section 7.2 describes the adaptations to execute Memphis software stack on top of
a RISC-V processor. Finally, Section 7.3 presents the results of the RISC-V integration.

7.1 RISC-V Hardware Support

This Section describes the RISC-V hardware model integrated into the Memphis
platform with MA support. The RISC-V ISA is implemented in this work by an Instruction
Set Simulator (ISS). This means that it is not a microarchitectural model. It simulates the
instruction set behavior without implementing an actual microarchitecture but still complies
with Memphis memory interface, interrupts, and connections. Note that it is possible to
export the ISS execution statistics and fit them into an existing model to obtain actual perfor-
mance and energy values.

The implemented ISS includes the RV32IM set. This means the RISC-V (RV) pro-
cessor has a 32-bit integer base ISA (32I) with the multiply-divide extension (M). Figure 7.1
shows the privilege stack supported by this ISS. Applications have access to the limited user-
mode ISA. The OS requires, in addition to the user-mode ISA, supervisor-mode instructions
and Control and Status Registers (CSR) to execute. The RISC-V Supervisor Execution En-
vironment (SEE) provides lower-level access to the processor through its machine-mode
instructions and CSRs [Waterman et al., 2016b]. The three implemented privilege modes
with the RV32IM instruction set are satisfied by 59 instructions.

Note that despite the ISS implementing the three main privilege levels of RISC-
V, the Memphis platform uses only user-mode and machine-mode. This way, in Memphis,
the OS is joined with the SEE and executes directly in machine-mode. The OS low-level
functions and Application Binary Interface (ABI) responsible for application-OS interaction
are further detailed in Section 7.2.

RISC-V has a paged virtual-memory architecture to support Unix-based operating
systems. However, to keep compatibility with Memphis platform generation and operating
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Figure 7.1: Privilege stack implemented by the RISC-V ISS. Adapted from: [Waterman
et al., 2016b]. ABI – Application Binary Interface. SBI – Supervisor Binary Interface.

system without significant changes, this standard paging system is not used by the Memphis
OS. Instead, a memory relocation technique is implemented as an extension to the ISA,
allowing the OS to execute in machine-mode while keeping a simple virtual memory address
translation to allow multitasking with low implementation cost.

Figure 7.2 shows the Machine Relative Address Register (mrar). This register is
implemented in a space reserved for implementation-specific CSRs, and is set by the stan-
dard CSR instructions (csrr and csrw pseudo-instructions). The mrar register has two fields:
(i) OFFSET, corresponding to the 30 upper bits of a 32-bit memory page offset; and (ii) MODE,
which selects the paging operating mode by the following combinations:

• MODE=0 and privilege=MACHINE: the address translation is disabled, and the kernel
accesses directly the physical addresses;

• MODE=0 and privilege=USER: the mrar memory relocation is enabled, adding the value
of the OFFSET to the task virtual address to produce the physical address.

• MODE=non-zero: the paging mode is delegated to the configuration set in the standard
RISC-V paging system. This is not used in Memphis.

31 2 1 0

OFFSET MODE
30 2

Figure 7.2: The mrar register.

7.2 RISC-V Software Support

This Section details the adaptations needed to execute Memphis software stack in
a RISC-V core. Note that the goal is to make the least possible number of adaptations in
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the software, to allow a fair comparison between the platform execution in MIPS and RISC-V
processors, and evaluate the portability (Definition 3) of the MA approach.

Most adaptations are in the HAL, mostly written in assembly. The HAL is respon-
sible for bootloading the OS, context switching, interruption and exception entry points, and
loading and exiting user tasks. The only high-level change in the kernel is the removal of the
structures to store a TCB for an idle task. The idle task TCB is not needed, and idling is now
adequately treated by the HAL when the task scheduler queues a null task to execute. This
modification resulted in a reduction of 1.25 kB in the kernel .bss section.

The HAL also modifies the TCBs. Each task has its TCB, which contains control
data on mapping, migration, messaging, and scheduling. The TCB has a space for the
task registers, program counter, and memory offset, used for context switching. The HAL
modifies the TCB by obtaining a pointer to the current task being executed and loading or
storing the register values to the structure.

The software build system uses a standard bare-metal C compiler with standard
flags, except for -fno-builtin and -ffreestanding options, to provide Memphis own im-
plementations of standard libraries and program initialization, respectively.

Address composition optimizations at link-time are enabled by default in the RISC-
V compiler. These optimizations require the initialization of the global pointer (gp). Using the
gp enables relative-addressing of global symbols without requiring additional instructions to
compose a memory address. Thus reduces the number of instructions to compose load,
store, jump, and branch addresses compared to absolute addressing.

The following Sections detail the modifications made to the HAL. Section 7.2.1
details the kernel bootloading process. Section 7.2.2 details the trap handling. Section 7.2.3
details the interruption handling. Section 7.2.4 details the environment call (system call)
handling. Section 7.2.5 details the exception handling. Finally, Section 7.2.6 details the
Application Binary Interface (ABI) to integrate user tasks to the Memphis OS.

7.2.1 Kernel bootloading

Figure 7.3 presents the kernel bootloader assembly code. When the processor
switches on, it starts in machine-mode. First, it needs to set the Machine Status (mstatus)
to zero (line 2), globally disabling interrupts during the boot process and setting the following
execution privilege to user-mode. Any pending interrupt from an unknown state is also
cleared (line 3), and the interrupt mask is set to accept external interrupts (lines 4-5). It is
also configured not to delegate interrupts (line 7) and exceptions (line 8) to supervisor-mode
or user-mode, handling both directly in machine-mode.
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1 _start: # Boot in machine -mode
2 csrw mstatus , zero
3 csrw mip , zero
4 li t0, 0x800
5 csrw mie , t0
6
7 csrw mideleg , zero
8 csrw medeleg , zero
9

10 .option push
11 .option norelax
12 la gp, __global_pointer$
13 .option pop
14
15 la t0, trap_handler
16 csrw mtvec , t0
17
18 li sp, sp_addr
19 jal main
20
21 csrw mscratch , sp
22 j idle_entry

Figure 7.3: Kernel bootloader assembly code.

Lines 10-13 detail how the global pointer is set by disabling the linker optimization
temporarily to load the __global_pointer$ value defined by the linker. The vector mode
is configured to direct addressing, with both interrupts and exceptions entries set to the
trap_handler address (lines 15-16). Finally, the stack pointer (sp) is loaded with the highest
address of the kernel memory page, defined at compile-time, and the main high-level kernel
function is called (lines 18-19). On return from main, the kernel sp is saved to the Machine
Scratch register (mscratch), where the user tasks cannot access, and the execution jumps
to an idle procedure entry, where it will wait until an interrupt is received (lines 21–22).

7.2.2 Kernel trap handling

Figure 7.4 presents the trap handler assembly code. A trap can occur due to: (i)
interrupts (Section 7.2.3); (ii) exceptions (Section 7.2.5); and (iii) environment calls (Sec-
tion 7.2.4). On a trap occurrence, the execution jumps to the trap_handler label. First, it
needs to swap the trapped task sp with the kernel sp saved in the mscratch register (line 2).
Then, a minimum context is saved to the stack until it is known which trap occurred (lines
3-5). The kernel gp is restored to access global symbols (lines 7-10).

The first verification in Figure 7.4 is whether there was a task running before the trap
or if the system was idling (lines 13-14). If the system was idling, an interrupt occurred, which
will jump to the high-level interrupt entry (isr_entry) described in Section 7.2.3 without
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1 trap_handler: # Switched from user - to machine -mode
2 csrrw sp, mscratch , sp
3 addi sp , sp, -8
4 sw gp, 4(sp)
5 sw s0, 0(sp)
6
7 .option push
8 .option norelax
9 la gp, __global_pointer$

10 .option pop
11
12 # If no task is running , interrupt occurred
13 lw s0, current
14 beqz s0 , isr_entry
15 # Else
16 addi sp , sp, -8
17 sw t1, 4(sp)
18 sw t0, 0(sp)
19 # If task was interrupted
20 csrr t0 , mcause
21 li t1, INTR_MASK
22 and t1 , t1 , t0
23 bnez t1 , intr_handler
24 # Else if is ecall
25 addi sp , sp, 8
26 li t1, ECALL_MASK
27 and t1 , t1 , t0
28 bnez t1 , ecall_handler
29 # Else , continues to exception handling

Figure 7.4: Kernel trap handling assembly code.

saving task context. Otherwise, the kernel saves more task context to the stack (lines 16-
18) to verify whether the task was interrupted, called the environment, or generated an
exception.

The trap cause is loaded from the Machine Cause register (mcause) at line 20. It
is verified against an interrupt mask to jump to the intr_handler (lines 21-23), described in
Section 7.2.3, or if an exception occurred. The only exception supported by Memphis is the
environment call from user-mode, which is a system call, also verified by a mask (lines 26-
28), which jumps to the ecall_handler described in Section 7.2.4. Otherwise, the execution
continues to the exception handler described in Section 7.2.5.

7.2.3 Kernel interrupt handling

Figure 7.5 presents the interrupt handler assembly code. If a running task was
interrupted, the program execution goes to the intr_handler in Figure 7.5a, where it saves
the full context of the running task and then continues to the isr_entry. The context is
saved to the task TCB, which its pointer is loaded to the s0 register. Note that the t0 register
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is used to store temporary values before saving to the TCB of the task sp, which is in the
mscratch (lines 3–4), and of task gp, s0, t0, and t1, which were temporarily saved in the
stack (lines 5–11,13–14). The program counter of the interrupted task is obtained from the
Machine Exception Program Counter register (mepc) and saved to the TCB (lines 38–39).

1 intr_handler:
2 sw ra , 0(s0)
3 csrr t0 , mscratch
4 sw t0 , 4(s0)
5 lw t0 , 12(sp)
6 sw t0 , 8(s0)
7 lw t0 , 0(sp)
8 sw t0 , 12(s0)
9 lw t0 , 4(sp)

10 sw t0 , 16(s0)
11 addi sp , sp , 8
12 sw t2 , 20(s0)
13 lw t0 , 0(sp)
14 sw t0 , 24(s0)
15 sw s1 , 28(s0)
16 sw a0 , 32(s0)
17 sw a1 , 36(s0)
18 sw a2 , 40(s0)
19 sw a3 , 44(s0)
20 sw a4 , 48(s0)
21 sw a5 , 52(s0)
22 sw a6 , 56(s0)
23 sw a7 , 60(s0)
24 sw s2 , 64(s0)
25 sw s3 , 68(s0)
26 sw s4 , 72(s0)
27 sw s5 , 76(s0)
28 sw s6 , 80(s0)
29 sw s7 , 84(s0)
30 sw s8 , 88(s0)
31 sw s9 , 92(s0)
32 sw s10 , 96(s0)
33 sw s11 ,100(s0)
34 sw t3 ,104(s0)
35 sw t4 ,108(s0)
36 sw t5 ,112(s0)
37 sw t6 ,116(s0)
38 csrr t0 , mepc
39 sw t0 ,PC_ADDR(s0)
40 # Continue to high -

level interrupt
handler (isr_entry)

(a) Context saving
procedure.

1 isr_entry:
2 addi sp , sp , 8
3 li t0 , MMR_ADDR
4 lw t1 , 0x20( t0)
5 lw t2 , 0x10( t0)
6 and a0, t1 , t2
7 jal os_isr
8 csrw mscratch , sp
9

10 # If no task will run ,
idle

11 beqz a0 , idle_entry
12 # Else if the

interrupted task is
the same scheduled

13 beq a0, s0 ,
restore_minimum

14 # Else , a new task was
scheduled

15 lw s1 , 28(a0)
16 lw s2 , 64(a0)
17 lw s3 , 68(a0)
18 lw s4 , 72(a0)
19 lw s5 , 76(a0)
20 lw s6 , 80(a0)
21 lw s7 , 84(a0)
22 lw s8 , 88(a0)
23 lw s9 , 92(a0)
24 lw s10 , 96(a0)
25 lw s11 ,100(a0)
26 lw t0 ,PC_ADDR(a0)
27 csrw mepc , t0
28 lw t0 ,OFF_ADDR(a0)
29 csrw mrar , t0
30 # Continue to restore

the remaining context
(restore_minimum)

(b) High-level handling entry
point.

1 restore_minimum:
2 lw ra , 0(a0)
3 lw sp , 4(a0)
4 lw gp , 8(a0)
5 lw t0 , 12(a0)
6 lw t1 , 16(a0)
7 lw t2 , 20(a0)
8 lw s0 , 24(a0)
9 lw a1 , 36(a0)

10 lw a2 , 40(a0)
11 lw a3 , 44(a0)
12 lw a4 , 48(a0)
13 lw a5 , 52(a0)
14 lw a6 , 56(a0)
15 lw a7 , 60(a0)
16 lw t3 ,104(a0)
17 lw t4 ,108(a0)
18 lw t5 ,112(a0)
19 lw t6 ,116(a0)
20 lw a0 , 32(a0)
21
22 mret # Switch to

user -mode

(c) Minimum context
restoration.

Figure 7.5: Kernel interrupt handling assembly code.

In Figure 7.5b, the handler sets the arguments of the received external interrupt by
reading the MMRs and then calls the high-level interrupt handler – jal os_isr (lines 2-7). The
returned value from the interrupt is a scheduled task. If no task is returned, the execution



93

continues to the idle entry (line 11). If the scheduled task is the same as the interrupted
task, there is no need to restore all registers, since the only modified ones are the callee-
saved registers, therefore, it jumps to the minimum context restoration procedure (line 13)
and further detailed in Figure 7.5c. Otherwise, if a different task from the interrupted was
scheduled, the other registers should also be restored (lines 15–29) before continuing to the
minimum context restoration. The mrar is also loaded with the task page offset present in its
TCB (lines 28–29).

Figure 7.5c presents the minimum context restoration. It loads the registers from
the TCB (lines 2–20) and then calls the Machine Return instruction (mret) in line 22, causing
the execution to jump to the value present in the mepc register and the execution mode to
change to user-mode.

7.2.4 Kernel environment call handling

Figure 7.6 presents the assembly code to handle environment calls triggered by
task calls such as Send, Receive, and Exit. When the trap handler detects the environment
call, it jumps to the ecall_handler in Figure 7.6a. First, it jumps to the high-level call han-
dling (line 3), which changes two global variables: (i) current, which holds the scheduled
TCB; and (ii) task_terminated, which flags if the environment call terminated the calling
task.

In Figure 7.6a, after the high-level call, it verifies if the caller task terminated (lines
7–8) to restore the next scheduled task without saving the context of the terminated task.
Otherwise, it continues and verifies if the next scheduled task is the same as the caller task
(line 10) to return to its execution without saving or restoring any context (Figure 7.6c). In
Figure 7.6a, if the caller task has not terminated, but the kernel scheduled a different task
to execute, it saves the previously running task callee-saved registers (lines 12–31) and
continues to the subsequent task context restoration (Figure 7.6b). Note that the context
restoration still verifies if the next scheduled task is valid (line 5). Otherwise, it will idle.

7.2.5 Kernel exception handling

If the trap handler detects an exception not caused by an environment call, it contin-
ues its execution to the exception handler. This can occur when a task performs a forbidden
action, such as accessing a misaligned or invalid address, or executing an invalid instruction.
Figure 7.7 presents the exception handling procedure. In addition to the exception cause,
the handler loads the Machine Trap Vale (mtval) and the mepc to compose the arguments
before calling the high-level exception handler (lines 2–5). The high-level handler aborts the
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1 ecall_handler:
2 sw a1 , 36(s0)
3 jal os_syscall
4
5 # If the task

terminated , no need
to save context

6 lw t0 , current
7 lb t1 ,

task_terminated
8 bnez t1 ,

restore_complete
9 # Else if scheduled

the caller task ,
return without
changing context

10 beq t0, s0 ,
ecall_return

11 # Else , save the task
callee -saved
registers

12 csrr t1 , mscratch
13 sw t1 , 4(s0)
14 lw t1 , 4(sp)
15 sw t1 , 8(s0)
16 lw t1 , 0(sp)
17 sw t1 , 24(s0)
18 sw s1 , 28(s0)
19 sw a0 , 32(s0)
20 sw s2 , 64(s0)
21 sw s3 , 68(s0)
22 sw s4 , 72(s0)
23 sw s5 , 76(s0)
24 sw s6 , 80(s0)
25 sw s7 , 84(s0)
26 sw s8 , 88(s0)
27 sw s9 , 92(s0)
28 sw s10 , 96(s0)
29 sw s11 ,100(s0)
30 csrr t1 , mepc
31 sw t1 ,PC_ADDR(s0)
32 # Continue to

scheduled task
(restore_complete)

(a) Call handling.

1 restore_complete:
2 # If scheduled idle

task , go to idling
3 addi sp, sp , 8
4 csrw mscratch , sp
5 beqz t0, idle_entry
6 # Else , restore

scheduled task
context

7 lw t1 ,PC_ADDR(t0)
8 csrw mepc , t1
9 lw t1 ,OFF_ADDR(t0)

10 csrw mrar , t1
11 lw ra , 0(t0)
12 lw sp , 4(t0)
13 lw gp , 8(t0)
14 lw t1 , 16(t0)
15 lw t2 , 20(t0)
16 lw s0 , 24(t0)
17 lw s1 , 28(t0)
18 lw a0 , 32(t0)
19 lw a1 , 36(t0)
20 lw a2 , 40(t0)
21 lw a3 , 44(t0)
22 lw a4 , 48(t0)
23 lw a5 , 52(t0)
24 lw a6 , 56(t0)
25 lw a7 , 60(t0)
26 lw s2 , 64(t0)
27 lw s3 , 68(t0)
28 lw s4 , 72(t0)
29 lw s5 , 76(t0)
30 lw s6 , 80(t0)
31 lw s7 , 84(t0)
32 lw s8 , 88(t0)
33 lw s9 , 92(t0)
34 lw s10 , 96(t0)
35 lw s11 ,100(t0)
36 lw t3 ,104(t0)
37 lw t4 ,108(t0)
38 lw t5 ,112(t0)
39 lw t6 ,116(t0)
40 lw t0 , 12(t0)
41
42 mret # Switch to

user -mode

(b) Context restoration.

1 ecall_return:
2 lw s0 , 0(sp)
3 lw gp , 4(sp)
4 addi sp , sp , 8
5 csrrw sp,

mscratch , sp
6
7 mret # Switch to

user -mode

(c) Call return.

Figure 7.6: Kernel environment call handling assembly code.

task that generated the exception and returns the TCB of the next scheduled task, which is
used to call the restoration procedure (lines 7–8).
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1 # Continued from trap handler
2 csrr a0, mcause
3 csrr a1, mtval
4 csrr a2, mepc
5 jal hal_exception_handler
6
7 mv t0, a0
8 j restore_complete

Figure 7.7: Kernel exception handling assembly code.

7.2.6 Application binary interface

The ABI is responsible for creating a layer between application and system. In
Memphis, the RISC-V ABI is responsible for booting the task and providing an entry point
for the environment call. Figure 7.8 presents the ABI assembly code. The initialization code
provides the gp and sp set up (lines 2–6).

1 _start: # Boot in user -mode
2 .option push
3 .option norelax
4 la gp, __global_pointer$
5 .option pop
6 li sp, sp_addr
7
8 jal main
9 mv s0, a0

10 mv a0, zero
11 try_exit:
12 mv a1, s0
13 ecall # Switch to machine -

mode
14 beqz a0 , try_exit

(a) Task boot.

1 system_call:
2 addi sp , sp, -4
3 sw ra, 0(sp)
4 ecall # Switch to machine -

mode
5 lw ra, 0(sp)
6 addi sp , sp, 4
7 ret

(b) System call entry.

Figure 7.8: Application binary interface assembly code.

In Figure 7.8a, the task main is called, and its return value, the exit code, is saved
to the s0 register (lines 8–9). The ecall instruction calls the environment call exit with the
first argument zeroed and the second containing the exit value (lines 10–13). Since the exit
procedure can fail due to pending messages by the task, it retries until it succeeds (line 14)
and the task is deallocated.

The environment call entry point, in Figure 7.8b, is used by the high-level implemen-
tation of the Memphis API, which will generate an environment call exception, as described
in Section 7.2.4. In the ABI, the entry point saves the caller function return address (ra) to
the stack and generates the environment call via the ecall instruction (lines 2–4). On return
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from the environment call, the return address is recovered, and the execution returns to the
caller (lines 6–7).

7.3 Results

This Section presents the experimental results of the RISC-V integration to the
Memphis platform compared to the MIPS I-based Memphis. Experiments in this Section use
a 4x4 cluster representation with one executing application. Each application is dynamically
mapped with the algorithm described in Chapter 6, limiting the number of PE tasks to a
maximum of 2.

In every scenario, the MA mapping task is mapped to the PE 3x3, with the Appli-
cation Injector connected to the same PE and the MA Injector connected to the PE 0x0.
The kernel, user applications, and MA are compiled with the GCC 11.2.0 using the -O2

optimization flag in RISC-V and MIPS.

Figure 7.9 presents the total number of executed instructions of all cores for each
application scenario. On average, RISC-V reduced the number of executed instructions
by 27.4%, and all scenarios showed a reduction with similar rates, evidenced by a relative
standard error of 1.6%.

AES
Dijkstra DTW JPEG

Matrix Mul.
MPEG4

MWD
Sorting

VOPD
0

2

4

6

8

To
ta

le
xe

cu
te

d
in

st
ru

ct
io

ns
(×

10
6 )

RISC-V MIPS I

Figure 7.9: Total executed instructions of RISC-V vs. MIPS I for each application scenario.

Figure 7.10 shows a breakdown of the executed instructions classes by the eval-
uated scenarios. The x-axis lists the instruction classes divided in arithmetic and logic,
multiplication and division, load and store, and jump and branch. Figure 7.10a details the
RISC-V executed instructions compared to the MIPS I showed in Figure 7.10b.
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Figure 7.10: Executed instruction breakdown for RISC-V and MIPS I.

In Figure 7.10 all instructions classes, except multiplication and division, were re-
duced using RISC-V. Arithmetic and logic instructions were reduced by an average of 31%,
and jump and branch instructions were reduced by 2.7%. Despite increasing the multipli-
cation and division instructions by an average of 1.8 times using RISC-V, these instructions
represent only 1% of the total executed instructions by the system.

The most notable reduction in Figure 7.10 is the load and store instructions, by
36%. This can represent a significant decrease in energy because memory operations cost
more than computing operations [Zaruba and Benini, 2019]. Both ISAs follow the Reduced
Instruction Set Computer (RISC) philosophy and share a similar instruction set. Therefore,
reducing the number of executed instructions represents gains in performance and energy.

Figure 7.11 compares the memory footprint of applications in RISC-V and MIPS I.
Every application, including the Kernel and the Mapper task, presented a reduction in the
memory footprint. On average, the reduction reached 10.7%. The relative standard error for
all evaluated applications is 0.9%, evidencing similar reduction rates in all scenarios.

7.4 Final Remarks

This Chapter presented the integration of a RISC-V processor in the Memphis plat-
form, replacing the MIPS I processor. The developed ISS is not cycle-accurate but capable



98

Kernel
Mapper AES

Dijkstra DTW
Matrix Mul.

JPEG
MPEG4

MWD
Sorting

VOPD
0

50

100

150
M

em
or

y
fo

ot
pr

in
t(

kB
)

RISC-V MIPS I

Figure 7.11: Memory footprint for different applications in RISC-V and MIPS I.

of interacting with the cycle-accurate hardware of the platform and allows evaluation related
to the number of executed instructions.

The Memphis portability (Definition 3), which allowed the processor change, was
enabled by two factors. First, the previously implemented HAL separated the high-level
functions of the OS from the low-level operations, such as context switching and interrupt
handling. The second factor is separating system management from the OS using the Man-
agement Application. These two factors are detailed in Chapter 4.

The experiments in this Chapter revealed significant optimization related to the
number of executed instructions. The most relevant is the average decrease of 36% in load
and store instructions, implying reduced energy and improved performance. Furthermore,
the memory footprint is reduced by an average of 10% by using the RISC-V processor.

The final result of this Chapter is the Memphis-V platform, a many-core with a
state-of-the-art ISA. All applications that previously ran in Memphis also executed correctly
in Memphis-V, both in single- and multi-tasking.
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8. CONCLUSION AND FUTURE WORK

This work presented the Management Application, an alternative for state-of-the-
art management approaches with enhanced portability (Definition 3) and modularity (Def-
inition 2), enabled by the loose coupling (Definition 1 between management and platform.
Additionally were presented a monitoring framework with a broadcast network (Chapter 5),
a mapping heuristic with defragmentation support tailored for the MA approach (Chap-
ter 6), and the platform update to the RISC-V processor (Chapter 7). The final result is
the Memphis-V platform, managed by the Management Application with a state-of-the-art
processor.

To conclude this work, we resume below the specific objectives presented in the
Introduction. We detail the contributions related to each specific objective and how they were
achieved throughout the work.

1. Remove the many-core management tasks from the target platform OS, reducing
its memory footprint and discarding dedicated OSs for management purposes:

This is the first contribution of this work: make the management tasks loosely cou-
pled to the OS. Chapter 4 details the OS modifications made to the Memphis platform
and the MA Injector addition. With these modifications, the Memphis platform had its
Cluster Managers removed, and all processors run the same OS without management
functions. The MA Injector made it possible to separate user tasks and management
tasks injection, increasing the platform security by inserting into the system the initial
management tasks at start-up.

2. Define the method to execute ODA tasks in userspace, making the MA modular
(Definition 2) using a proper communication Application Programming Interface
(API), system monitors, and actuation mechanisms:

This is the second contribution of this work: create a framework to support the Manage-
ment Application. Chapter 4 describes the activities carried out to implement the MA
framework. First, an MPI-like management communication API is developed to allow
task-to-kernel, task-to-peripheral, and peripheral-to-kernel communications in both di-
rections and in any communicating pair sequence. Then, the LLM is added as a simple
monitor called periodically by the OS, and the migration procedure is the first AE sup-
ported by the system. A set of ODA tasks are defined as a RT task monitor Observer,
a QoS Decider, and a task migration Actuator.

The MA framework is enhanced using the BrLite, as described in Chapter 5. BrLite
allows fast communication of small management and monitoring messages without
disturbing the data NoC used by the user tasks. This network is further exploited by
a proposed monitoring framework to be used as the LLM, which also employs the



100

Memphis DMNI to rapidly send monitored data directly into the Observer task memory
space.

3. Develop a mapping heuristic tailored to the MA:

The first two specific objectives exposed the need to develop a mapping heuristic.
First, the ODA task set developed for the second specific objective centers around
the task migration Actuation, which depends on the mapping. Second, the cluster-
ing removal makes the previous clustered mapping unoptimized, generating a large
hop count between communicating tasks Therefore, Chapter 6 detailed the proposed
mapping heuristic.

The proposed mapping heuristic is based on sliding windows, achieving low compu-
tational effort even when executed as a centralized mapper in larger many-cores, with
only a 3% increased execution time than a clustered approach. The mapping quality
is 27% better than a state-of-the-art heuristic executed in CBM and PAM concerning
the average application communication cost. This work resulted in a publication in
[Dalzotto et al., 2021a].

Furthermore, the mapping heuristic is expanded with a built-in defragmentation proce-
dure. This procedure is triggered on any task termination and acts on fragmented ap-
plications or applications with high communication costs due to poor mapping caused
by a heavy-loaded system. With few migrations, the defragmentation procedure can
reduce the average communication cost of the system by up to 30%.

Note that the mapping heuristic was implemented without any change to the OS.
Therefore, its implementation evidenced the MA modularity (Definition 2). In systems
with low modularity, the heuristic implementation would require modifications to the
target OS.

4. Use the Quality of Service (QoS) management objective to evaluate the proof-of-
concept MA with task migration:

Here, the MA is evaluated compared to CBM and PAM, as detailed in Chapter 4. This is
possible by using the ODA loop to act into the system from the monitored data, accord-
ing to a decision heuristic and a set of Actuators developed for the second objective.
Note that the main goal is not the ODA decision quality but the MA framework itself.

The MA showed 11.7% enhanced management throughput due to its pipelined struc-
ture. Besides, the MA is loosely coupled to the OS, reducing management memory
footprint by 39% and enhancing its portability (Definition 3) and modularity (Defini-
tion 2). This work is published in [Dalzotto et al., 2021b]. This framework paves the
way for future works related to managing large many-core systems and multi-objective
management.
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Furthermore, BrLite improved the MA organization. Besides general improvements to
the platform, such as enhancing user application communication and resulting in 8%
decreased execution times, the BrLite also reduced the management latency by up to
77%.

5. Make the MA organization agnostic to the hardware, turning it possible to replace
the processor, evidencing portability (Definition 3):

This is the third contribution of this work. One objective of this work is allowing the MA
tasks to be reused in other platforms, and the initial step is proving the portability of the
approach. The goal is to make the MA agnostic to the hardware, making it possible to
replace the processor.

Chapter 7 details how the existing Memphis OS is ported to the RISC-V processor.
Additionally, it describes a RISC-V ISS integrated into the Memphis platform, replacing
the MIPS processor. The final result is a platform with a state-of-the-art processor,
which reduced the executed instructions compared to MIPS by 27.4% and the memory
footprint by 10.7%.

Note that the RISC-V integration required no modifications to the management tasks
of the MA. Only modifications in the OS HAL were made, which is not related to man-
agement functions. Therefore, this evidences the MA portability (Definition 3).

8.1 Future Work

This Section presents the future research directions of this work. This work can
be further expanded in two directions: (i) enhancing the platform hardware with better hard-
ware modeling and an actual processor; and (ii) enhancing the management with machine
learning and a proven OS. Some future work options are:

• Unify the hardware modeling: Replace the platform SystemC and VHDL modeling
with Verilog and SystemVerilog. This way, the same model is used for both simulation
and prototyping.

• Use a cycle-accurate RISC-V core: Use a proven free RISC-V core available in Ver-
ilog or SystemVerilog. This core makes it possible to extract precise information from
the platform execution.

• Port the platform to another OS: With the portability enabled by the MA, use a proven
OS, such as FreeRTOS, with the Memphis platform.

• Synthesize and prototype the Memphis-V: Prototyping the platform enables power,
performance, and area evaluation.
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• Employ machine learning to multi-objective management: Use machine learning
techniques to implement Deciders and Actuators in the MA organization. This can
be done directly in software or with the aid of hardware accelerators developed as
peripherals.
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